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Ao professor Vitor Santos pelo seu contagiante entusiamo, disponi-
bilidade e partilha de conhecimento. Para além disso, a motivação que
me transmitiu foi fundamental para conseguir superar as dificuldades
encontradas.

Um particular agradecimento ao meu amigo Engenheiro Lúıs Emanuel
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resumo A automação industrial é uma parte fundamental para responder às cres-
centes necessidades do mercado. As empresas que desejam estar a par da
competição, têm todas uma premissa em comum — melhorar a qualidade
do produto, reduzindo custos e tempo de fabrico. Na última década, os
véıculos autonomamente guiados (AGV) têm ganho expressão devido ao
facto de serem capazes de responder a esta última necessidade.
O contexto da presente dissertação insere-se no desenvolvimento desta
temática através da recuperação de um equipamento com aplicações à es-
cala industrial.
O objetivo principal passa por fazer o retrofitting da plataforma Robuter
II, que se encontra obsoleta. Para isso, pretende-se substituir toda a parte
de controlo por uma solução mais atual que permita a integração de difer-
entes módulos com base numa arquitetura distribúıda baseada em ROS. Foi
então necessário proceder a uma análise detalhada da plataforma existente
para refazer toda a instalação elétrica da mesma, bem como proceder à
instalação de diversos equipamentos.
No final, obteve-se um véıculo capaz de navegar de forma manual (com
controlo remoto) e foi ainda realizada uma prova de conceito de navegação
autónoma através da realização de um algoritmo simples de visão artifi-
cial. Foi ainda verificada a versatilidade suficiente para integrar diferentes
equipamentos e código desenvolvido de forma simples.
Neste documento é feita uma descrição geral do projeto onde são identi-
ficadas as várias etapas do mesmo e o trabalho desenvolvido até ao mo-
mento. Para além disso, é apresentada a forma como se irá proceder para
a implementação das metas propostas. Por último, são apresentados re-
sultados experimentais de navegação e integração de outros trabalhos na
plataforma.
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abstract The industrial automation has made its way in responding to the growing
market’s needs. Companies that wish to keep up with the competition have
a common goal: improve the product’s quality while reducing manufacturing
costs and time.
In the last decade, the autonomous guided vehicles (AGV) have gained
expression due to the fact that they are capable of responding this the last
mentioned necessity.
The context of the current dissertation is inserted in the development of
this thematic through the recovery of an equipment with industrial scale
applications.
The main goal is centered in the Robuter II platform’s retrofitting. For
that, it is intended to replace the old control part by a modern solution
that allows the integration of different modules based on a ROS distributed
architecture. A detailed analysis of the existing platform was made in order
to redo all the electrical installation, as well as to setup all of the used
equipment.
In the end, a vehicle capable of navigating, both manual and autonomously,
was achieved. The vehicle can be operated manually (via remote control)
and as a proof of concept, autonomous navigation was carried out through
a simple artificial vision algorithm. It was also verified the versatility of the
developed solution by integrating different equipment and designed code in
a simple way.
This document describes generally the project where all the different steps
are identified, as well as all the work developed until the present moment.
Furthermore, the guidelines to follow in order to achieve the proposed goals,
is presented. Finally, navigation experimental results and the integration of
different works on the platform are presented.
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Chapter 1

Introduction

1.1 Context

It is common knowledge that market demands are growing exponentially, either in a
qualitative or quantitative level. The strong competition lead the companies into constant
improvement in their quality standards, reduce their response time and make task planning.
Industrial automation has made its way to become a crucial part in overcoming these needs,
systematizing tasks that can be delivered by machines. One of those tasks, which is common
to almost every industry and very time consuming, is the transportation of material inside
the facilities.

In the past decade, the AGV’s have gained expression due to the fact that they are capable
of solving this issue. It is in this context that the importance of this type of vehicles arises
— vehicles capable of performing tasks autonomously, allowing workers to be released from
lower level tasks, maximizing the efficiency of the industrial environment.

This line of thought is being widely adopted and these emerging technologies not only help
promoting industrial upgrades but can also be included on the recent concept of Industry
4.0 [1]. In an era where the cyber-physical systems allow the exchange of data between
industrial processes, the ability of performing a wide variety of tasks can be enhanced with the
inclusion of AGV’s. So, in an intelligent factory with modular structures, besides navigating
autonomously, they can be told where to navigate in the same way.

Nowadays, most of the AGV’s used in an industrial scale are similar to forklifts or trailers,
and they also have the advantage of being able to be integrated into their own assembly lines,
by carrying material between stations without any human intervention. One of their other
main characteristics is safety. In order to be used as a collaborative element, it follows a series
of standards that prevent accidents, reducing significantly these incidents throughout the task
performance that, according to OSHA (Occupational Safety and Health Administration),
exceed the 90,000 occurrences per year in the United States of America [2].

1.2 Brief History

The development of AGVs began in 1954, when the engineer Arthur “MAC” Barret in-
vented the first autonomous guided vehicle in his company, Barret Electronics. This vehicle
was given the name of Guide-O-Matic (Figure 1.1) and was developed to be used in a ware-
house. It consisted of an electrical vehicle, similar to a trailer, but with inferior dimensions,
that could navigate by using wire trails on the floor. In order for them to move autonomously,
underneath them, they contained magnetic field sensors that searched for a induced field,
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which crossed the trail’s wires. For it to stop in each station, there were magnetic codes that
the vehicle was able to process [3].

Figure 1.1: First AGV, developed by Arthur Barret [4].

1.3 Motivation and Objectives

”Every major corporation in the world you can think of already uses AGVs” (Scott
Kwilinski, director of Solutions Engineering at Egemin Automation Inc [5]) and the projec-
tions point out that this type of equipment will be integrated in a more easy and versatile
way for the industrial sector. It has a wide range of applications and allows the workers to
focus on high level tasks. So, the development of a platform from this nature meets the actual
and future market demands.

Robuter is a robust platform with a solid metallic structure prepared to transport up to
120 kg that was stalled in the laboratory. This happened because some of its hardware was
not operational and its programming method was archaic and not practical. Besides that, it
was almost impossible to expand due to it being a closed and proprietary solution.

The main focus will be the development of a new control system to apply a perception
unit (camera and possibly other sensor and devices). On the hardware level this has several
major tasks, but generically, it is necessary to design and mount all the electrical installation
and improve the necessary mechanical parts. On the software level, a versatile and open
architecture will be implemented, such as ROS, that will allow the integration of different
control and data acquisition units.

From another point of view, there is also an academic motivation. By accomplishing
this project, it will be possible to convert an obsolete and unused equipment to a modern
and didactic platform. It is still important to consider that it’s a significant contribution to
the Laboratory of Automation and Robotics (LAR), otherwise the institution would have to
invest a considerable amount of money to acquire an equipment of this nature.

In the end, it is expected to endow the laboratory with a modular equipment that can
be expanded and improved to future research and development. A particular application to
this is another project already being developed in parallel and consists of the integration of
the Fanuc LR Mate 200iD on the top of the platform. So, the big picture here is to have an
AGV with a robotic manipulator.
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1.4 Robot Software Frameworks

There are several open-source tools to develop robotic applications. Although this list
does not contain all of them, the main concern was to introduce those which are up to date,
i.e., the ones that still have support and recent released versions.

1.4.1 YARP

YARP stands for Yet Another Robot Platform. It is a free and open-source set of li-
braries, protocols and tools to keep modules and devices decoupled [6]. It supports building
a robot control system as a collection of programs communicating in peer-to-peer way (TCP,
UDP, multicast, among others) and can even be implemented without having to use YARP
codebase. It was written to be OS neutral (Linux, Windows and macOS have been used [6]
alongside with YARP) and for that reason it can easily stream data across different types of
threads.

In YARP, the communications are ensured by a port network. A port is an object that
can read and write values to peer objects spread throughout the network [7]. The objects
that listen to this kind of data are called observers. As it is visible on Figure 1.2, the
streamed information can be a camera image or motor commands to implement a visual
tracking application. The camera captures and transmits the image to the “/viewer1” and
“/tracker/image” ports. The tracker then receives the image and processes it, transmitting
it to another viewer (“/viewer2”) and outputting position values that will further be sent
to the “/motor/position” port. In the YARP topology, every port belongs to a process
and each connection can be established using different protocols [8].

Figure 1.2: Example of a network of ports in YARP. Adapted from [8].

1.4.2 Orocos

Orocos (Open Robot Control Software) is an advanced framework, developed to deal with
real-time constrains. The Orocos project supports four C++ libraries:

• Real-Time Toolkit ;
• Kinematics and Dynamics Library;
• Bayesian Filtering Library;
• Orocos Component Library.

These libraries are combined to develop the robot’s application. In Orocos, the appli-
cations can be constructed using predefined components, by using the Orocos “Control
Component” [9].
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Figure 1.3: Example of the ways of interfacing an Orocos component. Adapted from [9].

In the given example (Figure 1.3), five ways of how a component can be interfaced are
shown. Although a single component can control a whole machine, a network of components
that communicate between them can also be implemented — using CORBA or MQueue
protocols.

1.4.3 Microsoft RDS

Microsoft®Robotics Developer Studio, currently in version 4, is a Windows-based envi-
ronment to create robotics applications for a wide range of hardware platforms [10] and it
provides the following tools:

• CCR – Concurrency and Coordination Runtime;
• DSS – Decentralized Software Services;
• VPL – Visual Programming Language;
• VSE – Visual Simulation Environment.

Regarding CCR, it allows to write programs to handle with asynchronous sensor inputs
and actuate outputs. The real-time feature is empowered by the DSS service, which enables
monitoring the robot/system using a Web browser or Windows-based application. The reuse
of code is also provided, since the programming can be made in modular services

The programs can run natively on a PC-based robot running Microsoft Windows OS or
remotely scenarios can be implemented with serial port, Bluetooth, Wi-Fi or RF modem. To
program the robots, two languages can be used — C#, in Microsoft Visual Studio environ-
ment, or the Visual Programming Language.

1.4.4 ROS

ROS [11], Robotic Operating System, is a software framework that provides a wide set
of tools and libraries for robotic applications. It is an open-source, meta-operating system
that promotes the sharing and reuse of code. This last characteristic is empowered by the
capacity of executing programs independently (even in different programming languages)
and integrating them in the system. This is possible due to the fact that it can run multiple
processes at the same time (even in different machines), passing messages among them.
Currently, ROS only runs on Unix-based platforms and it provides the services expected
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from an operating system, including hardware abstraction.
In ROS, the processes are named “nodes”. The nodes can communicate with each other with
publish/subscribe semantics to a given topic (channels used for communication). Figure 1.4
shows an example of this topology.

Node 1 Node 2 Node 3

Topic
/image

Topic
/coord

Image acquisition Image processing Motor control

Figure 1.4: ROS topology example with three nodes exchanging messages on two topics.

In the diagram from Figure 1.4, the ”Node 1”, which is responsible for the image ac-
quisition, publishes its data (in this case the acquired image) on the topic ”/image”. The
”Node 2” will then subscribe to that same topic and collect that information so it can be
processed and published (in this given example, the coordinates could be from a determined
object so that the motor control system actuates accordingly and navigate to it).
Despite of not being represented in the diagram, each topic can be accessed by different nodes
(this is valid both for publish and subscribe actions).

This framework is used at LAR and it is the most suitable one to use in order to carry
on and integrate the developed work so far.

1.5 Navigation techniques

Navigation, and particularly autonomous navigation, has been widely focused by the
mobile robotics area. As Leonard and Durrant-Whyte defined in the early 90’s, it is a field
of study that seeks to find solution to three fundamental questions: ”Where am I?”, ”Where
am I going?” and ”How do I get there?” [12].

Regarding the first question, which intends to answer to the robot’s position in its envi-
ronment, it can be said that the existing solutions have difficulty to respond with a single
and elegant solution. This means there are plenty of partial and/or combined solutions that,
although they cannot be categorized, are usually divided in two groups: relative and ab-
solute positioning. Due to the lack of an unique method, the AGV’s commonly integrate
technologies from both groups [13].

Nowadays the used techniques can go from solutions that imply restructuring the layout
of the facility to non invasive methods.

Absolute positioning

• Active beacons – computation of the absolute position from measuring the direction of
incidence of at least three actively transmitted beacons. The transmitters generally use
light or radio frequencies and must be located at known sites in the environment so the
position can be determined (triangulation) [14].

• Passive references – these references can be natural (inherent to the navigation environ-
ment) or artificial (placed in known sites and detectable). They are generally detected
with perception techniques (for example artificial vision) and, similarly to the active
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beacons, it is necessary to have at least three identifiers on the perception field so the
position can be calculated.

• Model matching - this method compares the current information (acquired by the sen-
sors) to an existing model or map of the environment. The model/map is created
dynamically and then, using the existing one, the vehicle’s absolute location can be
estimated.

As major advantages, it is a non-invasive method that can present satisfactory results in
terms of accuracy (when correctly referenced). The main disadvantages, particularly in the
techniques that use perception, are the intensive data computation, difficulty of implemen-
tation and the robustness is heavily conditioned by the navigation environment.

