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Abstract—The increase in the diversity of products on sale due
to the evolution of technology and standard of life results in a
growing demand for flexible manufacturing that can meet the
necessary production, especially in small companies. Although
the usual solution for these needs is to use human operators,
which provide the necessary flexibility and precision, this comes
at a greater cost. In contrast, industrial robots offer a relatively
smaller price and show more value in repetitive and heavy tasks.
This is where Human-Robot Collaboration (HRC) comes into
action since it complements the flexibility of a human worker
with the strength and lower cost of the robotic worker in the
same workspace. However, to achieve true collaboration it is not
enough to react to the partner’s movements and intentions, the
robot must anticipate them. Inside HRC, Action Anticipation is
a technique used to predict the actions of the human workers
so that the robot can better plan its movements, increasing
manufacturing efficiency and safety. This article reviews the
research in this field, including the commonly used data sources
and algorithms with a particular focus on machine learning
methodologies. The nature of anticipation and the mechanisms
that support it remains open questions in the field of HRC.

Index Terms—Human-Robot Collaboration, Machine Learn-
ing, Action Anticipation, Predictive Model, Robot Controller,
Collaborative Robot

I. INTRODUCTION

The Third Industrial Revolution was characterized by a fo-
cus on automating repetitive and heavy tasks on the assembly
lines. Still, this created a problem: whenever the manufacturers
needed the robots to work in a different assembly process,
they needed to be reprogrammed by an expert. The Fourth
Industrial Revolution, also known as Industry 4.0, refers to
the current trend of the manufacturing sector to become more
intelligent and achieve greater automation. This trend takes
advantage of the recent developments in artificial intelligence,
the Internet of Things, and autonomous robots to pave the
way for more efficient and flexible production processes. With
Industry 4.0, robots are expected to be more adaptable and
perform more actions without constant explicit programming.

The concept of Human-Robot Collaboration (HRC) emerges
as part of Industry 4.0 and involves the research of mechanisms
that allow humans and robots to work together to achieve a
shared goal. Some of the most relevant topics in recent re-
search include collision avoidance and human-aware planning
of robot motions. However, to achieve true collaboration, it is
not enough to react to the partner’s movements and intentions,
the robot must anticipate them.

The concept of anticipation has been studied in several
research fields, such as biology, psychology, and artificial
intelligence. One of the most cited definitions in the last
decades and across the various fields is Rosen’s [1]:

An anticipatory system is a system containing a
predictive model of itself and/or its environment,
which allows it to change state at an instant in accord
with the model’s predictions pertaining to a later
instant.

In general terms, anticipation is viewed as the impact of
predictions on the current behavior of a system, be it natural
or artificial. A prediction model provides information about the
possible future state of the environment and/or system. This
perspective of looking to the future is related to the purpose
of incorporating that information into a decision-making or
planning process. Accordingly, the system becomes anticipa-
tory when it incorporates such a model and, simultaneously,
when it uses the model to change its current behavior.

Over the last few decades, experimental evidence of the
existence of anticipatory biological processes at different lev-
els of organization have been reported [2]–[4]. The ability
to modify behavior in anticipation of future events offers
an adaptive advantage to living organisms with an impact
on behavioral execution and learning. Anticipation is also
considered one of the required abilities of cognitive robots
operating in dynamically changing environments. The role of
anticipation is to connect the robot’s action in the present to
its final goal, helping the design of robots with an increased
level of autonomy and robustness.

The fundamental aspects of anticipation lie at the intersec-
tion of concepts such as time and information, involving abil-
ities such as perception and prediction. The above definition
of anticipation contains a temporal element that provides a
key division between anticipatory and non-anticipatory robots.
Anticipatory robots make decisions based on current states
and predicted future states using predictive models of the
environment. At the other extreme of the spectrum are the
robots that live in the present based on the current state of the
observed environment, which are usually called reactive robots
(e.g., the Braintenberg’s vehicles [5]). However, the behavior
of a purely reactive robot is limited by its temporal horizon
since they have no memory of the past to build a model of the



world. Most of the current robots present a behavior influenced
either by the current perception as well as by the memory of
past perceptions but still lacking a perspective of the future.

