

Multi-Camera Active Perception System with Variable Image
Perspective for Mobile Robot Navigation

M. Oliveira, V. Santos, Member, IEEE

Abstract — This paper describes a system and associated
procedures to efficiently manage and integrate dynamic
multi-perspective images for robot navigation on a road-like
environment. A multi-camera device atop a pan-and-tilt unit
has been conceived for enhanced perception and navigation
capabilities. These capabilities will cover for active
perception, dynamic tracking, foveated vision and, possibly
in the future, stereo perception. Due to the large variation of
points of view, the vision unit generates images with very
different perspectives distortions which inhibit image usage
without geometric correction either for image fusion or
geometric evaluation of targets and objects to track. By using
a versatile kinematics model and efficient multi-camera
remapping techniques, a procedure was developed to reliably
detect the road and features. The systems is now capable of
generating a bird view of the road from several images with
different perspectives, in under 30 ms on a 1.8GHz Dual
Core machine, enabling the application of this technique in
real time navigation systems.

I. INTRODUCTION
N the context of the Portuguese Robotics Open (Festival
Nacional de Robótica) competition of Autonomous

Driving [1][2], several issues arise when robot navigation
is to be performed solely based on vision. The main goal
of the contest is to traverse a road-like track seeded with
several additional difficulties such as a zebra crossing
area, a mid-road dashed line, traffic lights and other
limiting demands (Figure 1). Fast and reliable execution of
this task using vision requires large amounts of image
acquisition and processing both to mind the road and to
perceive other information such as signs and indications,
and even unknown obstacles. A single fixed camera with
common optics makes the task fairly complex due to the
wide field to be observed, so the solution often ends up in
using two or more cameras to split the perception focus
and keep the desired pace of fast motion with safety and
respect for signs and other directives.

Parking area with
an unknown

obstacle

Unknown
obstacle

Tunnel

Road
maintenance area

Zebra crossing and
traffic light panel

Figure 1 - Autonomous Driving competition environment.

Manuscript received 14 February 2008.
Authors are with the Department of Mechanical Engineering, University
of Aveiro, Portugal. E-mails: {mriem, vitor}@ua.pt

When using limited or fixed cameras, the navigation
problem is further increased for some types of maneuvers

such as parking on a delimited area; it is clear that when
reaching immediately above the delimited area the
perception is much more difficult because the target
vanishes and no references exist to track. Another example
might be what may be called dynamic tracking which
occurs when the target (obviously) moves but also the
tracking system moves with its own motion law,
increasing the complexity of the overall relative motion.
An example of this problem is car overcoming on real
roads.

The tracking problem in wide fields is by itself a
demanding issue due to the tradeoff between image detail
and speed of processing. Current trends [3][4] are
converging into foveated vision where attention
mechanisms operate on a low resolution wide field image
and tele-lenses, or other higher resolution sources, permit
target verification or analysis. This multi-camera system
requires its own orientation capabilities using pan and/or
tilt degrees of freedom, and is mounted in the frontal part
of a mobile robot for the Autonomous Driving
competition (Figure 2).

Figure 2 – Atlas MV Robot with the multi-camera perception unit

In summary, perception with multi-camera and multi
focal length lenses definitely makes the vision process
extremely complex due to the innumerous ways in which
images are distorted by perspective. Mainly two important
reasons exist to undistort image perspective and regain
calibrated and Cartesian representation of the environment
(at least approximately): to combine or merge images with
highly variable points of views, and to perceive a constant
geometry of objects and targets during the active
perception task.

The remainder of the paper describes the multi-camera
perception unit developed, including the camera
calibration issues; then a general geometric model for this
kind of unit is derived, and finally the text explains the
sparse image processing technique that results from image
remapping followed by results and future perspectives.

II. MULTI-CAMERA ACTIVE PERCEPTION UNIT
The multi-camera perception unit developed includes

I

four cameras and a servo actuated pan and tilt unit, as
shown on Figure 3. The pan and tilt is controlled through
RS232 serial protocol. It presents a pan range of
approximately 270 degrees, and a tilt range of around 90
degrees.

Figure 3 -Multi-camera active perception unit.