Relative positioning

• Dead-Reckoning – use of encoders or inertial sensors (for example gyroscopes and ac-
celerometers) to determine the direction and traveled distance from a starting reference.

One of the main disadvantages is the error accumulation due to its integrative method
(the values of direction and distance are added to a given initial point). As advantages it is
important to mention that these systems work regardless of the visibility circumstances and
can even operate in adverse conditions (for example high altitudes).

Guiding techniques

• Wire – slot on the ground that contains an electric conductor that can be easily detected
by a sensor. The wire is placed throughout the route.

• Magnetic or colored tape – detection of magnetic tape through sensors or colored (in-
cluding black and white) with artificial vision or color sensors. As the wire technique,
the tape is placed throughout the desired path.

The major advantages of wires and tapes are the navigation robustness, the easy imple-
mentation from a software point of view and great accuracy on the positioning (it can be
implemented in a way where the robot position is always known and calibrated). As disad-
vantages it can be pointed out the need to restructure the facility’s layout and, in the case
of wire, the opening of gutters, which makes it a very limited and definitive approach.

1.6 Related Work

Regarding the recent related work on Robuter’s retrofitting, no recent documentation has
been found. However, in 2005, in the “Hands-On” Laboratory of the IPP-Hurray! Research
Group, at the School of Engineering of the Polytechnic Institute of Porto the Robuter was
subject to an hardware and software upgrade. After this intervention (on a similar Robuter,
see Figure 1.5), the Robuter was equipped with the following items [15]:

• 2 x 300W DC motors, with gear boxes and brakes;
• 2 x incremental encoders;
• 2 x servo-amplifiers;
• 2 x axes interface between motors and boards;
• 4 x short range ultrasonic sonars (MIC130);
• 2 x medium range ultrasonic sonars (MIC340);
• 1 x RSMPC555 control board dedicated to multi-axis control (up to 4 axis);
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• 1 x Pentium4 class embedded computer;
• 1 x Joystick 2-axis for manual operation with security button.

Figure 1.5: Previous version of Robuter used on ”Hands on Laboratory”, in Polytechnic
Institute of Porto. Adapted from [16].

Figure 1.6: Location of retrofitted Robuter’s main components in the ”Hands on Laboratory”
project [15].

The location of the components can be observed in Figure 1.6. Although it is not repre-
sented in the figure, some of the components are supplied with 24V and hence have dedicated
DC/DC converters to adjust the power supply to appropriate levels.

About the software, the on-board CPU was running the Linux Operating System with
Real-Time Application Interface (RTAI), which allows to write applications with strict tim-
ing constraints [17]. Even though it’s a main unit, the CPU was used to load the executable
control application into the RSMPC555 board and communicate with it (via RS232).

Another important work was carried out in 1995, at the University of Porto. The dis-
sertation focus was to obtain a control system based on the platform’s dynamics (forces and
moments) by observing the controllers limitations based on kinematic models [18]. Despite
the importance of this work to understand the platform’s constraints, no physical interven-
tion was performed.
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Throughout the years this platform has had a meaningful role on the evolution of mobile
robotics [19]. Some of the following listed themes are an example of that:

• Trajectory Tracking Strategies in Service Robotics Applications [20];
• An Integrated Learning, Planning and Reacting Algorithm Applied to a Real Mobile
Robot [21];

• Indoor Robot Navigation with Single Camera Vision [22];
• Multi-agent Control Approach for Autonomous Mobile Manipulators: Simulation Re-
sults on RobuTER/ULM [23];

• Autonomous Navigation and Multi-Sensorial Real-Time Localization for a Mobile Robot [24].

1.7 Dissertation Structure

This dissertation is divided in seven chapters, including the present one.
Chapter 2 presents the platform in its original state and shows the necessary steps to

discover the platform and all its elements. It exhibits pictures to illustrate the process and
it is an important chapter to have an overview of the existing system.

Chapter 3 starts with a generic description of the proposed architecture and details the
used hardware to achieve it.

Chapter 4 reports the implementation of the proposed solution where the reader can un-
derstand where, how and why each equipment was used. Besides that, it is explained the
developed software to communicate between the existing subsystems and the reading/actua-
tion of the main inputs/outputs of the system.

On chapter 5, after the retrofitting is complete, a simple vision application to detect and
navigate through a line is made. Besides that, it is implemented a manual control with the
Xbox controller.

Chapter 6 refers to the tests and results performed on the platform, such as the capacity
of navigating through a straight line or a circle with the aid of vision tools to measure it.
Also, the integration of a robotic manipulator and its software (work developed by Vitor
Silva [25]) is analyzed.

Finally, chapter 7, presents the conclusions and points out the future work (where some
enhancements are suggested).

A list of appendix is also presented in order to complement the documentation with
relevant, but not crucial, information, allowing a more detailed knowledge on specific matters.
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Chapter 2

The Robuter II

The purpose of this chapter is to present the Robuter II platform in its original state and
report the major steps that took place in the platform recognition.

2.1 Original Features

The Robuter concept was created by a french company, Robosoft, and consists of a mobile
robotic platform (Figure 2.1) with on-board CPU dedicated to research and development. In
the 80’s this was an innovating concept that allowed the researchers a great flexibility because,
not only is it a programmable platform (in ALBATROS environment), but it also allowed
the integration of additional hardware [19].

Figure 2.1: Robuter II original

The main characteristics are presented in Table 2.1. Note that this table could only be
completed after the platform disassembly described in Section 2.2.

The ALBATROS is “A flexible multi-tasking and realtime network-operating-system-
kernel” [27]. It was specifically designed with the purpose of control multi-axis and multi-
sensorial systems.

2.2 Platform Disassembly

Due to the lack of technical documentation, the platform was fully disassembled. This
step was crucial to understand its architecture and identify its components and physical
connections at the hardware level.

The analysis started with a generic approach, removing all the protections to observe
the elements that composed the platform. After their removal, the main case was detached
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Table 2.1: Robuter II original characteristics.[26]

Dimensions [102.5 x 68 x 44] cm
Weight 150 kg
Payload 120 kg
Speed up to 1 m/s
4 Lead Batteries 12V 60Ah each
2 Motors Permanent magnet DC 300W 48V
Control Type Differential
Positioning Optical encoders
Range sensing Network of ultrasonic sensors
CPU VME bus with 5 slots, Motorola 68020, 16 MHz
Operating System ALBATROS
Programming Software package and C application programs

(Figure 2.2). This case had several assembled units in an Eurocard type mount. Different
types of modules were identified:

• Two DC/DC converters (5V and 12V) — 1;
• Two DC drives — 2;
• One Security module — 3;
• One main CPU — 4.

Figure 2.2: Main case containing various modules.

In parallel, both wheels were detached in order to observe their characteristics and test the
motors. Each wheel setup is composed by an electromagnetic brake (coupled to the motor)
and a two channel incremental encoder (Figure 2.3). The motor also has a gear box, but the
ratio was not determined.

During this stage, particularly to test the motors, a main circular connector was detected
(Figure 2.4 illustrates the connector type and Figure 4.1 its wiring). It establishes connection
between the enclosed wheel setup (motors, encoders and electromagnetic brakes) and it was
mapped with a multimeter to match the pins to the actual connections (the pinout is shown
further in Figure 4.12). This step was crucial because without it, it would not have been
possible to know that the motor had coupled brakes, hence they could not be actuated.
At this stage, a DC supply was used to test the motors because the DC Drives were not
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Figure 2.3: Wheel with coupled elements. 1 - Motor; 2 - Electromagnetic brake; 3 - Encoder.

operational yet. Additional information is presented in Appendix A in the Figures A.1 , A.2
and A.3.

Figure 2.4: Circular connector in perspective and front view.

After the previous listed steps, an examination was carried out to determine which ele-
ments could be used and which should be removed.

Since one of the main goals of the project is to implement an open architecture, the
internal CPU components were not used and therefore removed.

Also, the network of ultrasonic sensors (24 in total) was detached due the lack of infor-
mation and, in consequence, the time that was necessary to invest was not worthwhile given
the complexity and functionality of the solution (there are better approaches these days, e.g.
LIDAR). The four batteries were also tested, each one charged individually, and none of them
was with an acceptable voltage level.

At last, the unnecessary wires were removed after the identification of the relevant ones.
This step is registered in Figure 2.5, where it is possible to observe the amount of material
taken from the original platform.

In the end of this process, the following was used from the original Robuter (resulting in
the setup from Figure 2.6):
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• Chassis
• Full wheels setup (Motors + Brakes + Encoders)
• DC drives
• DC/DC converters (5V and 12V)

Figure 2.5: Robuter’s parts after disassembly.

Figure 2.6: First setup used, main case aspect after disassembly.
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2.3 Platform Kinematics

To perform the platform’s kinematic analysis, first, it is important to understand the
robot’s locomotion. The movement is based on two separate driving wheels placed in one
end of the robot. It can thus vary the direction by changing the rate of rotation of each
wheel, eliminating the necessity of a steering system. The platform is balanced by two caster
wheels, fixed on the opposite side.

From Figure 2.7, it is visible that the direction is determined by the relation between each
motor’s velocity, vl and vr. However, in a robot’s locomotion system, its position (x, y) and
direction (θ) are the important variables, so each wheel velocity must be related with them
(expression (2.1)).

L

R

R

Figure 2.7: Differential drive kinematics. Image redesigned from [28].











ẋ = R
2
(vr + vl)cosθ

ẏ = R
2
(vr + vl)sinθ

θ̇ = R
L
(vr − vl)

(2.1)











ẋ = Vrobotcosθ

ẏ = Vrobotsinθ

θ̇ = ωrobot

(2.2)

Despite its valid relation, it is very cumbersome to think in terms of relative wheel veloc-
ities when designing a controller. For this reason, the unicycle model is used to have a more
intuitive control type [29]. This is a common approach when designing controllers because it
overcomes this issue by using the linear (Vrobot) and angular(ωrobot) velocities (2.2).
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Combining the equations (2.1) and (2.2), which is crucial because the actual inputs to the
system are each wheel’s velocity, the controller can be designed to accept linear and angular
velocities — equations (2.3) and (2.4).

{

Vrobot =
R
2
(vr + vl)

ωrobot =
R
L
(vr − vl)

(2.3)

{

vr =
2Vrobot+ωrobotL

2R

vl =
2Vrobot−ωrobotL

2R

(2.4)

At this point, and given all this information, it was more clear to design a detailed solution.
Chapter 3 gives an overview of the intervention plan.
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Chapter 3

Proposed Solution and Intervention
Plan

This chapter presents the proposed solution as well as an overview of how it is achieved.
It starts with a generic solution for the global architecture, and afterwards the hardware will
be specified individually.

3.1 Control Architecture Types

When considering what type of generic architecture should the system have, there are
two major types that prevail: central and distributed systems (Figure 3.1).
Centralized systems use, in general, a CPU that is responsible for processing all tasks, mean-
ing all the sensors/actuators communicate directly with the CPU through its peripherals.
This requires a high processing capability in order to maintain good responses to the system.
Since everything is centralized, these are usually lighter and more compact solutions than the
others.
On the other hand, in a distributed architecture, the systems are divided in other subsystems,
or modules. Each one of these modules is responsible for the control of a determined task
and can even have its own CPU. In this topology, all the modules work individually to the
overall operation of the system, either interconnected and functioning in an independent way
or all connected to a central CPU (Master).

Figure 3.1: Central architecture type.

By comparing these architectures, it is easy to understand that a modular system is more
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robust, allows development and expansion (particularly in the test stage) and it is more
versatile than a centralized system. For these reasons, and because this is a project designed
to be continuously improved, the option for a modular architecture becomes obvious.

3.2 System Diagram

The diagram in Figure 3.2 illustrates all the main blocks and explains how they interact
among them, giving an overview of the proposed solution.

A video camera is responsible for acquiring the image that will then be received and
processed by the main unit, CPU1. Depending on that information, CPU2, will generate electric
signals to actuate the motors accordingly. These motors are actuated through a PWM signal
on the DC drives and can feedback its velocity with encoders. This signal is processed by
the Counter block and sent to CPU2, closing the loop.
To control the platform remotely, the operator will use a CPU, connected to the robot’s
network, that will grant access to the CPU1 functionalities. This will allow to monitor the
platform and perform actions/routines.

CPU1

User

Visual
Unit

CPU2

DC Drives
Motors +
Encoders

Counter

Figure 3.2: Generic system diagram for the platform’s global architecture.

3.3 Communication Between Subsystems

To interact between subsystems, a main protocols is proposed: TCP/IP. Besides that,
other interfaces (for example I2C), which will be explained further in context on Section
4.5.2, are used.
The usage of TPC/IP protocol fulfills the concept of modularity and easy integration of
subsystems. Another determinant aspect is the available technology on the market (both
in social and industrial means), which is predisposed for this type of communication [30].
There are several units of microcontrollers and sensors which are capable of communicating
through this protocol. Nevertheless, it also allows configurations where all the devices can
communicate among themselves.
To transfer messages between the programmed processes (in CPU1), passing messages, it will
be used ROS (see 1.4.4).