The nature of anticipation and the mechanisms that support
it are considered open questions in AI and robotics. In the
context of this article, anticipation is considered a combina-
tion of prediction and decision-making, as illustrated by the
blocks diagram in Fig. 1. The prediction model offers the
possibility of incorporating action selection in their planning
through a decision-making block, while the planning module
relates to the robot’s actions. These modules can be developed
separately, or an end-to-end learning technique could be used
where the model learns the different parts from the perception
to the feedback control.

There are different situations in which an anticipatory
response seems to be an essential ability for effective robot
behavior. In an attempt to distinguish different types of antic-
ipatory behaviors, three contexts in which a robot can operate
are categorized below and the respective task requirements are
presented as follows:

• Time synchronization. The interception of moving ob-
jects is central to several benchmark robotic tasks such as
ball-catching and playing table tennis [6], [7]. These tasks
are challenging due to the demanding spatial–temporal
constraints, which require continuous coordination be-
tween visual, planning and control systems. On one hand,
frequent repredictions of the target location are required
as new observations become available. On the other hand,
this progressive refinement imposes an online re-planning
of robot motion such that the goal is achieved in time.

• Preventive safety. Systems that manage risk require
some form of anticipatory mechanism such that the robot
can adapt its behavior when an undesired situation occurs.
Autonomous driving is an example of how predicting
future events and reacting properly are important abilities
to mitigate risk. Modeling behavior and predicting the
future intentions of pedestrians are core elements to
ensure that the driver stops the car safely.

• Coordinate joint activities in human-robot interaction.
Humans have the ability to coordinate their actions when
carrying out joint tasks with other partners [8], [9]. In the
same line of thought, anticipation can enhance the ability

of a robot in its interaction with a human partner by
predicting their actions (or intentions) before selecting its
own action plan. In collaborative contexts such as those
that occur during manufacturing or assembly tasks, the
main challenge is combining anticipation and planning
in a context of high uncertainty due to the variability
of human behavior in complex industrial environments.
Anticipation seems to have a significant potential for
a more fluid and natural interaction with an impact on
safety and cycle time.

This article aims at reviewing previous work relevant to
the topic of action anticipation to enhance human-robot col-
laboration in industrial settings. This collaborative scenario is
one in which the robot observes the actions of the human
operator, makes predictions about the human’s intention and
reacts accordingly by either waiting for more observations or
executing a physical action. Fig. 2 illustrates an example of
a wood box being assembled. The collaborative robot’s main
function will be to assist with the assembly task by providing
a wooden plank or a certain tool while coordinating its actions
with those of the human operator who is focused on the
assembly process.

Fig. 2. Situation where a robot anticipates that the worker will need a wooden
plank and hands it over to him [10]

The remainder of the document is organized into four
chapters. Chapter II describes background concepts about
collaborative robotics, including safety in HRC. Chapter III
reviews the data sources and sensors used in previous work
on Action Anticipation. Chapter IV contains a review of
previous work on Action Anticipation in HRC, focusing on
the methods. Chapter V concludes the document by stating
the main points derived from this study.

Anticipatory layer

Perception Prediction
model

Decision
making

Motion
Planning

Feedback
Control

Perception End-to-end learning Feedback
Control

Sensor
input

Control
output

Fig. 1. Functional blocks of an anticipatory robotic system considering two alternative approaches: modules developed separately vs. end-to-end learning.



II. COLLABORATIVE ROBOTICS

Human-robot collaboration (HRC) consists of robots and
humans working in the same workspace towards a common
goal. Classical industrial robots are usually automated to per-
form repetitive tasks that require high physical strength. On the
other hand, tasks that require cognitive knowledge, flexibility,
and precision are better suited for humans, even if they are
physically weaker. HRC aims to take advantage of both of
their strengths and complement each others’ weaknesses to
increase manufacturing efficiency.

In an HRC scenario, robots need to be different from the tra-
ditional ones, given that they will work in the same workspace
as humans. According to Castro et al. [11], “Collaborative
robots need to be endowed with a set of abilities that enable
them to act in close contact with humans, such as sensing,
reasoning, and learning. In turn, the human must be placed
at the centre of a careful design where safety aspects and
intuitive physical interaction need to be addressed as well.”.
In [12], it is stated that nowadays, collaborative robots are
developed to be compact, easy to install and program, flexible,
mobile, consistent and precise. Additionally, they positively
impact employees since they are responsible for monotonous
and dangerous actions and reduce the production cost for the
company.

