
SA-1

Mobile Robot Mapping

Wolfram Burgard

With contributions by: Maren Bennewitz, Dieter Fox, Giorgio Grisetti, Slawomir Grzonka, Dirk
Haehnel, Armin Hornung, Kristian Kersting, Rainer Kuemmerle, Oscar Martinez Mozos, Patrick Pfaff,
Christian Plagemann, Axel Rottmann, Cyrill Stachniss, Hauke Strasdat, Rudolph Triebel, Sebastian
Thrun …

Why Mapping?

  Learning maps is one of the fundamental
problems in mobile robotics

 Maps allow robots to efficiently carry out
their tasks, allow localization …

  Successful robot systems rely on maps for
localization, path planning, activity planning
etc.

Topics Covered

  Probabilistic reasoning
 Occupancy grid mapping
  Reflection maps
  3d mapping
  SLAM
  Learning for improving SLAM
  Interpretation
 …

slide 1 of 45387

Nature of Data

Odometry Data Range Data

Probabilistic Robotics

 perception = state estimation

 action = utility optimization

Probabilistic Robotics

 perception = state estimation

 action = utility optimization

The Robot Mapping Problem

What does my
environment look like?

The Robot Mapping Problem

Formally, mapping involves, given the
sensor data,

to calculate the most likely map

A Graphical Model for SLAM

m

x

z

u

x

z

u

2

2

x

z

u

... t

t

x 1

1

0

1 0 t-1

Probabilistic Formulation
of SLAM

n=axb dimensions

map m

three dimensions

Several Aspects

 Mapping with known poses
  Localization
  Simultaneous localization and mapping

(SLAM)
  Simplifications
 Dynamic environments
  Learning and SLAM

Bayes Filters

Bayes

z = observation
u = action
x = state

Markov

Markov

Tot. prob.

Markov

SLAM: Mapping as a Chicken
and Egg Problem?

  It appeared easy to estimate the pose of a
robot given the data and the map.

 Mapping, however, involves to
simultaneously estimate the pose of the
vehicle and the map.

  The general problem is therefore denoted
as the simultaneous localization and
mapping problem (SLAM).

  Throughout this section we will describe
how to calculate a map given we know the
pose of the vehicle.

Types of SLAM-Problems

 Grid maps or scans

 [Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

  Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…

Problems in Mapping

  Sensor interpretation
 How do we extract relevant information

from raw sensor data?
 How do we represent and integrate this

information over time?

  Robot locations have to be estimated
 How can we identify that we are at a

previously visited place?
 This problem is the so-called data

association problem.

Mapping with Known Poses

What does the
environment look like?

Occupancy Grid Maps

  Introduced by Moravec and Elfes in 1985
  Represent environment by a grid.

  Estimate the probability that a location is
occupied by an obstacle.

  Key assumptions
 Occupancy of individual cells is

independent

 Robot positions are known!

Updating Occupancy Grid Maps

  Idea: Update each individual cell using a
binary Bayes filter.

  Additional assumption: Map is static.

Updating Occupancy Grid Maps

  Update the map cells using the inverse sensor
model

  Or use the log-odds representation

  with

An Inverse Sensor Model
for Occupancy Grid Maps

Combination of a linear function and a Gaussian:

Key Parameters of the Model

z+d1 z+d2

z+d3 z

z-d1

Occupancy Value Depending on
the Measured Distance

Deviation from the Prior Belief
(the sphere of influence of the sensors)

Calculating the Occupancy
Probability Based on Single
Observations

Incremental Updating
of Occupancy Grids (Example)

Resulting Map Obtained with
Ultrasound Sensors

Resulting Occupancy and
Maximum Likelihood Map

The maximum likelihood map is obtained by
clipping the occupancy grid map at a
threshold of 0.5

Occupancy Grids: From scans to maps

Tech Museum, San Jose

CAD map occupancy grid map

Popular Alternative: Counting

  For every cell count
  hits(x,y): number of cases where a beam ended

at [x,y]
 misses(x,y): number of cases where a beam

passed through [x,y]

  Estimated value: P(reflects(x,y))

  Ho to derive this model?

The Measurement Model

1.  pose at time t:

2.  beam n of scan t:

3.  maximum range reading:

4.  beam reflected by an object:

0 n 1

Computing the Most Likely Map
  Compute values for m that maximize

  Assuming a uniform prior probability for p(m), this is
equivalent to maximizing the likelihood of the observations

Computing the Most Likely Map

Suppose

Meaning of αj and βj

corresponds to the number of times a
beam that is not a maximum range
beam ended in cell j (hits(j))

corresponds to the umber of times a
beam intercepted cell j without ending
in it (misses(j)).

