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Abstract — This paper describes a system and associated 
procedures to efficiently manage and integrate dynamic 
multi-perspective images for robot navigation on a road-like 
environment. A multi-camera device atop a pan-and-tilt unit 
has been conceived for enhanced perception and navigation 
capabilities. These capabilities will cover for active 
perception, dynamic tracking, foveated vision and, possibly 
in the future, stereo perception. Due to the large variation of 
points of view, the vision unit generates images with very 
different perspectives distortions which inhibit image usage 
without geometric correction either for image fusion or 
geometric evaluation of targets and objects to track. By using 
a versatile kinematics model and efficient multi-camera 
remapping techniques, a procedure was developed to reliably 
detect the road and features. The systems is now capable of 
generating a bird view of the road from several images with 
different perspectives, in under 30 ms on a 1.8GHz Dual 
Core machine, enabling the application of this technique in 
real time navigation systems. 

I. INTRODUCTION 
N the context of the Portuguese Robotics Open (Festival 
Nacional de Robótica) competition of Autonomous 

Driving [1][2], several issues arise when robot navigation 
is to be performed solely based on vision. The main goal 
of the contest is to traverse a road-like track seeded with 
several additional difficulties such as a zebra crossing 
area, a mid-road dashed line, traffic lights and other 
limiting demands (Figure 1). Fast and reliable execution of 
this task using vision requires large amounts of image 
acquisition and processing both to mind the road and to 
perceive other information such as signs and indications, 
and even unknown obstacles. A single fixed camera with 
common optics makes the task fairly complex due to the 
wide field to be observed, so the solution often ends up in 
using two or more cameras to split the perception focus 
and keep the desired pace of fast motion with safety and 
respect for signs and other directives. 
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Figure 1 - Autonomous Driving competition environment. 
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When using limited or fixed cameras, the navigation 
problem is further increased for some types of maneuvers 

such as parking on a delimited area; it is clear that when 
reaching immediately above the delimited area the 
perception is much more difficult because the target 
vanishes and no references exist to track. Another example 
might be what may be called dynamic tracking which 
occurs when the target (obviously) moves but also the 
tracking system moves with its own motion law, 
increasing the complexity of the overall relative motion. 
An example of this problem is car overcoming on real 
roads.  

The tracking problem in wide fields is by itself a 
demanding issue due to the tradeoff between image detail 
and speed of processing. Current trends [3][4] are 
converging into foveated vision where attention 
mechanisms operate on a low resolution wide field image 
and tele-lenses, or other higher resolution sources, permit 
target verification or analysis. This multi-camera system 
requires its own orientation capabilities using pan and/or 
tilt degrees of freedom, and is mounted in the frontal part 
of a mobile robot for the Autonomous Driving 
competition (Figure 2). 

 
Figure 2 – Atlas MV Robot with the multi-camera perception unit 

In summary, perception with multi-camera and multi 
focal length lenses definitely makes the vision process 
extremely complex due to the innumerous ways in which 
images are distorted by perspective. Mainly two important 
reasons exist to undistort image perspective and regain 
calibrated and Cartesian representation of the environment 
(at least approximately): to combine or merge images with 
highly variable points of views, and to perceive a constant 
geometry of objects and targets during the active 
perception task. 

The remainder of the paper describes the multi-camera 
perception unit developed, including the camera 
calibration issues; then a general geometric model for this 
kind of unit is derived, and finally the text explains the 
sparse image processing technique that results from image 
remapping followed by results and future perspectives. 

II. MULTI-CAMERA ACTIVE PERCEPTION UNIT 
The multi-camera perception unit developed includes 
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four cameras and a servo actuated pan and tilt unit, as 
shown on Figure 3. The pan and tilt is controlled through 
RS232 serial protocol. It presents a pan range of 
approximately 270 degrees, and a tilt range of around 90 
degrees. 

 
Figure 3 -Multi-camera active perception unit. 

Two of the cameras, Cam0 and Cam1, are positioned on 
the far sides of the unit, and are equipped with 2.1 mm 
focal length wide angle lenses. They are intended solely 
for navigation and should therefore provide a complete 
view of the road’s entire width. For these two cameras, the 
supporting structure allows to position the following 
parameters: vergence, torsion about the principal axis and 
distance to the unit’s centre.  

 
Figure 4 - Positioning of camera at the end of the PTU arm. 

