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Abstract

Surface reconstruction provides a powerful paradigm for model-
ing shapes from samples. For point cloud data with only geomet-
ric coordinates as input, Delaunay based surface reconstruction
algorithms have been shown to be quite effective both in theory
and practice. However, a major complaint against Delaunay based
methods is that they are slow and cannot handle large data. We ex-
tend the COCONE algorithm to handle supersize data. This is the
first reported Delaunay based surface reconstruction algorithm that
can handle data containing more than a million sample points on a
modest machine.
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1 Introduction

Shape modeling is an integral part of many visualization problems.
Surface reconstruction which computes a piecewise linear inter-
polant through a set of discrete points that sample a surface pro-
vides a flexible and robust paradigm for this purpose. This linear
approximation is good enough for most of the visualization needs.
If higher order continuity is required, various subdivision [13, 28]
and fairing schemes [25] can be used on the initial control mesh
generated by surface reconstruction.

A number of algorithms have been proposed for the surface re-
construction problem in recent years. The results of [5, 6, 7, 10,
15, 18, 26, 27] provide the necessary foundation for the problem.
Very recently, starting with the CRUST algorithm of [2], few other
algorithms have been designed that provide theoretical guarantees
with empirical support [1, 3, 4, 9, 11]. All these new algorithms
are based on Voronoi diagrams and their dual Delaunay triangu-
lations. If the input is equipped with additional information such
as the estimation of surface normals, or matrix adjacency among
the sample points from range scanners, efficient algorithms exploit-
ing these information can be used such as the ones proposed in
[8, 10, 17, 19]. However, in absence of any such extra information,
Voronoi/Delaunay based methods seem to be very effective if not
the most.

The major complaint against Voronoi/Delaunay based methods
is that they are slow and face difficulty in handling large data
with the current computing resources. Two factors worsen the mat-
ter. First, the complexity of the Delaunay triangulation may be

quadratic in terms of the input size. Second, the computation of the
Voronoi diagrams or Delaunay triangulations is susceptible to nu-
merical errors. As a result, additional computations against possible
numerical errors are absolutely necessary for robust computations.
Although faster machines with larger memory can and will push
the range of acceptable data sizes to greater limits, the demand for
handling even higher range will always exist. So, we need an algo-
rithmic solution which can supplement the gain made by improved
hardware technology. In this paper we propose such an approach
for a Delaunay based surface reconstruction. Our experiments show
that the proposed algorithm can handle data in the range of million
points with a moderately capable machine such as a PC with 733
MHz Pentium III processor and 512 MB memory. The gain in com-
puting times are remarkable as exhibited in Table 1.

Algorithms for reconstructing surfaces from large data have been
proposed in the past [8, 10, 19, 22]. These algorithms avoid three
dimensional Delaunay triangulations and can do so by using special
information such as surface normals that come with the input or
by exploiting properties of the data like uniformity. However, the
need for a Delaunay based reconstruction with large data still exists;
mainly because such a method can be applied to a more general
input that may not have any special information.

Remarkable achievement has been made in the MICHELAN-
GELO project [10, 22] where an implicit surface is built using a
distance function. Surface normals from several range scans are
used to compute the distance function. Kobbelt and Botsch [19]
use the hardware projection to compute a triangulation from each
range scan and then stitch them together. This gives a very fast re-
construction for each range scan. It faces difficulty if the projection
of a scan self-overlap. Also, consistent stitching of adjacent scans
poses problems. Current methods for stitching are based on heuris-
tics and often create artifacts in the surface. The ball pivoting algo-
rithm of [8] was used in the Pietà project at IBM to handle millions
of sample points. This algorithm builds the surface incrementally
by rolling a ball over the sample points. It requires that the sample
points be equally dense everywhere and each sample point have a
surface normal. In [17] Gopi, Krishnan and Silva projected a point
with its neighbors on a 2D plane and then computed the 2D Delau-
nay triangulation of the set before lifting it to 3D.

