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Abstract

In this paper, we present a new 3D face recognition approach. Full automa-
tion is provided through the use of advanced multi-stage alignment algo-
rithms, resilience to facial expressions by employing a deformable model
framework, and invariance to 3D capture devices through suitable prepro-
cessing steps. In addition, scalability in both time and space is achieved by
converting 3D facial scans into compact wavelet metadata. We present results
on the largest known, and now publicly-available, Face Recognition Grand
Challenge 3D facial database consisting of several thousand scans. To the
best of our knowledge, our approach has achieved the highest accuracy on
this dataset.

1 Introduction
Among the many biometric identification modalities proposed for verification and identi-
fication purposes, face recognition is high in the list of subject preference, mainly because
of its non-intrusive nature. However, from the operator’s point of view, face recognition
faces some significant challenges that hampers its widespread adoption. Accuracy is the
most important of these challenges. Current 2D face recognition systems can be con-
founded by differences in pose, lighting, expressions and other characteristics that can
vary between captures of a human face. This issue becomes more significant when the
subject has incentives not to be recognized (i.e., non-cooperative subjects).

It is now widely accepted that in order to address the challenge of accuracy, different
capture modalities (such as 3D or infrared) and/or multiple instances of subjects (in the
form of multiple still captures or video) must be employed [5]. However, the introduc-
tion of new capture modalities brings new challenges for a field-deployable system. The
challenges of 3D face recognition, which concern the current paper, are as follows: 1) Ac-
curacy Gain: A significant accuracy gain compared to 2D face recognition systems must
result to justify the introduction of a 3D system, either for sole use or in fusion with other
modalities. 2) Efficiency: 3D capture creates larger data files per subject which implies
significant storage requirements and slower processing. The conversion of raw 3D data
to efficient meta-data must thus be addressed. 3) Automation: A field-deployable sys-
tem must be able to function fully automatically. It is therefore not acceptable to assume
user intervention for locating key landmarks in a 3D facial scan. 4) Capture Devices: 3D
capture devices were primarily developed for medical and other low-volume applications
and suffer from a number of drawbacks when applied to face recognition. These include
artifacts, small depth of field, long acquisition time, multiple types of output, and high
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price. 5) Testing Databases: There is a lack of large and widely accepted databases for
objectively testing the performance of 3D face recognition systems.

In this paper, we address the major challenges of a 3D field-deployable face recogni-
tion system. We have developed a fully automatic system which uses a composite align-
ment algorithm to register 3D facial scans with a 3D facial model, thus achieving complete
pose-invariance. Our system employs a deformable model framework to fit the 3D facial
model to the aligned 3D facial scans, and in so doing measures the difference between the
facial scan and the model in a way that achieves a high degree of expression invariance
and thus high accuracy. The 3D differences (the deformed facial model) are converted to
a 2D geometry image and then transformed to the wavelet domain; it has been observed
that a small portion of the wavelet data is sufficient to accurately describe a 3D facial
scan, thus achieving the efficiency goal. Some of the issues of 3D capture devices were
addressed; specifically, artifacts were handled by median cut and smoothing filters.

Our contributions are the following: 1) We develop a multistage hybrid mesh align-
ment algorithm to initialize the model fitting process; 2) develop a parameterized, an-
notated, anthropometrically-based, subdivision deformable face model which is used for
identifying the facial features from the raw 3D data; 3) introduce a novel distance metric
based on the wavelet representation of the geometry image and normal map corresponding
to the subdivided and deformed face model. The result of these contributions is a system
for 3D face recognition that achieves the highest accuracy on the FRGC v2 database [19].

This paper is organized as follows: Section 2 reviews related work, while Section 3
describes the methods utilized by our approach. Section 4 presents a performance eval-
uation using extensive and publicly available databases, while Section 5 summarizes our
approach.

2 Related Work
Despite the introduction of commercial grade 2D face recognition systems, their perfor-
mance remains unreliable. Extensive experiments conducted using the FERET dataset
[20] and during the Face Recognition Vendor Test (FRVT) 2002 study indicate that the
success rate is not sufficient for critical applications. It appears that 2D face recognition
techniques have exhausted their potential as they stumble on inherent problems of their
modality (mainly pose and illumination differences).

