
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING   Vol. 11, No. 2, pp. 273-283 APRIL 2010  /  273

DOI: 10.1007/s12541-010-0031-2 

 

1. Introduction  

 

With the remarkable development of high precision 3D 

scanners, we can easily obtain large and complex object models 

composed of point clouds sampled from the real-world objects. In 

recent years point clouds have gained increasing attention as an 

alternative surface representation. Various point-based techniques 

including point rendering, parameterization, simplification, 

smoothing, thinning or denoising, registration, and shape 

reconstruction become an active research area in Computer Aided 

Design (CAD), Computer Graphics (CG), and Reverse Engineering 

(RE).1-4 In particular considerable works have been done to 

reconstruct surfaces from the point clouds. The main goal of this 

work is also to develop a novel method for surface reconstruction 

from unstructured point clouds. 

There is a great deal of literature on the reconstruction of 

surfaces from a point cloud data. Many methods regarding the 

surface reconstruction from the scattered point set have been 

proposed in various ways, such as Delaunay tetrahedralization, the 

level set method, and the implicit surface interpolation method 

based on RBF (Radial Basis Function) or CSRBF (Compactly 

Supported Radial Basis Function). Methods based on Delaunay 

tetrahedralization5 form surfaces by directly connecting the point 

set. However, interpolation may not be appropriate for noisy data, 

and may fail if sample noise approaches sample density. The level 

set method6-7 evolves a surface over time until it approximates the 

given point cloud. This method involves defining a speed function 

which attracts the level set surface to the data points. The level set 

method is highly flexible and it is possible to include confidence 

measures and smoothing terms in the speed function. However, its 

implementation becomes expensive in time and memory if high 

accuracy reconstruction is required. The implicit surface 

reconstruction methods are attractive and become popular because 

they allow a complex shape to be interpolated by one formula. The 

main advantages of using implicits for surface reconstruction from 

scattered point sets are data repairing capabilities and opportunities 

to edit the resulting objects using standard implicit modeling 

operations. Finding a set of basis functions which forms an implicit 

surface reconstruction of a point set, is a difficult problem which 

has attracted a great deal of attention. Muraki8 uses a linear 

combination of Gaussian blobs to fit an implicit surface to a point 

set. Unfortunately, the method was fairly slow since both blobs 

position and other parameters had to be inferred. More recently 

radial basis function (RBF) have been introduced to reconstruct an 

implicit surface from a point cloud. A linear combination of radial 

basis functions is found such that the zero level set interpolates or 

approximates the input points. The combination is found by solving 

a large linear system. One problem with RBF based methods is the 
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need to place points inside and/or outside the object in order to have 

non-zero points for the function to interpolate. Another issue is the 

fact that the linear system is both large and dense. Carr et al.9 

attempted to apply an implicit surface to various types of large 

point clouds using the fast multipole method in order to improve 

performance of traditional RBF method. This approach, however, is 

not simple to implement due to a somewhat complex mathematical 

algorithm and the enormous amount of computation time required 

in treating large matrices of the linear system. To overcome this 

problem, Kojekine et al.10 proposed compactly supported RBFs to 

reconstruct smooth surface from a point cloud data. In the method 

the large coefficient matrix of the linear system was transformed 

into a band-diagonal sparse matrix that could be solved more 

efficiently. However, the method was not robust for non-uniform 

distributions of points. Ohtake et al.11 suggested a novel MPU 

(Multi-level Partition of Unity) implicit approach that reconstructs 

an implicit surface from unorganized data sets containing a huge 

number of points using weighted sums of different types of 

piecewise quadratic functions. Yoo12 proposed a novel method to 

reconstruct a complete polygonal model from a raw incomplete 

polygonal model with many holes and overlapping triangles using 

an implicit surface scheme based on RBFs and the domain 

decomposition method. In the method the 3D spatial domain 

occupied by the given polygonal model was divided into several 

sub-domains. Local solutions were then obtained by interpolating 

points allocated in each sub-domain separately. After calculating the 

local solutions, they were blended together using a smooth blending 

function, forming a partition of unity to obtain a global solution as 

in Ohtake’s method. Although great improvements have been made, 

radial basis functions remain relatively costly in time and memory. 