Computing the Most Likely Map
We assume that all cells mj are independent:

If we set

Computing the most likely map amounts to
counting how often a cell has reflected a
measurement and how often it was intercepted.

we obtain

Difference between Occupancy
Grid Maps and Counting

  The counting model determines how often
a cell reflects a beam.

  The occupancy model represents whether
or not a cell is occupied by an object.

  Although a cell might be occupied by an
object, the reflection probability of this
object might be very small.

Example Occupancy Map

Example Reflection Map

glass panes

Summary
  Occupancy grid maps are a popular approach to represent

the environment of a mobile robot given known poses.
  It stores the posterior probability that the

corresponding area in the environment is occupied.
  Occupancy grid maps can be learned efficiently using a

probabilistic approach.
  Reflection maps are an alternative representation.
  They store in each cell the probability that a beam is

reflected by this cell.
  We provided a sensor model for computing the likelihood of

measurements and showed that the counting procedure
underlying reflection maps corresponds to that model and
yields the maximum likelihood map.

  Both approaches consider the individual cells to be
independent of each other.

s’
a

p(x|u,x’)

a

s’

laser data p(o|s,m) p(z|x) observation x

Localization with Bayes
Filters

Implementations

 Kalman filters

 Multi-hypothesis tracking

 Grid-based approaches

 Topological maps

 Particle filters

  Represent density by random samples
  Estimation of non-Gaussian, nonlinear processes

  Monte Carlo filter, Survival of the fittest,
Condensation, Bootstrap filter, Particle filter

  Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]

  Computer vision: [Isard and Blake 96, 98]
  Dynamic Bayesian Networks: [Kanazawa et al., 95]

Particle Filters

Particle Filter Algorithm

1. Draw from

2. Draw from

3. Importance factor for

4. Re-sample

Vision-based Localization

Quadcopter Localization

Simultaneous Localization and
Mapping (SLAM)

  To determine its position, the robot needs
a map.

 During mapping, the robot needs to know
its position to learn a consistent model

  Simultaneous localization and mapping
(SLAM) is a
“chicken and egg problem”

A Graphical Model for SLAM

m

x

z

u

x

z

u

2

2

x

z

u

... t

t

x 1

1

0

1 0 t-1

Why SLAM is Hard: Raw Odometry

Scan Matching

Maximize the likelihood of the t-th pose and
map relative to the (t-1)-th pose and map.

robot motion current measurement

map constructed so far

Mapping using Scan Matching

Probabilistic Formulation
of SLAM

n=axb dimensions

map m

three dimensions

Given:
  The robot’s controls

 Observations of nearby point features

Estimate:
 Map of features

  Path of the robot

Landmark-based
EKF SLAM

A robot is exploring an
unknown, static environment.

Structure of the Landmark-
based SLAM-Problem

Kalman Filter Algorithm

1.  Algorithm Kalman_filter(µt-1, Σt-1, ut, zt):

2.  Prediction:
3. 
4. 

5.  Correction:
6. 
7. 
8. 

9.  Return µt, Σt

 Map with N landmarks:(3+2N)-dimensional
Gaussian

  Can handle hundreds of dimensions

(E)KF-SLAM

Classical Solution – The EKF

  Approximate the SLAM posterior with a high-
dimensional Gaussian [Smith & Cheesman, 1986] …

  Single hypothesis data association

Blue path = true path Red path = estimated path Black path = odometry

EKF-SLAM

Map Correlation matrix

EKF-SLAM

Map Correlation matrix

EKF-SLAM

Map Correlation matrix

Victoria Park Data Set

[courtesy by E. Nebot]

Victoria Park Data Set Vehicle

[courtesy by E. Nebot]

Data Acquisition

[courtesy by E. Nebot]

SLAM

[courtesy by E. Nebot]

Map and Trajectory

Landmarks

Covariance

[courtesy by E. Nebot]

Landmark Covariance

[courtesy by E. Nebot]

Estimated Trajectory

[courtesy by E. Nebot]

FAST-SLAM / Mapping with
Rao-Blackwellized PFs

m

x

z

u

x

z

u

2

2

x

z

u

... t

t

x 1

1

0

1 0 t-1

Rao-Blackwellized Particle
Filters for SLAM
Observation:
 Given the true trajectory of the robot, we can efficiently

compute the map
(mapping with known poses).

Idea:
  Use a particle filter to represent potential

trajectories of the robot.

  Each particle carries its own map.

  Each particle survives with a probability that is
proportional to the likelihood of the observation
given that particle and its map.

[Murphy et al., 99]

Factorization Underlying
Rao-Blackwellization

Particle filter representing trajectory hypotheses

Mapping with known poses

Example

map of particle 1 map of particle 3

map of particle 2

3 particles

Limitations

  A huge number of particles is required.