A. Safety

Safety is one of the most critical topics in collaborative
robotics and the first step toward establishing a collabora-
tive environment. According to [12], collaborative robots (or
cobots) are able to safely work with people because they have
sensitive sensors that can detect the human interrupting them,
causing them to stop their actions, while traditional robots
would potentially injure the worker. However, given that there
are tasks that require the robot to move very close to the
worker, some norms were implemented: ISO 10218-1 and
10218-2. From these two standards, Castro et al. [11] and
Villani et al. [13] describe the four criteria from which at
least one must be met as:

1) Safety-rated monitored stop: when a human enters the
cobot’s workspace, it completely stops;

2) Hand guiding: when an operator manually moves the
cobot, it is compliant;

3) Speed and separation monitoring: as the human moves
closer to the cobot, it becomes gradually slower;

4) Power and force limiting: the cobot has its operation
restricted in terms of force and torque.

III. DATA SOURCES AND SENSORS

This section covers which data is generally used in human
action anticipation and which sensors can be used to capture
that data from the environment. Humans and robots can
communicate through several methods, which can be direct
such as using a console or a remote, or indirect, resulting
from data captured from sensors. Indirect communication can
be further divided into methods that work in a more active

Fig. 3. The four collaborative operative modes identified by robot safety
standards ISO modes 10218-1/2 [13]

way, such as voice commands, and those that work passively.
In action anticipation, passive methods are used because the
user should not need to do anything for the robot to act, the
robot must be able to understand the worker’s body language,
such as his involuntary pose, gestures or gaze. Based on [11],
[14], [15], the main kinds of data in indirect and passive
communication can be seen in the diagram in Fig. 4 and can
be described as follows:

Fig. 4. Data sources common in action anticipation

• Gestures: these are one of the main ways humans com-
municate, whether through simple movements or formal
sign language. In the literature about HRC, gestures can
also commonly be found since they have the advantage
of resisting ambient noise. Usually, gestures are captured
with vision-based methods with either an RGB or RGB-
D camera, so there is no need for unnatural movements.
With vision, it is possible to include markers, but these
may lead to occlusions and hinder the worker’s move-
ments. Consequently, there is also work in the literature
that uses markerless vision to allow more unrestricted



movements. Another way to capture the movements of the
human worker would be to use wearable inertial sensors,
which contain accelerometers and gyroscopes, but, once
again, wearables can hinder the worker’s movements.
Finally, capturing point clouds using a LIDAR presents
another possibility of capturing gestures without restrict-
ing the worker’s motion.

• Semantics: semantic information about the objects can
also help the global workflow. Human actions can be
represented semantically by obtaining the poses of the
human as a specific set of limbs, even if only partially.
During action prediction, this, coupled with the object
positions, can be used to know which objects the worker
can interact with. Having semantic information about the
pose of the human body also helps in the path-planning
phase of the robot since it can use this information to
avoid the worker and prevent collisions.

• Gaze: this can be used to determine where the user’s
attention resides, giving a considerable amount of in-
formation that can trigger some action. There are two
options to obtain the user’s gaze. Wearable sensors can
provide better results but are expensive and intrusive.
On the other hand, algorithms that detect head pose and
assume the gaze from it can also be used, which is a
cheaper and non-intrusive solution.

• Biometrics: Electromyography (EMG) sensors can mea-
sure electrical signals generated by muscle contractions,
while electroencephalography (EEG) sensors are com-
monly used in brain-computer interfaces (BCIs).

