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Abstract—With the increase in the diversity of products on sale
due to the evolution of technology and standard of life, there is
a growing demand for flexible manufacturing that can meet the
necessary production, especially in small companies. Although
the usual solution for these needs is to use human operators,
which provide the necessary flexibility and precision, this solution
comes at a greater cost. In contrast, industrial robots offer a
relatively smaller price and show more value in repetitive and
heavy tasks. That is where Human-Robot Collaboration (HRC)
comes into action since it complements the flexibility of a human
worker with the strength and lower cost of the robotic worker
in the same workspace. Inside HRC, Action Anticipation is a
technique used in collaborative assembly to predict the actions
of the human workers so that the robot can better plan its
movements, increasing manufacturing efficiency and safety. This
article reviews the research in this field, including the commonly
used data sources and algorithms with a particular focus on
machine learning methodologies.

Index Terms—Human-Robot Collaboration, Human-Robot In-
teraction, Action Anticipation, Cobot, Artificial Intelligence, Ma-
chine Learning

I. INTRODUCTION

The Third Industrial Revolution was characterized by a fo-
cus on automating repetitive and heavy tasks on the assembly
lines. Still, this created a problem: whenever the manufacturers
needed the robots to work in a different assembly process, they
needed to be reprogrammed by an expert.

The Fourth Industrial Revolution, also known as Industry
4.0, refers to the current trend of the manufacturing sector to
become more intelligent and achieve greater automation. This
trend takes advantage of the recent developments in artificial
intelligence, the Internet of Things, and autonomous robots
to pave the way for more efficient and flexible production
processes. With Industry 4.0, robots are expected to be more
adaptable and perform more actions without constant explicit
programming.

Human-Robot Collaboration (HRC) aims to achieve greater
efficiency by using robots in the same workspace as humans
taking advantage of the strong points of both of them. These
are called Collaborative Robots or Cobots and have significant
benefits when working with people. For once, they can safely
work with people since they have sensitive sensors that can
detect the human interrupting them, causing them to stop their
actions. They are also smaller, compact, and easy to program,
among other advantages.[1]

One of the sub-fields of Human-Robot Collaboration is
Human Action Anticipation which is the focus of this review.

A. Definition of Anticipation
Anticipating actions is an idea that comes from biology,

given that humans and many other animals anticipate each
other constantly. In biology research, we can find a definition
such as the one stated in [2]: ”An anticipatory system is
a system containing a predictive model of itself and/or its
environment, which allows it to change state at an instant
in accord with the model’s predictions pertaining to a later
instant.”.

In Robotics, we can find a similar definition such as in
[3]: ”Action anticipation consists of classifying an action even
before it occurs, by using the partial information provided up
to a certain moment in time.”.

From these definitions, human action anticipation in HRC
can be considered as the robot predicting the future actions
of the human worker before he does them and then reacting
accordingly.

To better visualize the real-world application, suppose, for
example, that a human worker needs a specific material, such
as a wooden plank. In this case, the robot can anticipate it and
either provide it as it did in Fig. 1 or move out of the way
to avoid a collision. Furthermore, anticipating human actions
helps improve the overall speed and manufacturing efficiency
of the collaborative assembly while also helping to reduce the
risk of accidents or injuries, increasing safety.

Fig. 1. Situation where a robot anticipates that the worker will need a wooden
plank and hands it over to him [4]

B. Article Structure
An action anticipation problem can be divided into three

sub-problems. First, it must be decided which data needs to



be captured by the sensors, then which algorithms should be
used to analyze the captured data, and finally, how to increase
the safety of the user. This division is also used to structure
this article.

II. DATA SOURCES AND SENSORS

The first step to anticipating the following action is to know
what kind of data we should collect with the sensors. In
this section, a broad overview of the communication methods
standard in HRC will be done followed by a more specific
reference to those that are applied to action anticipation in the
literature. Even if some of the methods listed cannot serve as
a data source to perform anticipation, they are still relevant
in HRC, and they can be helpful when developing a real
implementation.