3.4 Hardware

This section contains a list and presentation of the used material on the platform, which
will be further explained in context (Chapter 4). Some of the equipment was selected and
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ordered, while the remaining was used from the previous robot or was already available in
the laboratory. This is important to mention in order to justify some decisions of the used
hardware.
Table 3.5 makes the correspondence between the CPU’s blocks from Figure 3.2 with the
presented hardware.

3.4.1 Motor Related Parts

The full wheel setup is illustrated in Figure 2.3. As explained in Section 2.3, the system
has two driving wheels (which can be controlled individually) and two caster wheels.

Full Wheel Setup
Motors: Permanent magnet DC 300W 48V each (motor plate can be observed in Appendix
A, Figure A.1).
Encoders: Baumer BHE 05.25K500 three channel encoders with 8024 pulses per wheel rev-
olution (each pulse ≈ 0.045°). Despite that, only two channels are being used (CHA and
CHB) in the original setup. Power supplied with 5V.
Brakes: KEB electromagnetic 48V brakes. The brakes are disabled (loose wheels) with a
48V signal. Although each wheel has an individual brake, in the original connections the
supply is common, so they are actuated together. Both brakes have approximately a power
of 24W.
Wheels: 2 motored wheels with 75cm of perimeter and two caster wheels with 40cm of
perimeter.

DC Drives
Model 306 from Copley Controls [31]. Input voltage from 16 to 80VDC. Maximum output
current 10A. Controlled with an external PWM signal with minimum switching frequency of
22 kHz (avoids switching audible noise). These drives had to be repaired (as explained in
Section 4.2) and were used in order to save costs and make use of its robustness.

Figure 3.3: Copley 306 DC drives.

3.4.2 Power

5V and 12V DC/DC Converters
These two converters (Figure 3.4) were still operational and had useful voltage levels, there-
fore they were kept installed on the platform. Table 3.1 features the DC/DC converters’
characteristics.
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Table 3.1: Characteristics of the two original DC/DC converters [32].

Characteristic Q1000 24Q2000

Input Voltage (V) 38–75 38–75
Fixed Outputs (V) 5.1; 12; 15 and 24 5.1; 12; 15 and 24
Variable Output (V) 3.3–48 3.3–48
Power Rating (W) 132 106
Efficiency (%) 90 86

(a) (b)

Figure 3.4: DC/DC converters Q1000 (a) and 24Q2000 (b).

24V DC/DC Converter [33]
Switching DC/DC Converter Mean Well SD-100C-24 with input voltage range from 36V to
72V (Figure 3.5). Single 24V output with adjust range from 22V to 30V and maximum power
rating of 100W.

This converter was available in the laboratory and was necessary to supply CPU1. It was
decided to use a single converter for that effect because of the computer specifications (see
Sub-section 3.4.3).

Figure 3.5: DC/DC converter SD-100C-24. Adapted from [33]

Batteries

There are numerous battery types on the market and choosing the right one for the right
job is a demanding process. For this particular application, there were several aspects took
into consideration such as size, weight, capacity, discharge rate and as in every project —
price.
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In a simplistic way, as it is possible to observe in Table 3.2, the lithium batteries have
more energy density and charging cycles, therefore they are better and should be selected
despite of their price (which does not include the more expensive and sophisticated way of
its charging technology).

On the other hand, since this project is about retrofitting, the previous equipment should
be analyzed. Figure 3.6 shows one of the two old Robuter’s battery cases. These cases have an
open space measuring [210x340x140]mm and a set of wheels underneath them, which makes
manipulating the batteries easier.

Other aspect that is crucial to mention, despite not being the scope of this project, is the
future application of the platform. As is mentioned in Section 1.3, this platform will have
future applications, one of them is a robotic manipulator on the top of it, which brings new
variables to the battery selection. It is important to lower the platform’s center of mass and
counterbalance the manipulator’s movement (Fanuc LR Mate 200iD). Therefore, the weight
is a relevant factor to grant safety and enable the maximization of its operation (for example
in maximum payload scenarios, 6kg).

Table 3.2: Battery types characteristics. Adapted from [34] and last updated in 2016-04-11

Lead Li-ion Ni-MH

Energy Density (Wh/kg) 30-50 150-250 60-120
Cycle Life (80% DoD) 200-300 100-500 300-500
Charge Time (h) 8-16 2-4 2-4
Cell Voltage (V) 2 3.6 1.2
Cost (e/Wh) Low High Moderate

In Table 3.2 the Lithium polymer technology is not mentioned despite being widely im-
plemented on the market. Accordingly to [35], the batteries sold in the market, commonly
mentioned as polymer, are essentially the same as lithium-ion. Li-polymer offers slightly
higher specific energy and can be made thinner than conventional Li-ion.

By the above reasons, and taking into consideration that in standalone applications a lead
battery can have better payback [36], it was decided to order batteries with lead technology
and with the same dimensions as the previous ones.

There were selected 4 batteries from Ultracell. The model is UCG75-12 and has a voltage
of 12V and 75Ah of capacity [37]. Table 3.3 compares the old and new batteries where more
detailed information is presented.

Table 3.3: Old vs. new batteries arrangement.

Old New

Weight (kg) 24 22.5
Size (mm) 210x168x208 210x168x208
Type Lead - AGM Lead - GEL
Voltage (V) 48 48
Total Capacity (kWh) 2.88 3.6
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Figure 3.6: Robuter’s battery case.

3.4.3 Processing Units

CPU1 — Mini PC Cubi 2 [38]

Selecting a computer within the wide range of offers is challenging. To focus and limit
the choices some specifications were pointed out, despite not being necessary for the current
project. It is important that the CPU can cope with future applications, such as work with
Point Cloud Library. For these reasons, the requirements for the search were:

• Good computational capacity — i5 processor and 8GB RAM;
• Vibration/impact tolerance — SSD memory;
• Compact size to fit in the main case — smaller than 150mm X 120mm X 50mm;
• Available IO’s — 1 x Ethernet, 4 x USB, 1 x HDMI);
• Voltage supply level — 24V or lower;
• Affordable.

Once defined the specifications, various quotations were asked and the equipment that
best fulfill them was the MSI Cubi 2 012BEU i5-7200U. This computer has built-in processor
and both the SSD and RAM were ordered separately. The IO’s are detailed in Figure 3.7
and the detailed specifications are presented in Table 3.4.

Table 3.4: CPU1 specifications.

Spec Detail

Chipset Intel® H110

Processor Intel® Core™i5-7200U Dual-Core, 2.5 GHz with Turbo up to 3.1 GHz, 3 MB Cache
Storage SSD 2.5” Kingston V300 120 GB MLC SATA
Memory RAM SO-DIMM Crucial Ballistic 8GB DDR4-2400MHz

Graphics Intel® HD Graphics 620

Network
Intel® Dual Band Wireless-AC 3168 (M.2 2230)
Realtek RTL8111H GigaLan 10/100/1000

Power 19V input, 65W
Dimensions 115 X 111 X 35 [mm]

20



(a) (b)

Figure 3.7: Mini PC MSI Cubi 2, front view (a) and rear view (b). Adapted from [38].

CPU2 — Arduino Leonardo ETH [39]
Microcontroller: Chip ATMega32U4 integrated in the development board Arduino Leonardo
ETH with a 16MHz clock.
IO’s: 20 IO pins of which 7 can be used as PWM channels and 12 as analog inputs. All the
20 pins can be used as digital input/output.
Power: Input voltage from 7-12V and power consumption until 900 mW.
Interfaces: RS232, SPI, I2C, Ethernet.
Dimensions: 53.34 x 68.58 mm (WxD).
This board was available at the laboratory and has the necessary specifications to be used
in this project: Ethernet communication, enough IO’s (including PWM outputs) and clock
speed.

Figure 3.8: Arduino Leonardo Ethernet. Adapted from [39].

Counter — CPU3 — Arduino Micro [40]
Microcontroller and IO pins are the same as described for Arduino Leonardo ETH.
Power: Input voltage from 7-12V and power consumption until 360 mW.
Interfaces: RS232, SPI, I2C.
Dimensions: 48 x 18 mm (WxD).
This board had three major specifications: two or more interrupt pins, enough clock speed
to read the encoders data and capacity of communication with the Arduino Leonardo ETH,
CPU2, which can be achieved by CPU3, as will be explained in Sub-section 4.5.2.
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Table 3.5: Identification of the blocks from Figure 3.2

Name Unit

CPU1 Mini-PC MSI Cubi 2 i5-7200U
CPU2 Arduino Leonardo ETH
CPU3 — Counter Arduino Micro

Figure 3.9: Arduino Micro. Adapted from [40].

3.4.4 Visual Units

Camera [41]
The chosen camera for this project was the Point Grey Flea3 GigE, model GE-28S4C-C
(available from previous projects in the laboratory). It is a color camera with 2.8MP and it
is equipped with a Sony sensor: ICX687 CCD, 1/1.8”,9.69µm. Resolution 1928 x 1448 pixels
at 15 FPS.
Power supplied with 12VDC.

Figure 3.10: Flea3 GigE, model GE-28S4C-C. Adapted from [41].

Pan and Tilt Unit [42]
Servo controlled pan and tilt unit, model PTU-D46-17 by FLIR (Figure 3.11). Its pan and
tilt axis have 180°/111° positioning range respectively, and both support speeds up to 300°/s.
The system allows control in position, speed and acceleration using RS232 communications.
The resolution is 0.013°.
Power: Input voltage from 12 to 30VDC. Maximum power consumption 13W (full-power
mode) and 6W on low-power mode.
This unit was available at the laboratory and will not have any particular function in this
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project. Despite that, it will be installed to receive commands and move, being prepared to
maximize the perception range for future applications.

Figure 3.11: Pan-Tilt Unit FLIR PTU-D46-17. Adapted from [42].

3.4.5 Network

Router [43]
Router Asus AC750 RT-AC51U with 802.11ac standard (Figure 3.12). It is a wireless dual-
band device (2.4 GHz and 5 GHz) with transfer rate up to 733 Mbps. It has wireless coverage
improved with 5dBi antennas.
Ports: 1 x RJ45, 4 x RJ45 and 1 x USB 2.0.
Power: 12V supply and power until 12W.
Dimensions: 189 x 129 x 36 mm (WxDxH) and 270g of weight.

Figure 3.12: Router Asus AC750 RT-AC51U. Adapted from [43].

The router allows the creation of a wi-fi network to remotely access/monitor the platform.
Its transfer rates are more than enough to transfer the necessary data but with the available
budget the concern was to acquire a modern equipment.

Regarding the number of RJ45 ports, these are enough for the given application but it
was decided to invest in an additional network switch. There were two main reasons for this
network arrangement — the platform must be prepared for the future with additional ports
and the price of an 8 port router was much higher than both (router and switch combined).
The result was to spend less money and have 12 RJ45 ports, which is in line with a modular
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system that grants the easy integration of new hardware.

Switch [44]
Network switch D-Link DGS-108 Gigabit (Figure 3.13). Contains 8 ports GigE with transfer
rates up to 1000 Mbps. Input voltage 5V, maximum DC power 3W and 0.6W in stand-by
mode.
Dimensions: 162 x 102 x 28 mm (WxDxH).

Figure 3.13: Switch D-Link DGS-108 Gigabit. Adapted from [44].

3.4.6 User

Remote Controller [45]
To control the robot manually the Xbox 360 Wireless Controller is used. This joystick uses
the Microsoft Xbox 360 Wireless Receiver(Figure 3.14) to communicate in the 2.4 GHz band
with ranges up to nine meters.
Power: Two AA batteries (the ones used are rechargeable)
The selection of this controller was natural because of its availability in the laboratory, the
existing ROS libraries to interface with it and because it has several analog buttons (which
allow a more accurate and versatile control experience to the user).

Figure 3.14: X-Box remote controller. Adapted from [45].
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3.4.7 Switches

Arduino 2 Relay Module [46]
Module with two relays to use with Arduino (Figure 3.15) for brake control and enabling
the 22V DC/DC converter. This module already has the relay’s driver circuit built-in. Each
relay is controlled with a 5V signal and can support up to 10A, 250VAC, 110VDC.
This solution is seen as an advantage since it is capable of actuating the brakes with a
galvanically isolated circuit and it is a cheap circuit.

Figure 3.15: Arduino 2 Relay Module. Adapted from [46].

Circuit Breaker [47]
Since the platform already had one circuit breaker and the modifications did not require a
new one, it was maintained. C32H-DC, Figure 3.16, is a circuit breaker that will protect the
platform in case of short-circuit or overload current. It also allows cutoff the power manually.
Power ratings: 250V DC, 1 to 40A at 40°C and break capacity up to 20kA. Type C tripping
curve.

Figure 3.16: Circuit breaker C32H-DC.
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Chapter 4

Solution Development

This chapter details the platform’s retrofitting. In order to do this, the steps to achieve
the proposed solution will be presented so that all the mechanical and electric interventions
can be documented. Also, the developed code will be explained, mainly the code implemented
for communicating between subsystems and motor control.

4.1 Electric and Mechanical Intervention

Although the core of this intervention is mostly electronic, several mechanical adjustments
also took place. This section describes both of these procedures together because sometimes
they are complementary.