  This introduces enormous memory and
computational requirements.

  It prevents the approach from being
applicable in realistic scenarios.

Challenge

Reduction of the number of particles.

Approaches:

  Focused proposal distributions
(keep the samples in the right place)

  Adaptive re-sampling
(avoid depletion of relevant particles)

Motion Model for Scan Matching

Raw Odometry
Scan Matching

Incorporating the Current
Measurement

End of a corridor:

Free space:

Corridor:

Application Example

Map of the Intel Lab
 15 particles

  four times faster
than real-time
P4, 2.8GHz

 5cm resolution
during scan
matching

 1cm resolution in
final map

Outdoor Campus Map
 30 particles

 250x250m2

 1.75 km
(odometry)

 20cm resolution
during scan
matching

 30cm resolution
in final map

78

MIT Kilian Court

79

MIT Kilian Court

Graph-based Formulation

  Use a graph to represent the problem
  Every node in the graph corresponds to

a pose of the robot during mapping
  Every edge between two nodes

corresponds to the spatial constraints
between them

 Goal:
Find a configuration of the nodes that
minimize the error introduced by the
constraints

Problem Formulation
  The problem can be described by a graph

Goal:
  Find the assignment of poses to the nodes of

the graph which minimizes the negative log
likelihood of the observations:

nodes

Observation
of from

error

Approaches
  2D approaches:

  Lu and Milios, ‘97
 Montemerlo et al., ‘03
 Howard et al., ‘03
 Dellaert et al., ‘03
  Frese and Duckett, ‘05
 Olson et al., ‘06
 Grisetti et al., ’07
  Tipaldi et al.,’ 07

  3D approaches:
 Nuechter et al., ‘05
 Dellaert et al., ‘05
  Triebel et al., ’06
 Grisetti et al., ’08/’09

Graph-Based SLAM in a
Nutshell
  Problem described as a

graph
  Every node

corresponds to a
robot position and to
a laser
measurement

 An edge between
two nodes
represents a data-
dependent spatial
constraint between
the nodes

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti]

Graph-Based SLAM in a
Nutshell
  Problem described as a

graph
  Every node

corresponds to a
robot position and to
a laser
measurement

 An edge between
two nodes
represents a data-
dependent spatial
constraint between
the nodes

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti]

Graph-Based SLAM in a
Nutshell
  Once we have the

graph, we determine
the most likely map by
“moving” the nodes

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti]

Graph-Based SLAM in a
Nutshell
  Once we have the

graph, we determine
the most likely map by
“moving” the nodes

  … like this.

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti]

  Once we have the
graph, we determine
the most likely map by
“moving” the nodes

  … like this.
  Then we render a map

based on the known
poses

Graph-Based SLAM in a
Nutshell

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti]

Graph-based Visual SLAM

Visual odometry
Loop Closing

[courtesy B. Steder]

The KUKA Production Site

The KUKA Production Site

The KUKA Production Site

scans 59668
total acquisition time 4,699.71 seconds
traveled distance 2,587.71 meters
total rotations 262.07 radians
size 180 x 110 meters
processing time < 30 minutes

Micro-Helicopters

Autonomous Blimp

Quadcopter SLAM

The AIS Quadcopter

3D Simulated Experiment
 Highly connected graph
 Poor initial guess
 LU & variants fail
 2200 nodes
 8600 constraints

Initialization with Varying Noise

Approximations for 3D Maps

  Surface maps
  Planes
 Gaussian processes

Terrain Maps

Point cloud

+  Highly accurate representation

−  Planning/navigation hard

−  Huge memory requirements

Terrain Maps

Point cloud Standard elevation map

+  Planning and navigation possible
(2.5D grid structure)

+  Compact representation

−  Bridges appear as big obstacles

Terrain Maps

Point Cloud Standard Elevation Map

Extended elevation map

+  Planning with underpasses possible
(cells with vertical gaps)

−  No paths passing under and
crossing over bridges possible
(only one level per grid cell)

Terrain Maps

Point cloud Standard elevation map

Extended elevation map Multi-level surface map

Design Goals
Multi-level surface maps (MLS maps) should

  model uncertainty in height

  represent large-scale data

  represent several height levels

  be updated consistently

  be useful for local map matching (ICP)

  allow us to join them

MLS Map Representation

X

Z

Each 2D cell stores various
patches consisting of:

•  A height mean µ

•  A height variance σ

•  A depth value d

• A patch can have no depth
(flat objects, e.g., floor)

• A cell can have one or
many patches (vertical gap
cells, e.g., bridges)

From Point Clouds to MLS Maps

• Map creation:

• Determine x,y cell for
each point

• Compute vertical intervals

• Classify into vertical and
horizontal intervals

• Apply Kalman update rule to all measurements
in horizontal intervals (patches)