Two of the cameras, Cam0 and Cam1, are positioned on
the far sides of the unit, and are equipped with 2.1 mm
focal length wide angle lenses. They are intended solely
for navigation and should therefore provide a complete
view of the road’s entire width. For these two cameras, the
supporting structure allows to position the following
parameters: vergence, torsion about the principal axis and
distance to the unit’s centre.

Figure 4 - Positioning of camera at the end of the PTU arm.

Cam2 and Cam3 add up to define a foveated system.
Cam2 is also equipped with a wide angle lens. It’s
intended to have a wide field of view so that it can
effectively search for known objects of interest. It is also
called the peripheral camera. Aligned on the same vertical
axis is Cam3, whose large focal distance lens allows the
extraction of a high detail view of a particular object. This
is also called the foveated camera. Figure 5 shows the
peripheral/foveated cameras setup in more detail as well as
a couple of example images of both the peripheral and the
foveated camera.

For the purpose of navigation and more precise
geometric evaluation of the environment, each camera
undergoes a camera distortion correction namely barrel
and similar intrinsic issues. The procedure uses the classic
chessboard approach available in several software
packages, as in the OpenCV libraries [5] used in this
project. For each camera an intrinsic constant matrix K is
obtained experimentally to be used further in the
perspective projection transform.

Figure 5 - Foveated unit and examples of associated images.

III. THE PTU KINEMATICS MODEL
The pan-and-tilt system plus its cameras can be

described as a set of several kinematics open chains and
can therefore be modeled using the Denavit-Hartenberg
(DH) notation for serial open kinematics chains [6]. For
the sake of simplicity and conciseness, only one
kinematics chain model is described in detail. The other
are easily derived from this one, as mentioned further.

θ1

θ2

θ5

θ6

d4

L1

L5
L6

L2

L3

Figure 6 - Kinematics chain for the “left” part of the PTU

Each “link” in the kinematics chain can be described by
4 parameters where usually only one is variable. Figure 6
illustrates the main kinematics chain where the camera lies
at the end of the link with its optical axis aligned with the
Z axis of the last coordinate system and its focal plane on
the XY plane of this last coordinate frame too; only some
more relevant coordinate frames are shown. The angle θ1
is the pan angle, θ2 is the tilt angle, θ5 is the camera
vergence (normally fixed in run-time), and θ6 accounts for
possible camera roll around its optical axis (normally
zero). From the lengths shown (L1, L2, L3, d4, L5, L6), only
d4 was made adjustable on the hardware. From Figure 6
the following Denavit-Hartenberg parameters can be
obtained:

Link i θi li di αi

1 θ1 0 L1 π/2
2 θ2+ π/2 L2 0 0
3 –π/2 L3 0 π
4 0 0 d4 π/2
5 θ5+ π/2 0 L5 π/2
6 θ6 0 L6 0

Table 1 - D-H parameters for one kinematics chain of the PTU

The geometric transformation from the PTU base

(reference frame - R) up to the camera focal plane frame
(C) is given by the following expression:
 (1) 0 1 5

1 2
R

C = ⋅T A A A6

Q

where is defined by the DH conventions. 1i
i

− A
To apply the direct perspective transformation of a

generic point Q into a camera, the point must be in camera
coordinates CQ, but once the point is known in the
reference frame, RQ, it is easy to relate both coordinate
sets by means of the geometric transformation:

 (2) () 1C R R
CQ T

−
= ⋅

RTC, and also its inverse (RTC)–1 is a classical
transformation matrix in 3D composed by a rotational (R)
and translational (T) parts suited to operate on points
expressed in homogeneous coordinates RQ = [X Y Z 1]T.
Transformation matrix is then given by:

 ()
11 12 13 1

1 21 22 23 2

31 32 33 30 0 0 1
0 0 0 1

R
C

r r r t
r r r t

T r r r t
−

⎡
⎢⎡ ⎤ ⎢= =⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎢
⎢⎣ ⎦

R T
⎤
⎥
⎥
⎥
⎥
⎥

⎥
⎥

⎥
⎥

 (3)

Admitting especially for this problem that θ6 =0 and
L3=0, by expanding equation (1), the following final
model for geometric transformation is obtained:

 (4)
5 2 1 5 1 5 2 1 5 1 5 2

2 1 2 1 2

5 2 1 5 1 5 2 1 5 1 5 2

S C C C S S C S C C S S
S C S S C

C C C S S C C S S C C S

− − − + −⎡ ⎤
⎢ ⎥= − −⎢
⎢ − +⎣ ⎦

R

 (5)
1 5 2 4 5

1 2 2 5

1 5 2 4 5 6

L S S d C
L C L L

L C S d S L

−⎡ ⎤
⎢= − − −⎢
⎢ ⎥− − −⎣ ⎦

T

where the following common convention was used:
()sini iS θ= and ()cosi iC θ= .