In this paper we extend a Delaunay based reconstruction algo-
rithm called COCONE to handle large data. This algorithm turned
out to be very effective within the range of 100K points, but data
with close to a million points are almost impossible to handle. This
serious restriction is imposed by the time and memory requirement
for computing the Delaunay triangulation of the entire point set. In
particular, disk swapping with random data access in a global De-
launay triangulation becomes a serious bottleneck. We solve this
problem by giving up the computation of a global Delaunay tri-
angulation of the entire set of sample points. Instead, we take a
divide-and-conquer approach.

We partition the entire set of sample points into smaller clusters
using an octree subdivision. Then, we apply our COCONE algo-
rithm on each of these clusters separately. Of course, the question
of matching the surface patches together arises. We do not adopt
stitching which is the source of troubles in earlier approaches. In-
stead we exploit a specific property of COCONE which achieves the
stitching automatically. Each cluster in an octree box is padded with



sample points from neighboring boxes that allow the necessary tri-
angles for stitching to be computed consistently over all boxes. The
results of our experiments are illustrated with a number of large
data that are available over the Internet. To our knowledge this is the
first surface reconstruction algorithm that can compute with com-
monplace resources the output surface as a subcomplex of the three
dimensional Delaunay triangulation from data in the range of a mil-
lion points.

2 Definitions and preliminaries

Our goal is to eliminate the global Delaunay/Voronoi diagram
computation of the entire sample while reconstructing the surface
with the COCONE algorithm. To this end we partition the data with
an octree subdivision and adapt carefully all steps of the COCONE
algorithm [3, 11] on each cluster. We need some definitions for
further expositions. Let P denote the input point set sampling a
smooth surface S

��� 3 . Let VP be the Voronoi diagram of P
and Vp denote the Voronoi cell of a sample point p � P. We
use the notation � (u, v) to denote the acute angle between the
lines supporting two vectors u and v. The concept of poles was
introduced in [2] to approximate the normals at the sample points.

Poles: The farthest Voronoi vertex p+ in Vp is called the positive
pole of p. We call vp = p+ � p, the pole vector for p. If Vp is
unbounded, p+ is taken at infinity, and the direction of vp is taken
as the average of all directions given by unbounded Voronoi edges.

An important observation made in [2] is that the pole vector vp

approximates the normal np to S at the sample p up to the orienta-
tion. This means the plane with vp as normal at p approximates the
tangent plane at p. The following definition of a cocone captures a
neighborhood of the part of this tangent plane that lies inside the
Voronoi cell of p.

Cocone: The set Cp = � y � Vp : � ((y � p), vp) � 3 �
8 	 is called

the cocone of p. In words, Cp is the complement of a double cone
(clipped within Vp) centered at p with an opening angle 3 �

8 around
the axis aligned with vp. See Figure 1 for an example of a cocone.

+p

p

Figure 1: A Voronoi cell together with the normalized pole vector
and the cocone (shaded).

Restricted Voronoi diagram/Delaunay triangulation play a key
role in asserting the correctness of our algorithm though their
explicit computation is impossible in the absence of S.

Restricted Voronoi diagram/Delaunay triangulation: The
intersection of the Voronoi diagram VP and the surface S is called
the restricted Voronoi diagram of P on S. The set Vp,S = Vp 
 S is

called the restricted Voronoi cell of p. See Figure 2. Two sample
points define a restricted Delaunay edge, three sample points
define a restricted Delaunay triangle and four sample points define
a restricted Delaunay tetrahedron if their restricted Voronoi cells
have non empty common intersection. The complex built from
restricted Delaunay simplices is called the restricted Delaunay
triangulation.

Restricted Voronoi neighbor: A Voronoi neighbor q of a sample
p on the restricted Voronoi diagram is called its restricted Voronoi
neighbor. It means that Vp,S 
 Vq,S �= � . In Figure 2, p and q are
restricted Voronoi neighbor of each other.

p
q

Figure 2: Intersection of VP with the surface S; p and q are restricted
Voronoi neighbors.