• Use highest measurement as mean in vertical
intervals

Y

X

Map Update

• Given: new measurement z=(p,σ) with variance

• Determine the corresponding cell for z

• Find closest surface patch in the cell

• If z is inside 3 variances of
the patch, do Kalman update

• If z is in occupied region of a
surface patch, disregard it

• Otherwise, create a new
surface patch from z

Local Map Matching

Local Map Matching (Summary)

 Classify surface patches into
feature classes

 Sub-sample each feature class

  Find rotation R and translation t that
minimize the error function

Feature Extraction

  Traversable Surface
Patches

  Non traversable Surface
Patches

  Cells with vertical objects

ICP for Elevation Maps

Results after Optimization

  Map size: 195 by 146 m

  Cell resolution: 10 cm

  Number of data points: 20,207,000

Results

  Map size: 299 by 147 m

  Cell resolution: 10 cm

  Number of data points: 45,000,000

 The robot can pass
under and go over the

bridge

Resulting Map

Learning Large Scale MLS Maps with
Multiple Nested Loops

Why Planar Approximations?

The Surface Normals

Partial data Normals of triangles

Plane Approximations

  Region growing
 [Besl and Jain ’88, …]
  Hough Transform
 [Okada et al. ’03, Sabe et al. ’04]
  Lines
 [Nuechter et al. ’03]
 Maximum Likelihood Clustering (EM)
 [Liu et al. ’03]

Plane Approximations

  Region growing
 [Besl and Jain ’88, …]
  Hough Transform
 [Okada et al. ’03, Sabe et al. ’04]
  Lines
 [Nuechter et al. ’03]
 Maximum Likelihood Clustering (EM)
 [Liu et al. ’03]

Graphical Model for Standard EM

correspondences
(hidden)

planes

measurements

The E-Step in Standard EM

Calculate the expectations over the hidden
variables, i.e., the probability that a particular
point n belongs to a plane m:

M-Step for Standard EM

  Calculate the plane parameters
 according to the data points
 taking into account the data associations

  Can be done in closed form.

EM Example

Typical Problem in Standard EM

 Data association
uncertainty

  results in
alignment errors
in M-step

Idea: Incorporate higher-level
knowledge about planes (parallelism)

⇒ Hierarchical EM

Man-made Environments

  Similar
structures

 Many planes
are parallel

  Can be utilized
during
mapping

Hierarchical Model

Idea: simultaneously
  cluster points into planes and
  planes into main directions to

  obtain the most likely set of planes and
main directions.

Maximum Likelihood Estimation

84,660 points

3 planes

2 main directions

Example

Main directions are normal vectors of planes.

Graphical Model for Standard EM

correspondences
(hidden)

planes

measurements

Graphical Model for Hier. EM

main directions

correspondences
(hidden)

planes

correspondences
(hidden)

measurements

 Goal: Find and so that JPD is
maximized

  Take expectation over hidden variables
  Start with initial planes and main directions
  Iterate until convergence:

Expectation Maximization

The E-Step in Hierarchical EM

The E-Step in Hierarchical EM

The M-Step

  Find planes and main directions so that the
expected log-likelihood is maximized

  No closed-form solution (LL is non-linear)

 Optimization technique: conjugate gradient
based method

Model Complexity

  Problem: number of planes / main
directions not known

  Evaluate model complexity using Bayesian
Information Criterion (BIC):

Log-likelihood Model complexity Data size

Choose model with minimum BIC

Overall Algorithm

1.  Start with initial and
2.  Run EM until convergence
3.  While BIC decreases:

a) Remove one plane and calculate new
BIC

b) Remove one main direction and
calculate new BIC

4.  If no change stop, else:
a)  Insert new plane and main direction
b) Go to 2.

Post Processing

  Project points belonging to a plane into the
plane

  Cluster points into polygonal areas (region-
growing)

  Find 2D contours for each cluster (alpha-
shapes)

  Constraint: polygonal areas should not
contain holes

Real Data Experiment (2)

Typical Result

Standard EM: Hierarchical EM:

Real Data Experiment

Real Data Experiment

Plain EM

Hierarchical EM

Quantitative Evaluation (1)

Quantitative Evaluation (2)

Plain EM

Hierarchical EM

Results
  Hierarchical approach that simultaneously

clusters data into planes and planes into main
directions

  Expectation Maximization to find most likely
model

  Automatic estimation of model complexity using
BIC

  Yields more accurate models by utilizing the
estimated “global constraints”

More than 3 Main Directions

Terrain Modeling (Revisited)

  Common representations for terrain data:

Point clouds Grid maps

Terrain Modeling (Revisited)

  Common representations for terrain data:

