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Abstract— We describe theoretical and experimental results
for the extrinsic calibration of sensor platform consisting of a
camera and a 2D laser range finder. The calibration is based
on observing a planar checkerboard pattern and solving for
constraints between the “views” of a planar checkerboard
calibration pattern from a camera and laser range finder.
we give a direct solution that minimizes an algebraic error
from this constraint, and subsequent nonlinear refinement
minimizes a re-projection error. To our knowledge, this is the
first published calibration tool for this problem. Additionally
we show how this constraint can reduce the variance in
estimating intrinsic camera parameters.

I. INTRODUCTION

In the recent years, two dimensional laser ranger finders
mounted on mobile robots have become very common for
various robot navigation tasks. They provide in real time
accurate range measurements in large angular fields at a
fixed height above the ground plane, and enable robots to
perform more confidently a wide range of tasks by fusing
image data from the camera mounted on robots [12], [1],
[5], [9]. In order to effectively use the data from the camera
and laser range finder, it is important to know their relative
position and orientation from each other, which affects the
geometric interpretation of its measurements.

The calibration of each of these geometric sensors can
be decomposed into internal calibration parameters and
external parameters. The external calibration parameters
are the position and orientation of the sensor relative to
some fiducial coordinate system. The internal parameters,
such as the calibration matrix of a camera, affect how the
sensor samples the scene. This work assumes the internal
sensor calibration is known, and focuses on the external
calibration. Here we propose a method for extrinsic calibra-
tion of a camera and laser range finder, that is, identifying
the rigid transformation from the camera coordinate system
to the laser coordinate system. The method employs a
planar calibration pattern viewed simultaneously by the
camera and laser range finder. For each different pose
of the planar pattern, the method constrains the extrinsic
parameters by registering the laser scanline on the planar
pattern with the estimated pattern plane from the camera
image.

It is important also to differentiate this work from the
problems that at first may appear similar. There has been a
great deal of work on calibration for laser scanners, which

Fig. 1. A schematic of the calibration problem considered here. A
planar calibration pattern is posed in the both views of the camera
and the laser range finder.The goal of this paper is to study a
calibration method that finds the rotation Φ and the translation ∆

which transform points in the camera coordinate system to points
in the laser coordinate system

are the parts of active vision systems that project a point
or a stripe which is then viewed by the camera. Finding
the geometric relationship between the laser scanner and
the camera is vital to creating metric depth estimates to
build textured 3D models, for example [3]. Calibration
methods exist for this problem, which make use of the
visible position of the laser point or stripe [7]. In this paper
we consider an extrinsic calibration of a camera with a
laser range finder where the laser points are invisible to the
camera. This calibration applies to a very common sensor
package for a large number of autonomous robots, such
as the iRobot series, and there is no calibration method
published to date.

Even though there has been increasing use of 3D laser
range finders, they are still lack of portability and flexibil-
ity. Furthermore, the time cost of 3D data acquisition is
also very expensive, since the systems require time to scan
the laser through different directions in the environment.
For many robotic tasks, such as robot navigation, it may
be more important to scan over a smaller area at a higher
frequency, which allows autonomous robots sense the en-
vironment in real time and to act on the basis of acquired
data. That’s why we focus on the pose estimation of camera
w.r.t 2D laser range finder, which is cost-effective while
provides flexibility and accuracy for range data acquisition.



The remainder of this paper is organized as follows. The
next section introduces the basic equations associated with
the extrinsic calibration, formalizes the problem we are
going to solve and derives the geometric constraints on
the rigid transformation from a camera coordinate system
to the laser coordinate system. Section III gives methods
for solving for the extrinsic calibration, first showing a
direct solution, followed by nonlinear iterative optimization
methods which use the results from previous steps as
initial conditions. A global optimization is also proposed
to refine both camera intrinsic and extrinsic parameters.
We conclude by giving experimental results showing the
success of the techniques presented.