3 Local reconstruction

Our algorithm for large data localizes the COCONE algorithm by a
divide-and-conquer approach. The COCONE as an improvement of
CRUST relies on the fact that the sample P is sufficiently dense for
the surface S. This dense sampling is defined with  -sampling as
introduced in [2]. The medial axis of S is defined as the closure of
all points in

� 3 that have more than one closest point to S. The local
feature size is a function f : S � �

where f (p) is the least distance
to the medial axis for any point p � S. A nice property of f ( � ) is that
it is 1-Lipschitz meaning f (p) � f (q) + ��� p � q ��� for any two points
p and q on S. A sample P is an  -sample of S if each point x � S
has a sample point within  f (x) distance. Typically, dense samples
have �� 0. 4 in practice.

Using the result of [16] Amenta and Bern show that for dense
sample the restricted Delaunay triangulation of S is homeomorphic
to S. That is, the set of triangles dual to the Voronoi edges intersect-
ing the surface S form a surface homeomorphic to S. Furthermore,
the restricted Voronoi cell Vp,S is locally flat and lies close to the
tangent plane at p. The cocone Cp approximates this tangent plane
with its thickness accommodating the estimate of the normal np

with the pole vector vp. Thus, the Voronoi edges that intersect the
surface S must also intersect the cocone Cp as proved in [3]. The
COCONE algorithm builds upon this observation.

The original COCONE algorithm [3] was designed for smooth
surfaces without any boundary. It chooses all triangles incident to a
sample point p whose dual Voronoi edges intersect the cocone Cp.
But, this causes problems for surfaces that may have non-empty
boundaries. A boundary detection step is necessary to handle
surfaces with non-empty boundary. In [11] such an algorithm
is proposed which detects the sample points that represent the
boundaries in S. We call these points boundary samples and
disallow them to choose any triangle in the COCONE algorithm.
This gives the following four major steps of the COCONE algorithm.



Figure 3: Reconstructed HAND with the octree boxes and a zoom showing the matching of adjacent surface patches. Surface patches from
different boxes are colored differently.

COCONE(P)

(1) Compute the Voronoi diagram VP.

(2) Determine the set of boundary samples.

(3) If p is not a boundary sample, compute the set of candidate
triangles, T , that are dual to the Voronoi edges intersecting
Cp.

(4) Extract a manifold from T using prune and walk as mentioned
in [2] and detailed in [12].

In [3] it is shown that, step 4, the manifold extraction step, com-
putes a manifold homeomorphic and geometrically close to S from
the set of candidate triangles due to the following two properties.

Property 1 Each candidate triangle t is small, i.e., the circum-
scribing circle of t has a radius O(  )f (p) where p is any vertex of t.

Property 2 All restricted Delaunay triangles are included in the
set of candidate triangles.

We argue that we can compute a set of candidate triangles satis-
fying Property 1 and 2 without computing the entire Voronoi dia-
gram which is the most time and memory consuming step. In CO-
CONE the candidate triangles for each sample point p span p and
some of its Voronoi neighbors including the restricted ones. Our
goal is to approximate these neighbors from a Voronoi diagram
computed locally with fewer sample points. Let P̃

�
P be such

a subsample where p � P̃. It turns out that we only need to ensure
that the set of all restricted Voronoi neighbors of p, Rp, be present
in P̃ in order to guarantee Property 1 and 2.

Now we face the problem of determining the set Rp, since S is
unknown. As a remedy we overestimate Rp by taking a subsample
that has a cluster of sample points around p. We use octree subdivi-
sions and a padding to compute these clusters.

3.1 Octree subdivision

First, a root box is computed that contains all sample points. A
generic step in this subdivision proceeds to split a box B into eight
equal sub-boxes if B contains more sample points than a prescribed
threshold

�
. Consequently, all boxes at the leaf level contain less

than
�

sample points. In our experiments values of
�

in the range
of few thousand sample points produce good results. See Figure 3
for an example where the octree boxes are shown along with the
reconstructed surface.

3.2 Voronoi computation (step 1)

We can proceed with the Voronoi diagram of all sample points in
a leaf box, say B, of the octree for approximating the surface patch
going through the sample points in B. The trouble with this strategy
is that some of the sample points that were non boundary for S may
turn into boundary ones for the surface patch S 
 B. For sample
points lying close to the boundary of S 
 B it might happen that B
does not contain all their restricted Voronoi neighbors and thus their
cocones might not be computed correctly. We overcome this prob-
lem by padding more sample points around the boundary samples
by taking the sample points from the adjacent boxes of B.