Point clouds Grid maps

+ in continuous 3D
+ max. resolution
- sparse
- noisy

Terrain Modeling (Revisited)

  Common representations for terrain data:

Point clouds Grid maps

+ compact
+ reduced noise
- sparse
- fixed resolution

+ in continuous 3D
+ max. resolution
- sparse
- noisy

Modeling Terrain Elevation

  Terrain mapping seen as a regression problem:

Modeling Terrain Elevation

  Terrain mapping seen as a regression problem:

Modeling Terrain Elevation

  Terrain mapping seen as a regression problem:

LA-GP: Locally Adaptive GPs

  Approach: Gaussian process regression

  Two extensions:

1. Nonstationary covariances:
Adapting the smoothness locally

2. Model tiling:
Sparse approximations for large data sets

Gaussian Process Regression
  Prediction of a new value at location ?

Gaussian Process Regression
  Stationary covariance functions model global

function smoothness

broad medium narrow

smooth medium wiggly

Observation (with
white noise σ=0.3)

Kernels Predicted Map Local errors

Iterative Adaptation

Experiments

1. We scanned a terrain board, learned an LA-GP
model and compared it to the known ground truth.

2. We evaluated the usefulness for motion planning.

3. We used the learned model to traverse a terrain.

Experiments

Experiments

Experiments

Observations:

The adapted terrain model:

Experiments

Ground Truth Observations

Experiments

Prediction

Experiments

Autonomous Parking

approx. 260MB

Navigation with the
Autonomous Car Junior
  Task: reach a parking spot on the upper

level of the garage.

Planned Trajectories

Local plan
towards the goal

Global trajectory

Experiment with Junior

Mapping in Dynamic
Environments
Problem:
 Often models of non-stationary objects are

not available.
 Often we cannot assume that there is a

separation between non-stationary and
static objects.

Solution:
  Using EM to learn beams reflected by

dynamic objects.

The Measurement Model
1.  pose at time t:

2.  beam n of scan t:

3.  maximum range reading:

4.  beam reflected by dynamic object:

5.  beam reflected by static object:

0 n 1

Application of EM

E-Step:

M-Step:
Compute most likely map by considering the
expectations et,n during SLAM.

else

Computing the Most Likely Map

Suppose

Computing the Most Likely Map
We assume that all cells mj are independent:

If we set

Computing the most likely map amounts to
counting how often a cell has reflected a
measurement.

we obtain

EM-based Estimation
of the Most Likely Map

etn: Expectation that ztn is reflected by
a dynamic object

Compute map m based
on the expectations etn

Compute the expectation
etn that beam n in scan t is
reflected by a dynamic
object given m

M-Step:

E-Step:

Byzantine Museum, Athens

Wean Hall

Wean Hall (Hallway)

Wean Hall (Hallway)

Pittsburgh
Craig Street/Forbes Ave

3D Maps in Dynamic
Environments

A Fly-Through

Landmark Selection

Task:
Autonomous navigation
in the context of
embedded systems.

Problem:
  Simultaneous localization and mapping (SLAM)

has high computational and memory demands.
  Embedded devices only provide limited

computational power and memory capacity.

EKF-SLAM

 Given:
 A sequence of observations
 A sequence of actions

  Jointly estimate at each point in time t:
 Pose of the robot:
 Positions of N landmarks:

  Here: Unscented Kalman Filter (UKF)

Scenario

  Limited computational resources.
 Only few landmarks can be integrated.

  Solve navigation task as good as possible.
 Reach target location as accurate as possible.

  Idea: Learn what to do.
  Learn which landmark to consider.

  Desired properties:
 Better than manually tuned heuristic.
 Good generalization of learned policies.
 Compress policies so they become applicable

on systems with restricted memory capacity.

  Idea: Learn from interaction with
the environment.

  Episode:

Monte-Carlo Reinforcement Learning
  Estimate the Q-function as the average return

over sample episodes.

Reinforcement Learning

Estimate Q function which maps each state/
action pair to a cost value.

 Choose policy    with

 state s action a state s‘ action a‘ final cost

B

A

Single Goal Task

  Robot should move from A to B.
  N landmarks in the environment.
 Only M landmarks can be used.

Learning target:
Select the optimal landmarks for the
navigation such that the distance
between true pose of the robot
and the goal B is minimized.

B

A

Single Goal Task

  Robot should move from A to B.
  N landmarks in the environment.
 Only M landmarks can be used.

Learning target:
Select the optimal landmarks for the
navigation such that the distance
between true pose of the robot
and the goal B is minimized.

?

B

A

Single Goal Task

  Robot should move from A to B.
  N landmarks in the environment.
 Only M landmarks can be used.

Learning target:
Select the optimal landmarks for the
navigation such that the distance
between true pose of the robot
and the goal B is minimized.