Cam2 and Cam3 add up to define a foveated system. 
Cam2 is also equipped with a wide angle lens. It’s 
intended to have a wide field of view so that it can 
effectively search for known objects of interest. It is also 
called the peripheral camera. Aligned on the same vertical 
axis is Cam3, whose large focal distance lens allows the 
extraction of a high detail view of a particular object. This 
is also called the foveated camera. Figure 5 shows the 
peripheral/foveated cameras setup in more detail as well as 
a couple of example images of both the peripheral and the 
foveated camera. 

For the purpose of navigation and more precise 
geometric evaluation of the environment, each camera 
undergoes a camera distortion correction namely barrel 
and similar intrinsic issues. The procedure uses the classic 
chessboard approach available in several software 
packages, as in the OpenCV libraries [5] used in this 
project. For each camera an intrinsic constant matrix K is 
obtained experimentally to be used further in the 
perspective projection transform. 

 
Figure 5 - Foveated unit and examples of associated images. 

III. THE PTU KINEMATICS MODEL 
The pan-and-tilt system plus its cameras can be 

described as a set of several kinematics open chains and 
can therefore be modeled using the Denavit-Hartenberg 
(DH) notation for serial open kinematics chains [6]. For 
the sake of simplicity and conciseness, only one 
kinematics chain model is described in detail. The other 
are easily derived from this one, as mentioned further. 
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Figure 6 - Kinematics chain for the “left” part of the PTU 

Each “link” in the kinematics chain can be described by 
4 parameters where usually only one is variable. Figure 6 
illustrates the main kinematics chain where the camera lies 
at the end of the link with its optical axis aligned with the 
Z axis of the last coordinate system and its focal plane on 
the XY plane of this last coordinate frame too; only some 
more relevant coordinate frames are shown. The angle θ1 
is the pan angle, θ2 is the tilt angle, θ5 is the camera 
vergence (normally fixed in run-time), and θ6 accounts for 
possible camera roll around its optical axis (normally 
zero). From the lengths shown (L1, L2, L3, d4, L5, L6), only 
d4 was made adjustable on the hardware. From Figure 6 
the following Denavit-Hartenberg parameters can be 
obtained: 

 
Link i θi li di αi

1 θ1 0 L1 π/2 
2 θ2+ π/2 L2 0 0 
3 –π/2 L3 0 π 
4 0 0 d4 π/2 
5 θ5+ π/2 0 L5 π/2 
6 θ6 0 L6 0 

Table 1 - D-H parameters for one kinematics chain of the PTU 

The geometric transformation from the PTU base 

 



  

(reference frame - R ) up to the camera focal plane frame 
(C) is given by the following expression: 
  (1)  0 1 5

1 2
R

C = ⋅T A A A6

Q

where  is defined by the DH conventions. 1i
i

− A
To apply the direct perspective transformation of a 

generic point Q into a camera, the point must be in camera 
coordinates CQ, but once the point is known in the 
reference frame, RQ, it is easy to relate both coordinate 
sets by means of the geometric transformation:  

  (2) ( ) 1C R R
CQ T

−
= ⋅

RTC, and also its inverse (RTC)–1 is a classical 
transformation matrix in 3D composed by a rotational (R) 
and translational (T) parts suited to operate on points 
expressed in homogeneous coordinates RQ = [X  Y  Z  1]T. 
Transformation matrix is then given by: 
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Admitting especially for this problem that θ6 =0 and 
L3=0, by expanding equation (1), the following final 
model for geometric transformation is obtained:  

  (4) 
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where the following common convention was used: 
( )sini iS θ=  and ( )cosi iC θ= . 

IV. PERSPECTIVE TRANSFORMATION 
Once a point is known in the camera coordinate frame, 

its coordinates in the image are obtained after the intrinsic 
matrix of the camera which translates the projection of 
real word coordinates into pixel coordinates on the image. 
Due to the nature of the process, coordinates in image 
pixels are also in the homogeneous format but affected by 
a scale factor. All this can be translated by the following 
expression: 

  (6)  ( ) 1R
h CQ

−
= K T RQ⋅

]

0

where , and the matrix of camera 

intrinsic parameters is 
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experimentally, as mentioned earlier. Naturally, as Qh 
expresses the image coordinates, then w must be the scale 

factor and the following holds: pix
ux
w

=  and pix
vy
w

= . 