4.1.1 Components Layout

To decide which side is the front and the rear of the robot the possible future applications
had to be studied. One of them is the addition of a robotic arm to manipulate objects up
to 6kg. So, as explained in Sub-section 3.4.2, the counter-balance is an important factor and
therefore the weight distribution must be analyzed. It is visible, from Figure 4.2, that the
top part has more weight than the other half due to the batteries.

Based on the platform kinematics (Section 2.3) and the presented facts, it was decided
to make the front side the nearest to the motors, leaving the manipulator aligned vertically
with them. Also, to increase the manipulator’s reachabily and to have a good field of vision
it is convenient to have a wide area to operate.

Regarding the main case, the layout idea was kept, leaving the electronics and processing
units on one side, and the power (drives and converters) on the other. Figure 4.1 displays
the items location, where in (b) the dashed circle (C-16P) is located on the bottom of the
case and the four blocks are fixed at a different height. The two metal structures with rails
(Figure H.12) have revealed being very useful for fixing purposes.

Despite the main case having plenty of space left, it was decided to put the network equip-
ment outside it, mainly for two reasons. One of them is to leave space for future processing
units or electronics inside the case. The other is to make the Ethernet connections accessible
from the outside, allowing to plug devices externally. The chosen place is represented in
Figure 4.2 by number 2.
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(a) (b)

Figure 4.1: Main case front view (a) and top view (b).

Figure 4.2: Platform’s top view map.

4.1.2 Power

The platform is powered by 4 batteries in series, as stated in Sub-section 3.4. Since the
old cases were used, some modifications had to be implemented. The cables were not in good
condition and the connectors underneath the case (to connect the batteries in series) were
damaged. To solve this, a new battery arrangement was made and new cables were placed,
both for the series layout and charging purposes (Figure 4.4). As represented in the schematic
from Figure 4.4 with a dark blue rectangles, two connectors were still used, the rear one to
plug the charger and the front one to connect the robot’s power. The final result is shown in
Figure 4.3 where it is possible to observe some extra length in the cables so that the batteries
can be operated easier and to allow its removal without disconnecting any cable. Figure H.1
shows an intermediate step of this stage and gives better detail on the battery cases.

The electric schematic is represented in Figure 4.5 where a circuit breaker, QF1, is re-
sponsible for disconnecting the main power. The circuit breaker was re-used from the old
platform and it was mounted in a piece of DIN rail, fixed with rivets. It was fixed on the
right side of the batteries, where it can be reached by the user from the outside. Figure 4.2
shows its location on the platform, represented by number 1, and Figure H.4 its assembling.

28



connector

Figure 4.3: Mounted batteries.

to power

to charger

Figure 4.4: Batteries layout in the cases.

Figure 4.5: Main power supply, batteries schematics.

To charge the batteries the old charger was used. This device was not operational and
required intervention to fix it. The connectors were damaged and therefore replaced and the
connections on the charging plug had to be remade to match the new arrangement of the
batteries in the cases (Figure H.2).

Concerning the installed DC/DC converters on the platform, 4 voltage levels are available:
+5V, +/-12V and +22V, which are used for different applications (Table 4.4). The wiring
of the DC/DC converters is represented in Figure 4.7. They are enabled with a ground
signal (22A) and can be disabled with the ON/OFF button from the rear LED panel (Figure
4.15). This allows to have the robot powered with the electronics disconnected (useful for
reset purposes). To have negative voltage (-12V), VO2+ and VO1- are connected to ground,
creating a negative voltage on the VO2- pin.
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Figure 4.6: Relays Module schematic.

Figure 4.7: DC/DC converters schematic.

Since the 24V DC/DC converter is only used to power CPU1 and does not have an enable
input, the solution found to reset CPU1 was to use a relay to cutoff its power. The relay is
supplied with +5V, which is enabled by the ON/OFF switch (see further Figures 4.15 and
4.16 to identify the switch — BF2) on the rear. By connecting the converter’s positive input
to the relay’s NO (normally open) contact, the CPU1 can be connected/disconnected together
with the remaining electronics (Figures 4.7 and 4.6).

Even though the converter is 24V, the potentiometer (V ADJ), that allows to adjust the
voltage output level (Section 3.4), was used to drop the voltage to its minimum: 22V. Despite
of the CPU1’s voltage supply is 19V, it was ensured by its vendor that it could be supplied
with 22V due to its internal circuitry. Validation tests were carried out by connecting CPU1

for an entire day and it presented normal behavior.
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4.1.3 General

This sub-section presents the electric schematics for the fans and battery level.

Fans
Inside the main case, there were four fans used for air circulation. When tested they made
too much noise (probably they were seized up) and had to be replaced for new ones. Instead
of ordering four similar fans, two 12V fans were taken from old computers and mounted on
a similar structure to the one represented on Figure H.12. Since they had bigger dimensions
than the previous ones, one of the fans had to be installed inside the structure to fit ev-
erything inside the main case (in Figure 4.2 the fans are represented with letter ”F”). The
wiring used to connect the fans is shown in Appendix B, where the full platform’s schematic
can be observed.

Battery Level
The battery level is measured with a designed circuit (Figure 4.8) that has a resistor in series
with a potentiometer (X2). The main reason for this was because the optimal battery levels
to the platform’s functionality are not known yet, and with X2 it is possible to tune them
in the future. This way, the voltage levels can be optimized so the analog read can have the
maximum scale (5V). The components were dimensioned with use of equation (4.1).

For the potentiometer installation, and to grant its accessibility, a hole on top of the main
case was drilled (Figure H.3).

5V =
X2bottom
R9 +X2

VBAT (4.1)

Figure 4.8: Battery level acquisition circuit.

4.1.4 CPU2 Mount

CPU2 is in charge of establishing communication between the hardware and CPU1 through
Ethernet and for controlling the motors. The connections are represented in the schematic
from Figures 4.9 and 4.23 and the labels detailed in Table 4.1.

Regarding the relay module, (schematic on Figure 4.6) it contains optocouplers and the
input circuit can be isolated from the relay circuit by removing the JD-VCC jumper and
providing a separate power supply for the relay, which was not necessary in for its applica-
tion [46]. For safety reasons, the used contact for the brakes was NO, preventing an unbraked
system in case of power failure.
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Figure 4.9: CPU2 IO circuit.

Table 4.1: CPU2 IO’s list.

Pin Description Label

11 Digital input. Emergency/ Bumper state EN-DRIVES
7 Digital output. Brake actuation BK-EN
12 Digital output. Batteries Recharge LED BAT R
13 Digital output. Batteries OK LED BAT OK
A0 Analog input. Batteries level B LVL
9 Analog output. Connects to REF+ from Drive 1 PWM1
5 Analog output. Connects to REF+ from Drive 2 PWM2
SDA Data line. I2C communication SDA
SCL Clock line. I2C communication SCL

4.1.5 CPU3 Mount and Circuit

CPU3, Arduino Micro, is responsible for acquiring the data from the encoders and trans-
ferring it via I2C to CPU3. For those purposes, the unit was installed in a prototype board
with additional components (Figure 4.10). To place CPU3, female PCB sockets with 2.54mm
of pitch (same as the prototype board) were used. The remaining wires were connected with
PCB screw terminal blocks, again with the same pitch. This kind of connections allows the
replacement of components easier, which is useful in case of malfunctions.

Regarding the schematic (Figure 4.11), the four capacitors are used to filter the noise
coming from the encoder signal. Even without resistance (to make a RC filter) the capacitors
work, eliminating high frequency noise. Since the encoders can reach up to 15 kHz frequencies,
a 10nF ceramic capacitors were used.

The two wires for I2C communication were directly connected between CPU2 and CPU3.
On the schematics (Figures 4.9 and 4.11) there are no pull-up resistors on the SDA and SCL
lines because CPU2 already has them internally [39]. The labels description for the IO’s can
be found in Table 4.2
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Figure 4.10: CPU3 mounted on prototype PCB board.

Figure 4.11: CPU3 IO’s circuit.

Table 4.2: CPU3 IO’s list.

Pin Description Label

2 Serial data SDA
3 Serial clock SCL
0 Encoder 1 signal, channel A E1-CHA
1 Encoder 1 signal, channel B E1-CHB
6 Encoder 2 signal, channel B E2-CHB
7 Encoder 2 signal, channel A E2-CHA

4.1.6 Wheel Setup and Circular Connector (C-16P)

As previously stated in Section 2.2, a main circular connector to access the enclosed wheel
setup is available. This connector wiring is represented in Figure 4.12 alongside with the en-
coders, brakes and motors. Despite of the connector being circular, in order to make the
interpretation easier, it is represented by a rectangle where its numbering matches with the
actual pin numbers in the connector. Both male (C-16P-M) and female (C-16P-F) parts are
represented, establishing correspondence with the schematics from Figures 4.9 and 4.11.
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Figure 4.12: Pinouts from 16 pin circular connector (C-16P-M and C-16P-F).

4.1.7 Level Shifter

A circuit was projected to convert a PWM signal to an analog signal from [-5;5V] (Figure
4.14). The design of the circuit will be explained in context on Section 4.2.

Similarly to the CPU2, a PCB prototype board, illustrated in Figure H.5, which was
particularly chosen to avoid making wire or solder paths, was used to implement this circuit.
To cut the paths when needed, a Dremel tool was used to erode them. The implementation
of the circuit, as connected in the platform, is presented in Figure 4.13.

Figure 4.13: Level shifter circuit mounted.
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Figure 4.14: Circuit to convert 5V PWM signal into [-5;5]V analog signal. Components values
can be found in Table G.

4.1.8 Status Panel

To be aware of some machine information and enable/disable modules, the old Robuter
already had a LED status panel on the rear. On the original panel it was possible to:

• Monitor the battery level (3 states - OK, RECHARGE and N.OK);
• Monitor the voltage levels (+5V, +/-12V and +48V);
• Actuate the emergency and monitor its state (red LED);
• Reset the old on-board computer;
• Enable/disable the DC/DC converters.

Despite the usefulness of all these features, the panel’s PCB layout did not allow it. In
Figure H.6 is shown the existing PCB that had to be adapted so it could be used with the
new electronics. After deep analysis and identification of every pin from the DB25 connector
to match with the PCB pads (Table 4.3), some modifications were made:

• Emergency contact changed from NC to NO;
• Modification of the LED paths to connect them individually;
• Addition of resistors for the LEDs — RLED =

Vsupply−VLED

ILED
;

• Modification of the ON/OFF button connection to NC contact (DC/DC converters
need 0V to be enabled).

During this intervention, the red LED to inform the emergency state had to be discon-
nected. The same happened with the ”BATTERIES N.OK” red LED. As mentioned before,
some resistors were added to limit the LEDs current.
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Figure 4.15: LED status panel on Robuter’s back. Check description on Table 4.3.

Since the space on the PCB was limited, it was decided to solder the resistors directly on
the cables (see Figure H.7). While doing this, each cable was extended because they did not
had the necessary length.

Due to the previous connections, the battery status LEDs were connected to 5V (28a pad
in the PCB, see Table 4.3). This way, to connect them from CPU2, the digital output needs to
be set ”LOW” (”HIGH” to disconnect). On the schematics from Figure 4.16 are represented
all the necessary connections to understand the modifications made.

Figure 4.16: LED status circuit with DB25 pinout.

After removing the ultrasonic sensors (Section 2.2) a lack of mechanical resistance was
detected on the rear part (Figure 4.15). In order to solve this, pieces of roofmate (Figure
H.8) were placed, increasing the safety in case of unexpected collisions.

4.1.9 Fixing Plates

To install and fix some of the components it was necessary to design, in SolidWorks,
parts for that purpose or, in other cases, use a different method, as it will be explained in
the present sub-section.

Circuitry Fastening

For the circuitry, a polycarbonate sheet (technical drawing on Appendix C) with many
openings was used to allow the air circulation inside the main case and to arrange/fix the
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Table 4.3: Signal matching between LED panel PCB and DB25 connector from Figure 4.16.

Num. DB25 ID PCB Function / Notes Label in schemes

1 22a NC contact pin 14. OFF – close, ON – open EN-DCDC
2 22c NO contact pin 13. OFF – open, ON – close GND
3 16a Emergency, BF1, ground contact. GND
4 30a GND Red LED (EMR) - not connected NC
5 6c Emergency, BF1, NO contact DC drives enable EN-DRIVES
6 28a Common 5V for LED1 and LED2 +5V
7 26a GND Yellow LED1 (Recharge) BAT R
8 24a GND Green LED2 (Batteries OK) BAT OK
9 16c V+ Green LED3 (+5V with 220Ω resistor) +5V
10 10a GND Green LED3 +5V GND
11 20c V+ Green LED4 (+12V with 680Ω resistor) +12V
12 6a GND Green LED4 +/-12V GND
13 4a V+ Green LED5 (VBAT with 2.7kΩ + 1kΩ resistor) VBAT
14 32c GND Green LED5 VBAT GND
15 8c Not used, Reserve1 RES1
16 4c Not used, Reserve2 RES2

wires properly. To lock the PCB boards, holes were drilled on the extremities (four holes
per board) and attached with a set of M3 screw, nut, washer and spacer screw (Figure H.10
shows this in detail). The final result, with all the installed boards, is presented on Figure
4.17

Figure 4.17: Polycarbonate sheet inside the main case with all PCBs mounted.