Padding

If we take all sample points from the adjacent boxes, the size of
the input for local Voronoi diagram computation may be unnec-
essarily large and we could loose the advantage of computing the
local Voronoi diagrams. As a remedy, we take a fraction of the sam-
ple points from the adjacent boxes of B while computing the local
Voronoi diagram for its sample points. We subdivide each adjacent
box B � of B further up to a level � to produce boxes of size 1

2 � th of
B � . Let X denote the set of all such boxes bordering B that are pro-
duced as a result of this further subdivision. Denote the extended
box B � X as EB. We take all the sample points PB = P 
 EB from
this extended box of B when we consider the sample points in B.



Our experiments show that � in the range of 3 � 4 produces good
results.

3.3 Boundary samples (step 2)

Some sample points in PB lie close to the boundary of the surface
patch S 
 EB. These boundary samples need to be detected as they
may represent some of the real boundaries of S. We employ the
boundary detection algorithm BOUNDARY of [11] to detect these
boundary samples.

3.4 Candidate triangles (step 3)

Let p be any sample point contained in a leaf box B. We consider
the sample points PB = P 
 EB in the extended box EB while com-
puting the Voronoi diagram for the sample points in B. This ensures
that p has its restricted Voronoi neighbors included in this larger
set of samples. Accordingly, as argued later, the candidate triangles
chosen by p satisfy Property 1 and 2 necessary for reconstruction.

3.5 Manifold extraction (step 4)

One possibility of executing the manifold extraction step is to adopt
a global strategy. We collect all candidate triangles for each sample
point over all boxes and then run a global prune and walk over this
set of candidate triangles as in the original COCONE algorithm.

Combining all steps together we have the modified COCONE
algorithm which we call SUPERCOCONE. All steps except the last
one are obviously parallelizable.

SUPERCOCONE(P,
�

, � )

(1) Compute an octree subdivision of the set P of sample points
with parameter

�
. Also, compute the extended box EB for

each leaf box B using the parameter � .

(2) For each leaf box B, perform steps 1,2 and 3 of COCONE on
the extended set PB. Retain a triangle in the candidate set T
only if it has a vertex in B.

(3) Extract a manifold surface from T by the prune and walk
method of [2, 3].

3.6 Theoretical justification

We argue that the candidate triangles computed by SUPERCOCONE
satisfy Property 1 and 2. To distinguish between the Voronoi dia-
grams of P and the subsample PB we use Ṽp, C̃p and ṽp to denote
the Voronoi cell, cocone and the pole vector of p respectively in the
Voronoi diagram VPB .

First we observe that if the gap between a box B and its extension
EB is sufficiently large, then all restricted Voronoi neighbors of a
point p � B are included in PB. Actually, only a small extension
suffices due to Lemma 1. The proof follows from the fact that, for
each restricted Voronoi neighbor q of p, there must be a point x �
Vp,S equidistant from p and q. This point has p as nearest sample
and thus lies within  f (x) distance from p due to the  -sampling
condition. Now apply the Lipschitz property of f ( � ) to show ��� p �
q � � � 2  f (x) � 2 �

1 � � f (p).

Lemma 1 Let q be a restricted Voronoi neighbor of a sample point
p � P. Then ��� p � q � � � 2 �

1 � � f (p).

Assumption 1 The gap between EB and B is at least 2 �

1 � � f (p) long
for any point p � B.

Since  is small, padding B with some constant fraction of its neigh-
boring boxes suffices to satisfy this assumption in practice. It fol-
lows that each point p in a box B has all its restricted Voronoi neigh-
bors in the set PB. This condition is sufficient to extend a proof of
[2] for Lemma 2.

Lemma 2 Let x be any point in Ṽp so that � � x � p ��� ��� f (p). Then,
the acute angle between the lines supporting the vectors x � p and
np is sin � 1 �

� (1 � � ) + sin � 1 �

1 � � .