Being , it is also immediate to 
realize the following: 
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 (7)  

and also 
 31 32 33 3sw z Xr Yr Zt t= = + + +  (8)  

Finally, by multiplying the intrinsic matrix K and the 
geometric transformation (RTC)–1, the perspective 
transformation matrix P can be written as: 

 ( )
11 12 13 14

1

21 22 23 24

31 32 33 34

R
C

p p p p
p p p p
p p p p

−
⎡ ⎤
⎢ ⎥⋅ = = ⎢ ⎥
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K T P  (9)  

It must be reminded that what is sought is the point in 
the Cartesian space RQ after the known point in the image 
in pixels: [xpix,ypix]T .  

For the current problem (navigation on a flat road) there 
is an assumption that simplifies the overall problem: all 
points are expected to be on the same real plane, the 
ground. This implies that in RQ all points have Z=0. This 
simplifies the scale factor on Qh yielding now: 
 31 32 3sw z Xr Yr t= = + +  (10)  

As matrix P is not invertible and its pseudo inverse is 
not usable, an analytic solution must be obtained to solve 
the following: 
  (11)  [ ] [ 0 1Tu v w X Y= ⋅P ]T

It is indeed a three equation system in three variables 
(X,Y,w) whose solution is: 

( ) ( )22 34 24 32 14 32 12 34 14 22 12 24pix pixx p p p p y p p p p p p p p
X

D
− + − − +

= (12) 

( ) ( )21 34 24 31 14 31 11 34 11 24 14 21pix pixx p p p p y p p p p p p p p
Y

D
− + − + −

= −  (13) 

Where 
( ) ( )21 32 22 31 31 12 32 11 11 22 12 21pix pixD x p p p p y p p p p p p p p= − + − + − (14) 

To conclude the discussion of the model, it is very 
simple to demonstrate that the right hand of the PTU 
camera model differs simply in the following: d4 becomes 
–d4 and θ5 (the vergence) becomes –θ5. Other kinematics 
chains can be obtained by managing one or more 
parameters in Table 1. 

V. CAMERA REMAPPING 
Having developed the model of the perception unit, the 

transformation of all of the camera’s images is then 
possible. This transformation is performed for each 
camera as follows: two auxiliary matrixes called xMap  
and yMap  are created. These matrixes contain the world 
reference frame x and y coordinates of every image pixel 
( ). ,u v

 0,..., 1 0,..., 1x

y

Map u
P u W v H

Map v
⎡ ⎤ ⎡ ⎤

= = − =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

− (15) 

In Figure 7, the values of xMap  and of yMap  are 
plotted in red.  

]

 



  

 
Figure 7 – (X,Y) Mapping values for image pixels (u,v). 

However, some pixels of the input image ( ) 
may not have their source real point on the ground plane. 
This depends on the camera’s lens vertical opening angle 
and on the current θ

imgInput

2 value (tilt). When this occurs, the 
value of xMap  returns negative, and the remapping is not 
possible or not valid. A mask of the remapped pixels, 
named ( , )Mapped v u , is built for imgInput  based on the 
following condition: 
  (16) ( , ) 0xMap v u ≥

Which is executed for all image pixels and 
, where W and H correspond to the images 

width and height respectively. 

0 u W≤ <
0 v H≤ <

A. Projection limits definition 
The projection calculation may lead to the projection of 

some pixels to a long distance, i.e., pixels may have high 
values of xMap  or yMap . Figure 7, for example, shows 
pixels projected up to 1600 mm on the x direction. 
Because these distances sometimes are not relevant for 
robot navigation, a clipping operation is applied to avoid 
unnecessary computation. This operation remaps only the 
pixels that lie in a predefined rectangle. This rectangle, 
named projection box ( ) is defined on the ground 
plane, having in mind how far ( ) and how wide 
( ) should the robot require visual information. In 
addition to the condition stated in (16), two other criteria 
are imposed whilst building

boxP

maxDist

maxWide

( , )Mapped v u . The first 
criterion imposes a limit to the value of xMap . 
 max( , )xMap v u Dist≤  (17) 

For and . The latest imposes a 
maximum left and right view distance: 

0 u W≤ < 0 v H≤ <

 ( ) max( , )
2y

Wide
abs Map v u ≤  (18) 

Again, for 0 and u W≤ < 0 v H≤ < . Figure 8 shows an 
overlaid view of an image and its projection mask. 

The dotted arrow indicates the limit mostly defined by 
the condition of (17) while the full arrow correspondent 
lines are typically characterized by (18). The simplest 
approach to build this mask is to cycle through all image 
pixels, applying equations (12) and (13), evaluating for 
each the three conditions enumerated in this section. 

 
Figure 8 - Overlay of an input image and its corresponding 

( , )Mapped v u  mask. 