II. BASIC EQUATIONS

A camera can be described by the usual pinhole model.
A projection from the world coordinates P = [X ,Y,Z]>

to the image coordinates p = [u , v ]> can be represented
as follows [6]:

p ∼ K(RP + t) (1)

where K is the camera intrinsic matrix, R a 3 × 3
orthonormal matrix representing the camera’s orientation,
and t a 3-vector representing its position. In real cases,
the camera can exhibit significant lens distortion, which
can be modelled as a 5-vector parameter consisting of
radial and tangent distortion coefficients. We assume in the
remainder of this paper that the camera has no significant
lens distortion, or that the images have already been warped
to eliminate it.

The laser range finder reports laser readings which are
distance measurements to the points on a plane parallel
to the fl oor. A laser coordinate system is defined with an
origin at the laser range finder, and the laser scan plane
is the plane Y = 0. Suppose a point P in the camera
coordinate system is located at a point P f in the laser
coordinate system, and the rigid transformation from the
camera coordinate system to laser coordinate system can
be described by :

P f = ΦP + ∆ (2)

where Φ is a 3x3 orthonormal matrix representing the
camera’s orientation relative to the laser ranger finder and
∆ is an 3-vector corresponding to its relative position.

Our goal in this paper is to develop ways to solve for
these extrinsic camera parameters Φ and ∆ which define
the position and orientation of the camera with respect to
the laser coordinate system.

A. Geometric Constraints

Our proposed calibration method is to place in front of
our system a planar pattern, say a checkerboard, which is
visible to both the camera and the laser ranger finder. Fig-
ure 1 provides a general setup of this calibration method.
For simplicity, when we talk about a calibration plane, we
refer to the plane surface defined by the checkerboard. And
we use laser points to refer to the laser measurements on
the checkerboard, which is a portion of the whole laser
reading.

Without loss of generality, we assume that the calibration
plane is the plane Z = 0 in the world coordinate system.In
the camera coordinate system, the calibration plane can be
parameterized by 3-vector N such that N is parallel to the
normal of the calibration plane, and its magnitude, ‖N‖,
equals the distance from camera to the calibration plane.
Using (1) we can derive that

N = −R3(R
>

3
· t) (3)

where R3 is the 3rd column of rotation matrix R, and t
the center of the camera, in world coordinates.

Since the laser points must lie on the calibration plane
estimated from the camera, we get a geometric constraint
on the rigid transformation between the camera coordinate
system and the laser coordinate system. Given a laser
point P f in the laser coordinate system, from (2), we can
determine its coordinate P in the camera reference frame as
P = Φ−1(P f −∆). Since the point P is on the calibration
plane defined by N , it satisfies that N · P = ‖N‖2. Then
we have

N · Φ−1(P f − ∆) = ‖N‖2 (4)

For a measured calibration plane parameters N and laser
point P f , this gives a constraint on Φ and ∆.

III. SOLVING EXTRINSIC CALIBRATION

This section provides the details how to effectively solve
the extrinsic calibration problem for the system of a camera
and laser range finder. We will first propose a linear
solution, followed by a nonlinear optimization with outlier
detection. Finally, a global optimization is performed to re-
fine the extrinsic camera parameters. This can be extended
to refine the intrinsic parameters more accurately than the
standard singe camera calibration method.

A. Linear Solution

First, we assume the camera is calibrated [2] and what
remains is to determine the calibration plane parameters by
solving the pose of the camera with respect to the checker-
board, which is discussed in [13]. Once the camera’s
extrinsic parameters (R,t) are determined with respect to
the checkerboard, the calibration plane parameter N can
be obtained by (3).

Since all laser points are on the plane Y=0 in the laser
coordinate system, a laser point P f can be represented by
P̂ f = [X ,Z,1]>. Then we rewrite Equation (4) as:

N · HP̂ f = ‖N‖2 (5)

where H = Φ−1
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− ∆



, a 3x3 transform

matrix from the laser coordinate system to the camera coor-
dinate system. For each pose of the calibration plane. we
have several linear equations in the unknown parameters
of H , which we solve with standard linear least squares.



