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Why Mapping? 

  Learning maps is one of the fundamental 
problems in mobile robotics 

 Maps allow robots to efficiently carry out 
their tasks, allow localization … 

  Successful robot systems rely on maps for 
localization, path planning, activity planning 
etc. 



Topics Covered 

  Probabilistic reasoning 
 Occupancy grid mapping 
  Reflection maps 
  3d mapping 
  SLAM 
  Learning for improving SLAM 
  Interpretation 
 … 
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Nature of Data 

Odometry Data Range Data 



Probabilistic Robotics 

 perception = state estimation 

 action = utility optimization 



Probabilistic Robotics 

 perception = state estimation 

 action = utility optimization 



The Robot Mapping Problem 

What does my 
environment look like? 



The Robot Mapping Problem 

Formally, mapping involves, given the 
sensor data, 

to calculate the most likely map 



A Graphical Model for SLAM 

m 

x 

z 

u 

x 

z 

u 

2 

2 

x 

z 

u 

... t 

t 

x 1 

1 

0 

1 0 t-1 



Probabilistic Formulation  
of SLAM 

n=axb dimensions 

map m 

three dimensions 



Several Aspects 

 Mapping with known poses 
  Localization 
  Simultaneous localization and mapping 

(SLAM) 
  Simplifications 
 Dynamic environments 
  Learning and SLAM 



Bayes Filters 

Bayes 

z  = observation 
u  = action 
x  = state 

Markov 

Markov 

Tot. prob. 

Markov 



SLAM: Mapping as a Chicken 
and Egg Problem? 

  It appeared easy to estimate the pose of a 
robot given the data and the map. 

 Mapping, however, involves to 
simultaneously estimate the pose of the 
vehicle and the map. 

  The general problem is therefore denoted 
as the simultaneous localization and 
mapping problem (SLAM). 

  Throughout this section we will describe 
how to calculate a map given we know the 
pose of the vehicle. 



Types of SLAM-Problems 

 Grid maps or scans 

  
 [Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…] 

  Landmark-based 

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;… 



Problems in Mapping 

  Sensor interpretation 
 How do we extract relevant information 

from raw sensor data? 
 How do we represent and integrate this 

information over time? 

  Robot locations have to be estimated 
 How can we identify that we are at a 

previously visited place? 
 This problem is the so-called data 

association problem. 



Mapping with Known Poses 

What does the 
environment look like? 



Occupancy Grid Maps 

  Introduced by Moravec and Elfes in 1985 
  Represent environment by a grid. 

  Estimate the probability that a location is 
occupied by an obstacle. 

  Key assumptions 
 Occupancy of individual cells          is 

independent 

 Robot positions are known! 



Updating Occupancy Grid Maps 

  Idea: Update each individual cell using a 
binary Bayes filter. 

  Additional assumption: Map is static. 



Updating Occupancy Grid Maps 

  Update the map cells using the inverse sensor 
model 

  Or use the log-odds representation 

  with 



An Inverse Sensor Model  
for Occupancy Grid Maps 

Combination of a linear function and a Gaussian: 



Key Parameters of the Model 



z+d1 z+d2 

z+d3 z 

z-d1 

Occupancy Value Depending on 
the Measured Distance 



Deviation from the Prior Belief 
(the sphere of influence of the sensors) 



Calculating the Occupancy 
Probability Based on Single 
Observations 



Incremental Updating  
of Occupancy Grids (Example)  



Resulting Map Obtained with 
Ultrasound Sensors 



Resulting Occupancy and 
Maximum Likelihood Map 

The maximum likelihood map is obtained by 
clipping the occupancy grid map at a 
threshold of 0.5  



Occupancy Grids: From scans to maps 



Tech Museum, San Jose 

CAD map occupancy grid map 



Popular Alternative: Counting 

  For every cell count 
  hits(x,y): number of cases where a beam ended 

at [x,y] 
 misses(x,y): number of cases where a beam 

passed through [x,y] 

  Estimated value: P(reflects(x,y))  

  Ho to derive this model?  



The Measurement Model 

1.  pose at time t: 

2.  beam n of scan t: 

3.  maximum range reading: 

4.  beam reflected by an object:  

0 n 1 



Computing the Most Likely Map 
  Compute values for m that maximize 

  Assuming a uniform prior probability for p(m), this is 
equivalent to maximizing the likelihood of the observations 



Computing the Most Likely Map 

Suppose 



Meaning of αj and βj 

corresponds to the number of times a 
beam that is not a maximum range 
beam ended in cell j (hits(j)) 

corresponds to the umber of times a 
beam intercepted cell j without ending 
in it (misses(j)). 