Consider the ball touching S at p tangentially and with the center
on the medial axis. This ball must be empty of other surface point.
Therefore, its center must belong to Vp which is at least f (p) dis-
tance away from p. Then, by definition the pole p+ is at least f (p)
distance away from p. Applying this observation to Lemma 2 we
obtain:

Lemma 3 The acute angle between the lines supporting the pole
vector ṽp and the normal np is 2 sin � 1 �

1 � � .

By definition the vector x � p for any point x in the cocone C̃p

makes an angle more than 3 �
8 with the pole vector ṽp. It follows

from Lemma 3 that the acute angle between the supporting lines of
x � p and np is more than 3 �

8
� O(  ). We can use the contraposi-

tive of Lemma 2 to assert that ��� x � p ��� = O(  )f (p) as done in [3].
This implies that each candidate triangle t has a point x that centers
a circumscribing sphere of t with radius O(  )f (p) where p is any
of its vertex. Thus, we have Property 1 for all candidate triangles
computed by SUPERCOCONE.

In order to prove Property 2 we can use the proof in [3] to assert
that Vp,S is completely contained in the cocone C̃p.

Lemma 4 For any point p � B the restricted Voronoi cell Vp,S lies
inside C̃p.

Lemma 4 implies that the Voronoi edges intersecting S also in-
tersect C̃p. It means that restricted Delaunay triangles incident to a
point p are computed when we consider the box B containing p.

Therefore, as we stated earlier, the manifold extraction step com-
putes a manifold surface N from the candidate triangles. Further,
since circumcircle of any triangle is small, each point on the output
surface is within a small distance of a sample point on S. We make
these claims precise in the following theorem.

Theorem 1 Given a sample P from a smooth compact manifold
without boundary in

� 3 , SUPERCOCONE computes a triangulated
manifold N with the properties:

1. N is homeomorphic to S.

2. Each point x on N has a point on S within O(  )f (x) distance.

3.7 Implementation of manifold extraction

Although, theoretically, a global prune and walk to extract a man-
ifold seems sound, we face a practical problem while dealing with
large data. The walk phase of the manifold extraction step is sensi-
tive to numerical errors. In particular, skinny flat tetrahedra in the
Delaunay triangulation called slivers cause difficulty when carrying
out a consistent walk. In the COCONE software [30] we avoided this
problem by replacing the geometric decisions made on numerical
computations by the combinatorial decisions made on the structure
of the Delaunay triangulations. The details of this robustness issue
are given in [12]. Unfortunately, this needs the Delaunay triangula-
tion of the entire sample if we adopt a global strategy for manifold
extraction.

In the implementation we cope with this problem by giving up
the global manifold extraction. Instead, while considering the box



B we extract a manifold from the candidate triangles chosen by the
sample points in PB. Then we retain only those triangles that have
at least a vertex in B. We argue that this achieves the result of global
manifold extraction. To see this we need to understand the pruning
and walk in more details.

The pruning in the manifold extraction step deletes any triangle
iteratively that is incident to a sharp edge. An edge is sharp if all
triangles incident to it are contained within an angle of �2 around it.
In particular, any edge with a single triangle incident to it is sharp.
Subsequent to the pruning step no triangle with sharp edge exists
and a depth first walk on the outside (or inside) of the remaining tri-
angles outputs a manifold surface. The pruning step cannot delete
all triangles in succession since the restricted Delaunay triangles
which are in T cannot be incident to any sharp edge and their un-
derlying space is a manifold homeomorphic to S.

Although it is possible to propagate a cascaded pruning far away
from the triangle that initiated it, this propagation migrates only up
to a few triangles away in practice. Thus, the padding for B in EB

helps to initiate all pruning that would have occurred globally at
least for the triangles incident to a point in B. This means the prun-
ing applied to the extended box EB simulates the global pruning
for all triangles with a vertex in B. Consequently the walk on the
pruned set in EB also simulates the global walk at least for the tri-
angles incident to a point in B. Of course a consistent walk on the
outside of the triangles over all boxes needs a globally consistent
orientation of the triangles. We achieve this by passing the orienta-
tion information from a box to its adjacent boxes.