Once H is determined, we can estimate camera relative
orientation and position as follows:

Φ = [H1,−H1 × H2, H2]
>

∆ = −[H1,−H1 × H2, H2]
>H3

where Hi is the ith column of matrix H .
This computed matrix Φ may not meet the properties of

a rotation matrix. A rotation matrix Φ̂ can be calculated
to approximate the computed matrix Φ by minimizing
Frobenius norm of the difference Φ̂−Φ, subject to Φ̂Φ̂> =
I . The details about this matrix computation can be referred
in [4]. This concludes the direct estimation of Φ̂ and ∆,
the relative pose of the camera with respect to the laser
range finder.

B. Nonlinear Optimization

The above solution is obtained by minimizing an alge-
braic distance which is not directly related to our measure-
ments. We can refine it by a nonlinear minimization on the
Euclidean distances from laser points to the checkerboard
planes, which is more physically meaningful.

Equation (4) gives the Euclidean distance between a
laser point and the calibration plane. Given different poses
of the checkerboard, we define an error function f(Φ, ∆)
as the sum of these distances for every laser point j in very
data set i:

∑

i

∑

j

(
Ni

‖Ni‖
· (Φ−1(P f

ij − ∆)) − ‖Ni‖)
2 (6)

where Ni defines the checkerboard plane in the ith pose.
A rotation Φ is parameterized by the Rodrigues formula as
a 3-vector parameter, which is in the direction the rotation
axis and has a magnitude equal to the rotation angle.
We minimize (6) as a nonlinear optimization problem by
using the Levenberg-Marquardt method [8], [10], [11]. This
requires an initial guess of Φ and ∆, which is obtained
using the method described in the previous section.

Both camera and laser range finder have some noises in
their outputs, and we found that the noise in laser points
and wrong estimates of calibration planes affect the final
results. We develop a robust method that iteratively throws
away some data sets which have too large residuals from
(6). A brief description is given as follows:

1) For each checkerboard view, the calibration plane
parameter N is estimated in the camera coordinate
system, and the laser points are extracted in the
laser coordinate system. The noise in the extracted
laser points is also roughly estimated by fitting line
to these points. Construct a valid pose set with all
checkerboard views.

2) Based on current valid pose set, estimate camera
orientation Φ and position ∆ by minimizing the
weighted version of (6), which can be written as:

∑

i

∑

j

wi(
Ni

‖Ni‖
· (Φ−1(P f

ij − ∆)) − ‖Ni‖)
2 (7)

where wi is a weight for the laser points in the ith
pose, and it can be calculated based on the estimated
noise in the laser points.

3) Empty the valid pose set. For each pose, compute
the average 3D projection error ε of laser points
to the checkerboard plane with current estimated
camera orientation and position. If the projection
error ε < δ, then we add this pose into the valid
pose set, where δ is threshold for maximum average
error.

4) Repeat Step 2, 3 until convergence (empirically it
takes 2 to 3 iterations to converge).

C. Global Optimization

In practice, the camera calibration is not precisely
known, and measurement errors affect the performance of
the extrinsic calibration. Given the relative orientation and
position of a camera, the laser data gives extra constraints
on the position of the planar pattern, which could be
analyzed in the camera intrinsic calibration. So intuitively,
the camera intrinsic and extrinsic parameters can be refined
by performing a global optimization with the initial esti-
mate of the extrinsic camera parameters Φ and ∆, and an
estimate of the intrinsic parameter K.

Given different views of the checkerboard and grid
points on the plane, We can obtain the projection error
of grid points:

∑

i

∑

j

‖pij − p̃(K, Ri, ti, Pj)‖ (8)

where p̃(K, Ri, ti, Pj) is the projection of point Pj in
image i according to (1).

With (6), we can do a global optimization by minimizing
the combination of reprojection error and laser to calibra-
tion plane error as follows:

∑

i

∑

j

d2(P (Φ, ∆, P
f
ij), N(Ri, ti)) +

α
∑

i

∑

j

‖pij − p̃(K, Ri, ti, Pj)‖
2 (9)

where N(Ri, ti) the calibration plane parameter in pose
i according to (3), P (Φ, ∆, P

f
ij) the coordinate of laser

point P
f
ij in the camera coordinate system according to (2),

d2(P, N) the squared Euclidean distance from point P to
plane N , and α is a scalar weight to normalize the relative
contribution of the laser error function and the camera error
function.