Given the shortcomings of the pure 2D approaches, a number of 3D and 3D+2D
multimodal approaches have recently been proposed. Bronstein et al. [2] use a canonical-
forms approach to represent 3D faces. They present promising results on a proprietary
database. Blanz and Vetter [4] describe an approach for 2D face recognition using a 3D
morphable model. The results presented are also promising, but they also use a proprietary
database. An excellent recent survey of the field is given by Bowyer et al. [5]. Due
to the lack of available 3D databases, the majority of these approaches have not been
extensively tested. To address this issue, NIST introduced the Face Recognition Grand
Challenge (FRGC) and FRVT 2006 [1], and made two multimodal databases publicly
available. FRGC v2 [19] includes over 4000 scans with facial expressions. In this section,
we present here a small sample of relevant work that is not meant to be exhaustive, and
is targeted on the approaches that utilize this database. The performance metrics used for
evaluation are described in Section 4.
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On the extensive FRGC v2 database, Chang et al. [7, 6] examined the effects of facial
expressions using two different 3D recognition algorithms. They reported a 92% rank-one
recognition rate. Husken et al. [11] presented a multimodal approach that uses hierarchi-
cal graph matching (HGM). They extended their HGM approach from 2D to 3D but the
reported 3D performance is lower than the 2D equivalent. Their fusion, however, offers
competitive results, 96.8% verification rate at 0.001 false acceptance rate (FAR), com-
pared to 86.9% for the 3D only. Maurer et al. [18] also presented a multimodal approach
tested on the FRGC v2 database and reported a 87% verification rate at 0.01 FAR.

3 Methods
The main idea behind our approach is to annotate facial data using a deformed facial
model. The deformed model captures the details of an individual’s face and represents
this 3D geometry information in an efficient 2D structure by utilizing the model’s param-
eterization. This structure is analyzed in the wavelet domain and the spectral coefficients
define the metadata that are used for comparison among different subjects. The physical
(geometrical) modeling of the human face allows greater flexibility, better understanding
of the face recognition issues, and requires minimum training compared to a statistical
modeling approach.

Our face recognition procedure can be divided in two phases, enrollment and authen-
tication. Enrollment: Raw data are converted to metadata and stored in the database
as follows: Acquisition: Raw data are acquired from the sensor and converted to a 3D
polygonal representation using sensor-dependent preprocessing. Alignment: The data are
aligned into a unified coordinate system using a scheme that combines three different
alignment algorithms. Deformable Model Fitting: An Annotated Face Model (AFM)
is fitted to the data. Geometry Image Analysis: Geometry and normal map images are
derived from the fitted model and wavelet analysis is applied to extract a reduced coeffi-
cient set as metadata. Authentication: Metadata retrieved from the database are directly
compared using a distance metric.

Data Preprocessing: The purpose of preprocessing is to minimize the impact of the
quality of input data. The preprocessing consists of the following filters, executed in
the given order: 1) Median Cut: This filter is applied to remove spikes from the data.
Spikes are more common in laser range scanners, therefore stronger filtering is needed
in this case. 2) Hole Filling: Laser scanners usually produce holes in certain areas (e.g.,
eyes, eyebrows) thus a hole filling procedure is applied. 3) Subsampling: The deformable
model fitting effectively resamples the data, making the method insensitive to data reso-
lution. Therefore, the resolution is decreased to gain efficiency to a level that does not
sacrifice accuracy.

Annotated Face Model: Our approach utilizes an AFM, which needs to be con-
structed only once using conventional graphics modeling techniques. This model is an
integral part of our approach since it is used in alignment, is deformed in the fitting stage,
and its properties allow the creation of the metadata. Based on Farkas’ work [9] we en-
sured that the model is anthropometrically correct. Using information from facial physi-
ology, we have annotated the AFM into different areas. Figure 1(a) depicts our annotation
with each area denoted by a different shade. Finally, we applied a continuous global two
dimensional parameterization on the model, as depicted in Figure 1(b). The injective
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(a) (b) (c) (d) (e)

Figure 1: (a) AFM Parameterization. (b) Annotated facial areas and (c) Fitting progress:
AFM after 8, (d) 32, and (e) 64 iterations.

property of the specific parameterization allows us to map all vertices of the model’s sur-
face from R3 to R2 and vice versa. Therefore we can define the model both in R3 as
polygonal data and in R2 as a geometry image [10, 13, 14]. A geometry image is a regu-
larly sampled 2D image that has three channels, each one encoding geometric information
(X, Y and Z components of a vertex in R3). Since neighboring information is retained in
the geometry image, each element (geometry pixel) can form a triangle in R3 with two of
its neighboring elements, thus allowing an easy transition back to the polygonal represen-
tation.