IV. PERSPECTIVE TRANSFORMATION
Once a point is known in the camera coordinate frame,

its coordinates in the image are obtained after the intrinsic
matrix of the camera which translates the projection of
real word coordinates into pixel coordinates on the image.
Due to the nature of the process, coordinates in image
pixels are also in the homogeneous format but affected by
a scale factor. All this can be translated by the following
expression:

 (6) () 1R
h CQ

−
= K T RQ⋅

]

0

where , and the matrix of camera

intrinsic parameters is

[T
hQ u v w=

0

0

0 0
0
0 0 1 0

x

y

x
y

α
α

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

K obtained

experimentally, as mentioned earlier. Naturally, as Qh
expresses the image coordinates, then w must be the scale

factor and the following holds: pix
ux
w

= and pix
vy
w

= .

Being , it is also immediate to
realize the following:

[1 TC
s s sQ x y z=

0

0

1

x s p

y s s pix

s

u x x x
v y y z y
w z

α
α

+ ix⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (7)

and also
 31 32 33 3sw z Xr Yr Zt t= = + + + (8)

Finally, by multiplying the intrinsic matrix K and the
geometric transformation (RTC)–1, the perspective
transformation matrix P can be written as:

 ()
11 12 13 14

1

21 22 23 24

31 32 33 34

R
C

p p p p
p p p p
p p p p

−
⎡ ⎤
⎢ ⎥⋅ = = ⎢ ⎥
⎢ ⎥⎣ ⎦

K T P (9)

It must be reminded that what is sought is the point in
the Cartesian space RQ after the known point in the image
in pixels: [xpix,ypix]T .

For the current problem (navigation on a flat road) there
is an assumption that simplifies the overall problem: all
points are expected to be on the same real plane, the
ground. This implies that in RQ all points have Z=0. This
simplifies the scale factor on Qh yielding now:
 31 32 3sw z Xr Yr t= = + + (10)

As matrix P is not invertible and its pseudo inverse is
not usable, an analytic solution must be obtained to solve
the following:
 (11) [] [0 1Tu v w X Y= ⋅P]T

It is indeed a three equation system in three variables
(X,Y,w) whose solution is:

() ()22 34 24 32 14 32 12 34 14 22 12 24pix pixx p p p p y p p p p p p p p
X

D
− + − − +

= (12)

() ()21 34 24 31 14 31 11 34 11 24 14 21pix pixx p p p p y p p p p p p p p
Y

D
− + − + −

= − (13)

Where
() ()21 32 22 31 31 12 32 11 11 22 12 21pix pixD x p p p p y p p p p p p p p= − + − + − (14)

To conclude the discussion of the model, it is very
simple to demonstrate that the right hand of the PTU
camera model differs simply in the following: d4 becomes
–d4 and θ5 (the vergence) becomes –θ5. Other kinematics
chains can be obtained by managing one or more
parameters in Table 1.

V. CAMERA REMAPPING
Having developed the model of the perception unit, the

transformation of all of the camera’s images is then
possible. This transformation is performed for each
camera as follows: two auxiliary matrixes called xMap
and yMap are created. These matrixes contain the world
reference frame x and y coordinates of every image pixel
(). ,u v

 0,..., 1 0,..., 1x

y

Map u
P u W v H

Map v
⎡ ⎤ ⎡ ⎤

= = − =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

− (15)

In Figure 7, the values of xMap and of yMap are
plotted in red.

]

Figure 7 – (X,Y) Mapping values for image pixels (u,v).

However, some pixels of the input image ()
may not have their source real point on the ground plane.
This depends on the camera’s lens vertical opening angle
and on the current θ

imgInput

2 value (tilt). When this occurs, the
value of xMap returns negative, and the remapping is not
possible or not valid. A mask of the remapped pixels,
named (,)Mapped v u , is built for imgInput based on the
following condition:
 (16) (,) 0xMap v u ≥

Which is executed for all image pixels and
, where W and H correspond to the images

width and height respectively.