Regarding the sensors used to capture the raw data, most lit-
erature suggests using an RGB camera. However, the captured
images may be used in the following different ways:

• directly used as input to models which can extract fea-
tures from the images;

• used as input to frameworks that receive an image,
process it, and return the key points, such as the skeleton
joints of the person in the image; these key points can
also then be used to assume the gaze of the human in the
image such as in Canuto et al. [16] where the authors used
OpenPose[17]–[20]1, an open-source project that aims to
detect key points in the human body, face, hands, and
feet from images as shown in Fig. 5, to obtain not only
the skeleton joints but also the worker’s gaze;

• used to process the optical flow [21]–[24];
• if the human was wearing markers, the image can be used

to obtain the positions of the markers obtaining gestures
from the sequence of those positions [10];

Besides RBG cameras, some works, such as the one de-
scribed in Moutinho et al. [25], indicate the use of an RGB-
D camera to capture both the color and the depth images,
which contain the gestures and pose of the worker. Other than
cameras, in Tortora et al. [26] IMU and EMG data was used
as input to capture the gestures and anticipate the worker’s

1OpenPose documentation:
https://cmu-perceptual-computing-lab.github.io/openpose

Fig. 5. OpenPose Example [17]

action. When it comes to obtaining the worker’s gaze, it is
possible to do so from the RGB images, as mentioned before,
but it is also possible to use wearable sensors to capture it,
such as in Schydlo et al. [27].

IV. METHODS

After exploring which kinds of data are usually captured
and provided to an algorithm, this section covers algorithmic
solutions, particularly those that make use of machine learning
methodologies.

Artificial intelligence has significantly evolved in the last
few years. With the increase of computational power, machine
learning, a subset of AI, has become an increasingly promising
method to deal with complex and multidimensional data like
images and text, heavily contributing to areas such as visual
perception and speech recognition. Machine learning’s ability
to learn from data with minimal human intervention and make
predictions or decisions from new data it has never seen
before makes it a prime candidate to solve many problems in
robotics and, in particular, action anticipation in collaborative
environments. The most common strategies in this field are
Supervised Learning, Unsupervised Learning, and Reinforce-
ment Learning.

• Supervised Learning: the models are trained using a
dataset of labeled data. According to Sarker [28], these
models must generalize the knowledge from the dataset’s
input-output pairs to correctly deal with a new input they
have never seen before. The models from this group are
further divided into classification, where the new input is
assigned a discrete output class, and Regression, where
it is returned a real number from the continuous output
space. Currently, RNNs and CNNs are two of the most
common classification approaches.

• Unsupervised Learning: the datasets involved have no
labels. According to Sarker [28], these algorithms aim to
find patterns and structure in the data. This makes them
valuable in tasks such as clustering based on common
characteristics, density estimation, identifying anomalies
and outliers, dimensionality reduction, feature learning
and finding association rules.



• Reinforcement Learning: machine learning approach
different from the previous ones because it does not need
a dataset. According to Alom et al. [29], the agent learns
how to act in an unknown environment by interacting
with it. After the agent’s action, the environment returns
an observation and a certain reward to the agent, depend-
ing on the quality of the action. The agent uses the reward
to update its internal model named policy improving its
future performance and the cycle repeats. This type of
learning by trial and error has a certain resemblance
to how humans gain knowledge, and it is useful when
there is a need for an agent to make decisions in an
environment that has considerable complexity, such as
controlling a robot or playing a game.

Fig. 6. Use cases of the different types of machine learning [30]

The next subsections mainly contain possible solutions
present in previous work, which are described in reasonable
detail since they vary not only in algorithms but also in the
input data.

A. Predictive Modeling Techniques

Predicting the next action of the worker can be represented
as a classification problem since it is possible to use a sequence
of images that must be classified as a particular future action
class. Using Fig. 7 as an example, the high-five action should
be predicted before the frames that contain it are captured.

Fig. 7. Action anticipation using supervised learning diagram [21]

The previous work on predictive models mainly includes
CNNs and RNNs, with the latter being the most common and
transfer learning also being a frequent technique.

• Recurrent Neural Network (RNN): type of neural
network where the output of each time step is fed
back into the input at the next time step, allowing the
network to remember and incorporate information from
previous time steps into its processing of current and
future data. This characteristic makes RNNs particularly
well-suited to processing sequential data, such as text,
speech, or time series data which require context or
temporal dependencies. In particular, according to [31],
Long Short-Term Memory (LSTM) is an RNN with a
more complex architecture that gives it an improved
ability to backpropagate the error, making it better to train
a model that classifies sequences with several time steps.