Alignment: Alignment is a key part of any geometric approach. In fact, a misalign-
ment error cannot be rectified in the later steps of this or other similar approaches. To
this end, we present a novel multistage alignment method that offers robust and accurate
alignment even in the presence of facial expressions.

Specifically, we align each new raw dataset with the AFM before the fitting process
starts. The alignment computes a rigid transformation that includes rotation and trans-
lation. The multistage alignment method consists of three algorithmic steps. Each step
uses as input the output of the previous one; early steps offer greater resilience to local
minimums while later steps offer greater alignment accuracy:

Spin Images: The purpose of the first step is to establish a plausible initial corre-
spondence between the model and the data. If we do not expect arbitrary rotations and
translations in the database this step can be omitted. We utilize the spin image algorithm
presented by Johnson [12].

Iterative Closest Point (ICP): The main step of our alignment pipeline uses the ICP
algorithm [3], extended in a number of ways. By exploiting the model’s annotation we
assign per-area weights, and compute a weighted least squares solution for the rigid trans-
formation. Additionally, pairs containing points on surface boundaries are rejected [24].
This ensures that no residual error is introduced into ICP’s metric from the non overlap-
ping parts of two surfaces. Finally, if the obtained transformation is not satisfactory we
have an option of running the trimmed ICP algorithm [8].

Simulated Annealing on Z-Buffers: This is a refinement step that ensures that the
model and data are correctly aligned. We apply the global optimization technique known
as Enhanced Simulated Annealing [22] on the difference of the Z-buffers of the model
and the data.

Deformable Model Fitting: The AFM is fitted to the data in order to capture the
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Figure 2: (a) Geometry and (b) normal map images of a subject’s upper face area. The
X, Y and Z vertex components mapped to blue, green and red color components for
visualization.

geometric information of an individual’s face. We utilize the deformable model fitting
framework. The analytical formulation is given by: Mq

d2q
dt2 +Dq

dq
dt +Kqq = fq, where Mq

is the mass matrix, Dq is the damping matrix, Kq is the stiffness matrix, and fq are the
external forces. The external forces drive the deformation, the stiffness matrix controls the
resistance to the deformation and the mass and damping matrix control the velocity and
acceleration of the vertices respectively. This equation is solved iteratively using a finite
element method (FEM) approximation. An example of the fitting progress for subsequent
iterations is presented in Figure 1(c).

Mandal et al. [16, 17] combined the deformable model idea with subdivision sur-
faces. Compared to parametric surfaces, subdivision surfaces offer increased flexibility
and computational efficiency. We constructed a subdivision surface based on our AFM
using Loop’s scheme [15]. The analytical formulation remains unchanged whereas the
FEM implementation is integrated with the subdivision surface computation. This allows
us to solve the equation at a specified resolution (limit surface) and simultaneously apply
the computed forces back in the low resolution model (control mesh). For an AFM with n
vertices and m triangles we have 3n degrees of freedom in the control mesh and 4lm finite
elements (where l is the level of the limit surface).

During fitting, the polygonal data of an individual’s face act as attractors for the ver-
tices of the subdivision surface, thus driving the deformation. This involves several near-
est neighbor searches at each iteration. For efficiency reasons, we employ an octree, thus
lowering the average cost of a search from O(k) to O(logk), where k is the number of
triangles of the facial data.

Geometry Image Analysis: The deformed model that is the output of the fitting
process is converted to a geometry image, as depicted in Figure 2(a). The geometry
image regularly samples the deformed model’s surface and encodes this information on
a 2D grid. The grid resolution is correlated with the resolution of the AFM’s subdivision
surface. From the geometry image a normal map image is constructed, as depicted in
Figure 2(b).