Computing the Most Likely Map 
We assume that all cells mj are independent: 

If we set 

Computing the most likely map amounts to 
counting how often a cell has reflected a 
measurement and how often it was intercepted. 

we obtain 



Difference between Occupancy 
Grid Maps and Counting 

  The counting model determines how often 
a cell reflects a beam. 

  The occupancy model represents whether 
or not a cell is occupied by an object. 

  Although a cell might be occupied by an 
object, the reflection probability of this 
object might be very small. 



Example Occupancy Map 



Example Reflection Map 

glass panes 



Summary 
  Occupancy grid maps are a popular approach to represent 

the environment of a mobile robot given known poses. 
  It stores the posterior probability that the 

corresponding area in the environment is occupied. 
  Occupancy grid maps can be learned efficiently using a 

probabilistic approach. 
  Reflection maps are an alternative representation. 
  They store in each cell the probability that a beam is 

reflected by this cell.  
  We provided a sensor model for computing the likelihood of 

measurements and showed that the counting procedure 
underlying reflection maps corresponds to that model and 
yields the maximum likelihood map.  

  Both approaches consider the individual cells to be 
independent of each other. 
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Localization with Bayes 
Filters 



Implementations 

 Kalman filters 

 Multi-hypothesis tracking 

 Grid-based approaches 

 Topological maps 

 Particle filters 



  Represent density by random samples 
  Estimation of non-Gaussian, nonlinear processes 

  Monte Carlo filter, Survival of the fittest, 
Condensation, Bootstrap filter, Particle filter 

  Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96] 

  Computer vision: [Isard and Blake 96, 98]  
  Dynamic Bayesian Networks: [Kanazawa et al., 95] 

Particle Filters 



Particle Filter Algorithm 

1. Draw     from 

2. Draw     from 

3. Importance factor for 

4. Re-sample 



Vision-based Localization 



Quadcopter Localization 



Simultaneous Localization and 
Mapping (SLAM) 

  To determine its position, the robot needs 
a map. 

 During mapping, the robot needs to know 
its position to learn a consistent model 

  Simultaneous localization and mapping 
(SLAM) is a  
“chicken and egg problem” 



A Graphical Model for SLAM 
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Why SLAM is Hard: Raw Odometry 



Scan Matching 

Maximize the likelihood of the t-th pose and 
map relative to the (t-1)-th pose and map. 

robot motion current measurement 

map constructed so far 



Mapping using Scan Matching 



Probabilistic Formulation  
of SLAM 

n=axb dimensions 

map m 

three dimensions 



Given: 
  The robot’s controls 

 Observations of nearby point features 

Estimate: 
 Map of features 

  Path of the robot 

Landmark-based 
EKF SLAM 

A robot is exploring an 
unknown, static environment. 



Structure of the Landmark-
based SLAM-Problem  



Kalman Filter Algorithm  

1.   Algorithm Kalman_filter( µt-1, Σt-1, ut, zt): 

2.   Prediction: 
3.         
4.     

5.   Correction: 
6.         
7.    
8.    

9.   Return µt, Σt       



 Map with N landmarks:(3+2N)-dimensional 
Gaussian 

  Can handle hundreds of dimensions 

(E)KF-SLAM 



Classical Solution – The EKF 

  Approximate the SLAM posterior with a high-
dimensional Gaussian [Smith & Cheesman, 1986] … 

  Single hypothesis data association 

Blue path = true path   Red path = estimated path   Black path = odometry 



EKF-SLAM 

Map              Correlation matrix 



EKF-SLAM 

Map              Correlation matrix 



EKF-SLAM 

Map              Correlation matrix 



Victoria Park Data Set 

[courtesy by E. Nebot] 



Victoria Park Data Set Vehicle 

[courtesy by E. Nebot] 



Data Acquisition 

[courtesy by E. Nebot] 



SLAM 

[courtesy by E. Nebot] 



Map and Trajectory  

Landmarks 

Covariance 

[courtesy by E. Nebot] 



Landmark Covariance 

[courtesy by E. Nebot] 



Estimated Trajectory 

[courtesy by E. Nebot] 



FAST-SLAM / Mapping with 
Rao-Blackwellized PFs 
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Rao-Blackwellized Particle 
Filters for SLAM 
Observation:  
 Given the true trajectory of the robot, we can efficiently 

compute the map  
(mapping with known poses). 