B

A

Round Trip Task

  Robot should move from A to B
and back to A twice.

Learning target:
Minimize the average distance
between pose estimate and true
pose over the whole trajectory.

 Focus on loop-closure.

State and Action Space

Potential state space:
  Full UKF state (high-dimensional)

Relevant features:
1.  Estimated distance to the sub-goal B
2.  Number of landmarks integrated in UKF

3.  Yaw angle to potential new landmark
4.  Distance of potential new landmark to

closest landmark already integrated

5.  (Entropy of the robot pose)

Binary action:
  Accept landmark / reject landmark

B

A

State and Action Space

Potential state space:
  Full UKF state (high-dimensional)

Relevant features:
1.  Estimated distance to the sub-goal B
2.  Number of landmarks integrated in UKF

3.  Yaw angle to potential new landmark
4.  Distance of potential new landmark to

closest landmark already integrated

5.  (Entropy of the robot pose)

Binary action:
  Accept landmark / reject landmark

State and Action Space

Potential state space:
  Full UKF state (high-dimensional)

Relevant features:
1.  Estimated distance to the sub-goal B
2.  Number of landmarks integrated in UKF

3.  Yaw angle to potential new landmark
4.  Distance of potential new landmark to

closest landmark already integrated

5.  (Entropy of the robot pose)

Binary action:
  Accept landmark / reject landmark

B

A

State and Action Space

Potential state space:
  Full UKF state (high-dimensional)

Relevant features:
1.  Estimated distance to the sub-goal B
2.  Number of landmarks integrated in UKF

3.  Yaw angle to potential new landmark
4.  Distance of potential new landmark to

closest landmark already integrated

5.  (Entropy of the robot pose)

Binary action:
  Accept landmark / reject landmark

B

A

?

State and Action Space

Potential state space:
  Full UKF state (high-dimensional)

Relevant features:
1.  Estimated distance to the sub-goal B
2.  Number of landmarks integrated in UKF

3.  Yaw angle to potential new landmark
4.  Distance of potential new landmark to

closest landmark already integrated

5.  (Entropy of the robot pose)

Binary action:
  Accept landmark / reject landmark

B

A

?

State and Action Space

Potential state space:
  Full UKF state (high-dimensional)

Relevant features:
1.  Estimated distance to the sub-goal B
2.  Number of landmarks integrated in UKF

3.  Yaw angle to potential new landmark
4.  Distance of potential new landmark to

closest landmark already integrated

5.  (Entropy of the robot pose)

Binary action:
  Accept landmark / reject landmark

B

A

State and Action Space

Potential state space:
  Full UKF state (high-dimensional)

Relevant features:
1.  Estimated distance to the sub-goal B
2.  Number of landmarks integrated in UKF

3.  Yaw angle to potential new landmark
4.  Distance of potential new landmark to

closest landmark already integrated

5.  (Entropy of the robot pose)

Binary action:
  Accept landmark / reject landmark

B

A

?

Representation of the Q-Function

Q: (s,a)  cost

k-Nearest Neighbor Regression:
  Store training data in a KD-tree.
  Find up to k nearest neighbors of query point

(s,a) within a fixed search radius.
  Return mean of neighbors.

Properties:
 Generalizes in sparse areas, and
 is accurate in dense areas.
 No overfitting.
 Model is expressed explicitly by the data (as

Gaussian Processes), but very fast.

Q
ua

lit
at

iv
e

Ev
al

ua
ti
on

S
in

gl
e

G
oa

l T
as

k M-First
heuristic

Equidistant
heuristic

Learned
policy

Policies

Q
ua

lit
at

iv
e

Ev
al

ua
ti
on

R
ou

nd
 T

ri
p

Ta
sk

Equidistant
heuristic

Learned
policy

Policies

Quantitative Results
  10 independent trainings run consisting of 2000 episodes.
  For each episode a new random environment is created.
  Each trained policy is tested in 1000 episodes.
  Single goal task: Learned policies lead to significantly

smaller average errors compared to hand-tuned heuristics.

  Round trip task: Learned policies (± m) are significantly
better than equidistant heuristic (m).

Generalization
  So far we did learning and testing using the same

setting.
  Desired property:

•  Learn the landmark selection policy in one training
scenario.

•  Apply the learned policy successfully in other scenarios.

Crucial Parameters:
  M - the number of landmarks to select. (5-10-15)
  N - the landmark density in the environment.

(50-100)

  Adjust state space accordingly:
•  E.g., percentage of landmarks already integrated.

High Degree of Generalization

  Each policy (e.g., 5/50) is trained 10 times.
  Each trained policy is evaluated using 1000 episodes.