To overcome the difficulties, we present a novel method of 

reconstructing surfaces from a point cloud. The method is not using 

any explicit or implicit surface reconstruction procedure to the 

given point cloud. In some sense, this new method can be 

considered as an extension of the least-squares projection (LSP) 

algorithm introduced by earlier researchers. Azariadis4 proposed a 

method for finding a parameterization of an unorganized point 

cloud using the point directed projection (DP) onto the point cloud 

along an associated projection vector. His method operates directly 

on the point cloud without any explicit or implicit surface 

reconstruction procedure. It has been applied to curve-drawing onto 

point clouds for point-based modeling, where the projection vectors 

are specified through a graphics interface tool. Liu et al.13 applied 

the DP algorithm for projecting points onto a point cloud. They 

called the method a least-squares projection (LSP) algorithm. In the 

method they determined automatically the projection direction 

vectors using a newly proposed linear optimization method.  

The major contribution of our work is to extend the LSP 

algorithm for reconstructing surfaces from a point cloud without 

any extra information except for the geometric position of the point 

set. First, a coarse base polygonal model is created by extracting the 

iso-surface from the distance field for the point cloud. Then a 

quality polygonal model is obtained through the iterative refinement 

and least-squares projection which projects the coarse base 

polygonal model onto the given point cloud in a least-squares sense. 

The proposed method has two advantages due to the combination of 

the distance field and LSP algorithm. The first advantage is that no 

expensive surface reconstruction procedure such as implicit or 

explicit surface reconstruction is needed for generating the coarse 

base polygonal model, therefore it is effective in computing time 

even when the number of points is gigantic. The second advantage 

is that a quality polygonal model is obtained through a simple and 

robust mesh refinement and LSP algorithm, so it does not require 

the expenditure of large amounts of time and memory. 

The remainder of this paper is organized as following. In 

Section 2, the procedure for the distance field calculation and iso-

surface extraction is described. In Section 3, an iterative procedure 

for the mesh refinement and LSP algorithm is presented. In Section 

4, some numerical examples for the surface reconstruction are 

presented. We conclude the paper with some discussions and ideas 

for future work in Section 5.  

 

 

2. Distance field calculation and iso-surface extraction 

from a point cloud data  

 

2.1 Point normal estimation 

In this study, since a model is composed of point clouds without 

any extra information, we must estimate the normal vector in each 

point to calculate the signed distance field for generating a coarse 

base polygonal model. The normal vectors can be estimated by 

analyzing the local neighborhood of each sample point. Because 

there is no connectivity information available, these local 

neighborhoods are usually constructed using k-nearest 

neighborhoods.14,15 If the points satisfy certain sampling criteria, 

like adaptation to the local feature size, then the neighborhood 

estimate is guaranteed to be reliable.  

Let V0 be a sample point and {V1,…,Vk} its k-nearest neighbors. 

The covariance matrix C(P) is defined as follows:14 
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where C is the center of gravity of k-nearest neighborhoods. The 

eigenvector corresponding to the smallest eigenvalue gives an 

estimate for the normal direction. In addition, one of the most 

difficult problems in normal vector estimation is the establishment 

of a consistent inner and outer orientation, as shown in Fig. 1. 

 

 

Fig. 1 Ambiguous normal orientation 
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Ou et al.16 compare several algorithms for establishing the inner and 

outer directions. In this study, we only use a simple strategy similar 

to Hoppe et al.’s method,14 in which the normal direction is 

propagated from an initial normal, as shown in Fig. 2. To assign an 

initial normal, the unit normal of the point which has the largest x 

coordinates is forced to point toward the +x axis. 