In our experiments, we observe that the surface patches com-
puted in this manner in each box match with the adjacent surface
patches computed in the adjacent boxes. See the zoomed hand in
Figure 3 for an example. All other tested examples also confirm
this claim, see Figure 4. Surface patches from different boxes are
colored differently.

4 Experiments

We experimented with several large models on a PC with 733 MHz
Pentium III processor and 512 MB RAM. The code is written in
C++ and makes use of the computational geometry algorithms li-
brary CGAL [29] for computing the Delaunay triangulations and
other geometric predicates. CGAL provides template code that al-
lows us to run the provided algorithms with different number types.
We found that floating point arithmetic runs fast, but numerical er-
rors may cause unreliable output. On the other hand, exact arith-
metic computations are reliable but consume much more time. Fil-
tered floating point arithmetic provided by CGAL turns out to be
the right number type for our use. With filtered floating point arith-
metic we get reliable results in roughly twice the time needed when
using pure floating point arithmetic. We chose to accommodate this
increase in time instead of compromising the output quality.

In order to determine a suitable level of subdivision in the oc-
tree, we plotted the graphs of computing time and memory usage
vs.

�
. We also plotted a curve for different levels � of subdivision

of the neighbor boxes. We observed that
�

= 16, 000 and � = 4
provide good results for all data. The first node on each curve that
corresponds to a valid reconstruction is marked with a box in time
plots.

4.1 Examples

We experimented with six large data sets collected from [31] and
[32] with sizes ranging from 300K points to 3.5 million points.

Data set SKELHAND: This data set has 327,323 points. It takes
100 minutes to reconstruct with a global Delaunay triangulation.
SUPERCOCONE takes only 15 minutes with

�
= 16, 000 and � = 4.

See the plots below and the output surface in Figure 4.
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Data set DRAGON: This data set has 437,645 points. Surface re-
construction with a global Delaunay triangulation in COCONE takes
46 minutes. This time is considerably smaller than that of the data
set SKELHAND though its size is larger. We suspect that the size of
the Delaunay triangulation for SKELHAND data set is considerably
larger than that for this data set. SUPERCOCONE takes 18 minutes
with

�
= 16, 000 and � = 4. The graphs showing the time and

memory requirements with different values of
�

and � are shown
in the plots below. The output surface is shown in Figure 4.
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Data set HAPPY: This data set has 543,652 points. It takes 143
minutes with a global Delaunay triangulation computation, whereas
SUPERCOCONE takes 28 minutes with

�
= 16, 000 and � = 4. See

the figure below for the plots and Figure 4 for the output surface.
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Data set BLADE: This data set has 882,954 points. The recon-
struction takes 27 hours when we used a global Delaunay triangula-
tion. The memory requirement shot up to more than 800MB which
exceeded the memory capacity of the machine on which we ran our
experiments. Remarkably, SUPERCOCONE takes only 50 minutes
with

�
= 16, 000 and � = 4. See the figure below for the plots and

Figure 4 for the output surface.
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Data set DOUBLEHAPPY: In order to create a data set with
roughly one million points, we took two copies of the HAPPY
data set separated by a small distance. As a result this data set has
1,087,304 points. We could not finish the reconstruction within 10
days with a global Delaunay triangulation. SUPERCOCONE takes
only 53 minutes. See the figure below for the plots and Figure 4 for
the output surface.
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Data set LUCY25: We took the LUCY data from the Stanford
repository [31] which has approximately 14 million points. We
pruned this data randomly to create a point set of 3.5 million points.
This is because we restricted our experiments to a PC of 512MB
memory which is not enough to hold the model of 14 million ver-
tices. SUPERCOCONE finished the reconstruction on this data in
198 minutes. See the figure below for the plots and Figure 4 for the
output surface.
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4.2 Computing times

From the plots we observe that, as
�

goes down, the computing
time decreases. The extended box may not provide enough padding
to the sample points in B with decreasing

�
. As a result, the re-

constructed surface may develop undesirable “holes”. On the other
hand as

�
increases, the computing time also increases. We marked

the first node from left on each curve in the time vs.
�

plots with
a small surrounding box which gives a valid surface without any
“hole”.