Placement of Network Devices

For the network setup (router and switch), a metal plate was designed to fix them in a
wall mount type (while selecting the equipment this was a relevant concern). On the technical
drawing (Appendix D) three half circles, that were made to pass the cables more smoothly,
are represented. Concerning the fixation of the plate to the vehicle’s structure, it was decided
to make use of the existing M6 holes (for the bottom part) and additionally were placed holes
to fasten with nylon cable ties (more specifics on Figure H.11). Diagram 4.2 indicates where
the network hardware is located with the number 2 and Figure 4.18 exhibits the final mount.
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Figure 4.18: Metal plate with router and switch installed.

Placement of Visual Units

In order to use the camera, two different aluminum supports were designed, Appendixes
E and F. The decision of the camera’s location was based on some constraints, such as:

• Safety of the equipment — it should not exceed the platform’s dimensions;
• Manipulator’s operability — the robotic arm’s movements can not be conditioned by
the camera location;

• Pan and tilt (PTU) full range — the PTU, where the camera is fixed, must have space
to reach its rotation range;

• The acquired image must be from the front side of the robot.

The ideal camera location is in the center of the platform in order to simplify the naviga-
tion algorithm, but at the time of the first design and due to the presented constraints that
was not possible. So, on the first designed support, the camera was placed in the left side of
the platform, as shown in Figure 4.19.

Figure 4.19: First camera setup used for navigation. Detailed view of the camera mounted
on the PTU.

Despite this fact, after performing the tests with a simple navigation algorithm, that de-
tected a line and its orientation, it was noticed that a more complex one had to be designed
(the camera lost track of the line). By that time, it was already possible to rearrange the
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components on the top of the platform so the camera and PTU could be centered with it,
minimizing/eliminating the effect that the perspective introduced to the image. For that
purpose, a new support was designed, Appendix F, and the complete setup is documented
on Figure 4.20.

Figure 4.20: Final camera setup used to implement the navigation algorithm. Detailed view
of the camera mounted on the PTU.

The difference between the acquired raw images (mono8 format) can be observed in Figure
4.21 where the white line (marked with a red ’X’) on both images is similar, only the camera’s
location and orientation changes.

(a) (b)

Figure 4.21: Raw images acquired from the first setup (a) and second setup (b). The navi-
gation line is marked with a red ’X’.

4.1.10 Wire Labeling

Another important procedure during the electrical installation was the definition of met-
rics/rules for the wiring. A color code was specified, presented on Table 4.4, making the
identification of the cables easier for future enhancements/repairs. Additionally, labels to
place in marker sleeves TM-I 18 from Weidmüller (reference 1798620000) were printed, which
identify the majority of the cables (the printed label list can be seen in Appendix I).

In order to connect all the wires on the platform in an arranged and organized way, two
power distribution bus bars (see Figure H.13) were used. These bars were drilled to be aligned
vertically, and since they have three available screw terminals in each, for the most common
wires (VBAT and GND), two were used. Figure 4.22 shows the rear view of the main case,
where the bus bar and all the connections can be seen.
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Table 4.4: Cable identification from Figure 4.22.

Code Description Signal Color

VBAT Battery level supply for motor drives, DC/DC converters +48V Orange
+22V Supply for CPU1 +22V Striped blue
+12V Supply for CPU2 and Router +12V Blue
-12V Voltage reference for level shifter circuit -12V White
+5V Supply for encoders, CPU3 and Switch +5V Red
GND Ground 0V Black
M1-V+ V+ Motor 1 supply, signal from drive 1 0-48V Brown
M1-V- V- Motor 1 supply, signal from drive 1 0-48V White
M2-V+ V+ Motor 2 supply, signal from drive 2 0-48V Brown
M2-V- V- Motor 2 supply, signal from drive 2 0-48V White
PWM1 PWM signal from the controller to the drive 1, REF+ [-5;5] V White
PWM2 PWM signal from the controller to the drive 2, REF+ [-5;5] V White
BK+ V+ Common supply for electromagnetic brakes 48V Orange
BK- V- Common supply for electromagnetic brakes 0V Black

Figure 4.22: Wire arrangement in the power distribution bars.

4.2 Motor Actuation

To actuate the motors, two DC drives are used (Copley 306), but only a deep analysis
and one repair was needed. One of the drives had two soldered pins from the PCB that fitted
on top of the drive (Figure 3.3 for more details) that could not be soldered together. To solve
this, it was necessary to cut some pins and remove the PCB using a soldering station with
infrared technology (to maximize and uniform the heat on the row of pins). After cleaning
the solder from unwanted places, the pins were leveled to fit a row of female PCB sockets
(same pitch as the pins: 2.54mm).
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With this solution (Figure H.9) it is still possible to remove the top PCB to access the
rest of the DC drive. This PCB had the purpose of making the necessary connections to the
driver and convert the pinout into an Eurocard mount. Besides that, the type of signal to
control the motors was modified. The original drives had two modes of operation:

• PWM signal [0-5]V on REF+ pin and 0/5V on DIR pin;
• Single [0-5]V PWM signal where 50% of duty-cycle produces zero current at the output
of the amplifier (motor stopped).

After the modification, each drive works only with a single analog signal from [-5;5]V,
where the [-5;0] range makes the wheels rotate forward and the [0;5]V range backwards.

After understanding this feature, a circuit had to be projected to allow the control from
CPU2 (Figure 4.14 ). This is necessary since the Arduino board only has a variable output
type: PWM from [0;5]V with adjustable frequency. The signal modulation was performed
with a difference amplifier (expression (4.3) is for OUT1 but the same relation can be made
for OUT2). Note the variables, are identified in the schematic from Figure 4.14.

The simple RC low-pass filter (R3-C1 and R4-C2) shown in the circuit converts the PWM
signal to a voltage proportional to the duty cycle. Expression (4.2) shows how these values
can be calculated, but note that two major aspects had to be considered: ripple and settling
time. If the cutoff frequency is too low, the RC constant will be too high, meaning the
capacitor will take more time to output the desired voltage. On the other hand, if the cutoff
frequency is too high, the ripple will be larger. To solve this problem, a lower resistor was
used, and the PWM frequency was adjusted to 31.25 kHz.

fc =
1

2πRC
(4.2)

OUT1 = 5V ×
R2 +X1V AL

R1 +R2 +X1TOT

(

1 +
R6

R5

)

− V1

R6

R5

(4.3)

Figure 4.23: DC motor drives schematic.
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There is also a potentiometer, X1, that allows a fine tuning on the voltage reference. This
is important since the zero voltage applied to the motors will occur when the Duty Cycle is
at 50%, and this tuning will grant that. Note that the values for the components presented
in Figure 4.14 are presented in Table G.1.

Still concerning the DC drives (schematics on Figure 4.23), they have a disabling input
(with internal pull up resistor) that when it has a 0V signal, it activates the emergency mode,
stopping the motors. This emergency can be activated in two ways:

• Emergency push button pressed (on the rear LED panel);
• One of the two bumpers (BF3 and BF4) detects collision. At this stage only two wires
were passed for each bumper to install them in the future, but connecting them together
simulates a collision event.

4.3 Configurations

4.3.1 Network Creation

To share data between subsystems, a network was created on the platform with a router
and switch. On the router, the DHCP was disabled in order to use static IP addresses,
allowing the manual configuration of the network equipment. Figure 4.24 shows the details
of the configured network for the platform, while Figure 4.25 illustrates the network diagram
used on the robot.

(a) (b)

Figure 4.24: Print screen from the Asus router webpage with both configured networks: 2.4
GHz band (a) and 5GHz (b).
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Figure 4.25: Diagram with implemented network topology.

4.3.2 CPU1

The CPU1 was the unit that required more configurations. It is the main processing unit
of the system and where ROS will be running. Firstly, an operating system was installed,
Ubuntu 16.04 LTS. Ubuntu is a complete Linux operating system, freely available with both
community and professional support [48].

After setting up the operating system, several tools had to be installed. In Appendix J is
a simple guide, with all the installation commands and some notes about each one of them.
This way, the PC can be configured exactly the same way for a fresh reinstall, if necessary.

Another important aspect to mention is the BIOS configurations. Usually, every PC
starts when the power button is pressed, but in this case that is not a viable solution due to
the CPU1 being inside the main case. To solve that, it was enabled the AC Power Recovery
setting. For better comprehension and mainly for re-installation purposes, a print screen
from the BIOS setup is shown in Appendix H, Figure H.14.

4.3.3 Camera

As previously stated in Sub-section 3.4.4, the camera was already used in another project,
so it had a different IP range from the platform. The predefined IP was in the range
“169.254.0.XXX” while the platform’s network in the range “192.168.0.XXX”.

In order to change the camera’s IP, it was necessary to install its API, Flycapture 2, and
create a network inside the camera’s IP range to be able to detect it. After detecting the
camera, it was possible to access its configuration menu, and its registers. Figure 4.26 illus-
trates this process, where it was necessary to write in the hexadecimal registers to configure
permanently the desired IP address range. This API also provides access to a wide range
of camera settings that can be configured manually on it, or by using FlyCapture2 library,
written in C++.
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Figure 4.26: Setting the camera’s IP range to the predefined in the Robonuc’s platform.
Illustration adapted from the FLIR documentation [49].

4.4 Generic ROS Nodes

4.4.1 Communication between CPU1 and CPU2

The most important part of the CPU1 programming is the communication between the
ROS and the CPU2. This communication is established via Ethernet and it is crucial, be-
cause it allows to actuate the system and receive data from it while taking advantage of the
processing capacity of CPU1. So, the data transmission between units, is carried out by a
client node, named “client node”. After initiating the ROS environment (with roscore),
the node is initialized with the following command, where “-e” represents the echo mode:

$ rosrun comm_tcp client_node 192.168.0.10 50000 -e

When the connection is established, this node subscribes to the “\client messages” topic,
that contains the messages to be transferred, at a rate of 20 Hz. The type of messages are
presented on Sub-section 4.5.1.

4.4.2 Velocity Conversion

Since the system was designed to output linear and angular velocities, these values had to
be converted in motor commands (see Section 2.3). Node “vel decompose” is the publisher
and subscriber node responsible for that particular task. Velocities are subscribed from the
“\navi commands” topic and equations (2.3) and (2.4) are used to perform the conversion.

After the conversion, each wheel velocity is determined to correspond to the desired
linear and angular velocity required by a navigation oriented node. This relative velocity
is obtained in radians/second; however, the input motor commands are given in pulses, as
will be presented in Sub-section 4.5.1. Equation (4.4) relates the velocity with the pulses
(encoder increments), where “F” represents the sampling rate (20 Hz) and “PW ” represents
the number of pulses to complete a full wheel rotation (8024, note that this value is multiplied
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Table 4.5: Communication commands between CPU1 and CPU2.

Type Message

Motors MM B/F [0-200] – B/F [0-200] >
Request encoder EN >
Atuate brakes BK 1/0 >
Battery level BT >

by the gear box ratio). The result, Pr, represents the necessary number of pulses to be counted
in 1

F
of a second. Although the equation refers to the right wheel, the same relation is valid

for the left one.

Pr =
vrPW

2πF
(4.4)

In the end, the message is packed in a string datatype to match the required format. When
this process is concluded, the motor’s message is then published in the topic “\client messages”.

4.5 Microcontrollers Programming

4.5.1 CPU2 Program

CPU2 was configured as an Ethernet server (IP address: 192.168.0.10, Port: 50000) so
the ROS application can access its data through a client request, as explained previously.

Figure 4.27 shows the main loop running in CPU2. The program starts on “Setup”, where
all the necessary initializations are made, such as:

• Adjustment of the PWM frequencies to 31.25 kHz;
• Definition of input/output pins;
• Brake system and stop motors;
• Start I2C module as master;
• Start Ethernet connection and server;
• Definition of timer interrupt frequency.

After the client connection is established (in CPU1), the received messages are validated
and then processed. As it can be observed in Figure 4.28 and Table 4.5, there are four main
types of messages that can be distinguished by its first two characters: MM, BK, EN and BT.
These last three messages (BK, EN and BT) are more simple to comprehend, while the other
requires more attention.

The type MM defines the setpoint of each motor, in pulses (which is directly proportional
to rpm’s), and its direction of rotation. For example, the message “MMB50-F30>”, defines the
setpoint for motor 1 at 50 pulses in the backward direction and the motor 2 with 30 pulses
in the forward direction. Highlighted in red is the type of message, in blue the direction of
rotation, in black the corresponding references and in green the end character of the message,
which is common to all types.