 

 

Fig. 2 An illustrating example of normal direction alignment 

 

2.2 Distance field calculation for the given point cloud 

After estimating the point normal, the distance field for the 

given point sets can be calculated easily. The distance field is an 

effective representation of shape. Traditionally, distance fields are 

defined as a scalar field of distances to a shape.17-21, 28 Each element 

in a distance field specifies its minimum distance to the shape. 

Positive and negative distances are used to distinguish outside and 

inside of the shape, e. g., using negative values on the outside and 

positive on the inside, as shown in Fig. 3. 

 

 

Fig. 3 Schematic diagram illustrating the concept of distance fields 

Since the main purpose for the distance field calculation is to 

generate a rough base polygons, the spatial domain occupied by the 

point cloud is divided into a small number of voxels, typically 16 x 

16 x 16 – 64 x 64 x 64 resolutions, according to the geometrical 

complexity of the given point cloud. The computation of the 

distance field is done by assigning a signed minimum distance 

value to each voxel grid point, as shown in Fig. 4. 

 

 

Fig. 4 Calculation of the signed minimum distance value for a voxel 

grid point PG 

 

The minimum perpendicular distance dmin between a voxel grid 

point PG and a point in the point cloud Pi is calculated as follows: 
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where Ni is the normal vector at a point Pi. The distance value for 

the particular voxel grid point can be determined by picking the 

closest point based on lmin denoted in Fig. 4, whereas the actual 

distance value used is dmin calculated by using equation (2). Of 

course the distance field calculated in this way can be considered as 

an approximated one. However, since the more detailed surface will 

be obtained through the iterative mesh refinement and LSP 

algorithm, it can be used successfully to generate the coarse base 

polygonal model. 

 

2.3 Generating a coarse base polygonal model 

Various methods can be used to generate a polygonal model 

from the distance fields calculated in previous section. In this paper, 

the well-known marching cube algorithm12 was used to extract a 

polygonal model from the distance fields. The 3D space occupied 

by the point set is divided into regular cells such as cubes. If the 

distance value takes on a mixture of positive and negative values at 

a corner of a given cube, then the surface must pass through the 

cube. At such cubes, a small set of polygons can be created that 

approximate the shape of the surface within the cube. A base mesh 

generated in this way is illustrated in Fig. 5. A coarse base 

polygonal model can be also obtained in voxel form, as shown in 

Fig. 6. This type of mesh can be obtained more easily than the one 

obtained by the marching cube algorithm which requires well 

defined look-up table for various cases, so the implementation for 

generating this type of voxel mesh is very simple and easy 

compared to the marching cube algorithm. Through our numerical 

experiments, it will be shown that these two extraction methods can 

be applied effectively to generate a coarse base mesh for the 

refinement and least-squares projection. 
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(a) Point cloud data (b) A base triangular mesh 

Fig. 5 Generating a base mesh using the marching cube algorithm 

 

 

Fig. 6 A base mesh in voxel form 

 

 

3. Fine surface generation using mesh refinement and 

LSP  

 

As described in previous section, a coarse base model was 

generated in various forms including triangle meshes, rectangle 

meshes, and voxel meshes. Then each element was refined into four 

elements, as shown in Fig. 7. Finally, a quality polygonal model 

was obtained by smoothing the current working polygonal model 

and projecting it onto the given point cloud by LSP algorithm. 

 

 

(a) Triangle meshes (b) Rectangle meshes 

Fig. 7 Refinement of meshes 

 

For the smoothing, a node was relocated to the averaged center 

of gravity of the neighboring polygons to improve the quality of the 

polygonal model as follows:12 
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where P is the position vector of the new location of a node, Ai is 

the area of the ith element, Ci is the center of gravity of the ith 

element, and n is the number of elements connected with the current 

node. After relocating all the nodes of current working polygonal 

model, relocated nodes were projected onto the point cloud. 

