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Why Mapping? 

  Learning maps is one of the fundamental 
problems in mobile robotics 

 Maps allow robots to efficiently carry out 
their tasks, allow localization … 

  Successful robot systems rely on maps for 
localization, path planning, activity planning 
etc. 



Topics Covered 

  Probabilistic reasoning 
 Occupancy grid mapping 
  Reflection maps 
  3d mapping 
  SLAM 
  Learning for improving SLAM 
  Interpretation 
 … 
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Nature of Data 

Odometry Data Range Data 



Probabilistic Robotics 

 perception = state estimation 

 action = utility optimization 



Probabilistic Robotics 

 perception = state estimation 

 action = utility optimization 



The Robot Mapping Problem 

What does my 
environment look like? 



The Robot Mapping Problem 

Formally, mapping involves, given the 
sensor data, 

to calculate the most likely map 



A Graphical Model for SLAM 
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Probabilistic Formulation  
of SLAM 

n=axb dimensions 

map m 

three dimensions 



Several Aspects 

 Mapping with known poses 
  Localization 
  Simultaneous localization and mapping 

(SLAM) 
  Simplifications 
 Dynamic environments 
  Learning and SLAM 



Bayes Filters 

Bayes 

z  = observation 
u  = action 
x  = state 

Markov 

Markov 

Tot. prob. 

Markov 



SLAM: Mapping as a Chicken 
and Egg Problem? 

  It appeared easy to estimate the pose of a 
robot given the data and the map. 

 Mapping, however, involves to 
simultaneously estimate the pose of the 
vehicle and the map. 

  The general problem is therefore denoted 
as the simultaneous localization and 
mapping problem (SLAM). 

  Throughout this section we will describe 
how to calculate a map given we know the 
pose of the vehicle. 



Types of SLAM-Problems 

 Grid maps or scans 

  
 [Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…] 

  Landmark-based 

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;… 



Problems in Mapping 

  Sensor interpretation 
 How do we extract relevant information 

from raw sensor data? 
 How do we represent and integrate this 

information over time? 

  Robot locations have to be estimated 
 How can we identify that we are at a 

previously visited place? 
 This problem is the so-called data 

association problem. 



Mapping with Known Poses 

What does the 
environment look like? 



Occupancy Grid Maps 

  Introduced by Moravec and Elfes in 1985 
  Represent environment by a grid. 

  Estimate the probability that a location is 
occupied by an obstacle. 

  Key assumptions 
 Occupancy of individual cells          is 

independent 

 Robot positions are known! 



Updating Occupancy Grid Maps 

  Idea: Update each individual cell using a 
binary Bayes filter. 

  Additional assumption: Map is static. 



Updating Occupancy Grid Maps 

  Update the map cells using the inverse sensor 
model 

  Or use the log-odds representation 

  with 



An Inverse Sensor Model  
for Occupancy Grid Maps 

Combination of a linear function and a Gaussian: 



Key Parameters of the Model 



z+d1 z+d2 

z+d3 z 

z-d1 

Occupancy Value Depending on 
the Measured Distance 



Deviation from the Prior Belief 
(the sphere of influence of the sensors) 



Calculating the Occupancy 
Probability Based on Single 
Observations 



Incremental Updating  
of Occupancy Grids (Example)  



Resulting Map Obtained with 
Ultrasound Sensors 



Resulting Occupancy and 
Maximum Likelihood Map 

The maximum likelihood map is obtained by 
clipping the occupancy grid map at a 
threshold of 0.5  



Occupancy Grids: From scans to maps 



Tech Museum, San Jose 

CAD map occupancy grid map 



Popular Alternative: Counting 

  For every cell count 
  hits(x,y): number of cases where a beam ended 

at [x,y] 
 misses(x,y): number of cases where a beam 

passed through [x,y] 

  Estimated value: P(reflects(x,y))  

  Ho to derive this model?  



The Measurement Model 

1.  pose at time t: 

2.  beam n of scan t: 

3.  maximum range reading: 

4.  beam reflected by an object:  

0 n 1 



Computing the Most Likely Map 
  Compute values for m that maximize 

  Assuming a uniform prior probability for p(m), this is 
equivalent to maximizing the likelihood of the observations 



Computing the Most Likely Map 

Suppose 



Meaning of αj and βj 

corresponds to the number of times a 
beam that is not a maximum range 
beam ended in cell j (hits(j)) 

corresponds to the umber of times a 
beam intercepted cell j without ending 
in it (misses(j)). 