This nonlinear minimization problem can be solved with
the Levenberg-Marquardt method. It demands the initial
guesses of Φ, ∆, and {Ri, ti | i = 1 . . . n }, which can
be obtained with the methods discussed in the previous
sections, and an initial guess of camera intrinsic matrix K.

D. Algorithm Summary

The complete algorithm can be described as the follow-
ing steps:



1) Build a big checkerboard and place it in front of
the camera-laser range finder system in the different
orientations.

2) For each checkerboard pose, extract the laser points
in the laser reading, and detect the checkerboard grid
points in the image. Estimate the camera orientation
Ri and position ti with respect to the checkerboard,
and then compute the calibration plane parameter Ni.

3) Estimate the parameter Φ and ∆ using the linear
solution as described in Section III-A.

4) Refine Φ and ∆ using the techniques described in
Section III-B.

5) If necessary, refine all parameters by minimizing (9).

IV. EXPERIMENTS

The proposed algorithm has been implemented in Matlab
and is available on request to the author. This section
illustrates tests on both computer simulated data and real
data. The closed-form solution provides initial conditions
for the nonlinear refining. A global optimization on all
camera calibration parameters is also tested.

A. Computer Simulations

The placement of the camera relative to the laser
range finder is described by the camera’s position ∆ =
[ 0, −1.0, 0.1 ]> meters and orientation Φ defined by
a rotation vector [ −0.25, −0.02, −0.01 ]>.

The camera is simulated as an ideal pinhole with focal
length 750 and principal point (320, 240). The calibration
pattern plane is a checkerboard defined by 10 × 10 grids,
and the size of the pattern square is 76mm× 76mm. The
orientation of the checkerboard is generated as follows:
the plane is initially parallel to the image plane; a rotation
axis is randomly chosen on the plane and the plane is
rotated around that axis with angle θ. The position of the
plane is chosen properly such that the checkerboard grids
can appear entirely on the image plane. Gaussian noise
with mean 0 and standard deviation 0.5 pixel is added to
the projected image points. The laser points are computed
based on the placement of the camera and the setting of
checkerboard. We also add uniform noise into the laser
points of ±5cm which is approximately the same as the
observed noise distribution in our sensor.

In the experiment, the estimated extrinsic parameters are
compared with the ground truth. We measure the error for
camera orientation Φ by computing the angle between the
estimate and the true orientation, and the error for camera
position ∆ by computing the distance between the estimate
and the true camera position.
Performance w.r.t. the number of checkerboard poses.
This experiment deals with how the number of plane
poses effects the performance. We vary the number of
poses from 6 to 24. For each experiment number, 100
trials of independent checkerboard plane orientations with
θ = 60◦ and independent checkerboard plane positions
are conducted. The Gaussian noise added in the projected
image points is also independent between trials, as well as
the uniform noise in the laser points. The results is shown

Fig. 2. Errors vs. the number of poses of the checkerboard plane

Fig. 3. Errors vs. the orientation of the checkerboard plane

in Figure 2. The error decreases when more poses are used.

Performance w.r.t. the orientation of checkerboard
plane. This experiment is performed for different orienta-
tions of the checkerboard plane to examine its infl uence in
the calibration performance. We compute the average errors
by running 100 trials with 10 checkerboard poses. The
orientation angle of checkerboard plane varies from 10◦

to 80◦, and the result is shown in Figure 3. We found that
the result improves when the orientation angle increases,
due to more precise estimates of calibration planes with
large angles with respective to the image plane. Best
performance seems to be achieved around 70◦. Note that
in practice, when the angle increases, the number of laser
points probably decreases, and foreshortening makes the
corner detection less accurate, but these are not considered
in this experiment.
Refinement of camera intrinsic parameters. This ex-
periment investigates how the laser data help the camera
calibration, and examines its performance on refining cam-
era intrinsic and extrinsic parameters. Here we run 100
independent trials and then compare the average result with
the ground truth. For each trial, 10 checkerboard poses are
used. To randomize starting conditions, the camera focal
length is corrupted with Gaussian noise with mean 0 and
standard deviation 10 pixels, and the camera principal point
is corrupted with Gaussian noise with mean 0 and deviation
5 pixels. The checkerboard is placed in the orientation
ranging from 50◦ to 70◦. Initially, we perform the extrinsic
calibration with the corrupted camera internal matrix K,
which gives incorrect estimates of the relative position ∆
and orientation Φ. Table I shows the accuracy of these Φ,
∆ estimates before and after global optimization, showing
that we recover somewhat from corrupted camera internal
matrix K. The improvement of camera intrinsic matrix can
be evaluated by the ratio of the Frobenius norm of the