0 u W≤ <
0 v H≤ <

A. Projection limits definition
The projection calculation may lead to the projection of

some pixels to a long distance, i.e., pixels may have high
values of xMap or yMap . Figure 7, for example, shows
pixels projected up to 1600 mm on the x direction.
Because these distances sometimes are not relevant for
robot navigation, a clipping operation is applied to avoid
unnecessary computation. This operation remaps only the
pixels that lie in a predefined rectangle. This rectangle,
named projection box () is defined on the ground
plane, having in mind how far () and how wide
() should the robot require visual information. In
addition to the condition stated in (16), two other criteria
are imposed whilst building

boxP

maxDist

maxWide

(,)Mapped v u . The first
criterion imposes a limit to the value of xMap .
 max(,)xMap v u Dist≤ (17)

For and . The latest imposes a
maximum left and right view distance:

0 u W≤ < 0 v H≤ <

 () max(,)
2y

Wide
abs Map v u ≤ (18)

Again, for 0 and u W≤ < 0 v H≤ < . Figure 8 shows an
overlaid view of an image and its projection mask.

The dotted arrow indicates the limit mostly defined by
the condition of (17) while the full arrow correspondent
lines are typically characterized by (18). The simplest
approach to build this mask is to cycle through all image
pixels, applying equations (12) and (13), evaluating for
each the three conditions enumerated in this section.

Figure 8 - Overlay of an input image and its corresponding

(,)Mapped v u mask.

B. Projection Calculation Enhancement
The technique is, nonetheless, intended to work in real

time. The time taken during projection calculation is
related to the amount of pixels that are projected, i.e., to
the imgInput ’s resolution. It is also interesting to note that
projection calculation time is not affected by the amount
of channels in the image, since the coordinates of a pixel
are equal for all of its channels. Only during actual
remapping, i.e. the copy operation from coordinates (u, v)
to coordinates (xMap , yMap), the time increases n times
the amount of image’s channels.

Figure 9 – Depth profile for an input image.

Figure 9 illustrates the distance between each pixel
(assuming it is projected on the ground plane) and the
camera’s plane, as a function of the image pixels
coordinates (u, v). The dashed line approximately
represents a line obtained by fixing the camera’s principal
point column while varying the line coordinate. This
observation clearly shows that the distance to the ground
plane is a monotonous growing function considering a
decreasing line () and a fixed column ().

The input is so because the image coordinates
are assumed to be top left origin based. Bearing this in
mind, and also that pixels that do not intercept the ground
plane have values of , a test function can
be designed to skip the projection calculation of pixels
(with the same) that have a higher v than the one

whose projection resulted in . On the other
hand, if considering a fixed line v

sindecrea gv fixedu

sindecrea gv

(,) 0xMap v u ≤

fixedu

(,) 0xMap v u ≤

fixed and a parted center to
left decreasing column as well as a center to

right increasing column ,
sin

center left
decrea gu →

sin
center right
increa gu →

(,)gplaneDist u v is also
monotonous. Implementing this skip function, however,
would require a separate analysis for the left and right

sides of the image, increasing the complexity of both the
projection and the skip function. In addition, the amount
of pixels that are to be discarded using this calculation
enhancement setup is considerably smaller, implying also
a smaller time gain. Still, a question may be posed as to
why not use both enhancements instead of just one, thus
gaining even more time. It is not possible to use both
enhancements within the same cycle, since that one must
make a decision whether to first scan, i.e., to fix, the line
or the column. Thus, only the ; enhancement
is applied

fixedu sindecrea gv

C. Projection Scaling Factor
The projection of the pixels onto the ground plane

results sometimes in very large images. Let’s assume, for
example, a ground projected output image () of

 resolution, which corresponds to a 1.6 long
per 2.5 meters long . This image is notoriously bigger
than the size usually employed for robot navigation.
Moreover, the impressive size is not correspondent to the
information that lies in the projected image. In fact,
disregarding, for now, the multi-camera approach, and
considering in the best case scenario that all of Figure 7’s
pixels were projected onto the (and that their
projections would never be overlapped), this would
represent projected pixels. Compared
to the ’s total amount of
pixels, this number would represent that only 1.9 of the
projected image’s pixels were in fact projected. This
means that over 98% of the new image’s pixels would
have to be synthesized. This number is obviously
preposterous, even considering a perfect (all pixels
projected and none overlapping) multi-camera approach of
half a dozen cameras, there still would be