Computing the Most Likely Map 
We assume that all cells mj are independent: 

If we set 

Computing the most likely map amounts to 
counting how often a cell has reflected a 
measurement and how often it was intercepted. 

we obtain 



Difference between Occupancy 
Grid Maps and Counting 

  The counting model determines how often 
a cell reflects a beam. 

  The occupancy model represents whether 
or not a cell is occupied by an object. 

  Although a cell might be occupied by an 
object, the reflection probability of this 
object might be very small. 



Example Occupancy Map 



Example Reflection Map 

glass panes 



Summary 
  Occupancy grid maps are a popular approach to represent 

the environment of a mobile robot given known poses. 
  It stores the posterior probability that the 

corresponding area in the environment is occupied. 
  Occupancy grid maps can be learned efficiently using a 

probabilistic approach. 
  Reflection maps are an alternative representation. 
  They store in each cell the probability that a beam is 

reflected by this cell.  
  We provided a sensor model for computing the likelihood of 

measurements and showed that the counting procedure 
underlying reflection maps corresponds to that model and 
yields the maximum likelihood map.  

  Both approaches consider the individual cells to be 
independent of each other. 
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Localization with Bayes 
Filters 



Implementations 

 Kalman filters 

 Multi-hypothesis tracking 

 Grid-based approaches 

 Topological maps 

 Particle filters 



  Represent density by random samples 
  Estimation of non-Gaussian, nonlinear processes 

  Monte Carlo filter, Survival of the fittest, 
Condensation, Bootstrap filter, Particle filter 

  Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96] 

  Computer vision: [Isard and Blake 96, 98]  
  Dynamic Bayesian Networks: [Kanazawa et al., 95] 

Particle Filters 



Particle Filter Algorithm 

1. Draw     from 

2. Draw     from 

3. Importance factor for 

4. Re-sample 



Vision-based Localization 



Quadcopter Localization 



Simultaneous Localization and 
Mapping (SLAM) 

  To determine its position, the robot needs 
a map. 

 During mapping, the robot needs to know 
its position to learn a consistent model 

  Simultaneous localization and mapping 
(SLAM) is a  
“chicken and egg problem” 



A Graphical Model for SLAM 
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Why SLAM is Hard: Raw Odometry 



Scan Matching 

Maximize the likelihood of the t-th pose and 
map relative to the (t-1)-th pose and map. 

robot motion current measurement 

map constructed so far 



Mapping using Scan Matching 



Probabilistic Formulation  
of SLAM 

n=axb dimensions 

map m 

three dimensions 



Given: 
  The robot’s controls 

 Observations of nearby point features 

Estimate: 
 Map of features 

  Path of the robot 

Landmark-based 
EKF SLAM 

A robot is exploring an 
unknown, static environment. 



Structure of the Landmark-
based SLAM-Problem  



Kalman Filter Algorithm  

1.   Algorithm Kalman_filter( µt-1, Σt-1, ut, zt): 

2.   Prediction: 
3.         
4.     

5.   Correction: 
6.         
7.    
8.    

9.   Return µt, Σt       



 Map with N landmarks:(3+2N)-dimensional 
Gaussian 

  Can handle hundreds of dimensions 

(E)KF-SLAM 



Classical Solution – The EKF 

  Approximate the SLAM posterior with a high-
dimensional Gaussian [Smith & Cheesman, 1986] … 

  Single hypothesis data association 

Blue path = true path   Red path = estimated path   Black path = odometry 



EKF-SLAM 

Map              Correlation matrix 



EKF-SLAM 

Map              Correlation matrix 



EKF-SLAM 

Map              Correlation matrix 



Victoria Park Data Set 

[courtesy by E. Nebot] 



Victoria Park Data Set Vehicle 

[courtesy by E. Nebot] 



Data Acquisition 

[courtesy by E. Nebot] 



SLAM 

[courtesy by E. Nebot] 



Map and Trajectory  

Landmarks 

Covariance 

[courtesy by E. Nebot] 



Landmark Covariance 

[courtesy by E. Nebot] 



Estimated Trajectory 

[courtesy by E. Nebot] 



FAST-SLAM / Mapping with 
Rao-Blackwellized PFs 
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Rao-Blackwellized Particle 
Filters for SLAM 
Observation:  
 Given the true trajectory of the robot, we can efficiently 

compute the map  
(mapping with known poses). 

Idea:  
  Use a particle filter to represent potential 

trajectories of the robot.  

  Each particle carries its own map.  

  Each particle survives with a probability that is 
proportional to the likelihood of the observation 
given that particle and its map.  