As stated in Section 4.2, each motor is controlled with a single PWM signal. The PWM
resolution in the Arduino has 8 bytes, meaning the value can vary from [0; 255], where:

• From [0;127] — backward direction;
• From ]128;255] — forward direction;
• The value 128 — outputs 0V to the motor.
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Figure 4.27: Flowchart from the main loop in CPU2.
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This type of control has the advantage of saving IO’s on CPU2 (a single wire is enough to
control each motor) but has the drawback of its control method, i.e., it is difficult to design
a control system that within its range has increasing and decreasing values depending on the
direction. To avoid a complex solution, a subroutine that accepts a direction input (B or F)
and values from [0;128] that are later converted to the full range output ([0;255]) was created .

Running aside, as a timer overflow interrupt, a routine similar to a watch dog timer that
monitors the message income from CPU1 was created (Figure 4.29). If the defined number
of messages are not received on the timer’s interval, the system detects it and enters in an
emergency state, braking the system and stopping the motors (PWM = 128).

Figure 4.28: Flowchart from routine ”Process Reception”.

47



Figure 4.29: Flowchart from Timer 2 interrupt routine.

4.5.2 Read and Transfer Encoders Data

The encoder data is acquired with the Arduino Micro (Sub-section 3.4.3) because the Ar-
duino Leonardo ETH can not respond fast enough (equation 4.5) while handling the Ethernet
communication. To do it, some considerations took place on the selection of this unit:

• The platform’s maximum velocity is set in 1m/s;
• The encoders have 8024 pulses per wheel revolution;
• The wheel perimeter is 75cm.

Having this in mind, the proposed solution must be capable of responding to a frequency
of 16 kHz per motor (equation 4.5). In the equation, a slightly increased value for the velocity
is used to give a safety factor (in case of higher velocities).

1.5m/s = 2rps → facquisition ≥ 16kHz. (4.5)

To validate this solution, some tests took place. It was decided to read the pulses with
interrupt service routines (ISR) instead of the polling method to have a better code structure
running in the microcontroller [50]. To do it, a signal generator was used (configured with a
square wave [0;5]V with 50% of Duty-Cycle) in order to determine the maximum interrupts
frequency of the Arduino Micro while transferring its data via I2C or SPI.
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The performed tests have shown capacity of response up to 145 kHz in a single interrupt
pin and 72 kHz in two interrupt pins (with synchronous waves).

After the proof of concept, this method was implemented on CPU3. Since each encoder has
two channels, A and B, to determine the sense of rotation, one of the channels is detected by
an interrupt routine, channel A, while the other, B, is polled (with digitalRead() function).
From Figure 4.30, it is possible to observe that both waves are 90° out of phase. While
rotating backwards, when channel’s A ISR is triggered, the value of channel B is LOW. The
opposite happens when rotating forward, where channel’s B value is HIGH when the interrupt
is called. Depending on the sense of rotation, the variable containing the number of interrupts
(one per encoder) is incremented/decremented.

Figure 4.30: Encoder signals with wheel rotating forward. Channel A in yellow, channel B
in blue.

To transfer data between CPU2 and CPU3, the I2C protocol was used. Despite that, the
first approach was the SPI protocol because the communication only needed to be set between
two units and it is faster than I2C [51]. The code for the communication was developed and
successfully tested, nevertheless, when combining it with the remaining one it was detected a
conflict between the Ethernet and SPI libraries. Even though it was not the first choice, the
I2C protocol has proved to be enough for this application and has one advantage that can be
useful for future applications — it allows to communicate with multiple devices if needed.

Similarly to the encoder’s readings, the data transfer was also configured with an interrupt
routine. CPU3, when prompted by its master, CPU2, transfers its data via I2C. The data is
requested at a 20 Hz frequency and, in order to save time in its transfer, two unsigned integer
variables (2 bytes each) were used.

Since the I2C protocol only can transfer one byte at the time, each variable is split before
being transferred (CPU3) and concatenated on the reception (CPU2). The flowchart that
represents the microcontroller’s program is shown on Figure 4.31. Note that only one ISR is
represented for the encoders reading because the process is exactly the same for both (only
the input pin changes).
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Figure 4.31: Flowchart from CPU3 with interrupt service routines.

4.6 Control System

4.6.1 Generic Description

To close the control loop it was decided to use CPU2 instead of CPU1. The main reason
for this was to minimize the number of communications to perform the control. Figure 4.32
illustrates a classical PID control system (despite only one diagram being represented, note
that two loops are implemented, one for each motor).

The reference is set in pulses/0.05s ( 1
F
) by CPU1. After that, the actual rotation value,

also with the same units as before, is required to the CPU3 via I2C so that the error can
be calculated. This error is then multiplied by a proportional, integral and derivative gains
(Kp,Ki and Kd, respectively) to calculate the necessary motor’s output to reach the desired
setpoint.

Figure 4.32: Implemented PID block diagram.
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4.6.2 Tuning

Finding the optimal PID parameters is a meticulous task, nearly impossible without an
accurate system’s model. To determine the vehicle’s transfer function it is necessary to
model it considering all its numerous particularities, which is not feasible with the current
time constrains and system’s complexity.

Nevertheless, some approaches use heuristic methods, which intend to bypass these dif-
ficulties. Like the trial and error method, Ziegler and Nichols also defined commonly used
approaches. One of them being the closed loop Ziegler-Nichols method, which consists of ap-
plying sustained oscillations to the system and relate them with a pre-determined parameter
table [52]. However, this method forces the system into a condition of critical stability that
may lead to an hazardous situation (due to the motors being constantly oscillating).

Despite of the Ziegler-Nichols method not being used, some of its guidelines were taken
into consideration (like first tuning the proportional parameter) when tuning the system
with an error and trial approach. To do it, a setup was created so all the important variables
(encoders data and desired setpoints) could be outputted. Also, for safety reasons, the first
tests were carried out with the lifted platform, minimizing possible damages on the initial
tuning.

To monitor the variables, “rqt plot” from ROS was used. This tool provides a GUI
plugin to visualize numeric values in a 2D plot [53]. Figure 4.33 shows the created graphs
alongside with the terminals to change each wheel’s setpoint and each PID parameter.

Figure 4.33: Used setup to tune the PID parameters. Rqt plot tool on the right and terminals
publishing PID values and setpoints to CPU2 on the left.

Also, it was decided to change the PID parameters while the program was running to
avoid the code compilation each time a test had to be performed. Since the control loop is
implemented in the CPU2, the PID parameters, from CPU1 to CPU2, had to be transferred.
This was made by creating a new type of message to CPU2 process: “PI”.
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An example of this message can be “PI0.05-0.3,0.001>", where in red is the type of
messages, in blue the separators of each parameter, in green the terminating character and in
black the actual PID values (PI<Proportional>-<Integrative>,<Derivative>>). To publish
the setpoints and PID messages to “client node” a standard publication was used :

$ rostopic pub -r 10 /client_messages std_msgs/String "’MMF50-B70>’"

$ rostopic pub -r 10 /client_messages std_msgs/String "’PI0.12-0.0,0.0>’"

It is visible from Figure 4.33, where only proportional control is implemented, a high
overshoot. This kind of response is not desirable for a system of this nature. So, at this
stage, it was necessary to add new parameters, like the integrative and derivative components.
The integrative intends to minimize the steady-state error, while the derivative tends to
compensate the variations. With this in mind, different values were tested for these three
variables. The main concern was to avoid the overshoot, even if the system is slower to
respond (i.e. takes more time to reach the desired setpoint). Additionally, the available
space to perform the tests was not the ideal, due to the LAR space constraints. In Figure
4.34 two examples of the system’s response with the implemented PID values are represented.

(a) (b)

Figure 4.34: Final system’s response with tuned PID parameters, where (a) and (b) represent
different experiences. X axis — seconds; Y — pulses/0.05s.

An important note regarding the images is the rate of publication, “-r”, which is set to 10
in the images. By the time these pictures were acquired, the rate was set at 10 Hz. This also
had influence in the output velocity, which was half by comparing with the system running
at 20 Hz (see equation (4.4)).
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4.7 Remote Access

To access the platform from an external computer the OpenSSH is used, which is a free
available version of the Secure Shell (SSH) protocol family of tools for remotely controlling,
or transferring files between, computers [54].

When accessing the platform, the user must be connected to its network, “Robonuc” or
“Robonuc 5G”, and then run the following command:

$ ssh -X robuter@192.168.0.123

The user will then be prompted with a password, which is “robuter”, to establish the
connection. The argument “-X” is optional since it is only used to bring the graphic envi-
ronment to the user’s PC.

With this tool it is possible to fully access CPU1’s functionalities through command line,
therefore operations like running nodes, power off the CPU and having visual feedback can
be made remotely, without having anything connected through cables to the platform.
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Chapter 5

Application Level

This chapter intends to demonstrate the versatility of the platform by implementing two
navigation methods: autonomous and manual. An application with a remote controller is
presented as well as the integration of a simple navigation algorithm based on line recognition.

5.1 Manual Navigation

5.1.1 Remote Controller

The platform can be operated manually with an Xbox remote controller (Figure 5.1). To
perform this task, first it was necessary to install the controller’s drivers [55] and then to
write a teleoperation node. To get the joystick data published over ROS, “joy node” must
be launched. This node will publish the buttons state in “/joy” topic whenever any alteration
occurs. Nevertheless, as referred in subsection 4.4.2, the velocity data must be received at a
rate of 20 Hz, therefore this default had to be modified. In order to do it, the configuration
parameter “autorepeat rate” was set to 20 (value in Hz) when launching the “joy node”,
which will guarantee the data publishing at the defined rate, even if the buttons’ status does
not change.

Figure 5.1: Remote controller’s used buttons. Table 5.1 describes the buttons’ funtions.
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Table 5.1: Xbox remote buttons description.

Button Description

X Power on remote controller by holding for 1s
L Linear velocity, forward and backward on vertical axis
R Angular velocity, left and right on horizontal axis
LB Decrease velocity rate constant in 0.05
RB Increase velocity rate constant in 0.05
LT Dead-man switch

Also, by operating the joystick and observing its response, it was detected that the axis
values near the zero position had too much sensibility. So, to avoid moving the platform
unintentionally, the “deadzone” parameter was set to 0.1, which is the amount by which
the joystick has to move before it is considered to be off-center.

The core node of the manual navigation is the “r teleop node which is both a subscriber
and publisher. It subscribes to the “/joy” topic and whenever a new message arrives it
processes the income data from the controller. Depending on each buttons’ status, a message
containing the linear and angular velocity will be published in the “/navi commands” topic.

Figure 5.1 identifies the used buttons to operate the platform, while Table 5.1 contains its
description. An important thing to mention is the addition of a dead-man switch, which fol-
lows the industry’s practices. Therefore, to validate and transfer any velocity to the platform,
LT button must be pressed, otherwise the velocity will be set to zero.

5.1.2 Overview

In order to launch all the created nodes, a launch file was written (from roslaunch tool) —
robonuc teleop.launch. The roslaunch is a tool for easily launching multiple ROS nodes
locally and remotely via SSH, as well as setting parameters on the Parameter Server [56].
Also, a file with parameters was created, in order to load them to the multiple files without
having to compile the code.

Figure 5.2 was obtained by launching “rqt graph”, which provides a GUI for visualizing
the currently active ROS nodes and topics. The image presents the information flow through-
out the nodes and complements the previous description of each one, giving an overview of
the implemented system.

Figure 5.2: Nodes involved in the platform’s teleoperation. This diagram was obtained with
rqt graph tool, where the inter-node communication, in topics, is represented.
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5.2 Autonomous Navigation

A simple vision application to perform autonomous navigation was integrated in the
platform. Again, this integration proves its capacity of enhancements and inclusion of add-
ons, which were crucial guidelines taken into consideration while designing it.

5.2.1 Camera Calibration

To ensure an important condition on the system — constant camera orientation, a servo
controlled pan and tilt unit (model PTU-D46-17 by FLIR [42]) was used. The PTU controller
has a serial port interface, RS232, to receive commands and send status information. Com-
munication was established via serial terminal in Ubuntu, with gtkterm, where three main
commands were used:

• R — Performs reset calibration, the pan and tilt axis are set to its ’0’ position;
• PP or TP — to query the absolute pan and tilt axis’ position, respectively;
• PP<position> or TP<position> — to set a desired pan and tilt axis’ position,
where <position> is the desired value.

The camera was connected and different configurations were tested to analyze the ob-
tained views. In the end, the predefined position was set to: PP0 and TP-650. Even
though different methods (i.e. simpler and inexpensive) could be used for this purpose, the
installation of this PTU is useful for future applications (e.g. searching algorithms), since it
can be easily integrated in the ROS environment by using the manufacturer’s available node
and drives.

5.2.2 Image Acquisition

To acquire image, the “r pointgrey FL3 28S4” node was used. This code, originally
developed by Marcelo Pereira [57] and David Silva [58], was integrated by including its source
code and dependencies in the ROS environment, i.e., packages and CMakeLists (see Appendix
K, where a platform’s operation guide is presented, for more details).

This node is responsible for establishing communication with the camera while configuring
some of its properties (i.e. image size) and acquiring its image. After the acquisition, the
image is then published in the topic “\RawImage” where can be subscribed by different
nodes.

5.2.3 Image Processing

Since the purpose of the current document is mainly to detail the integration of the
navigation algorithm instead of its development and experimental results, it will only the
used approach is presented.