Azariadis4 proposed an appropriate point cloud error function and 

used it to solve the problem of point projection onto a point cloud 

along a projection direction. Liu et al.13 extended Azariadis’s 

method to the LSP algorithm by determining automatically the 

projection direction. We review the detail of their works. Consider a 

point cloud CN and a test point P=(x, y, z) with an associated 

projection vector nP=(nx, ny, nz). Each Pi is associated to a positive 

weight αi. Let P* be the projection point of P, as shown in Fig. 8.  

 

current working polygonal model 

 

Fig. 8 Schematic diagram illustrating the projection of a point onto 

point sets 

 

Then the projection problem can be considered as an optimization 

problem to find P* by minimizing the following weighted sum of 

the squared distances: 
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where N is the number of points of a point cloud CN. For given 

weights αi, the projection point P* can be described as follows: 
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p
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where t is the projection distance. 

By substituting equation (5) into equation (4), the solution of 

minimizing equation (4) can be determined as follows:13 
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where denotes the dot product and C=(C1, C2, C3). The weights αi 

play a important role in the computation of P*, so they should be 

chosen carefully. In general, the weights αi of Pi ∈  CN should take 

a larger value when Pi is closer to the test point P, and a descending 

value as the distance from Pi to P increases. In this work, we used 
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one weight function which only takes into account the distance 

between Pi and P as follows:13 
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Liu et al.13 determined the projection direction np by minimizing the 

projection distance t under the assumption that t is a function with 

respect to np. They had to determine the projection direction 

iteratively in order to apply the point projection procedure to a 

number of application examples including thinning a point cloud, 

point normal estimation, projecting curves onto a point cloud and 

others. However, in this work, the projection direction can be 

calculated through a simple vector operation using the connectivity 

information of current working polygonal model as follows: 
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where Ai is the area of the ith element, Mi is the normal vector of the 

ith element, and n is the number of elements connected with the 

current node. After determining the normal vector at each node 

using equation (8), all relocated nodes of current working polygonal 

model were projected onto the point cloud using equation(5). The 

refinement and projection combined with smoothing operation were 

repeated until the desired level of accuracy was attained. Figure 9 

shows the whole process of reconstructing surfaces from a point 

cloud. 

 

 

Fig. 9 Flowchart showing the procedure of surface reconstruction 

from a point cloud 

4. Experimental results and Discussion 

 

Various surface reconstructions were performed for large and 

complex point clouds with arbitrary shapes and topologies to verify 

the effectiveness and validity of the proposed surface reconstruction 

algorithm. The proposed algorithm has been implemented in C 

language on a 3 GHz Pentium IV computer with 512 MB memory. 

 

      

      (a) Point clouds               (b) Initial base mesh 
 

      

(c) After 1-st and 2-nd refinement & projection 
 

      

(d) After 3-rd and 4-th refinement & projection 

Fig. 10 Shape reconstruction of Igea model (I) 

 

      

Fig. 11 Denoising noisy mesh 

1  2 

3  4 

noisy mesh          denoised mesh 
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As seen in Fig. 10, the proposed approach facilitates the 

reconstruction of surfaces from a point cloud and gives a significant 

reduction in computing time and required memory, since the 

method does not require any explicit or implicit surface 

representation. A given point cloud might have noise as seen in the 

left figure of Fig. 11. The problem of noise can be handled by 

projecting the points onto the point cloud surface themselves. For 

this experiment noisy point clouds are produced by adding noise to 

each points of the Igea model of the right figure of Fig. 10(d) along 

the normals. The right figure of Fig. 11 shows the result of 

denoising the initial mesh with noise. The projections were repeated 

until the noise was completely removed. The result of this kind of 

projection procedure is a thin point cloud, and the procedure is 

often called the thinning operation in the literature. Figure 12 shows 

 

(a) Initial base mesh (b) After 1-st refinement & projection 

 

(c) After 2-nd refinement & projection (d) After 3-rd refinement & projection 

 

(e) After 4-th refinement & projection (f) After 5-th refinement & projection 

Fig. 12 Shape reconstruction of Igea model (II) 
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a surface reconstruction result from the Igea point cloud of Fig. 