[Murphy et al., 99] 



Factorization Underlying  
Rao-Blackwellization 

Particle filter representing trajectory hypotheses 

Mapping with known poses 



Example 

map of particle 1 map of particle 3 

map of particle 2 

3 particles 



Limitations 

  A huge number of particles is required. 

  This introduces enormous memory and 
computational requirements.  

  It prevents the approach from being 
applicable in realistic scenarios. 



Challenge 

Reduction of the number of particles. 

Approaches: 

  Focused proposal distributions  
(keep the samples in the right place) 

  Adaptive re-sampling  
(avoid depletion of relevant particles) 



Motion Model for Scan Matching 

Raw Odometry 
Scan Matching 



Incorporating the Current 
Measurement 

End of a corridor: 

Free space: 

Corridor: 



Application Example 



Map of the Intel Lab 
 15 particles 

  four times faster 
than real-time 
P4, 2.8GHz 

 5cm resolution 
during scan 
matching 

 1cm resolution in 
final map 



Outdoor Campus Map 
 30 particles 

 250x250m2 

 1.75 km 
(odometry) 

 20cm resolution 
during scan 
matching 

 30cm resolution 
in final map 
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MIT Kilian Court 
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MIT Kilian Court 



Graph-based Formulation 

  Use a graph to represent the problem 
  Every node in the graph corresponds to 

a pose of the robot during mapping 
  Every edge between two nodes 

corresponds to the spatial constraints 
between them 

 Goal:  
Find a configuration of the nodes that 
minimize the error introduced by the 
constraints 



Problem Formulation 
  The problem can be described by a graph 

Goal: 
  Find the assignment of poses to the nodes of 

the graph which minimizes the negative log 
likelihood of the observations: 

nodes 

Observation  
of      from 

error 



Approaches 
  2D approaches: 

  Lu and Milios, ‘97 
 Montemerlo et al., ‘03 
 Howard et al., ‘03 
 Dellaert et al., ‘03 
  Frese and Duckett, ‘05 
 Olson et al., ‘06 
 Grisetti et al., ’07 
  Tipaldi et al.,’ 07 

  3D approaches: 
 Nuechter et al., ‘05 
 Dellaert et al., ‘05 
  Triebel et al., ’06 
 Grisetti et al., ’08/’09 



Graph-Based SLAM in a 
Nutshell 
  Problem described as a 

graph 
  Every node 

corresponds to a 
robot position and to 
a laser 
measurement 

 An edge between 
two nodes 
represents a data-
dependent spatial 
constraint between 
the nodes 

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti] 



Graph-Based SLAM in a 
Nutshell 
  Problem described as a 

graph 
  Every node 

corresponds to a 
robot position and to 
a laser 
measurement 

 An edge between 
two nodes 
represents a data-
dependent spatial 
constraint between 
the nodes 

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti] 



Graph-Based SLAM in a 
Nutshell 
  Once we have the 

graph, we determine 
the most likely map by 
“moving” the nodes 

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti] 



Graph-Based SLAM in a 
Nutshell 
  Once we have the 

graph, we determine 
the most likely map by 
“moving” the nodes 

  … like this. 

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti] 



  Once we have the 
graph, we determine 
the most likely map by 
“moving” the nodes 

  … like this. 
  Then we render a map 

based on the known 
poses 

Graph-Based SLAM in a 
Nutshell 

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti] 



Graph-based Visual SLAM 

Visual odometry 
Loop Closing 

[ courtesy B. Steder] 



The KUKA Production Site 



The KUKA Production Site 



The KUKA Production Site 

scans    59668 
total acquisition time        4,699.71 seconds 
traveled distance       2,587.71 meters 
total rotations    262.07 radians 
size     180 x 110 meters 
processing time    < 30 minutes 



Micro-Helicopters 



Autonomous Blimp 



Quadcopter SLAM 



The AIS Quadcopter 



3D Simulated Experiment 
 Highly connected graph 
 Poor initial guess 
 LU & variants fail 
 2200 nodes 
 8600 constraints 



Initialization with Varying Noise 



Approximations for 3D Maps 

  Surface maps 
  Planes 
 Gaussian processes 



Terrain Maps 

Point cloud 

+  Highly accurate representation 

−  Planning/navigation hard 

−  Huge memory requirements 



Terrain Maps 

Point cloud Standard elevation map 

+  Planning and navigation possible 
(2.5D grid structure) 

+  Compact representation 

−  Bridges appear as big obstacles 



Terrain Maps 

Point Cloud Standard Elevation Map 

Extended elevation map 

+  Planning with underpasses possible 
(cells with vertical gaps) 