We divide the geometry and normal map images into their three components (X,Y
and Z) and treat them as separate images. Each component is analyzed using a trans-
form and the coefficients are stored. We use two different transforms thus obtaining two
sets of wavelet coefficients: the Haar and the pyramid, with the latter being significantly
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Figure 3: Haar wavelet analysis for the normal map image from Figure 2 (displayed with
contrast stretch for better visibility on paper): (a) zero level, (b) first level, (c) second
level, (d) third level.

more computationally expensive. We apply the Haar transform on the combined nor-
mal/geometry images and the pyramid transform on the geometry images.

Haar Transform: The first transform is a decimated wavelet decomposition using ten-
sor products of the full Walsh wavelet packet system [23] (Figure 3). The 1D Walsh
wavelet packet system is constructed by repeated application of the Haar filter bank. Both
channels output the result of convolving a 1D discrete signal with a Haar filter and then
subsampling by a factor of two. The low–pass and high–pass Haar filters are g and h,
respectively: g = 1√

2
[1 1] and h = 1√

2
[1 − 1]. For images, we use tensor products of

these 1D filters, resulting in a four channel filter bank with channels LL, LH, HL, and
HH (corresponding to the filters gt ∗ g,gt ∗ h,ht ∗ g and ht ∗ h respectively). Channel LL
(low–pass) captures the local averages of the image, and channels LH, HL and HH (high–
pass) capture horizontal, vertical and diagonal edges, respectively. We recursively apply
this decomposition to each of the four output channels to construct the full Walsh wavelet
packet tree decomposition. We store a subset of the coefficients produced by the decom-
position for efficiency reasons. The same coefficients are stored for every image which
allows two wavelet decompositions to be compared directly without reconstructing the
images.

Pyramid Transform: The second transform decomposes the images using the complex
version of the steerable pyramid transform [21], a linear multi-scaled, multi-orientation
image decomposition algorithm. The resultant wavelet representation is translation in-
variant and rotation-invariant. This feature is desirable to address possible positional and
rotational displacements caused by facial expressions. Our algorithm applies a 3-scale,
10-orientation complex steerable pyramid transform to decompose each channel of the de-
formation image. Only the low-pass orientation subbands at the furthest scale are stored.
This enables us to compare two images directly and robustly using multiple orientations.

Distance Metrics: In the authentication phase, the comparison between two subjects
(gallery and probe), is performed in the wavelet domain using the metadata. We utilize
different distance metrics for the two wavelet types:

Haar Metric: For the Haar wavelet coefficients we employ a simple L1 metric on
each component independently. For example, the X component is computed as follows:
Scorex(P,G) = ∑i, j |Px[i, j]−Gx[i, j]| where P and G are the probe and gallery images,
respectively. The total distance score is the sum of the scores of all components: d(P,G) =
Scorex(P,G)+Scorey(P,G)+Scorez(P,G)

Pyramid Metric: For the pyramid coefficients we employ the complex wavelet struc-
tural similarity index algorithm [25]. For the X component, a window of size 3 traverses
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Figure 4: System performance using various wavelet transforms (Haar and Pyramid) as
well as their fusion on the FRGC v2 database. (a) ROC I, (b) ROC II and (c) ROC III.

the image one step at a time. In each step, we extract all wavelet coefficients, resulting in
two sets of coefficients pw,i = {pw,i|i = 1, ...,N} and gw,i = {gw,i|i = 1, ...,N}, drawn from
the probe image and the gallery image, respectively. The distance metric is computed as
follows:

S̃(pw,gw) = 1−
(

2∑
N
i=1 |pw,i||gw,i|+K

∑
N
i=1 |pw,i|2 +∑

N
i=1 |gw,i|2 +K

)
·

(
2|∑N

i=1 pw,ig∗w,i|+K

2∑
N
i=1 |pw,ig∗w,i|+K

)r

where w is the current step of the window, N is the number of coefficients in the window
and r is an experimentally determined exponent. K is a small positive value which is
used to make the result numerically stable. The first component measures the equiv-
alence of the two coefficient sets while the second reflects the consistency of phase
changes. If pw,i = gw,i for all i’s, the distance is 0. The weighted sum of the local
scores from all windows provides the distance score in the X component: Scorex(P,G) =
∑