B. Projection Calculation Enhancement 
The technique is, nonetheless, intended to work in real 

time. The time taken during projection calculation is 
related to the amount of pixels that are projected, i.e., to 
the imgInput ’s resolution. It is also interesting to note that 
projection calculation time is not affected by the amount 
of channels in the image, since the coordinates of a pixel 
are equal for all of its channels. Only during actual 
remapping, i.e. the copy operation from coordinates (u, v) 
to coordinates ( xMap , yMap ), the time increases n times 
the amount of image’s channels.  

 
Figure 9 – Depth profile for an input image. 

Figure 9 illustrates the distance between each pixel 
(assuming it is projected on the ground plane) and the 
camera’s plane, as a function of the image pixels 
coordinates (u, v). The dashed line approximately 
represents a line obtained by fixing the camera’s principal 
point column while varying the line coordinate. This 
observation clearly shows that the distance to the ground 
plane is a monotonous growing function considering a 
decreasing line ( ) and a fixed column ( ). 

The input  is so because the image coordinates 
are assumed to be top left origin based. Bearing this in 
mind, and also that pixels that do not intercept the ground 
plane have values of , a test function can 
be designed to skip the projection calculation of pixels 
(with the same ) that have a higher v  than the one 

whose projection resulted in . On the other 
hand, if considering a fixed line v

sindecrea gv fixedu

sindecrea gv

( , ) 0xMap v u ≤

fixedu

( , ) 0xMap v u ≤

fixed and a parted center to 
left decreasing column  as well as a center to 

right increasing column , 
sin

center left
decrea gu →

sin
center right
increa gu →

( , )gplaneDist u v is also 
monotonous. Implementing this skip function, however, 
would require a separate analysis for the left and right 

 



  

sides of the image, increasing the complexity of both the 
projection and the skip function. In addition, the amount 
of pixels that are to be discarded using this calculation 
enhancement setup is considerably smaller, implying also 
a smaller time gain. Still, a question may be posed as to 
why not use both enhancements instead of just one, thus 
gaining even more time. It is not possible to use both 
enhancements within the same cycle, since that one must 
make a decision whether to first scan, i.e., to fix, the line 
or the column. Thus, only the ;  enhancement 
is applied 

fixedu sindecrea gv

C. Projection Scaling Factor 
The projection of the pixels onto the ground plane 

results sometimes in very large images. Let’s assume, for 
example, a ground projected output image ( ) of 

 resolution, which corresponds to a 1.6 long 
per 2.5 meters long . This image is notoriously bigger 
than the size usually employed for robot navigation. 
Moreover, the impressive size is not correspondent to the 
information that lies in the projected image. In fact, 
disregarding, for now, the multi-camera approach, and 
considering in the best case scenario that all of Figure 7’s 
pixels were projected onto the  (and that their 
projections would never be overlapped), this would 
represent  projected pixels. Compared 
to the ’s  total amount of 
pixels, this number would represent that only 1.9 of the 
projected image’s pixels were in fact projected. This 
means that over 98%  of the new image’s pixels would 
have to be synthesized. This number is obviously 
preposterous, even considering a perfect (all pixels 
projected and none overlapping) multi-camera approach of 
half a dozen cameras, there still would be 

 unmapped pixels in the new image. 
These calculations reflect the fact that a 1 pixel per 
millimeter (1 PPM) resolution is not promising with the 
current perception unit setup, nor was it possible to have a 
real time system processing such a large image. Hence it 
became crucial to be able to rescale the output image 
resolution easily. The easiest approach is to down-sample 
the 1 PPM image. However, there is a problem in doing 
this; most down-sampling algorithms are not prepared to 
operate on sparse images, which is the case after the 
projection. The alternate approach of first synthesizing a 
non sparse image from the projected one is even more 
troubling, not only due to the high unmapped rates 
described before, but also due to the computational cost of 
such an operation on a huge image. The solution is to 
perform on the fly rescaling during the calculation of the 
projected coordinates. In order to do this, a rescaling 
factor  is defined as a fraction of the default 1 PPM 
resolution. Rescaling is now just a matter of multiplying 

with all of the perception unit kinematics distance 
related values  as well as with the 
defined  limits,  and , before doing the 

actual projection of the original’s image pixels. With this, 
the remapping operation automatically outputs a rsf times 
smaller image than the one defined by . Rescaling 
causes obviously some pixels’ projections to overlap in 
the smaller image, but this would also occur if the 1 PPM 
image would later be down-sampled. 
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1. Rescale kinematics distances  and 
ground projection box using rsf  