−  No paths passing under and 
crossing over bridges possible 
(only one level per grid cell) 



Terrain Maps 

Point cloud Standard elevation map 

Extended elevation map Multi-level surface map 



Design Goals 
Multi-level surface maps (MLS maps) should  

  model uncertainty in height 

  represent large-scale data 

  represent several height levels 

  be updated consistently 

  be useful for local map matching (ICP) 

  allow us to join them 



MLS Map Representation 

X 

Z 

Each 2D cell stores various 
patches consisting of: 

•  A height mean µ 

•  A height variance σ 

•  A depth value d 

• A patch can have no depth 
(flat objects, e.g., floor) 

• A cell can have one or 
many patches (vertical gap 
cells, e.g., bridges) 



From Point Clouds to MLS Maps 

• Map creation: 

• Determine x,y cell for  
each point 

• Compute vertical intervals 

• Classify into vertical and  
horizontal intervals 

• Apply Kalman update rule to all measurements 
in horizontal intervals (patches) 

• Use highest measurement as mean in vertical 
intervals 

Y 

X 



Map Update 

• Given: new measurement z=(p,σ) with variance 

• Determine the corresponding cell for z 

• Find closest surface patch in the cell 

• If z is inside 3 variances of  
the patch, do Kalman update 

• If z is in occupied region of a  
surface patch, disregard it 

• Otherwise, create a new  
surface patch from z  



Local Map Matching 



Local Map Matching (Summary) 

 Classify surface patches into  
feature classes 

 Sub-sample each feature class 

  Find rotation R and translation t that 
minimize the error function 



Feature Extraction 

  Traversable Surface 
Patches 

  Non traversable Surface 
Patches 

  Cells with vertical objects  



ICP for Elevation Maps 



Results after Optimization 

  Map size: 195 by 146 m 

  Cell resolution: 10 cm 

  Number of data points: 20,207,000 



Results 

  Map size: 299 by 147 m 

  Cell resolution: 10 cm 

  Number of data points: 45,000,000 

 The robot can pass 
under and go over the 

bridge 



Resulting Map 



Learning Large Scale MLS Maps with 
Multiple Nested Loops 



Why Planar Approximations? 



The Surface Normals 

Partial data Normals of triangles 



Plane Approximations 

  Region growing 
 [Besl and Jain ’88, …] 
  Hough Transform  
 [Okada et al. ’03, Sabe et al. ’04] 
  Lines 
 [Nuechter et al. ’03] 
 Maximum Likelihood Clustering (EM) 
 [Liu et al. ’03] 



Plane Approximations 

  Region growing 
 [Besl and Jain ’88, …] 
  Hough Transform  
 [Okada et al. ’03, Sabe et al. ’04] 
  Lines  
 [Nuechter et al. ’03] 
 Maximum Likelihood Clustering (EM) 
 [Liu et al. ’03] 



Graphical Model for Standard EM 

correspondences    
(hidden) 

planes 

measurements 



The E-Step in Standard EM 

Calculate the expectations over the hidden 
variables, i.e., the probability that a particular 
point n belongs to a plane m: 



M-Step for Standard EM 

  Calculate the plane parameters 
 according to the data points  
 taking into account the data associations 

  Can be done in closed form. 



EM Example 



Typical Problem in Standard EM 

 Data association 
uncertainty 

  results in 
alignment errors 
in M-step 

Idea: Incorporate higher-level 
knowledge about planes (parallelism) 

⇒    Hierarchical EM 



Man-made Environments 

  Similar 
structures 

 Many planes 
are parallel 

  Can be utilized 
during 
mapping  



Hierarchical Model 

Idea: simultaneously 
  cluster points into planes and 
  planes into main directions to 

  obtain the most likely set of planes and 
main directions. 

Maximum Likelihood Estimation 



84,660 points 

3 planes 

2 main directions 

Example 

Main directions are normal vectors of planes. 