 unmapped pixels in the new image.
These calculations reflect the fact that a 1 pixel per
millimeter (1 PPM) resolution is not promising with the
current perception unit setup, nor was it possible to have a
real time system processing such a large image. Hence it
became crucial to be able to rescale the output image
resolution easily. The easiest approach is to down-sample
the 1 PPM image. However, there is a problem in doing
this; most down-sampling algorithms are not prepared to
operate on sparse images, which is the case after the
projection. The alternate approach of first synthesizing a
non sparse image from the projected one is even more
troubling, not only due to the high unmapped rates
described before, but also due to the computational cost of
such an operation on a huge image. The solution is to
perform on the fly rescaling during the calculation of the
projected coordinates. In order to do this, a rescaling
factor is defined as a fraction of the default 1 PPM
resolution. Rescaling is now just a matter of multiplying

with all of the perception unit kinematics distance
related values as well as with the
defined limits, and , before doing the

actual projection of the original’s image pixels. With this,
the remapping operation automatically outputs a rsf times
smaller image than the one defined by . Rescaling
causes obviously some pixels’ projections to overlap in
the smaller image, but this would also occur if the 1 PPM
image would later be down-sampled.

imgOutput
1600 2500×

boxP

imgOutput

320 240 76800× =

imgOutput 61600 2500 4 10× = ×

2%

100 (6 1.92) 88%− ×

rsf

rsf

1 2 3 4 5 6, , , , ,L L L d L L

boxP maxDist maxWide

boxP

Al

Se
of
co
In

Fo
w
w

1. Rescale kinematics distances and
ground projection box using rsf

1 2 3 4 5 6, , , , ,L L L d L L

2. Zero both (,)Mapped v u and masks. (,)GMapped V U
3. Cycle through image pixels:

()0; ;for u u w u= < + +) [so that] fixedu

()1; 0;for v w v v= − ≥ − − [so that v] sindecrea g

 {
 3.1 Calculate (,)xMap v u and (,)yMap v u

 3.2 Check P limits and set mapped masks: box

if ((,)xMap v u ; (,)yMap v u is inside) then boxP
{

(,) 1Mapped v u =
 ((,), (,))y xGMapped Map v u Map v u + +

 }
 3.3 Check for skip condition and if so skip:
 if Ma (,) 0xp v u ≤ then 1v = −
 }
4. Remap pixels to : imgOutput

()0; ;for u u w u= < + +

 ()0; ;for v v h v= < − −
{

 4.1 If remapped, sum pixel to : imgOutput
 if ((,)Mapped v u) then

 ((,), (,)) (,)img y x imgOutput Map u v Map u v Input v u+ =

}
5. Find remapped pixel value

()max0; ;for U U Dist U= < + +

 ()max0; ;for V V Wide V= < − −

Mapped V U >

 {
 if G then (,) 1

(,)imgOutput V U

 (,)

(,)imgOutput V U
GMapped V U

=

}

gorithm 1 – Remapping algorithm for single camera projection

D. Projection Remapping
ctions V.A, V.B and V.C have described the calculation
 the remapping matrixes xMap and yMap . In order to
mplete a camera projection operation, the pixels of the

imgput must be copied to the : imgOutput

 (19) (,) (,)img y x imgOutput Map Map Input v u=

r 0 u W≤ < and 0 v H≤ < . This would be the simplest
ay to remap the image. However, some particular cases
ere neglected. It is possible that two or more pixels of

the imgInput may overlap, i.e. are projected onto the very

same pixel on the . In this case, the average
value of the overlapping pixels should be used. This can
be done by using another mask, this time a mask for the

 remapped pixels, henceforth named

. It can be defined during the projection
calculation simply adding 1 to its value every time a pixel
is remapped to that particular position.

imgOutput

imgOutput

(,)GMapped V U

((,), (,)) _ ()

(((,), (,)))
x y box

y x

f Map v u Map v u is inside P

then GMapped Map v u Map v u + +
 (20)

For and . After the projection
calculation, ’s values will reflect how
many pixels have been projected onto each particular
position. The can be remapped by summing the
contributions of every pixel, dividing in the end by the
value of .