Real-Robot Experiment

Pioneer robot with
upward looking camera

View of the robot: detected visual
landmarks on the ceiling

Policy trained in simulation, tested on robot.
 Learned policy is significantly better than equidistant.

Average error: 0.50 m (learned) versus 0.66 m (equidistant)

Uncompressed Policy
20.000 labelled data points of the uncompressed policy:

Policy Compression Using
Neural Network Classification

  Neural network structure:

  15 weights, 4 bias parameters

4 input units
(4d state space)

3 hidden units 1 output unit
(select/reject

landmark)

sigmoid activation function

Comparison: Compressed
Versus Uncompressed Policies

Compressed Policy
20.000 labelled data points created by the neural network:

Deletion of Landmarks?

  Idea: Marginalize out old landmark in order to
cope with limited memory.

  Deletion leads to a more complex problem since
the required state and action space increases
significantly.
•  Which old landmark should be replaced by the new one?

  First investigations reveal that the following
selection policy is promising:
•  Keep some landmarks fixed for re-localization.
•  Perform incremental pose correction with set of frequently

replaced landmarks.

  More research has to be done.

Conclusion

  Novel approach for landmark selection in
the context of autonomous navigation.

  Important for robots with limited
resources.

  The learned policies are significant better
then manually designed strategies such
as the equidistant heuristic.

  Learned policy generalizes to new
environment (with different properties).

  Landmark selection policy learned in
simulation has successfully been applied
on a real robot.

Robustness towards Shorter/
Longer Paths?

 We can mimic longer/shorter trajectories
with by the help of the landmark capacity M
and landmark density N.
• If the path length is doubled the, we

simple double M and N.
  Limitation: We did not adapt the sensor

and motion noise accordingly.
• How robust is the approach towards

different sensor/motion noise?
• More research has to be done here!

Robustness towards Changes in
Sensor and Motion Noise?
 We applied policy learned in simulation

successfully on a real robot.
 We estimated the motion and sensor noise

parameter only very roughly.
 Small indication that the approach is

somehow robust towards changes in noise.

  But: More research has to be done here!
• Inclusion of noise specific features in the state

space might increase the robustness…

Action Selection

  Variant of ε–greedy to boost the training:

¼ (s) =

8
> > > > > > <

> > > > > > :

a r g m a x a Q (s ; a) i f Q (s ; a a c c e p t) 6 = Q (s ; a r e j e c t)
a n d Â 1 < 1 ¡ ²

a a c c e p t i f [Q (s ; a a c c e p t) = Q (s ; a r e j e c t) o r Â 1 · ²]
a n d Â 2 < M

N v i s i b l e
a r e j e c t e l s e

Compact Representation
  K-NN is very fast, but the memory requirements is linear to the

number of training data.
  Use approach that Armin Hornung, Maren Bennewitz, and I applied

for a similar learning task: Efficient visual navigation in known
environment.

  Problem: Some areas in
the state space/action are
visited very rarely (the
values are “nonsense”.)

  Idea: Express state space
by the state/action values
visited in 1000 episode
using the learned policy.

  Use clustering technique.

Localization Using a Camera

Advantages of cameras:
  Provide valuable information
 Compact
  Lightweight

Ideal sensor for humanoid robots and UAVs

Problem of Vision-based
Localization

  Fast movements of the robot introduce motion blur
in the images

v=0.05 m/s v=0.4 m/s v=1.0 m/s

Problem of Vision-based
Localization

  Fast movements of the robot introduce motion blur
in the images

v=0.05 m/s v=0.4 m/s v=1.0 m/s

Problem of Vision-based
Localization

  Fast movements of the robot introduce motion blur
in the images

v=0.05 m/s v=0.4 m/s v=1.0 m/s

Problem of Vision-based
Localization

  Fast movements of the robot introduce motion blur
in the images

v=0.05 m/s v=0.4 m/s v=1.0 m/s

Problem of Motion Blur
  Features cannot be extracted and matched reliably

anymore

  Degradation depends on

 Camera quality, shutter speed

  Lighting conditions

 Velocity of the robot

  Image preprocessing possible, but does not
completely restore the image

  Let the robot learn how to control its motion in
order to reach the destination fast and reliably

  Take the influence of motion blur into account
to generate an efficient navigation policy

Approach

Task Description

  Navigation from the start to a goal point (or to an
intermediate waypoint)

  Localization based on visual features

  UKF to track the robot’s pose

  Task is finished when reaching the destination
(physically)

  Goal: Learn a navigation strategy which minimizes
the time to the destination

Learning Navigation Policies

  Formulation as reinforcement learning task

  Defined as Markov decision process (MDP) using
the states S, the actions A, and the rewards R