Idea:  
  Use a particle filter to represent potential 

trajectories of the robot.  

  Each particle carries its own map.  

  Each particle survives with a probability that is 
proportional to the likelihood of the observation 
given that particle and its map.  

[Murphy et al., 99] 



Factorization Underlying  
Rao-Blackwellization 

Particle filter representing trajectory hypotheses 

Mapping with known poses 



Example 

map of particle 1 map of particle 3 

map of particle 2 

3 particles 



Limitations 

  A huge number of particles is required. 

  This introduces enormous memory and 
computational requirements.  

  It prevents the approach from being 
applicable in realistic scenarios. 



Challenge 

Reduction of the number of particles. 

Approaches: 

  Focused proposal distributions  
(keep the samples in the right place) 

  Adaptive re-sampling  
(avoid depletion of relevant particles) 



Motion Model for Scan Matching 

Raw Odometry 
Scan Matching 



Incorporating the Current 
Measurement 

End of a corridor: 

Free space: 

Corridor: 



Application Example 



Map of the Intel Lab 
 15 particles 

  four times faster 
than real-time 
P4, 2.8GHz 

 5cm resolution 
during scan 
matching 

 1cm resolution in 
final map 



Outdoor Campus Map 
 30 particles 

 250x250m2 

 1.75 km 
(odometry) 

 20cm resolution 
during scan 
matching 

 30cm resolution 
in final map 
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MIT Kilian Court 
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MIT Kilian Court 



Graph-based Formulation 

  Use a graph to represent the problem 
  Every node in the graph corresponds to 

a pose of the robot during mapping 
  Every edge between two nodes 

corresponds to the spatial constraints 
between them 

 Goal:  
Find a configuration of the nodes that 
minimize the error introduced by the 
constraints 



Problem Formulation 
  The problem can be described by a graph 

Goal: 
  Find the assignment of poses to the nodes of 

the graph which minimizes the negative log 
likelihood of the observations: 

nodes 

Observation  
of      from 

error 



Approaches 
  2D approaches: 

  Lu and Milios, ‘97 
 Montemerlo et al., ‘03 
 Howard et al., ‘03 
 Dellaert et al., ‘03 
  Frese and Duckett, ‘05 
 Olson et al., ‘06 
 Grisetti et al., ’07 
  Tipaldi et al.,’ 07 

  3D approaches: 
 Nuechter et al., ‘05 
 Dellaert et al., ‘05 
  Triebel et al., ’06 
 Grisetti et al., ’08/’09 



Graph-Based SLAM in a 
Nutshell 
  Problem described as a 

graph 
  Every node 

corresponds to a 
robot position and to 
a laser 
measurement 

 An edge between 
two nodes 
represents a data-
dependent spatial 
constraint between 
the nodes 

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti] 



Graph-Based SLAM in a 
Nutshell 
  Problem described as a 

graph 
  Every node 

corresponds to a 
robot position and to 
a laser 
measurement 

 An edge between 
two nodes 
represents a data-
dependent spatial 
constraint between 
the nodes 

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti] 



Graph-Based SLAM in a 
Nutshell 
  Once we have the 

graph, we determine 
the most likely map by 
“moving” the nodes 

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti] 



Graph-Based SLAM in a 
Nutshell 
  Once we have the 

graph, we determine 
the most likely map by 
“moving” the nodes 

  … like this. 

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti] 



  Once we have the 
graph, we determine 
the most likely map by 
“moving” the nodes 

  … like this. 
  Then we render a map 

based on the known 
poses 

Graph-Based SLAM in a 
Nutshell 

[KUKA Hall 22, courtesy P. Pfaff & G. Grisetti] 



Graph-based Visual SLAM 

Visual odometry 
Loop Closing 

[ courtesy B. Steder] 



The KUKA Production Site 



The KUKA Production Site 



The KUKA Production Site 

scans    59668 
total acquisition time        4,699.71 seconds 
traveled distance       2,587.71 meters 
total rotations    262.07 radians 
size     180 x 110 meters 
processing time    < 30 minutes 