1 2 3 4 5 6, , , , ,L L L d L L

2. Zero both ( , )Mapped v u and masks. ( , )GMapped V U
3. Cycle through image pixels: 

( )0; ;for u u w u= < + + ) [so that ] fixedu

( )1; 0;for v w v v= − ≥ − −  [so that v ] sindecrea g

 { 
  3.1 Calculate ( , )xMap v u  and ( , )yMap v u  

  3.2 Check P  limits and set mapped masks: box

if ( ( , )xMap v u ; ( , )yMap v u  is inside ) then  boxP
{ 

( , ) 1Mapped v u =
 ( ( , ), ( , ))y xGMapped Map v u Map v u + +  

   } 
  3.3 Check for skip condition and if so skip: 
   if Ma ( , ) 0xp v u ≤  then  1v = −
 } 
4. Remap pixels to : imgOutput

( )0; ;for u u w u= < + +  

 ( )0; ;for v v h v= < − −  
{ 

  4.1 If remapped, sum pixel to : imgOutput
  if ( ( , )Mapped v u ) then 
 
  ( ( , ), ( , )) ( , )img y x imgOutput Map u v Map u v Input v u+ =

} 
5. Find remapped pixel value  

( )max0; ;for U U Dist U= < + +  

 ( )max0; ;for V V Wide V= < − −

Mapped V U >

 
 { 
  if G  then ( , ) 1

( , )imgOutput V U

 ( , )

( , )imgOutput V U
GMapped V U

=  

} 

gorithm 1 – Remapping algorithm for single camera projection 

D. Projection Remapping 
ctions V.A, V.B and V.C have described the calculation 
 the remapping matrixes xMap  and yMap . In order to 
mplete a camera projection operation, the pixels of the 

imgput must be copied to the : imgOutput

 (19) ( , ) ( , )img y x imgOutput Map Map Input v u=

r 0 u W≤ < and 0 v H≤ < . This would be the simplest 
ay to remap the image. However, some particular cases 
ere neglected. It is possible that two or more pixels of 



  

the imgInput  may overlap, i.e. are projected onto the very 

same pixel on the . In this case, the average 
value of the overlapping pixels should be used. This can 
be done by using another mask, this time a mask for the 

 remapped pixels, henceforth named 

. It can be defined during the projection 
calculation simply adding 1 to its value every time a pixel 
is remapped to that particular position. 

imgOutput

imgOutput

( , )GMapped V U

 
( ( , ), ( , )) _ ( )

( ( ( , ), ( , )) )
x y box

y x

f Map v u Map v u is inside P

then GMapped Map v u Map v u + +
 (20) 

For and . After the projection 
calculation, ’s values will reflect how 
many pixels have been projected onto each particular 
position. The  can be remapped by summing the 
contributions of every pixel, dividing in the end by the 
value of . 

0 u W≤ < 0 v H≤ <
( , )GMapped V U

imgOutput

( , )GMapped V U
The projection calculation and remapping methodology 
can thus be described as in Algorithm 1. 

VI. MULTI-CAMERA REMAPPING 
Section V described in detail the remapping algorithm, as 
well as some techniques that improve its performance. 
This section intends to approach the usage of multiple 
cameras for remapping the entire road.  

 
Figure 10 -.Multi camera remapping projected and discarded points. 

Due to the dimensions of the car versus the road, as well 
as the cameras and lens that are employed, it is often not 
possible to have a complete view of the road using a single 
camera. Navigation algorithms often rely on road lines 
contrast with the road to operate.  
Therefore, the visualization of both road delimiting lines is 
a key issue in most road navigation trends. For this reason 
the active perception unit uses two cameras exclusively 
for navigation purposes. These were previously mentioned 
as Cam0 and Cam1. Since these are solely dedicated to 
acquiring visual information of the road, the dual camera 
system as a whole should capture the entire road. Figure 
10 shows the spread of view for both cameras.  
A rescaling factor was used. A remapping box of 0.1rsf =

[ ]max max4500; 3000Dist Wide= = was defined. This is 

reflected by the magenta and blue dots, which are the 
actually remapped of Cam0 and Cam1 (green and red) 
respectively. 

Multi-camera remapping requires very little adjustments 
to the technique presented in section V. Kinematics, 
perspective transformation, projection limits, calculation, 
rescaling and enhancement must be applied for each 
camera, but the remapping algorithm handles multiple 
camera pixel overlapping just the same as single camera 
pixel overlapping, implying only slight changes in the 
methodology of Algorithm 1, as shown in Algorithm 2. 