Graphical Model for Standard EM 

correspondences    
(hidden) 

planes 

measurements 



Graphical Model for Hier. EM 

main directions 

correspondences    
(hidden) 

planes 

correspondences 
(hidden) 

measurements 



 Goal: Find     and     so that JPD is 
maximized 

  Take expectation over hidden variables 
  Start with initial planes and main directions 
  Iterate until convergence: 

Expectation Maximization 



The E-Step in Hierarchical EM 



The E-Step in Hierarchical EM 



The M-Step 

  Find planes and main directions so that the 
expected log-likelihood is maximized 

  No closed-form solution (LL is non-linear) 

 Optimization technique: conjugate gradient 
based method 



Model Complexity 

  Problem: number of planes / main 
directions not known 

  Evaluate model complexity using Bayesian 
Information Criterion (BIC): 

Log-likelihood Model complexity Data size 

Choose model with minimum BIC 



Overall Algorithm 

1.  Start with initial     and  
2.  Run EM until convergence 
3.  While BIC decreases: 

a) Remove one plane and calculate new 
BIC 

b) Remove one main direction and 
calculate new BIC 

4.  If no change stop, else: 
a)  Insert new plane and main direction 
b) Go to 2. 



Post Processing 

  Project points belonging to a plane into the 
plane 

  Cluster points into polygonal areas (region-
growing) 

  Find 2D contours for each cluster (alpha-
shapes) 

  Constraint: polygonal areas should not 
contain holes  



Real Data Experiment (2) 



Typical Result 

Standard EM: Hierarchical EM: 



Real Data Experiment 



Real Data Experiment 

Plain EM 

Hierarchical EM 



Quantitative Evaluation (1) 



Quantitative Evaluation (2) 

Plain EM 

Hierarchical EM 



Results 
  Hierarchical approach that simultaneously 

clusters data into planes and planes into main 
directions 

  Expectation Maximization to find most likely 
model 

  Automatic estimation of model complexity using 
BIC 

  Yields more accurate models by utilizing the 
estimated “global constraints” 



More than 3 Main Directions 



Terrain Modeling (Revisited) 

  Common representations for terrain data: 

Point clouds Grid maps 



Terrain Modeling (Revisited) 

  Common representations for terrain data: 

Point clouds Grid maps 

+ in continuous 3D 
+ max. resolution 
- sparse 
- noisy 



Terrain Modeling (Revisited) 

  Common representations for terrain data: 

Point clouds Grid maps 

+ compact 
+ reduced noise 
- sparse 
- fixed resolution 

+ in continuous 3D 
+ max. resolution 
- sparse 
- noisy 



Modeling Terrain Elevation 

  Terrain mapping seen as a regression problem: 



Modeling Terrain Elevation 

  Terrain mapping seen as a regression problem: 



Modeling Terrain Elevation 

  Terrain mapping seen as a regression problem: 



LA-GP: Locally Adaptive GPs 

  Approach: Gaussian process regression 

  Two extensions: 

1. Nonstationary covariances: 
Adapting the smoothness locally 

2. Model tiling: 
Sparse approximations for large data sets 



Gaussian Process Regression 
  Prediction of a new value     at location    ? 



Gaussian Process Regression 
  Stationary covariance functions model global 

function smoothness 

broad medium narrow 

smooth medium wiggly 



Observation (with 
white noise σ=0.3) 

Kernels Predicted Map Local errors 

Iterative Adaptation 



Experiments 

1. We scanned a terrain board, learned an LA-GP 
model and compared it to the known ground truth. 

2. We evaluated the usefulness for motion planning. 

3. We used the learned model to traverse a terrain. 



Experiments 



Experiments 



Experiments 



Observations: 

The adapted terrain model: 

Experiments 



Ground Truth Observations 

Experiments 



Prediction 

Experiments 



Autonomous Parking 

approx. 260MB 



Navigation with the 
Autonomous Car Junior 
  Task: reach a parking spot on the upper 

level of the garage. 



Planned Trajectories 

Local plan 
towards the goal 

Global trajectory 



Experiment with Junior 



Mapping in Dynamic 
Environments 
Problem:  
 Often models of non-stationary objects are 

not available. 
 Often we cannot assume that there is a 

separation between non-stationary and 
static objects. 

Solution: 
  Using EM to learn beams reflected by 

dynamic objects. 



The Measurement Model 
1.  pose at time t: 

2.  beam n of scan t: 

3.  maximum range reading: 

4.  beam reflected by dynamic object:  

5.  beam reflected by static object: 

0 n 1 



Application of EM 

E-Step: 

M-Step: 
Compute most likely map by considering the 
expectations et,n during SLAM. 

else 



Computing the Most Likely Map 

Suppose 



Computing the Most Likely Map 
We assume that all cells mj are independent: 

If we set 

Computing the most likely map amounts to 
counting how often a cell has reflected a 
measurement. 

we obtain 



EM-based Estimation  
of the Most Likely Map 

etn: Expectation that ztn is reflected by 
a dynamic object 

Compute map m based 
on the expectations etn 

Compute the expectation 
etn that beam n in scan t is 
reflected by a dynamic 
object given m  

M-Step: 

E-Step: 



Byzantine Museum, Athens 



Wean Hall 



Wean Hall (Hallway) 



Wean Hall (Hallway) 



Pittsburgh 
Craig Street/Forbes Ave 



3D Maps in Dynamic 
Environments 



A Fly-Through 



Landmark Selection 

Task:  
Autonomous navigation  
in the context of  
embedded systems. 