The image processing node, “r image process” is both a subscriber and a publisher. It
subscribes to the topic “\RawImage” to receive the image for further processing (in mono8
format) and afterwards, it publishes the necessary velocity (linear and angular) in the topic
“\navi commands” to ensure the line following.

The process is triggered when an image is loaded. Subsequently, the first step is to crop
it, which will reduce the amount of information to be processed while eliminating sources of
potential error in areas where no useful information (for this algorithm purpose) is contained.
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Image is loaded with 964x724 pixels and after the resize is 700x300 pixels.

The diagram from Figure 5.3 represents the major steps of the implemented computer vi-
sion algorithm to obtain ∆θ and ∆X, which are the angular difference from the reference and
the offset of the detected line, respectively. The first used vision algorithm from the OpenCV
library was an adaptive threshold operation, which calculates the threshold for small regions
of the image, allowing to surpass the illumination variation issue. This operation alongside
with a morphological operation, erosion, are performed in the block “Image Filtering”, from
Figure 5.3.

Figure 5.3: Computer vision algorithm applied to detect line and determine ∆θ and ∆X.

In the end, linear and angular velocities are published in the “\navi commands” topic.
The linear velocity is set to constant (Lconst = 0.06) while the angular velocity is calculated
with equation (5.1). In the expression, the constants values were determined empirically, by
observing the platform’s behavior. Besides that, each one of them can be modified in the
“default.yaml” file.

ωrobot = 0.08∆θ − 0.001∆X (5.1)

The system’s response can be reduced to three simple actions:

• ωrobot < 0 — system turns right;
• ωrobot > 0 — system turns left;
• ωrobot = 0 — system moves forward, zero angular velocity.

For better comprehension, a resized raw image is presented alongside with the final pro-
cessed image, Figure 5.4.
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Figure 5.4: Raw image (a) and final output image (b) from a “turning left” situation. The
∆θ and ∆X values can be observed. The green line represents the reference for these values
and the red line one side of the line.

An important note regarding the image process is its processing rate. The 20 Hz, pre-
defined for the control loop, are not achieved while processing and acquiring image (Flea3
camera only acquired images at a maximum rate of 15 Hz). So, for that reason, the velocity
is published at a slower rate which did not represent a problem on the system’s behavior.

5.2.4 Overview

In order to launch all the created nodes for the autonomous navigation, a launch file was
created — robonuc aut navi.launch. Figure 5.5 was obtained by launching “rqt graph”
and presents the information flow throughout the nodes to give an overview of the imple-
mented autonomous navigation system.

Figure 5.5: Vision system nodes diagram obtained by rqt graph where the inter-node com-
munication, in topics, is represented.
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Chapter 6

Tests and Results

This chapter presents some platform tests and results, along with the created infra-
structures to perform them, and finally shows the integration with a robotic manipulator.

6.1 Assessment of Trajectory Execution

The purpose of the following tests is to assess the quality of open loop path execution.

6.1.1 Straight Line

To carry out the straight line tests, a ROS node was developed, “r exp results”, along-
side with a launch file for starting the experiments, “experience.launch”. For a similar
reason presented on Sub-section 5.2.3, the designed code will only be reported with a flow
diagram (Figure 6.1) and a brief explanation to obtain the final image (Figure 6.3). Since
limited vision algorithms were applied, a crucial condition to perform the tests is a light con-
trolled environment. A 6 meter line was placed on the floor with the guidance of a stretched
rope to serve as straight path reference (Figure 6.2). Afterwards, the joystick was used to ac-
tuate the platform without the angular velocity’s component, applying a same speed message
for both wheels.

Figure 6.1: Image processing algorithm to extract platform’s angle in relation to a straight
line on the floor.
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Figure 6.2: Straight line used as reference at LAR.

Despite the fact that the created infrastructure is theoretically adequate for the problem,
some sources of error were verified, such as in the initial platform alignment with the line and
the floor irregularities, which conditioned the tests reproducibility. Therefore, many tests
had to be performed to obtain some repeatability.

To start the experiences some common initial conditions had to be ensured:

• Caster wheels turned for the navigation direction;
• Platform centered with the floor’s guideline;
• Platform with the same orientation as the floor’s guideline;
• All nodes from “experience.launch” file running.

The first test was conducted at a constant speed (5 cm/s), in the forward direction (Figure
6.4). The graph was obtained with rqt plot tool, where the vertical axis represents ∆θ, in
degrees, and the horizontal axis the sample number, which is published by the “r exp node”,
at the rate of its processing, in the “experimental results” topic.

Since the tests were performed at low speed, even if the values are given with slight
variable rates it is not significant for the results evaluation, since the objective is to evaluate
the whole path. Another important note is the presented graphs starting point, which is not
relevant, since the rqt plot sometimes had to be used during a long period of time. This
explanation can be extrapolated to all the graphs in the current sub-section.
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Figure 6.3: Image processing result to measure angle.

Figure 6.4: Straight line path in forward direction with constant speed. Vertical axis in
degrees, horizontal in seconds.

Figure 6.7: Straight line path in backward direction with variable speed.Vertical axis in
degrees, horizontal in seconds.
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Figure 6.5: Straight line path in forward direction with variable speed.Vertical axis in degrees,
horizontal in seconds.

Figure 6.6: Straight line path in backward direction with constant speed.Vertical axis in
degrees, horizontal in seconds.

By the above graphs (Figures 6.4, 6.5, 6.6 and 6.7), it is possible to conclude that the
system presents a better response on the forward direction (maximum error around 4 de-
grees) than in the backward one (maximum error almost reaches the 6 degrees). This is due
to the system’s dynamics: while rotating forward, it is easier to define a movement, since
the motored wheels are nearer the robot’s front. This also validates the decision of the front
and rear of the platform, mentioned in Sub-section 4.1.1. Also, no significant differences were
observed by varying the speed during the path, showing the system’s capacity of responding
to them.

Also, a different kind of test was performed, with the caster wheels not aligned with the
navigation direction (Figure 6.8). For this purpose, only the initial behavior was plotted, and
as expected, unpredictable directions were visible (even small angle variations were observed).
This depends on different factors, such as the initial caster wheel’s position alongside with
the platform’s navigation direction and the floor irregularities
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Figure 6.8: Caster wheels not aligned in the forward (a) and backward (b) direction. Vertical
axis in degrees, horizontal in seconds.

6.1.2 Circle

To carry a circular trajectory analysis a script was designed (diagram showing major steps
is shown in Figure 6.10). These tests, alongside with the straight line tests, allows to evaluate
the platform’s response for different kinds of movement.

To obtain the images, a standard video camera was used. The camera was placed near
the ceiling, parallel to the floor and a video was recorded while the platform was rotating
with symmetric wheel speed values. To actuate the motors, the remote controller was used:
only with angular velocity by using the joystick’s “L” button, see Figure 5.1 for more details).
Figure 6.9 shows an example of two acquired images during this rotation, where the objective
is to detect and plot the centroid of the red emergency button (Matlab was used for that
purpose). The objective of this test was to evaluate the robot’s capacity of performing a
circular trajectory, rotating upon its axis.

In order to separate and numerate the frames for further Matlab processing, “FFmpeg”
tool was used. This tool is a multimedia framework, able to decode, encode, transcode, mux,
demux, stream, filter and play any video or image format [59]. It was used by installing it in
Ubuntu and running a command with the following syntax:

$ ffmpeg -ss 20 -i input.mp4 -t 35 -vf fps=24 out%d.png

In the previous command, the option “-ss” defines the starting point (in seconds), the
“-t” the duration (in seconds) and “fps” the frame rate (in Hz). So, for each experience, 840
frames were extracted from the recorded video and then processed.
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Figure 6.9: Aquired images from the top view in two different positions (a) and (b) while the
robot was rotating around its wheel center point.

Figure 6.10: Image processing algorithm to extract and plot centroid points of the emergency
button used as marker for easy detection in the images.

Figures 6.11 and 6.12 illustrate the results of a circular trajectory, where an accurate
circumference was obtained in both scenarios (rotating left and right). Some points outside
the circumference are observed in both experiences, which can be considered as outliers since
the trajectory was kept.
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Figure 6.11: Plot of a robot point (the detected object’s centroid) during rotation.. This
experience was performed with a rotation in the counter-clockwise direction. Graph in pixels.
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Figure 6.12: Plot of a robot point (the detected object’s centroid) during rotation. This
experience was performed with a rotation in the clockwise direction. Graph in pixels.

It is visible on the clockwise rotation (Figure 6.12) sense an absence of points during a
part of the experiment. This was due to light conditions (i.e. shadows were observed) that
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altered the HSV values. In spite of that absence, a circular trajectory can be observed in
both scenarios, validating the experimental results.

6.2 Velocity

For safety reasons the maximum velocity was limited to 0.4 m/s. This was implemented
on low level (CPU2) by truncating the PWM values and on the software level by sending a
maximum pulse value for each wheel of 200 (which corresponds to 0.4 m/s). Although higher
speeds can be achieved, it is necessary to perform tests in wider areas to accurately determine
the maximum velocity maximum.

Another detected problem was the encoder’s response on high velocities. Measuring the
signal in an oscilloscope was verified that, at higher velocities (such as 0.6 m/s or higher)
the signal stopped being a square wave, presenting irregular behavior. Despite of several
attempts, no plausible reason or solution was found, once the signal at lower velocities was
the expected from an incremental encoder.

6.3 Integration With Robotic Manipulator

One of the most relevant results was the capacity of integrating a robotic manipulator on
the platform’s architecture, both on the physical and hardware/software architectures. This
work was carried out by Vitor Augusto Silva [25] in the final stage of this dissertation.

The used manipulator was the Fanuc LR Mate 200iD and the assembly can be observed in
Figure 6.13. This reinforces the platform’s versatility, by including an industrial equipment
on it. At this stage, tests and code design are being carried out to integrate both works
in order to perform simple mobile manipulation demonstrations. Despite of that, in this
document that will not be presented.

6.4 Retrofitted Robonuc

The final result can be observed on Figures 6.14, 6.15 and 6.16, where different views are
presented.
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Figure 6.13: Complete platform draw. Adapted from [25]
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Figure 6.14: Complete platform after the retrofitting. Perspective view.
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Figure 6.15: Complete platform after the retrofitting. Front view.
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Figure 6.16: Complete platform after the retrofitting. Rear view.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The main goal of this project was the Robuter’s retrofitting, hence it can be said that
it was successfully achieved. Several features were enhanced (presented in Table 7.1). The
computational power was significantly increased and it is now distributed, which is commonly
used in modern robot architectures.

Also, the setup of a network within the robot (wired and wireless) offers an easy way of
integrating different kinds of equipment while allowing remote access to it.

Table 7.1: Comparison of the old Robuter with the retrofitted. Only the modified features
are represented.

Feature Old Robuter Retrofitted Robuter

Batteries capacity 2.88 kWh 3.6 kWh
Sensing Network of ultrasonic sensors Camera Unit

CPU
VME bus with 5 slots, Motorola
68020, 16 MHz

Mini-PC MSI Cubi 2 i5-7200U
Arduino Leonardo ETH
Arduino Micro

Operating System ALBATROS Linux OS with ROS running

Programming
Software package and C
application programs

C++ and Python

During the development of this project, a guideline was followed: since the project is
about retrofitting, the maximum number of components should be recovered and used, but
like every philosophy, this method had advantages and disadvantages. For instance, the
DC Drives that were repaired and used — a considerable amount of money was saved by
integrating them in the platform (see section 4.2) but the time consumed to do it can only
be justified and accepted in an academic project (in the industrial sector a new equipment
should be quickly acquired). During this stage it was difficult to manage the compromise
between time and money, which is an important skill to improve.

Still, it is important to mention, that the budget spent to retrofit the original platform
(that 20 years ago costed around 35.000e) was around 1300e. Naturally, this budget does
not include the used equipment from the previous platform (structure, motors, etc) nor
the available at the laboratory (camera and PTU). Despite of that fact, it is important to
mentioned it, because a big intervention took place and a low-cost solution (proportionally
to the platform’s original value) was achieved.
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A distributed and ROS-based architecture made the development of the solution easier
by facing each challenge individually. This is a fundamental premise since this project can
be considered the base for further developments and therefore must be prepared to integrate
them. The potential and growing of the ROS community was verified several times during
the realization of this project, where several tools and nodes could be used from it, revealing
to be a great environment for high level developers and researchers.

To accomplish this project, it was necessary to combine and develop skills from a wide
range of areas. It was carried out an engineering work where the approach was from the
design of the solution to the contact with companies in order to get the necessary material
to be assembled. This contributed significantly to the improvement of multiple skills.

7.2 Future Work

Future work may include the design and installation of an electric switchboard to place
on the top of the platform. It is a safe and proper solution to connect additional equipment
without having to disassemble anything to do it.

To prevent noise interference or a possible faulty/loose contacts in the developed circuitry,
it is suggested the design of PCB boards to replace the circuits mounted on prototype boards.
Those PCB’s can also have room for connectors, in order to increase the robustness of the
electrical installation

From the software architecture point of view, in ROS, it is strongly recommended to
evaluate the integration of the “actionlib” package on the platform. The main advantage of
its implementation is the possibility of canceling a request during its execution or get periodic
feedback about how the request is progressing [60].