 
0. Cycle N input cameras and repeat Algorithm 1’s first four steps 

( )0; ; ( )for i i N increase i= <  
{  
 Execute Algorithm 1 steps:  1. 2. 3. and 4. 
{ 
5. Find remapped pixel values for multi-camera projection 

( )max0; ;for U U Dist U= < + +  

( )max0; ;for V V Wide V= < + +

Mapped V U >

 
 { 
  if G  then ( , ) 1

  
( , )

( , )
( , )

img
img

Output V U
Ou  tput V U

GMapped V U
=

} 

Algorithm 2 – Remapping algorithm for multi camera projection 

VII. POST PROJECTION IMAGE PROCESSING 
Figure 11 shows two input cameras, with a setup similar to 
the one represented in Figure 10. 

 
Figure 11 - Dual camera input and projected view. 

The  shown is, as could be anticipated by 
analyzing the remapping distribution of Figure 10, a 
sparse image. Furthermore, the information of both 
cameras is not scattered to  in an uniformly 
distributed manner. This section outlines some image 
treatment techniques used to extract viable information of 
the road from the sparse .  
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Figure 12 – Three examples of the projected bird view using Cam0 and Cam1 as input for several pan/tilt/vergence angles. Final images are also 
interpolated and smoothed. 

A. Sparse image threshold, and morphological closing 
Immediate threshold of the  could have some 

advantages. Not synthesizing missing information reduces 
the risk of creating artifacts on the resulting image. Later, 
a dilate operation applied to the Boolean, post thresholded 
image can restore road characteristics. Hopefully, this 
operation would merge the road features; for average size 
restoration a subsequent erosion operation should be 
employed (completing the morphological closure). For 
this technique to work, one must ensure that the projected 
information is not scattered beyond a certain limit, 
otherwise the dilate operation will not merge the road 
features and the erode operation could erase the 
information. An example the output of this sequence of 
operations is shown on Figure 13. 

imgOutput

 
Figure 13 - Sparse  after threshold, and morphological closing. imgOutput

B. Sparse Image Linear Interpolation and Smoothing 
Another possibility is to attempt to synthesize the 

missing information based on the one that exists on 
. A linear interpolation between pixels that hold 

information can be implemented. A subsequent smoothing 
operation can be performed to attempt to soften possible 
artificial artifacts that maybe created during interpolation. 
The output of such an operation is shown on Figure 14. 

imgOutput

 
Figure 14 - Sparse  interpolated and then smoothed. imgOutput

The advantage of this image in comparison to the one of 

Figure 13 is that common image processing techniques do 
not support sparse image processing. This solution 
provides a color/grayscale image which in some cases may 
prove valuable, when compared to a binary image. For 
example, the area signaled in Figure 14. Because of poor 
light conditions, a simple threshold operation cannot 
isolate the signaled region of the line. An adaptive 
threshold, that makes use of local average pixel’s values to 
calculate the threshold limit, could extract the line. This 
operation however, cannot be employed on sparse images 
since it would consider absent information (black regions 
of Figure 11) as pixels with zero brightness, ruining the 
average calculation. 

VIII. CONCLUSIONS AND FINAL REMARKS 
The bird view of the road comprises some very 

interesting characteristics, when compared to the input 
road images. First of all, it’s a single image view of the 
road, as opposed to the two (or more) input images. This 
might ease navigation techniques which usually are 
designed for single image processing. Second, this single 
image holds information regarding a very wide angle 
view, capturing both road delimiting lines at all times, 
hence contributing to the robustness of subsequent 
navigation algorithms. Third and perhaps most important, 
the characteristics painted on the road, such as lines, zebra  
crossings etc., show constant geometric properties such as 
size and shape. This enables the implementation of much 
simpler pattern matching algorithms. Previous experience 
has shown that, before this projection technique was 
developed, patterns, whose size and shape changed with 
camera positioning, distance to pattern and others, were 
very difficult to detect due to the great variability of their 
properties. It is the authors’ opinion that, in the future, the 
implementation of previously developed navigation 
algorithms [7] [8] is expected to be much more 
straightforward. At the moment, it is possible to remap 
two input cameras in less than 30 milliseconds using a 
1.8GHz Dual Core machine. This performance clearly 
enables the application of this technique in real time 
navigation systems.  
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