10(a). To test the effect of the type of initial base mesh, we 

construct the initial base mesh in voxel form composed of triangle 

meshes, as shown in Fig. 12(a). The accuracy and quality of the 

final reconstructed surface were almost same as those of the right 

figure of Fig. 10(d). The robustness of the proposed method was 

verified again using a more large point cloud. Figure 13 shows the 

surface reconstruction result of Armadillo model. The point cloud 

of Armadillo model was composed of 320,532 points. The initial 

base mesh consisting of 153,400 triangles was generated using the 

marching cube algorithm as described in Section 2.3. Since the 

initial base mesh was fairly faithful to the given point cloud, only 

one refinement and projection procedure was needed to get the fine 

surface of Fig. 13(c). Figure 14 shows the data repairing capability 

(a) Point clouds 

 
(b) Initial base mesh (c) After 1-st refinement & projection 

Fig. 13 Shape reconstruction of Armadillo model 
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of the proposed method. The many holes existed in the polygonal 

model were completely and automatically removed by the surface 

reconstruction procedure. In the case of a fairly dense point cloud, 

almost every voxel grid point near the point cloud can receive a 

well-defined distance value, so the initial base mesh generated from 

the distance field can have a complete model without any holes, as 

shown in Fig. 14(b). Of course, if the point cloud is very sparse and 

extremely non-uniform, some pre-processing such as points 

smoothing and filling hole must be carried out properly in advance. 

A review of the many available methods for points smoothing and 

filling hole is beyond the scope of this paper. The reader may 

consult related works22-27 for detailed expositions. Figure 15 shows 

the surface reconstruction result of Bunny model in the case of 

using a base mesh of voxel form. Irrespective of the type of base 

mesh, we can get almost same results in both quality and accuracy. 

The computation time of the numerical examples illustrated in this 

paper is summarized in Table 1. Our method is very fast and robust 

compared to other methods of surface reconstruction for 

unorganized point sets. It is hard to make a truly fair comparison 

between one’s own method and those used in other papers. Through 

 
(a) Initial mesh with various holes 

 
(b) Initial base mesh 

 
(c) After refinement & projection 

Fig. 14 Shape reconstruction of Stanford Bunny model (I) 
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the investigation of the experimental results, it was found that the 

performance of the proposed method is about two or three times 

faster than author’s previous work12 due to the introduction of a 

hybrid method combined with the distance field and the least-

squares projection. 

 

 

5. Conclusions and future works 

 

In this section, we summarize the results from this research and 

suggest a few future directions. In this paper, a novel surface 

reconstruction method was proposed to get a complete model from 

an unorganized point cloud. Our method is a hybrid method using 

the distance field and least-squares projection (LSP) without any 

explicit or implicit surface reconstruction procedure. Therefore, the 

implementation of algorithm is very simple and robust. In addition, 

the proposed method is very fast compared to the earlier RBFs 

based methods. In general, the iso-surface extraction using 

marching cube algorithm is very time consuming in the case of 

using volume resolutions larger than 256 x 256 x 256. In our 

 
(a) Initial base mesh 

 
(b) After 1-st refinement & projection 

 
(c) After 2-nd refinement & projection 

Fig. 15 Shape reconstruction of Stanford Bunny model (II) 
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method, the iso-surface extraction was used only to get an initial 

coarse base mesh from the distance field having volume resolutions 

little than 64 x 64 x 64. Then, the final detailed surface was 

obtained by the iterative mesh refinement and LSP algorithm. This 

combination of the traditional distance field method and LSP 

algorithm could reduce the computing time and memory 

consumption remarkably. Another advantage of the method is that 

the amount of surface detail we can reconstruct is unlimited by 

using a simple mesh refinement scheme. Our method has also 

several limitations. First, we assume that the given point cloud is 

dense and uniform enough to get a fairly detailed resulting surface. 

If the point cloud is very sparse and non-uniform, proper processing 

such as points smoothing and filling hole should be performed 

previously. Second, the resulting surface is composed of a large 

number of meshes. For more practical applications, the general 

standard surface type such as B-spline surface, and NURBS surface 

will be more helpful. This is an open area for future research for 

this study. 