  In our case: Augmented MPD

State Space
  Use relevant features to represent the complete

state
 Uncertainty of UKF, entropy over the Gaussian

  Estimated Euclidean distance to the goal

  Estimated relative angle to the goal

  Based on the most-likely pose estimate

Actions

  Choosing the velocity v

  Possible actions
A={0.1,0.2,0.3,0.4,1.0} in m/s

  Discretization determined according to the effect
of motion blur

  The selected velocity v is sent to the navigation
controller

  Note: The collision avoidance stops the robot in
dangerous cases

Rewards

  Reward at t:

  Drives the robot to reach the destination as fast as
possible

  No explicit punishment for delocalization

  Implicit punishment: Time to stop, re-localize, and
accelerate again

Experiments

  Learning and parameter evaluation
in simulation

  The policy is learned in a scenario
with 2 waypoints

  The landmark observation probability
is estimated from real data

  Each learning run: 500 episodes

  The landmark positions are
randomized in each episode
(landmark density: 40 L/)

Trajectory of the Learned Policy
(in Simulation)

Indoor Robot

Pioneer 2 robot with
downlooking camera

Observed floor patch with
SURF as visual landmarks

Outdoor Robot

Powerbot robot with
downlooking camera

Observed floor patch with
SURF as visual landmarks

Evaluation - Indoor Robot

  Two-waypoint
scenario

  Evaluation: 10 runs
of the learned policy

  Compared to driving
at constant velocity
(10 runs for each
velocity)

  Our learned policy
is significantly
faster!

Learned Policy – Indoor Robot

Scenario with Multiple Waypoints
Simulation Results

 When the pose estimate is sufficiently close to the
waypoint, the next waypoint is regarded as goal

Learned Policy – Outdoor Robot

start
dest.

Learned Policy – Outdoor Robot

Learned Policy – Outdoor Robot

Learned Policy – Outdoor Robot

Generalization over the
Landmark Density
  Evaluate the policy learned in an

environment with a landmark density of
40 L/ in

 sparser (10 L/) and

 denser (70 L/) environments

  Compare the performance to a policy
learned in an environment matching the
respective test environment

Generalization over the
Landmark Density

  No need to explicitly account for environmental
conditions in the learning scenario since no
significant difference!

Policy Compression
  Learned policy is represented by a table

whose size depends on the discretization
  For each visited state (d, ,h), the chosen

velocity v is regarded as classification
  Apply X-Means (k-Means+BIC) to find the

number of clusters and their centers

  Significantly
more compact
representation

  Yields a similar
performance pr

oj
ec

ti
on

 o
n

di

st
an

ce
 +

 e
nt

ro
py

Conclusions (1)

  New approach to learning an efficient
policy for vision-based navigation

  Via reinforcement learning, the robot
learns to reach its destination as fast as
possible

  The impact of motion blur on the feature
detection is implicitly taken into account

 Our learned policy outperforms any
strategy of driving at a constant velocity

Conclusions (2)

  The learned policy generalizes over
different environments

  X-means clustering on the visited state
space for compressing the learned policy

  Compressed policy is an order of
magnitude smaller without a loss of
performance

SA-1

Place Classification
  Indoor environments can be decomposed into different

places

  How can we determine the type of place a robot is at
and how can we utilize it to improve navigation tasks?

Room Room

Corridor Corridor Doorway Doorway

SA-1

Observations

Corridor Corridor

SA-1

Observations

Room Room Corridor Corridor

SA-1

Observations

Room Room Doorway Doorway Corridor Corridor

SA-1

Place Classification using Boosting

Observation:
There exists a variety of simple features fi
we can define on laser range scans.

Problems:
Each single feature fi gives poor
classification rates.

Idea:
Combine multiple simple features to form
a strong classifier using AdaBoost.

SA-1

Simple Features

•  gap = d > θ
•  f = #gaps

minimum

•  f = area •  f = perimeter •  f = d

d di
d

•  f = d • 

d

Σ di

Learning

AdaBoost

multi-class classifier

Room Room Corridor Corridor Doorway Doorway

features features features features features features

Classification

Multi-class
classifier

observation

features Corridor Corridor

SA-1

Application Result

 Training
 # examples:

 16045

Test
examples:

18726
classification:

94%

Room Room Corridor Corridor Doorway Doorway

SA-1

Application to a New Environment

Training map

SA-1

Training map

Room Room Corridor Corridor Doorway Doorway

Application to a New Environment

Related Work

  Minimizing the uncertainty in the belief distribution
during SLAM or navigation
[Kollar&Roy ‘06, He et al. ’08, Roy et al. ‘99]

  Consider shaking movements of the head, acquire
only images during stable phases
[Ido et al. ’09]

  Image preprocessing to restore an image and
reduce the effects of motion blur
[Pretto et al. ’09]

Thank you!