0 u W≤ < 0 v H≤ <
(,)GMapped V U

imgOutput

(,)GMapped V U
The projection calculation and remapping methodology
can thus be described as in Algorithm 1.

VI. MULTI-CAMERA REMAPPING
Section V described in detail the remapping algorithm, as
well as some techniques that improve its performance.
This section intends to approach the usage of multiple
cameras for remapping the entire road.

Figure 10 -.Multi camera remapping projected and discarded points.

Due to the dimensions of the car versus the road, as well
as the cameras and lens that are employed, it is often not
possible to have a complete view of the road using a single
camera. Navigation algorithms often rely on road lines
contrast with the road to operate.
Therefore, the visualization of both road delimiting lines is
a key issue in most road navigation trends. For this reason
the active perception unit uses two cameras exclusively
for navigation purposes. These were previously mentioned
as Cam0 and Cam1. Since these are solely dedicated to
acquiring visual information of the road, the dual camera
system as a whole should capture the entire road. Figure
10 shows the spread of view for both cameras.
A rescaling factor was used. A remapping box of 0.1rsf =

[]max max4500; 3000Dist Wide= = was defined. This is

reflected by the magenta and blue dots, which are the
actually remapped of Cam0 and Cam1 (green and red)
respectively.

Multi-camera remapping requires very little adjustments
to the technique presented in section V. Kinematics,
perspective transformation, projection limits, calculation,
rescaling and enhancement must be applied for each
camera, but the remapping algorithm handles multiple
camera pixel overlapping just the same as single camera
pixel overlapping, implying only slight changes in the
methodology of Algorithm 1, as shown in Algorithm 2.

0. Cycle N input cameras and repeat Algorithm 1’s first four steps

()0; ; ()for i i N increase i= <
{
 Execute Algorithm 1 steps: 1. 2. 3. and 4.
{
5. Find remapped pixel values for multi-camera projection

()max0; ;for U U Dist U= < + +

()max0; ;for V V Wide V= < + +

Mapped V U >

 {
 if G then (,) 1

(,)

(,)
(,)

img
img

Output V U
Ou tput V U

GMapped V U
=

}

Algorithm 2 – Remapping algorithm for multi camera projection

VII. POST PROJECTION IMAGE PROCESSING
Figure 11 shows two input cameras, with a setup similar to
the one represented in Figure 10.

Figure 11 - Dual camera input and projected view.

The shown is, as could be anticipated by
analyzing the remapping distribution of Figure 10, a
sparse image. Furthermore, the information of both
cameras is not scattered to in an uniformly
distributed manner. This section outlines some image
treatment techniques used to extract viable information of
the road from the sparse .

imgOutput

imgOutput

imgOutput

Figure 12 – Three examples of the projected bird view using Cam0 and Cam1 as input for several pan/tilt/vergence angles. Final images are also
interpolated and smoothed.

A. Sparse image threshold, and morphological closing
Immediate threshold of the could have some

advantages. Not synthesizing missing information reduces
the risk of creating artifacts on the resulting image. Later,
a dilate operation applied to the Boolean, post thresholded
image can restore road characteristics. Hopefully, this
operation would merge the road features; for average size
restoration a subsequent erosion operation should be
employed (completing the morphological closure). For
this technique to work, one must ensure that the projected
information is not scattered beyond a certain limit,
otherwise the dilate operation will not merge the road
features and the erode operation could erase the
information. An example the output of this sequence of
operations is shown on Figure 13.

imgOutput

Figure 13 - Sparse after threshold, and morphological closing. imgOutput

B. Sparse Image Linear Interpolation and Smoothing
Another possibility is to attempt to synthesize the

missing information based on the one that exists on
. A linear interpolation between pixels that hold

information can be implemented. A subsequent smoothing
operation can be performed to attempt to soften possible
artificial artifacts that maybe created during interpolation.
The output of such an operation is shown on Figure 14.

imgOutput

Figure 14 - Sparse interpolated and then smoothed. imgOutput

The advantage of this image in comparison to the one of

Figure 13 is that common image processing techniques do
not support sparse image processing. This solution
provides a color/grayscale image which in some cases may
prove valuable, when compared to a binary image. For
example, the area signaled in Figure 14. Because of poor
light conditions, a simple threshold operation cannot
isolate the signaled region of the line. An adaptive
threshold, that makes use of local average pixel’s values to
calculate the threshold limit, could extract the line. This
operation however, cannot be employed on sparse images
since it would consider absent information (black regions
of Figure 11) as pixels with zero brightness, ruining the
average calculation.