As expected, the computing times decrease as the subdivision
level � in neighbor cells increases. This is because less number of
points are added in the extended box EB. But, increased values of

�

can compensate for this deficiency. This is why the marked nodes
appear later on the curves as we increase � . Observing over a set
of data, we conclude that

�
= 16, 000 and � = 4 produce a good

reconstruction within acceptable computing time for most of the
data that we tested on our PC. The running times for our examples
using

�
= 16, 000 and � = 4 are summarized in Table 1.

number of Global SUPER
Delaunay COCONE

object points time (min.) time (min.)
SKELHAND 327,323 100 15

DRAGON 437,645 46 18
HAPPY 543,652 143 28
BLADE 882,954 1615 50

DOUBLEHAPPY 1,087,304 unfin 53
LUCY25 3,505,407 unfin 198

Table 1: Time data.

Note that the BLADE took 27 hours with a global Delaunay
triangulation whereas SUPERCOCONE finished the reconstruction
in less than an hour. We could not finish DOUBLEHAPPY and
LUCY25 with a global Delaunay triangulation even after 10 days
whereas SUPERCOCONE finished them in 53 minutes and 198 min-
utes respectively.

4.3 Memory

Runtime memory consumption plays a vital role in handling large
data. If a global Delaunay triangulation is used, the data is accessed
randomly, and, with large amount of data, disk swaps dominate any
fruitful computation crippling the progress heavily. Our divide-and-
conquer approach localizes the memory access in octree boxes re-
ducing the disk swaps substantially. That is why we could finish
reconstruction from a sample with more than million points even
with a 512MB memory machine.

The level of octree subdivision affects the memory usage of the
algorithm. If

�
is too small, the number of octree cells increases

tremendously. As a result, the memory usage increases very sharply
towards the lower range of

�
. As

�
increases, the memory usage

due to octree subdivision decreases, but the Delaunay triangulations
start consuming more memory. In the extreme case where there is
a single box, i.e. the input is not subdivided at all, the memory re-
quirement may be larger than the available memory. Such a case
happens for the data BLADE, DOUBLEHAPPY and LUCY25. The
memory consumption for our examples using

�
= 16, 000 and

� = 4 are summarized in Table 2. Notice that all memory data is
obtained by a system tool that reports the virtual memory used by
a process. This explains why we have virtual memory requirement
more than 512MB for some data sets even with a 512MB memory
machine.



number of Global SUPER
Delaunay COCONE

object points mem.(MB) mem.(MB)
SKELHAND 327,323 356 127

DRAGON 437,645 475 158
HAPPY 543,652 595 205
BLADE 882,954

�
800 310

DOUBLEHAPPY 1,087,304 unfin 381
LUCY25 3,505,407 unfin 1010

Table 2: Memory data.

5 Conclusions

We present a surface reconstruction algorithm along with its imple-
mentation which for the first time demonstrates that surfaces can be
reconstructed as a subcomplex of the Delaunay triangulation from
unorganized point clouds that have more than a million points. The
gain in time and memory consumption is substantial as our experi-
ments show. Theoretical guarantees in line of the work in [2, 3] can
be proved with the  -sampling assumption.

A model produced from a large data can be too big to fit into
main memory. In that case surface patches generated by SUPER-
COCONE can be stored individually and memory efficient simplifi-
cation [21, 24] can be used, or they can be stored in external mem-
ory and out-of-core simplification methods as in [20] can be used
to simplify the model.

It is interesting to note that SUPERCOCONE can be made even
faster by the use of parallel computation. Surface patches in boxes
can be built in parallel since they do not need any global Delaunay
triangulation or manifold extraction. We are hopeful that data in the
range of a billion points can be handled with the parallelization.
Currently, work is under progress in this direction.
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Figure 4: Reconstructed surfaces from SKELHAND (327,323 points), DRAGON (437,645 points), HAPPY (543,652 points), BLADE (882,954
points), DOUBLEHAPPY (1,087,304 points) and LUCY25 (3,505,407 points). Surface patches from different boxes are shown with different
colors; see the color plate.