A. Interaction in HRC
In Fig. 2, we can see a diagram containing multiple data

sources that can be used to implement communication between
the robot and the human, along with its advantages and
disadvantages.

1) Gestures: Gestures are one of the main ways humans
communicate, whether through simple movements or formal
sign language. In work about Human-Robot Collaboration,
gestures can also commonly be found since it has the ad-
vantage of resisting ambient noise.

Usually, gestures are captured with vision-based methods
with either an RGB or RGB-D camera, so there is no need
for unnatural movements. With vision, it is possible to include
markers, but these may lead to occlusions and hinder the
worker’s movements. Consequently, there is also work in the
literature that uses markerless vision to allow more unrestricted
movements.

Another way to capture the movements of the human worker
would be to use wearable inertial sensors, which contain
accelerometers and gyroscopes, but, once again, wearables can
hinder the worker’s movements.

2) Natural Language: Natural Language is the main and
the most intuitive way for humans to communicate with each
other. The advances in natural language processing make
this a possible communication solution with robots. However,
despite being intuitive, simple, effective, and even robust
against lighting variations, when it comes to an industrial
setting that contains significant sound noise, it becomes less
valuable than the alternatives.

3) Gaze: Next, the gaze can also be used to determine
where the user’s attention resides, giving a considerable
amount of information that can trigger some action.

There are two options to obtain the user’s gaze. Wearable
sensors can provide better results but are expensive and
intrusive. On the other hand, algorithms that detect head pose
and assume the gaze from it can also be used, which is a
cheaper and non-intrusive solution.

4) Emotions through Facial Expressions: Although this is
a relatively new idea, some applications analyze the user’s
emotions from his facial expressions to have even more
information in the algorithms.

5) Semantics: Finally, semantic information about the ob-
jects can also help the global workflow. For example, suppose
the robot is trained to recognize certain features in objects
related to how it can pick them up. In this case, the robot can
pick up a new object it has never seen before if it has a similar
structure.

Human actions can also be represented semantically by
obtaining the poses of the human as a specific set of limbs,
even if only partially. During action recognition, this can be
used to know which objects the worker can interact with.

Having information about the pose of the human body also
helps in the path-planning phase of the robot since it can use
this information to avoid the worker and prevent collisions.

B. Interaction in Action Anticipation

Previously, several forms of communication between hu-
mans and robots were described. Still, these work in a more
active way, and not all of them can be applied to action
anticipation, where the user should not need to do anything
for the robot to act. Essentially, there is a need to capture the
human’s body language.

As humans usually anticipate each other by poses and
gestures, these factors became some of the most common data
to perform action anticipation. Regarding sensors, most of the
literature suggests using an RGB camera. Still, some works,
such as the one described in [6], indicate the use of an RGB-
D camera to capture both the color and the depth images. If
wearable sensors are an option, inertial sensors also become
an alternative.

In [4], the authors also used markers to obtain the gestures
of the human.

In [7], [8], [9], and [10], the authors went a step further and
used the images but also processed the optical flow between
them and used it in their algorithms.

In [3], the authors used OpenPose1[11][12][13][14] which
is a framework with pre-trained models that receive an image,
process it, and return 3D points representing the skeleton joints
of the person in the image, as we can see in Fig. 3.

Fig. 3. OpenPose example[11]

1OpenPose documentation:
https://cmu-perceptual-computing-lab.github.io/openpose



Fig. 2. Advantages and Disadvantages of some Data Sources in Human-Robot Collaboration [5]

Humans also tend to anticipate each other by considering
the other’s gaze, which usually indicates his center of attention.
As this is also an involuntary aspect, there is some work where
gaze provides additional information, such as in [15] where the
dataset contained the gaze of the user captured with wearable
sensors or in [3] where the gaze was assumed from the results
of an algorithm to detect the head pose.

In addition to the data related to the human, the objects
present in the environment can also give valuable information
about the human’s following action, as is the case in [10].

III. ALGORITHMS

After knowing which is usually captured and provided to an
algorithm, this section explores possible algorithmic solutions
present in previous work.