Fig. 4. The figure shows 2 out of 10 checkerboard settings cap-
tured by the camera. The laser range finder points are projected
on the image using the computed Φ and ∆.

difference of the estimated K and the ground truth to the
Frobenius norm of the difference of the corrupted K and
the ground truth. As we can see, when the global opti-
mization is applied on both camera intrinsic and extrinsic
parameters, the accuracy of the camera intrinsic matrix K is
improved by about 30%. The error of estimates of camera
orientation and position with respect to the laser coordinate
system also decreases by around 30%.

initial final
Orientation error(Φ) 2.3 3 ◦ 1.9 5 ◦

Position error(∆ ) 3.78cm 2.37cm
Fro. norm ratio w.r.t K 0.6969

TABLE I
THE RESULT OF GLOBAL OPTIMIZATION ON THE CAMERA INTRINSIC

AND EXTRINSIC PARAMETERS

B. Real Data

The proposed method has been tested on a robotic
platform illustrated in Figure 1, equipped with a SICK-
PLS laser range finder and a Sony DFW-VL500 digital
camera mounted on top of the robot. The laser range finder
provides range measurements by scanning 180 degrees
of the environment parallel to the fl oor, with an angle
resolution of one measurement per degree and a range
measuring accuracy of ±5cm. On real data, the method
operates well given reliable calibration parameters of the
camera. Here we present the result with one example.

The camera resolution is set as 640×480. The calibration
pattern is a 12×10 checkerboard, and the size of a checker
square is 76mm× 76mm. 10 images of the checkerboard
are taken along with 10 laser readings. The laser points can
be manually selected among the whole laser measurements.
Figure 4 demonstrates the results of the algorithm applied
to the configuration. We map the laser points onto the
calibration plane with estimated Φ and ∆, and the average
distance error from the laser points to the calibration plane
is around 2-3cm. We do not have the ground truth of the
extrinsic parameters Φ and ∆, but the mapping results are
quite reasonable.

C. Refinement of intrinsic camera parameters

In addition, our global optimization refines the intrinsic
camera parameters, and we consider this optimization for

the camera calibration of this same data set as Section IV-
B. An initial solution for intrinsic camera parameters is
made from the image data alone. This is listed as the
“initial” column in Table I I , which illustrates the esti-
mation of the focal length (fx,fy) and the principal point
(cx,cy). After solving for Φ, ∆ and then applying global
optimization, the intrinsic camera parameters change and
are shown in the “final” column. The variance of these
estimates is calculated by a leave-one-out method. Given
the 10 data samples, the estimator is run 10 times, each
time ignoring a different data sample. The variance of these
10 runs is reported as σ. While the estimated values remain
very similar, there is a small, but consistent, improvement
in the variance of the estimates.

initial σ final σ

fx 768.60 4.34 768.51 3.88
fy 768.11 4.55 768.05 4.04
cx 319.90 6.74 319.27 6.65
cx 268.49 9.35 268.88 9.19

TABLE II
THE RESULT OF GLOBAL OPTIMIZATION ON THE INTRINSIC CAMERA

PARAMETERS

V. CONCLUSION

In this paper, we presented an extrinsic calibration
method to estimate the orientation and position of a camera
with respect to a 2D laser ranger finder for the robot. The
proposed method requires a few poses of planar pattern
which is visible for both the camera and the laser range
finder, and then a geometric constraint on the extrinsic
camera parameters is imposed. This calibration succeeds
and applies to a very common sensor package for a large
number of autonomous robots, such as the iRobot series.
Moreover, the camera intrinsic calibration can be also
improved with laser data, which we believed is helpful for
many robotic vision tasks.
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