• Convolutional Neural Network (CNN): type of neural
network made up of several convolutional layers which
apply a sliding filter over the input reducing its dimension
and obtaining its features. Typically, these layers are
followed by one or more fully connected layers that
perform the prediction using the mentioned features. This
architecture makes CNNs an excellent choice to deal with
data in a matrix structure such as an image because this
input is too massive for manual feature engineering.

• Transfer Learning: technique that makes use of a trained
external model. Depending on the goal of its use, these
models can be entirely or partially used; optionally, they
can also be trained partially or fully. A common use case
for this technique in supervised learning is when a small
dataset of images is used to obtain a classifier. A standard
model cannot generalize from that reduced amount of
data. In this case, a model such as VGG-16 and ResNet-
50 can be used partially to extract the features with one
or more fully connected layers in the end, to perform the
desired classification from those features.

In Furnari et al. [24], the authors aimed to predict the
subsequent actions that someone wearing a camera would
perform and the objects he would interact with. They used
three datasets containing RBG frames from which they derived
the optical flow and the objects in the environment. This data
is then passed on to a Rolling-Unrolling LSTM. The Rolling
LSTM (R-LSTM) is a network that continuously encodes the
received observations and keeps an updated summary of the
past. When it is time to make predictions about future actions,
the Unrolling LSTM (U-LSTM) is used with its hidden and
cell states equal to the current ones of the R-LSTM.

In Schydlo et al. [27], the authors used an encoder-decoder
recurrent neural network topology to predict human actions
and intent where the encoder and the decoder are both LSTM
cells. At each step, the decoder returns a discrete distribution
of the possible actions making this algorithm able to consider
multiple action sequences, which are then subject to a pruning
method that reduces them to obtain the right action finally.
In their work, these algorithms were tested in two different
datasets, one containing RGB images with optical markers
and gaze information from wearable sensors and another with
RGB-D images.

In Moutinho et al. [25], the authors aimed to increase the



natural collaboration between the robot and the human in an
assembly station by interpreting implicit communication cues.
The data related to the environment was captured using an
RGB-D camera. This data was then passed on to a ResNet-
34, a pre-trained neural network that extracted the features
from the images. These features are used as the input to an
LSTM to perform human action recognition.

In Gammulle et al. [21], the authors aimed to predict
future frames while at the same time predicting the following
action. In their implementation, they used public datasets
with videos from which they obtained RGB images and
optical flow streams. To consider both data sources, they also
used two ResNet-50’s, which are pre-trained networks, one
to get the input features from the image and another from
the optical flow, and 2 LSTMs to take into account both
sequences of inputs. Then the two results are merged into a
final classification. They also used two Generative Adversarial
Networks (GAN) to generate the subsequent frames, but this
is different from the focus of the analysis.

In Wang et al. [32], the authors used video datasets to train
a model that would predict a future action from the observed
frames. They used three pre-trained neural networks in their
work: VGG-16, TS, and ConvNet, to extract features from the
images. Then these features were aggregated using a Tem-
poral Transformer module (TTM), and finally, a progressive
prediction module (PPM) would anticipate the worker’s future
action. This article also addresses the issue of specifying what
the algorithm should consider as an action. Although most
of the literature often implies that the last frames captured
by the camera are considered an action, given that those are
the frames that contain the last action made by the user, the
authors of this article go into greater detail. They tested and
evaluated how many frames should be considered as the last
action to obtain the best results using a metric from Geest et
al. [33] named per-frame calibrated average precision (cAP)
calculated with (1). In [32] it is defined with

cAP =

∑
k cPrec(k) ∗ I(k)

P
, (1)

“... where calibrated precision cPrec = TP
TP+FP/w , I(k) is an

indicator function that is equal to 1 if the cut-off frame k is
a true positive, P denotes the total number of true positives,
and w is the ratio between negative and positive frames. The
mean cAP over all classes is reported for final performance.”.

In Rodriguez et al. [23], the authors aimed to predict the fol-
lowing action by first predicting the following motion images.
They used datasets containing videos and then processed them
to obtain motion images. These motion images become the
input of a convolutional autoencoder network that generates
the following motion images. These images are then passed
to a CNN that processes them and makes action predictions
for the future. The final action prediction is obtained from the
results of the previous network and those of a second CNN,
which analyzes the original RGB images.