VIII. CONCLUSIONS AND FINAL REMARKS
The bird view of the road comprises some very

interesting characteristics, when compared to the input
road images. First of all, it’s a single image view of the
road, as opposed to the two (or more) input images. This
might ease navigation techniques which usually are
designed for single image processing. Second, this single
image holds information regarding a very wide angle
view, capturing both road delimiting lines at all times,
hence contributing to the robustness of subsequent
navigation algorithms. Third and perhaps most important,
the characteristics painted on the road, such as lines, zebra
crossings etc., show constant geometric properties such as
size and shape. This enables the implementation of much
simpler pattern matching algorithms. Previous experience
has shown that, before this projection technique was
developed, patterns, whose size and shape changed with
camera positioning, distance to pattern and others, were
very difficult to detect due to the great variability of their
properties. It is the authors’ opinion that, in the future, the
implementation of previously developed navigation
algorithms [7] [8] is expected to be much more
straightforward. At the moment, it is possible to remap
two input cameras in less than 30 milliseconds using a
1.8GHz Dual Core machine. This performance clearly
enables the application of this technique in real time
navigation systems.

IX. REFERENCES
[1] Almeida, L., Azevedo, J. , Cardeira, C., Costa, P., Fonseca, P. Lima,

P., Ribeiro, F., Santos, V, 2000. Mobile Robot Competitions:
Fostering Advances in Research, Development and Education in
Robotics. Proc. of the 4th Portuguese Conference on Automatic
Control, CONTROLO2000, 4-6 October 2000, Guimarães, Portugal,
pp. 592-597

[2] P. Afonso, J. Azevedo, C. Cardeira, B. Cunha, P. Lima, V. Santos,
2006. Challenges and Solutions in an Autonomous Driving Mobile

Robot Competition, Proc. of the 7th Portuguese Conference on
Automatic Control, CONTROLO2006, Lisboa.

[3] A. Ude, C. Gaskett, G. Cheng, 2004, Support Vector Machines and
Gabor Kernels for Object Recognition on a Humanoid with Active
Foveated Vision, Proceedings of 2004 IEEEIRSI International
Conference on Intelligent Robots and Systems, Sendai Japan

[4] M. Oliveira, V. Santos. Combining View-based Object Recognition
with Template Matching for the Identification and Tracking of Fully
Dynamic Targets, 7th Conference on Mobile Robots and
Competitions, Festival Nacional de Robótica 2007. Paderne,
Algarve. 27/04/2007

[5] OpenCV, Open Source Computer Vision Library, found at
http://www.intel.com/technology/computing/opencv/ on 30 January
2008.

[6] Denavit, J., Hartenberg, R. S., 1955 - A Kinematics Notation for
Lower-Pair Mechanisms Based on Matrices. J. App. Mech., v.77,
p.215-221.

[7] R. Cancela, M. Neta, M. Oliveira, V. Santos, 2005. ATLAS III: Um
Robô com Visão Orientado para Provas em Condução Autónoma,
Robótica, nº 62, pp. 4-11, (ISSN: 0874-9019).

[8] M. Oliveira, V. Santos , A Vision-based Solution for the Navigation
of a Mobile Robot in a Road-like Environment, Robótica, nº69,
2007 p. 8 (ISSN: 0874-9019).

http://www.intel.com/technology/computing/opencv/

	Introduction
	Multi-Camera Active Perception Unit
	The PTU Kinematics Model
	Perspective Transformation
	Camera Remapping
	Projection limits definition
	Projection Calculation Enhancement
	Projection Scaling Factor
	Projection Remapping

	Multi-Camera Remapping
	Post Projection Image Processing
	Sparse image threshold, and morphological closing
	Sparse Image Linear Interpolation and Smoothing

	Conclusions and Final Remarks
	References