Problem: 
  Simultaneous localization and mapping (SLAM) 

has high computational and memory demands. 
  Embedded devices only provide limited 

computational power and memory capacity. 



EKF-SLAM 

 Given:  
 A sequence of observations  
 A sequence of actions  

  Jointly estimate at each point in time t: 
 Pose of the robot: 
 Positions of N landmarks:   

  Here: Unscented Kalman Filter (UKF) 



Scenario 

  Limited computational resources. 
 Only few landmarks can be integrated. 

  Solve navigation task as good as possible. 
 Reach target location as accurate as possible. 

  Idea: Learn what to do. 
  Learn which landmark to consider. 

  Desired properties: 
 Better than manually tuned heuristic. 
 Good generalization of learned policies. 
 Compress policies so they become applicable 

on systems with restricted memory capacity. 



  Idea: Learn from interaction with 
the environment. 

  Episode: 

Monte-Carlo Reinforcement Learning 
  Estimate the Q-function as the average return 

over sample episodes. 

Reinforcement Learning 

Estimate Q function which maps each state/
action pair to a cost value. 

    Choose policy    with                                   

  state s   action a    state s‘   action a‘       final cost 
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Single Goal Task 

  Robot should move from A to B. 
  N landmarks in the environment. 
 Only M landmarks can be used. 

Learning target:  
Select the optimal landmarks for the 
navigation such that the distance  
between true pose of the robot  
and the goal B is minimized. 
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Round Trip Task 

  Robot should move from A to B 
and back to A twice. 

Learning target:  
Minimize the average distance  
between pose estimate and true  
pose over the whole trajectory. 

 Focus on loop-closure. 



State and Action Space 

Potential state space: 
  Full UKF state (high-dimensional) 

Relevant features: 
1.  Estimated distance to the sub-goal B 
2.  Number of landmarks integrated in UKF 

3.  Yaw angle to potential new landmark 
4.  Distance of potential new landmark to 

closest landmark already integrated 

5.  (Entropy of the robot pose) 

Binary action:  
  Accept landmark / reject landmark 
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Representation of the Q-Function 

Q: (s,a)  cost 

k-Nearest Neighbor Regression: 
  Store training data in a KD-tree. 
  Find up to k nearest neighbors of query point 

(s,a) within a fixed search radius. 
  Return mean of neighbors. 

Properties: 
 Generalizes in sparse areas, and  
 is accurate in dense areas. 
 No overfitting. 
 Model is expressed explicitly by the data (as 

Gaussian Processes), but very fast. 
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Quantitative Results 
  10 independent trainings run consisting of 2000 episodes. 
  For each episode a new random environment is created. 
  Each trained policy is tested in 1000 episodes. 
  Single goal task: Learned policies lead to significantly 

smaller average errors compared to hand-tuned heuristics. 

  Round trip task: Learned policies (± m) are significantly 
better than equidistant heuristic (m). 



Generalization 
  So far we did learning and testing using the same 

setting. 
  Desired property: 

•  Learn the landmark selection policy in one training 
scenario. 

•  Apply the learned policy successfully in other scenarios. 

Crucial Parameters: 
  M - the number of landmarks to select. (5-10-15) 
  N - the landmark density in the environment.  

(50-100) 

  Adjust state space accordingly: 
•  E.g., percentage of landmarks already integrated. 



High Degree of Generalization 

  Each policy (e.g., 5/50) is trained 10 times. 
  Each trained policy is evaluated using 1000 episodes. 



Real-Robot Experiment 

Pioneer robot with 
upward looking camera 

View of the robot: detected visual 
landmarks on the ceiling 

Policy trained in simulation, tested on robot. 
 Learned policy is significantly better than equidistant. 

Average error: 0.50 m (learned) versus 0.66 m (equidistant) 



Uncompressed Policy 
20.000 labelled data points of the uncompressed policy: 



Policy Compression Using 
Neural Network Classification 

  Neural network structure: 

  15 weights, 4 bias parameters 

4 input units  
(4d state space) 

3 hidden units 1 output unit 
(select/reject 

landmark) 

sigmoid activation function 



Comparison: Compressed 
Versus Uncompressed Policies 



Compressed Policy 
20.000 labelled data points created by the neural network: 



Deletion of Landmarks?  