N
w=1 (bw · S̃(pw,gw)) where bw is a predefined weight depending on which subband the

local window lies on. The weight assigned to a particular subband is determined by its
descriptive power and performance. Similarly, we compute the scores for the Y and Z
components and, to compute the total distance, we sum the scores as with Haar.
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ROC I ROC II ROC III
Fusion 97.3% 97.2% 97.0%
Haar 97.1% 96.8% 96.7%
Pyramid 95.2% 94.7% 94.1%

Table 1: Verification rates of our system at 0.001 FAR using various transforms on the
FRGC v2 database.

4 Performance Evaluation
We perform our tests on the the FRGC v2 database that contains 4007 3D scans of 466
persons. The data were acquired using a Minolta 910 laser scanner that produces range
images with a resolution of 640x480. The scans contain various facial expressions (e.g.,
happiness, surprise). Subjects are 57% male and 43% female, with the following age
distribution: 65% 18-22 years old, 18% 23-27 and 17% 28 years or older.

The results are summarized using receiver operating characteristic (ROC) curves. For
the FRGC v2 database, in order to produce comparable results, we utilize the three masks
provided by FRGC v2. These masks, referred to as ROC I, ROC II, and ROC III, are
defined over the square dissimilarity matrix (4007x4007), and are of increasing difficulty
(the difficulty reflects the time elapsed between the probe and gallery acquisition ses-
sions [19]).

Transforms: The first experiment is performed on the FRGC v2 database and its pur-
pose is to evaluate the two wavelet transforms that we employ, as well as to provide a
reference score for our system using publicly available databases and methods. In this
experiment, our system using a fusion of the two transforms yielded a verification rate
of 97.3% (for ROC I at 0.001 FAR), while separately for the Haar transform a rate of
97.1% and for the pyramid transform a rate of 95.2% were achieved (Figure 4). For the
fusion, we experimentally found that the weighted sum is the most efficient yet simplest
rule. Even though the pyramid transform is computationally more expensive it is outper-
formed by the simpler Haar wavelet transform (this can be attributed to the fact that in the
current implementation, the pyramid transform utilizes only the geometry images and not
the normal map images). The fusion of the two transforms offers more descriptive power,
yielding higher scores, especially in the more difficult experiments of ROC II and ROC
III (Table 1). To the best of our knowledge, this is the highest performance reported on
the FRGC v2 database for the 3D modality. The computational time needed to generate
a geometry image from the data is 15 seconds on average with unoptimized code. The
time needed to compute the L1 distance between a probe and a gallery metadata allows
for more than 4000 datasets to be processed per second. The computational time was
measured on an Opteron 2.4 GHz CPU.

Facial Expressions: The second experiment is focused on the effect of facial ex-
pressions on performance. The FRGC v2 database provides a categorization of the ex-
pressions that each individual assumes, allowing an easy division on two subsets: one
containing only datasets where facial expressions are present, the other containing only
datasets with neutral expressions.
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ROC I ROC II ROC III
Full Database 97.3% 97.2% 97.0%
Non-neutral Expressions 95.6% 95.6% 95.6%
Neutral Expressions 99.0% 98.7% 98.5%

Table 2: Performance of our system at 0.001 FAR on the full FRGC v2 database, and on
subsets containing only non-neutral facial expressions and only neutral expressions.

The performance on the two subsets is measured and compared to the performance
on the full database utilizing a verification scenario (Table 2). The verification rate is not
decreased by a significant amount when expressions are present. The average decrease
of 1.56% of the verification rate at 0.001 FAR between the full database and the facial
expressions-only subset, is very modest (compared to other systems) given the fact that
this subset contains the most challenging datasets from the whole database.

5 Conclusion
We presented algorithmic solutions to most of the challenges faced by 3D facial recogni-
tion systems. By utilizing a deformable model we map the 3D geometry information onto
a 2D regular grid, thus combining the descriptiveness of 3D data with the computational
efficiency of 2D data. A multistage fully automatic alignment algorithm and the advanced
wavelet analysis resulted in robust state-of-the-art performance on the publicly available
FRGC v2 database.
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