Machine Learning algorithms have been increasingly more
common in the last years due to, for example, their ability to
deal with multidimensional data. These algorithms can auto-
matically learn from data and make predictions or decisions,
which makes them a prime candidate to use in the context of
human action anticipation in collaborative environments. The
most common strategies in this field are Supervised Learning,
Unsupervised Learning, and Reinforcement Learning. As we
can see in Fig. 4 obtained from a review article about HRC in
general, supervised learning and reinforcement learning are
dominant in this area, with composite solutions surpassing
unsupervised learning in the most recent year showed.

Fig. 4. Number of articles relevant to the HRC review from each machine
learning technique throughout the years[16]

Unsupervised learning is more valuable for finding structure
in the data, creating clusters based on common characteristics,
or identifying anomalies and outliers from unlabeled datasets.
Consequently, it is very rare in the action anticipation litera-
ture. An example was found in [17] but it was a composite
solution. Given that these use cases are very different from
those of Action Anticipation, this article will focus on the
other types of learning.

A. Supervised Learning

In Supervised Learning, the models are trained using a
dataset of labeled data. The models from this group are
further divided into classification, where the new instance
is assigned a particular class, and Regression, where it is



given a certain real number. These models must generalize
the knowledge from the examples to deal with a new instance
correctly that they have never seen before. Among these
models, convolutional and recurrent neural networks are at
the forefront of the algorithms to explore.

A Recurrent Neural Network (RNN) is a type of neural
network where the output of each time step is fed back into the
input at the next time step, allowing the network to remember
and incorporate information from previous time steps into its
processing of current and future data. This characteristic makes
RNNs particularly well-suited to processing sequential data,
such as text, speech, or time series data which require context
or temporal dependencies. In particular, LSTM is an RNN
with a more complex architecture that gives it an improved
ability to backpropagate the error, making it better to train a
model that classifies sequences with several time steps.

A Convolutional Neural Network (CNN) is a type of neural
network made up of several convolutional layers which apply
a sliding filter over the input reducing its dimension and
obtaining its features. Typically, these layers are followed by
one or more fully connected layers that perform the prediction
using the mentioned features. This architecture makes CNNs
an excellent choice to deal with data in a matrix structure
such as an image because this input is too massive for manual
feature engineering.

The problem reviewed in this paper can be represented as
a Classification problem since it is possible to use a sequence
of images that must be classified as a particular future action
class. Using Fig. 5 as an example, the high-five action should
be predicted before the frames that contain it are captured. The
previous work with this kind of algorithm mainly includes
convolutional and recurrent neural networks, with the latter
being the most common.

Fig. 5. Action Anticipation using Supervised Learning diagram[7]

Since most work uses images as input, transfer learning is
also common in the literature. This type of learning involves
using a neural network, usually convolutional, that was pre-
trained in another dataset. Depending on the goal of its use,
these networks can be used entirely or partially; optionally,
they can also be trained partially or fully. Some of the most
popular examples include VGG-16 and ResNet-50.

In [3], the authors aimed to predict the following action
using a Long Short-Term Memory (LSTM) neural network,
one of the most common RNNs. In their work, they used a
dataset captured with an RGB camera. From these images,
they obtained the objects in the environment, the human
skeleton joints extracted over time using OpenPose, and the

gaze derived from the joints. Then the three data sources
were given to the LSTM as input to perform the desired
classification. In this process, the authors use an adaptive
threshold on the uncertainty of the recurrent neural network,
which makes the model need a certain level of certainty to
classify the action as a particular class. This creates a more
robust solution since a standard supervised learning algorithm
would predict the class with the highest probability even if the
model has low certainty about every category.

In [10], the authors aimed to predict the subsequent actions
that someone wearing a camera would perform and the objects
he would interact with. They used three datasets containing
RBG frames from which they derived the optical flow and the
things in the environment. This data is then passed on to a
Rolling-Unrolling LSTM. The Rolling LSTM (R-LSTM) is a
network that continuously encodes the received observations
and keeps an updated summary of the past. When it is time
to make predictions about future actions, the Unrolling LSTM
(U-LSTM) is used with its hidden and cell states equal to the
current ones of the R-LSTM.