  Idea: Marginalize out old landmark in order to 
cope with limited memory. 

  Deletion leads to a more complex problem since 
the required state and action space increases 
significantly. 
•  Which old landmark should be replaced by the new one? 

  First investigations reveal that the following 
selection policy is promising: 
•  Keep some landmarks fixed for re-localization. 
•  Perform incremental pose correction with set of frequently 

replaced landmarks. 

  More research has to be done. 



Conclusion 

  Novel approach for landmark selection in 
the context of autonomous navigation. 

  Important for robots with limited 
resources. 

  The learned policies are significant better 
then manually designed strategies such 
as the equidistant heuristic. 

  Learned policy generalizes to new 
environment (with different properties). 

  Landmark selection policy learned in 
simulation has successfully been applied 
on a real robot. 



Robustness towards Shorter/
Longer Paths? 

 We can mimic longer/shorter trajectories 
with by the help of the landmark capacity M 
and landmark density N. 
• If the path length is doubled the, we 

simple double M and N. 
  Limitation: We did not adapt the sensor 

and motion noise accordingly. 
• How robust is the approach towards 

different sensor/motion noise? 
• More research has to be done here! 



Robustness towards Changes in 
Sensor and Motion Noise? 
 We applied policy learned in simulation 

successfully on a real robot. 
 We estimated the motion and sensor noise 

parameter only very roughly. 
 Small indication that the approach is 

somehow robust towards changes in noise. 

  But: More research has to be done here! 
• Inclusion of noise specific features in the state 

space might increase the robustness… 



Action Selection  

  Variant of ε–greedy to boost the training: 

¼ ( s ) = 

8 
> > > > > > < 

> > > > > > : 

a r g m a x a Q ( s ; a ) i f Q ( s ; a a c c e p t ) 6 = Q ( s ; a r e j e c t ) 
a n d Â 1 < 1 ¡ ² 

a a c c e p t i f [ Q ( s ; a a c c e p t ) = Q ( s ; a r e j e c t ) o r Â 1 · ² ] 
a n d Â 2 < M 

N v i s i b l e 
a r e j e c t e l s e 



Compact Representation 
  K-NN is very fast, but the memory requirements is linear to the 

number of training data. 
  Use approach that Armin Hornung, Maren Bennewitz, and I applied 

for a similar learning task: Efficient visual navigation in known 
environment. 

  Problem: Some areas in 
the state space/action are 
visited very rarely (the 
values are “nonsense”.) 

  Idea: Express state space 
by the state/action values 
visited in 1000 episode 
using the learned policy. 

  Use clustering technique. 



Localization Using a Camera 

Advantages of cameras: 
  Provide valuable information  
 Compact 
  Lightweight 

Ideal sensor for humanoid robots and UAVs 



Problem of Vision-based 
Localization 

  Fast movements of the robot introduce motion blur 
in the images 

v=0.05 m/s v=0.4 m/s v=1.0 m/s 
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Problem of Motion Blur 
  Features cannot be extracted and matched reliably 

anymore 

  Degradation depends on  

 Camera quality, shutter speed 

  Lighting conditions 

 Velocity of the robot 

  Image preprocessing possible, but does not 
completely restore the image 



  Let the robot learn how to control its motion in 
order to reach the destination fast and reliably 

  Take the influence of motion blur into account 
to generate an efficient navigation policy 

Approach 



Task Description 

  Navigation from the start to a goal point (or to an 
intermediate waypoint) 

  Localization based on visual features 

  UKF to track the robot’s pose 

  Task is finished when reaching the destination 
(physically) 

  Goal: Learn a navigation strategy which minimizes 
the time to the destination 



Learning Navigation Policies 

  Formulation as reinforcement learning task 

  Defined as Markov decision process (MDP) using 
the states S, the actions A, and the rewards R 

  In our case: Augmented MPD 



State Space 
  Use relevant features to represent the complete 

state 
 Uncertainty of UKF, entropy over the Gaussian 

  Estimated Euclidean distance to the goal 

  Estimated relative angle to the goal 

  Based on the most-likely pose estimate 



Actions 

  Choosing the velocity v 

  Possible actions  
A={0.1,0.2,0.3,0.4,1.0} in m/s 

  Discretization determined according to the effect 
of motion blur 

  The selected velocity v is sent to the navigation 
controller 

  Note: The collision avoidance stops the robot in 
dangerous cases 



Rewards 

  Reward at t: 