 

 

ACKNOWLEDGEMENT 

 

This work was supported by Daejin University Research Grants 

in 2010.  

 

 

REFERENCES 

 

1. Lee, I. K., “Curve reconstruction from unorganized points,” 

Computer Aided Geometric Design, Vol. 17, No. 2, pp. 161-177, 

2000.  

2. Pauly, M., Gross, M. and Kobbelt, L., “Efficient simplification 

of point-sampled surfaces,” Proceedings of IEEE 

Visualization ’02, pp. 163-170, 2002. 

3. Kobbelt, L. and Botsch, M., “A survey of point-based 

techniques in computer graphics,” Computers and Graphics, Vol. 

28, No. 6, pp. 801-814, 2004.  

4. Azariadis, P., “Parameterization of clouds of unorganized points 

using dynamic base surfaces,” Computer-Aided Design, Vol. 36, 

No. 7, pp. 607-623, 2004. 

5. Amenta, N., Choi, S. and Kolluri, R., “The power crust,” 

Proceedings of the sixth ACM Symposium on Solid modeling 

and applications, pp. 249-266, 2001. 

6. Whitaker, R., “A level-set approach to 3D reconstruction from 

range data,” International Journal of Computer Vision, Vol. 29, 

No. 3, pp. 203-231, 1998. 

7. Zhao, H., Osher, S. and Fedkiw, R., “Fast surface reconstruction 

using the level set method,” 1st IEEE Workshop on Variational 

and Level Set Methods, pp. 194-202, 2001. 

8. Muraki, S., “Volumetric shape description of range data using 

blobby model,” ACM SIGGRAPH Computer Graphics, Vol. 25, 

No. 4, pp. 227-235, 1991. 

9. Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, 

W. R., McCallum, B. C. and Evans, T. R., “Reconstruction and 

representation of 3D objects with radial basis functions,” 

Proceedings of SIGGRAPH ‘01, pp. 67-76, 2001. 

10. Kojekine, N., Hagiwara, I. and Savchenko, V., “Software tools 

using CSRBFs for processing scattered data,” Computers and 

Graphics, Vol. 27, No. 2, pp. 311-319, 2003. 

11. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G. and Seidel, H. P., 

“Multi-level partition of unity implicits,” ACM Transactions on 

Graphics, Vol. 22, No. 3, pp. 463-470, 2003. 

12. Yoo, D. J., “Filling Holes in Large Polygonal models Using an 

Implicit Surface Scheme and the Domain Decomposition 

Method,” Int. J. Precis. Eng. Manuf., Vol. 8, No. 1, pp. 3-10, 

2007. 

13. Liu, Y. S., Paul, J. C., Yang, J. H., Yu, P. Q., Zhang, H., Sun, J. 

G. and Ramani, K., “Automatic least-squares projection of 

points onto point clouds with applications in reverse 

engineering,” Computer-Aided Design, Vol. 38, No. 12, pp. 

1251-1263, 2006. 

Table 1 Computational results 

Model # of points Process 
# of triangles and nodes 

after processing 

Proposed method 

(time : sec) 

Previous method12

(time : sec) 

Igea(Fig. 10) 213,425 
surface 

reconstruction 

# of nodes : 173,058 

# of triangles : 346,112 
60.6 133.3 

Igea(Fig. 11) 173,058 denoising 
# of nodes : 173,058 

# of triangles : 346,112 
27.6 impossible 

Igea(Fig. 12) 213,425 
surface 

reconstruction 

# of nodes : 145,922 

# of triangles : 291,840 
49.7 119.3 

Armadillo 320,532 
surface 

reconstruction 

# of nodes : 305,622 

# of triangles : 613,600 
91.8 192.7 

Bunny(Fig. 14) 75,191 
surface 

reconstruction 

# of nodes : 80,299 

# of triangles : 160,600 
21.3 57.5 

Bunny(left figure of Fig. 15) 75,191 
surface 

reconstruction 

# of nodes : 154,846 

# of triangles : 309,696 
37.4 108.5 

Bunny(right figure of Fig. 15) 75,191 
surface 

reconstruction 

# of nodes : 154,846 

# of rectangles : 154,848 
36.8 103.1 

(H/W: Pentium , 3 GHz CPU, 512MB RAM)Ⅳ



INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING   Vol. 11, No. 2 APRIL 2010  /  283