In [15], the authors used an encoder-decoder recurrent
neural network topology to predict human actions and intent
where the encoder and the decoder are both LSTM cells.
At each step, the decoder returns a discrete distribution of
the possible actions making this algorithm able to consider
multiple action sequences, which are then subject to a pruning
method that reduces them to obtain the right action finally.
In their work, these algorithms were tested in two different
datasets, one containing RGB images with optical markers
and gaze information from wearable sensors and another with
RGB-D images.

In [18], the authors aimed to predict the intention of the
human worker to provide him with the required piece. To
achieve this, they used an RGB camera to capture the data
from the environment. Then the images are given to a convL-
STM framework where the CNN part is in charge of extracting
features from the input images, and these features are then
passed on to the LSTM to predict the intention. Additionally,
another CNN is in charge of recognizing the required piece
when the robot is fetching it. This article also tackles the issue
of having several possible assembly orders. It solves it by
creating a phase at the beginning of the collaboration in which
the robot learns the assembly actions and their order from a
demonstration.

In [6], the authors aimed to increase the natural collabora-
tion between the robot and the human in an assembly station
by interpreting implicit communication cues. The data related
to the environment was captured using an RGB-D camera.
This data was then passed on to a ResNet-34, a pre-trained
neural network that extracted the features from the images.
These features are used as the input to an LSTM to perform
human action recognition.

In [7], the authors aimed to predict future frames while
at the same time predicting the following action. In their
implementation, they used public datasets with videos from
which they obtained RGB images and optical flow streams.



To consider both sources of data, they also used two ResNet-
50’s, which are pre-trained networks, one to get the input
features from the image and another from the optical flow,
and 2 LSTMs to take into account both sequences of inputs.
Then the two results are merged into a final classification.
They also used two Generative Adversarial Networks (GAN)
to generate the subsequent frames, but this is different from
the focus of the analysis.

In [19], the authors used video datasets to train a model that
would predict a future action from the observed frames. They
used three pre-trained neural networks in their work: VGG-16,
TS, and ConvNet, to extract features from the images. Then
these features were aggregated using a Temporal Transformer
module (TTM), and finally, a progressive prediction module
(PPM) would anticipate the worker’s future action. This article
also addresses the issue of specifying what the algorithm
should consider as an action. Although most of the literature
often implies that the last frames captured by the camera are
considered an action, given that those are the frames that
contain the last action made by the user, the authors of this
article go into greater detail. They tested and evaluated how
many frames should be considered as the last action to obtain
the best results using a metric from [20] named per-frame
calibrated average precision (cAP) calculated with (1). In [19]
it is defined with

cAP =

∑
k cPrec(k) ∗ I(k)

P
, (1)

”where calibrated precision cPrec = TP
TP+FP/w , I(k) is an

indicator function that is equal to 1 if the cut-off frame k is
a true positive, P denotes the total number of true positives,
and w is the ratio between negative and positive frames. The
mean cAP over all classes is reported for final performance.”.

In [9], the authors aimed to predict the following action
by first predicting the following motion images. They used
datasets containing videos and then processed them to ob-
tain motion images. These motion images become the input
of a convolutional autoencoder network that generates the
following motion images. These images are then passed to
a Convolutional Neural Network (CNN) that processes them
and makes action predictions for the future. The final action
prediction is obtained from the results of the previous network
and those of a second CNN, which analyzes the original RGB
images.

In [8], the author’s goal was to predict the following action
someone wearing a camera would perform after some time.
Initially, the optical flow was obtained from the captured
images, and both were used as input to the model. The model
is comprised of a Temporal Segment Networks (TSN), a CNN,
and an LSTM to predict the future frame features and then use
them to perform the required classification.