  Drives the robot to reach the destination as fast as 
possible 

  No explicit punishment for delocalization  

  Implicit punishment: Time to stop, re-localize, and 
accelerate again 



Experiments 

  Learning and parameter evaluation 
in simulation 

  The policy is learned in a scenario 
with 2 waypoints 

  The landmark observation probability 
is estimated from real data 

  Each learning run: 500 episodes 

  The landmark positions are 
randomized in each episode 
(landmark density: 40 L/    ) 



Trajectory of the Learned Policy 
(in Simulation) 



Indoor Robot  

Pioneer 2 robot with 
downlooking camera 

Observed floor patch with 
SURF as visual landmarks 



Outdoor Robot  

Powerbot robot with 
downlooking camera 

Observed floor patch with 
SURF as visual landmarks 



Evaluation -  Indoor Robot 

  Two-waypoint 
scenario 

  Evaluation: 10 runs 
of the learned policy 

  Compared to driving 
at constant velocity 
(10 runs for each 
velocity) 

  Our learned policy 
is significantly 
faster! 



Learned Policy – Indoor Robot 



Scenario with Multiple Waypoints 
Simulation Results 

 When the pose estimate is sufficiently close to the 
waypoint, the next waypoint is regarded as goal 



Learned Policy – Outdoor Robot 

start 
dest. 



Learned Policy – Outdoor Robot 



Learned Policy – Outdoor Robot 



Learned Policy – Outdoor Robot 



Generalization over the 
Landmark Density 
  Evaluate the policy learned in an 

environment with a landmark density of  
40 L/      in  

 sparser (10 L/    ) and  

 denser (70 L/    ) environments 

  Compare the performance to a policy 
learned in an environment matching the 
respective test environment 



Generalization over the 
Landmark Density 

  No need to explicitly account for environmental 
conditions in the learning scenario since no 
significant difference! 



Policy Compression  
  Learned policy is represented by a table 

whose size depends on the discretization 
  For each visited state (d,  ,h), the chosen 

velocity v is regarded as classification  
  Apply X-Means (k-Means+BIC) to find the 

number of clusters and their centers 

  Significantly 
more compact 
representation 

  Yields a similar 
performance pr
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Conclusions (1) 

  New approach to learning an efficient 
policy for vision-based navigation 

  Via reinforcement learning, the robot 
learns to reach its destination as fast as 
possible 

  The impact of motion blur on the feature 
detection is implicitly taken into account 

 Our learned policy outperforms any 
strategy of driving at a constant velocity  



Conclusions (2) 

  The learned policy generalizes over 
different environments 

  X-means clustering on the visited state 
space for compressing the learned policy 

  Compressed policy is an order of 
magnitude smaller without a loss of 
performance 



SA-1 

Place Classification 
  Indoor environments can be decomposed into different 

places 

  How can we determine the type of place a robot is at 
and how can we utilize it to improve navigation tasks? 

Room Room 

Corridor Corridor Doorway Doorway 
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Observations 

Room Room Doorway Doorway Corridor Corridor 



SA-1 

Place Classification using Boosting 

Observation:  
There exists a variety of simple features fi 
we can define on laser range scans. 

Problems:  
Each single feature fi gives poor 
classification rates. 

Idea:  
Combine multiple simple features to form 
a strong classifier using AdaBoost. 



SA-1 

Simple Features 

•  gap = d > θ 
•  f = #gaps 

minimum 

•  f = area •  f = perimeter •  f = d 

d di 
d

•  f = d •   

d 

Σ di  



Learning 

AdaBoost 

multi-class classifier 

Room Room Corridor Corridor Doorway Doorway 

features features features features features features 



Classification 

Multi-class 
classifier  

observation 

features Corridor Corridor 



SA-1 

Application Result 

 Training 
 # examples: 

 16045 

Test  
# examples:  

18726 
classification: 

94% 

Room Room Corridor Corridor Doorway Doorway 
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Application to a New Environment 

Training map 



SA-1 

Training map 

Room Room Corridor Corridor Doorway Doorway 

Application to a New Environment 



Related Work 

  Minimizing the uncertainty in the belief distribution 
during SLAM or navigation  
[Kollar&Roy ‘06, He et al. ’08, Roy et al. ‘99] 

  Consider shaking movements of the head, acquire 
only images during stable phases 
[Ido et al. ’09] 

  Image preprocessing to restore an image and 
reduce the effects of motion blur  
[Pretto et al. ’09] 



Thank you! 