 

14. Hoppe, H., DeRose, T. and Duchamp, T., “Surface 

Reconstruction from Unorganized Points,” Proceedings of 

SIGGRAPH ’92, pp. 71-78, 1992. 

15. Lange, C. and Polthier, K., “Anisotropic smoothing of point 

sets,” Computer Aided Geometric Design, Vol. 17, No. 2, pp. 

161-177, 2000.  

16. Ou, Y. D. and Feng, H. Y., “On the normal vector estimation for 

point cloud data from smooth surfaces,” Computer-Aided 

Design, Vol. 37, No. 10, pp. 1071-1079, 2005. 

17. Barentzen, J. A. and Aanas, H., “Signed distance computation 

using the angle weighted pseudo-normal,” Transactions on 

Visualization and Computer Graphics, Vol. 11, No. 3, pp. 243-

253, 2005. 

18. Gueziec, A., “Meshsweeper: Dynamic point-to-polygonal mesh 

distance and applications,” IEEE Transactions on Visualization 

and Computer Graphics, Vol. 7, No. 1, pp. 47-60, 2001. 

19. Sud, A., Otaduy, M. A. and Manocha, D., “DiFi: Fast 3D 

distance field computation using graphics hardware,” Proc. of 

Euro-graphics, Vol. 23, No. 3, pp. 557-566, 2004. 

20. Frisken, S. F., Perry, R. N., Rockwood, A. P. and Jones, T. R., 

“Adaptively sampled distance fields: a general representation of 

shape for computer graphics,” Proceedings of SIGGRAPH ’00, 

pp. 249-254, 2000. 

21. Huang, J., Li, Y., Crawfis, R., Lu, S. C. and Liou, S. Y., “A 

complete distance field representation,” Proceedings of 

Visualization ’01, pp. 247-254, 2001. 

22. Yoo, D. J., “A Study on Filling Holes of the Polygonal model 

using Implicit Surface Scheme,” Journal of the Korean Society 

for Precision Engineering, Vol. 22, No. 3, pp. 107-114, 2005. 

23. Yang, X. N. and Wang, G. Z., “Planar point set fairing and 

fitting by arc splines,” Computer-Aided Design, Vol. 33, No. 1, 

pp. 35-43, 2001. 

24. Hu, G., Peng, Q. and Forrest, A. R., “Mean shift denoising of 

point-sampled surfaces,” Visual Computation, Vol. 22, No. 3, 

pp. 147-157, 2006. 

25. Schall, O., Belyaev, A. and Seidel, H. P., “Robust filtering of 

noisy scattered point data,” Proceedings of Eurographics 

Symposium on Point-Based Graphics, pp. 71-77, 2005. 

26. Yoo, D. J. and Kwon, H. H., “Shape Reconstruction, Shape 

Manipulation, and Direct Generation of Input Data from Point 

Clouds for Rapid Prototyping,” Int. J. Precis. Eng. Manuf., Vol. 

10, No. 1, pp. 103-113, 2009. 

27. Yoo, D. J., “Three-dimensional Morphing of Similar Shapes 

Using a Template Mesh,” Int. J. Precis. Eng. Manuf., Vol. 10, 

No. 1, pp. 55-66, 2009. 

28. Yoo, D. J., “General 3D Offsetting of a Triangular Net Using an 

Implicit Function and the Distance Fields,” Int. J. Precis. Eng. 

Manuf., Vol. 10, No. 4, pp. 131-142, 2009. 

 

 