Apart from deep learning, there are also more classical
approaches such as [4], where the authors aimed to reduce the
delay in the robot’s response by predicting the human worker
and providing a screw or a plate accordingly. They captured
the environment using an RGB camera and tracked the hand

using optical markers. Then they predicted the following
human action using a look-up table containing different orders
for assembly actions. With the nearest neighbor algorithm, the
actions of the human would be matched with a particular order.
If the robot eventually notices that it did the wrong action,
it would then follow a hard-coded contingency trajectory to
return to the pre-grasping position. The limitation of this
method is that all possible sequences need to be on the table
because if they are not there, then the robot will match with
a different order which may be undesirable.

B. Reinforcement Learning

In Reinforcement Learning, the model is trained to decide
which action to take in a specific environment to maximize
a particular reward function. These algorithms learn through
trial and error using the reward they obtain in each iteration to
improve their performance continuously. This type of learning
has a certain resemblance to how humans gain knowledge, and
it is useful when there is a need for an agent to make decisions
in an environment that has considerable complexity, such as
controlling a robot or playing a game.

In [21], the authors aimed to make the human-robot inter-
action more natural by detecting unexpected conditions where
the human will not need the robot’s assistance, such as when
the human’s current intention is unknown or irrelevant to the
robot or when even though the human’s intent is relevant,
that task is done only by the human. They used the algorithm
Partially Observable Markov Decision Process (POMDP) to
achieve this. The training was done with simulation with the
model learning a policy by having a positive reward if the task
was accomplished and a negative reward if the robot tried to
help the human in a situation where it should not.

IV. HUMAN-ROBOT COLLABORATION SAFETY

Finally, safety is a topic that must always be mentioned
when robots work with humans, especially in human-robot
collaboration. Although collaborative robots or cobots nowa-
days are made so that if they are interrupted in their work, they
switch to a safety mode, effectively stopping, they are still
machines with significant strength and can potentially harm
the user.

Firstly, just anticipating the actions of the human worker is
already a safety measure since it increases the robot’s ability
to avoid collisions.

In [18], the authors defined speed limits on the robot and
ensured that the robot would avoid the workspace of the
human. Then when it needs to move closer to the user, its
speed is reduced to guarantee the user’s safety.

In [22], the authors used deep deterministic policy gradient
(DDPG) to plan the robot’s trajectory so that the robot would
not collide with the human to guarantee his safety.

In [23], the authors attempted to create a sense of anticipa-
tion in humans towards the robot’s movements through visual
cues of the robot’s upcoming action, which is the reverse of
what it is being tried to achieve in the other reviewed papers.
As with the previous article, they also made it so the robot



must reduce its movement speed when close to the robot.
Although it was only tested in the Virtual Reality simulation
shown in Fig. 6, where the users feel safer, they concluded
that the efficiency of the collaboration was increased, and the
user had a greater feeling of safety and trust. Furthermore,
knowing what the robot will do next also decreases the risk of
a collision since the user will avoid the space where the robot
is working, increasing safety.

Fig. 6. VR Simulation of [23], the orange means the robot will pick that
puck next

In [5], it is also referred that limiting the power and force
of the robot decreases the gravity of the consequences of a
possible collision, increasing safety. Nowadays, this feature is
already included in collaborative robots.

V. CONCLUSION

In this paper, a review of several articles about human-robot
collaboration was conducted, and, more particularly, action
anticipation.

Regarding sensors and data sources, RGB cameras are
predominant, although there is work with others, such as RGB-
D cameras or wearables, to a lesser extent.

Regarding algorithms, there was also a particular focus
on machine learning, given that most work nowadays takes
advantage of the progress made in that field. Supervised
learning was the technique that received a greater focus since
it is the most adequate to solve the problem in this paper. With
the continuous evolution of machine learning, it is expected
that the algorithms related to the topic in this paper also evolve
and, consequently, give rise to even better solutions.

Regarding safety, this is a topic common to action antic-
ipation since it is relevant to human-robot collaboration in
general. However, as it was seen, anticipating the worker’s
action can help with his safety.

Despite the work already done on this topic, this is still a
relatively new idea, with most of the articles being very recent
and the oldest reviewed being from 2016.
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