In Wu et al. [22], the author’s goal was to predict the
following action someone wearing a camera would perform

after some time. Initially, the optical flow was obtained from
the captured images, and both were used as input to the
model. The model is comprised of a Temporal Segment
Networks (TSN), a CNN, and an LSTM to predict the future
frame features and then use them to perform the required
classification.

B. From Prediction to Planning

After predicting the next action of the worker, the robot must
execute some action as a response to complete the anticipation
process. This subsection contains articles that go beyond the
predictive model and have relevant details for the integration
of the model in a robot controller.

In Canuto et al. [16], the authors aimed to predict the
following action using an LSTM, one of the most common
RNNs. In their work, they used a dataset captured with an
RGB camera. From these images, they obtained the objects in
the environment, the human skeleton joints extracted over time
using OpenPose, and the gaze derived from the joints. Then
the three data sources were given to the LSTM as input to
perform the desired classification. In this process, the authors
use an adaptive threshold on the uncertainty of the recurrent
neural network, which makes the model need a certain level
of certainty to classify the action as a particular class. This
creates a more robust solution since a standard supervised
learning algorithm would predict the class with the highest
probability even if the model has low certainty about every
category.

In Maeda et al. [10], the authors aimed to reduce the delay
in the robot’s response by anticipating the human worker and
providing a screw or a plate accordingly. They captured the
environment using an RGB camera and tracked the hand using
optical markers. Then they predicted the following human
action using a look-up table containing different orders for
assembly actions. With the nearest neighbor algorithm, the
actions of the human would be matched with a particular order.
The limitation of this method is that all possible sequences
need to be on the table because if they are not there, then
the robot will match with a different order which may be
undesirable. If the robot eventually notices that it did the
wrong action, it would then follow a hard-coded contingency
trajectory to return to the pre-grasping position. When per-
forming a handover action, the previously captured data is
used to generate possible trajectories, and this is given to the
feedback controller as a reference.

In Zhang et al. [34], the authors aimed to predict the
intention of the human worker to provide him with the required
piece. To achieve this, they used an RGB camera to capture
the data from the environment. Then the images are given to
a convLSTM framework where the CNN part is in charge of
extracting features from the input images, and these features
are then passed on to the LSTM to predict the intention.
This article also tackles the issue of having several possible
assembly orders. It solves it by creating a phase at the
beginning of the collaboration in which the robot learns the
assembly actions and their order from a demonstration. After



the prediction of the intention of the worker, the robot proceeds
to fetch the required piece. It uses a CNN to recognize said
piece and ROS Open Motion Planning Library (OMPL) to
handle the trajectory planning jobs. In terms of safety, the
authors defined speed limits for the robot and ensured that the
robot would avoid the workspace of the human. Then when
it needs to move closer to the user, its speed is reduced to
guarantee the user’s safety.

In Huang et al. [35], the goal of the authors is to make
the robot use the anticipated actions of the worker to decide
its tasks. It monitors the worker’s gaze using a wearable
device and uses it to predict his intent using SVM. After
predicting it, the robot uses an anticipatory motion planner
named “MoveIt!” to plan its motion according to a certain
confidence threshold. This means that while it is unsure of
what the human wants, the robot starts to move toward the
item it thinks he wants but only really moves completely when
it surpasses the threshold.

V. CONCLUSION

This document presented a review of the problem of antici-
pating human actions in collaborative environments. Although
initially, it was also referred that an end-to-end learning tech-
nique could be used, the articles found all pointed towards sep-
arately developed modules. Looking at previous work found
in the literature, there is a clear predominance of perception
using RGB cameras with different ways of preprocessing the
captured images. When it comes to the methods, machine
learning and, in particular, supervised learning techniques are
predominant, given that most work nowadays takes advantage
of the progress made in that field. With the continuous evo-
lution of machine learning, it is expected that the algorithms
related to the topic in this paper also evolve and, consequently,
give rise to even better solutions.

In summary, the results of this study demonstrate that Action
Anticipation is still a relatively new concept, but it has much
potential to increase the efficiency and safety of collaborative
tasks, revolutionizing the world of human-robot collaboration.
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