To make use of the on-board computational power, the development of more sophisti-
cated navigation algorithms or the integration of past projects developed at the laboratory
is proposed. After the development is complete, the integration of these algorithms should
not be a problem due to the ROS architecture.

Another important work to be developed is the inclusion of an odometry node. This
feature alongside with a laboratory’s navigation map would allow referencing the robot to
determine its position, which could expand its use and applications.

With the created infrastructures (i.e. nodes and scripts) for obtaining experimental results
(for instance, PID tuning, straight line and circular trajectory), it is recommended to carry
out additional tests. They should be performed in location with large enough area to avoid
any kind of constrains, thus maximizing the results.

The collected data should then be analyzed so an intervention to improve the platform can
take place. In this way, it will be possible to tune the platform’s parameters more precisely.
Also, to evaluate the trajectories’ precision, it is suggested to find a method of granting more
precision in the platform’s positioning/alignment with the reference line or to use a marker
(e.g. chalk) that can print on the floor/sheet the traveled path for further analysis.

At last, the integration of a GUI is seen as a good enhancement to the platform’s func-
tionality and monitoring. This addition makes the robot more attractive and user friendly,
while providing important information and enabling a more intuitive operation.
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Appendix A

Motor and Encoder References

Figure A.1: Motor characteristics plate.

Figure A.2: Connector from each motor to the main circular connector.

Figure A.3: Encoder reference.
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Appendix B

Electrical Schematics
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Appendix C

Polycarbonate Board to Lock PCBs
in Place
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Appendix D

Plate to Hold Network Equipment
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Appendix E

First Visual Units Plate
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Appendix F

Final Visual Units Plate
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Appendix G

Full List of Components Used for
the Platform

Table G.1: Components list and identification.

Name Type Value / Ref

R1 Resistor 18 kΩ
R2 Resistor 10 kΩ
R3 Resistor 100 Ω
R4 Resistor 100 Ω
R5 Resistor 10 kΩ
R6 Resistor 22 kΩ
R7 Resistor 10 kΩ
R8 Resistor 22 kΩ
X1 Potentiometer 1 kΩ
C1 Capacitor 1 µF
C2 Capacitor 1 µF
C3 Capacitor 10 nF
C4 Capacitor 10 nF
C5 Capacitor 10 nF
C6 Capacitor 10 nF
U1A Operational Amplifier TL084CN
U1B Operational Amplifier TL084CN
R9 Resistor 120 kΩ
X2 Potentiometer 12 kΩ
R10 Resistor 2.7 kΩ
R11 Resistor 220 Ω
R12 Resistor 220 Ω
R13 Resistor 220 Ω
R14 Resistor 680 Ω
R15 Resistor 1 kΩ
LED1 Yellow LED 2.2V
LED2 Green LED 2.2V
LED3 Green LED 2.2V
LED4 Green LED 2.2V
LED5 Green LED 2.2V
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Table G.1: Components list and identification.

Name Type Value / Ref

BF1 Emergency Push Button NO
BF2 ON/OFF Switch NC
BF3 Switch (Front Bumper) NO
BF4 Switch (Rear Bumper) NO
QF1 DC Circuit Breaker C32H-DC
BAT1 Lead battery 12V
BAT2 Lead battery 12V
BAT3 Lead battery 12V
BAT4 Lead battery 12V
MOT1 Left motor 48V/300W
MOT2 Right motor 48V/300W
FAN1 Cooling Fan 12V
FAN2 Cooling Fan 12V
G1 DC/DC Converter 5V
G2 DC/DC Converter 12V
G3 DC/DC Converter 22V
DRIVE1 DC Drive for Left Motor 75V/10A
DRIVE2 DC Drive for Right Motor 75V/10A
E1 Encoder for left motor 0.045°
E2 Encoder for right motor 0.045°
K1 2 Relays Module 10A
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Appendix H

Platform’s Installation Steps
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Figure H.1: Battery installation setup.

Figure H.2: Battery charger.
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Figure H.3: Installation of the potentiometer X2.

Figure H.4: Mounted circuit breaker.
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Figure H.5: Type of prototype board used to circuit implementation (CPU2 and level shifter).

Figure H.6: PCB board for the status panel.

Figure H.7: Wires from DB25 connector identified and extended with soldered resistors.
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Figure H.8: Intervention performed to add resistance on the rear zone.

Figure H.9: Intervention performed to repair one DC drive.

Figure H.10: Type of fastening used to the developed circuitry.
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Figure H.11: Fastening of the router and switch.

Figure H.12: Type of structure used inside main case.

Figure H.13: Type of bus-bars used to make the power distribution.

98



Figure H.14: BIOS setup used on CPU1.
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Appendix I

Printed Labels

Table I.1: Printed labels to place inside the label sleeves.

Label Description Quantity

E-C1 Ethernet CPU1 1
E-C2 Ethernet CPU2 1
E-Cam Ethernet Camera 1
E-RS Ethernet Router-Switch 1
USB-up USB extension to the top of the platform 1
B-CH+ Charge batteries, positive wire from the series of batteries 1
B-CH- Charge batteries, positive wire from the series of batteries 1
B-S+ Batteries series, +48V 1
B-S- Batteries series, GND 1
BP-R Rear bumper reserved cables 1
BP-F Front bumper reserved cables 1
5V-up 5V to the top of the platform 2
12V-up 12V to the top of the platform 2
VBAT-up VBAT to the top of the platform 2
GND-up GND to the top of the platform 2
SW-S Switch supply (+5V and GND) 1
RT+ Router supply (+12V) 1
RT- Router supply (GND) 1
CPU1+ CPU1 supply (+22V) 1
CPU1- CPU1 supply (GND) 1
CPU2+ CPU2 supply (+12V) 1
CPU2- CPU2 supply (GND) 1
CPU3+ CPU3 supply (+5V) 1
CPU3- CPU3 supply (GND) 1
DCC1+ DC/DC converter to +/-12V, positive supply (VBAT) 2
DCC1- DC/DC converter to +/-12V, negative supply (GND) 2
DCC2+ DC/DC converter to +5V, positive supply (VBAT) 2
DCC2- DC/DC converter to +5V, negative supply (GND) 2
DCC3+ DC/DC converter to +22V, positive supply (VBAT) 2
DCC3- DC/DC converter to +22V, negative supply (GND) 2
DRV1+ DC Drive1 (Right motor), positive supply (VBAT) 2
DRV1- DC Drive1 (Right motor), negative supply (GND) 2
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Table I.1: Printed labels to place inside the label sleeves.

Label Description Quantity

DRV2+ DC Drive1 (Left motor), positive supply (VBAT) 2
DRV2- DC Drive1 (Left motor), negative supply (GND) 2
22V-EN DC/DC converter supply (VBAT), relay contact (to enable/disable) 2
BK+ Brakes supply (VBAT), relay contact (to break/unbreak) 2
BK- Brakes supply (GND) 1
F1+ Fan 1 supply (+12V) 1
F1- Fan 1 supply (GND) 1
F2+ Fan 2 supply (+12V) 1
F2- Fan 2 supply (GND) 1
E1-R Encoder 1, Right encoder (driver’s perspective) 1
E2-L Encoder 2, Lef Encoder (driver’s perspective) 1
E-S+ Encoders supply (+5V) 1
E-S- Encoders supply (GND) 1
M1V+ Motor 1 (Right) supply (0-48V) 1
M1V- Motor 1 (Right) supply (GND) 1
M2V+ Motor 2 (Left) supply (0-48V) 1
M2V- Motor 1 (Left) supply (GND) 1
PWM1 PWM signal from the controller to the drive 1, REF+ 1
PWM2 PWM signal from the controller to the drive 2, REF+ 1
VBAT Battery level. Supply for motor drives, DC/DC converters 6
+12V Supply for Arduino and switch 6
-12V Voltage reference for level shifter circuit 2
+5V Encoders supply 6
GND Ground 10
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Appendix J

CPU1 Install Commands

The following guide was elaborate while configuring CPU1, so if is necessary to format it,
this guide can be used as starting point to reinstall everything.

WIFI and Bluetooth install

$ sudo apt update

$ sudo apt install linux-generic-hwe-16.04

ROS

$ sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu $(

lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list’

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --

recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116

$ sudo apt-get update

$ sudo apt-get install ros-kinetic-desktop-full

$ sudo rosdep init

$ rosdep update

$ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

$ sudo apt-get install python-rosinstall

Arduino Related

To instal the Arduino IDE, first download the version from https://www.arduino.cc/

en/Main/Software and run the install.sh file. After that, an error comes up: “xdg-icon-
resource: icon name ’cc.arduino.arduinoide’ does not have a proper vendor prefix ”.

Solution (from https://github.com/arduino/Arduino/issues/6116) says that the re-
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source name in the “install.sh” file is wrong. in that file, edit the field “RESOURCE NAME
= cc.arduino.arduinoide” to “RESOURCE NAME = arduino-arduinoide”. After that, it is
only necessary to run the “install.sh” normally.

$ sudo usermod -a -G dialout robuter

Arduino Leonardo requires a specific command to be detected. Solution found at:
http://starter-kit.nettigo.eu/2015/serial-port-busy-for-avrdude-on-ubuntu-with-arduino-
leonardo-eth/

$ echo ’ATTRS{idVendor}=="2a03", ENV{ID_MM_DEVICE_IGNORE}="1"’ | sudo

tee /etc/udev/rules.d/77-arduino.rules

Used libraries for the Arduino (install from the Arduino IDE)
Ethernet2, TimerOne, MsTimer2

Joystick (http://wiki.ros.org/joy/Tutorials/ConfiguringALinuxJoystick)

$ sudo apt-get install ros-kinetic-joy

Others

$ sudo apt-get install doxygen

$ sudo apt-get install opencv-doc

PTU unit
https://github.com/ros-drivers/flir_ptu https://github.com/wjwwood/serial

FLEA Camera
https://github.com/ros-drivers/pointgrey_camera_driver
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Appendix K

Robonuc’s Operation Guide

This guide intends to present an overview of the r platform package as well as the
necessary commands/requisites to operate the platform.

Packages Trees

/

CMakeLists.txt

package.xml

launch

experience launch

robonuc teleop.launch

robonuc aut navi.launch

msg

navi.msg

params

default.yaml

joy params.yaml

src

decompose vel.cpp

r teleop.cpp

r pointgrey fl3-ge-28s4-c driver.cpp

r exp results.cpp

.

Most of the the designed code is contained on the r platform package, where the cpp
files have the same name as the nodes. The remaining code, TCP/IP client, is contained in
the comm tcp-client package. Its tree is presented below:

/

CMakeLists.txt

package.xml

msg

pid.msg

src

client node.cpp

server node.cpp

.
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Launch the system

• Power on the system — QF1 ON;
• Ensure that the ON/OFF switch on the robot’s rear status panel is in the ON position
(up);

• Verify that the 4 green LEDs are ON (BATTERIES O.K., +5V, +/- 12V AND +48V);
• Connect to the Robonuc’s network (with an external PC) — Robonuc or
Robonuc 5G;

• Access CPU1 via SSH bridge;

When this point is achieved, the user must have an available remote terminal from CPU1
on its machine. The user can now proceed in three different ways:

• Manual operation with joystick — robonuc teleop.launch;
• Autonomous Navigation — robonuc aut navi.launch;
• Straight line experimental results — experiment.launch.

Each one of these launch files can be executed from its directory simply by running:
“roslaunch launchfilename.launch”.

Recommendation for the operator: before executing any node, press the emergency
button and verify that every node is running properly by publishing the expected data.
After that, proceed with the selected application.

IP table

Unit IP

CPU1 192.168.0.123
CPU2 192.168.0.10
Flea3 Camera 192.168.0.43

Fanuc Manipulator 192.168.0.231
Arduino ETH 2 192.168.0.50

Battery Charging

In order to charge the platform, the appropriate charger must be used. Before plug
the connector on the platform’s rear, the circuit breaker, QF1, must be OFF. Also, the
connector as a proper position, the user should look for the “UP” and “DOWN” inscriptions
on it, which should be respected when plugging the cable.

CPU2 and CPU3 Programming

To upload new code for CPU2 and CPU3, two USB extensions are available inside
Robonuc’s main case. For CPU2, the cable is labeled with “USB1” and for CPU3 with
“USB2”. Note that while uploading code for the Arduinos, the EMERGENCY BUTTON
MUST BE PRESSED, otherwise, fluctuations in the PWM output pins are observed,
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which will actuate the motors while they are braked: harming the system and moving the
platform during the upload process.

Troubleshooting

If the message “There is an image consistency issue with this image” is prompted while
trying to acquire image, proceed in the following way:

• Increase the package delay on the Flycap API sub-menu “Custom Video Modes” or by
accessing the camera registers through its library (FlyCap2.h);

• Decrease the package size using the same method;
• Test the connection with a higher category Ethernet cable.

The motors are rotating but the platform is not moving: insert the wheel’s clutch.
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