Micro-Helicopters 



Autonomous Blimp 



Quadcopter SLAM 



The AIS Quadcopter 



3D Simulated Experiment 
 Highly connected graph 
 Poor initial guess 
 LU & variants fail 
 2200 nodes 
 8600 constraints 



Initialization with Varying Noise 



Approximations for 3D Maps 

  Surface maps 
  Planes 
 Gaussian processes 



Terrain Maps 

Point cloud 

+  Highly accurate representation 

−  Planning/navigation hard 

−  Huge memory requirements 



Terrain Maps 

Point cloud Standard elevation map 

+  Planning and navigation possible 
(2.5D grid structure) 

+  Compact representation 

−  Bridges appear as big obstacles 



Terrain Maps 

Point Cloud Standard Elevation Map 

Extended elevation map 

+  Planning with underpasses possible 
(cells with vertical gaps) 

−  No paths passing under and 
crossing over bridges possible 
(only one level per grid cell) 



Terrain Maps 

Point cloud Standard elevation map 

Extended elevation map Multi-level surface map 



Design Goals 
Multi-level surface maps (MLS maps) should  

  model uncertainty in height 

  represent large-scale data 

  represent several height levels 

  be updated consistently 

  be useful for local map matching (ICP) 

  allow us to join them 



MLS Map Representation 

X 

Z 

Each 2D cell stores various 
patches consisting of: 

•  A height mean µ 

•  A height variance σ 

•  A depth value d 

• A patch can have no depth 
(flat objects, e.g., floor) 

• A cell can have one or 
many patches (vertical gap 
cells, e.g., bridges) 



From Point Clouds to MLS Maps 

• Map creation: 

• Determine x,y cell for  
each point 

• Compute vertical intervals 

• Classify into vertical and  
horizontal intervals 

• Apply Kalman update rule to all measurements 
in horizontal intervals (patches) 

• Use highest measurement as mean in vertical 
intervals 

Y 

X 



Map Update 

• Given: new measurement z=(p,σ) with variance 

• Determine the corresponding cell for z 

• Find closest surface patch in the cell 

• If z is inside 3 variances of  
the patch, do Kalman update 

• If z is in occupied region of a  
surface patch, disregard it 

• Otherwise, create a new  
surface patch from z  



Local Map Matching 



Local Map Matching (Summary) 

 Classify surface patches into  
feature classes 

 Sub-sample each feature class 

  Find rotation R and translation t that 
minimize the error function 



Feature Extraction 

  Traversable Surface 
Patches 

  Non traversable Surface 
Patches 

  Cells with vertical objects  



ICP for Elevation Maps 



Results after Optimization 

  Map size: 195 by 146 m 

  Cell resolution: 10 cm 

  Number of data points: 20,207,000 



Results 

  Map size: 299 by 147 m 

  Cell resolution: 10 cm 

  Number of data points: 45,000,000 

 The robot can pass 
under and go over the 

bridge 



Resulting Map 



Learning Large Scale MLS Maps with 
Multiple Nested Loops 



Why Planar Approximations? 



The Surface Normals 

Partial data Normals of triangles 



Plane Approximations 

  Region growing 
 [Besl and Jain ’88, …] 
  Hough Transform  
 [Okada et al. ’03, Sabe et al. ’04] 
  Lines 
 [Nuechter et al. ’03] 
 Maximum Likelihood Clustering (EM) 
 [Liu et al. ’03] 



Plane Approximations 

  Region growing 
 [Besl and Jain ’88, …] 
  Hough Transform  
 [Okada et al. ’03, Sabe et al. ’04] 
  Lines  
 [Nuechter et al. ’03] 
 Maximum Likelihood Clustering (EM) 
 [Liu et al. ’03] 



Graphical Model for Standard EM 

correspondences    
(hidden) 

planes 

measurements 



The E-Step in Standard EM 

Calculate the expectations over the hidden 
variables, i.e., the probability that a particular 
point n belongs to a plane m: 



M-Step for Standard EM 

  Calculate the plane parameters 
 according to the data points  
 taking into account the data associations 

  Can be done in closed form. 



EM Example 



Typical Problem in Standard EM 

 Data association 
uncertainty 

  results in 
alignment errors 
in M-step 

Idea: Incorporate higher-level 
knowledge about planes (parallelism) 

⇒    Hierarchical EM 



Man-made Environments 

  Similar 
structures 

 Many planes 
are parallel 

  Can be utilized 
during 
mapping  



Hierarchical Model 

Idea: simultaneously 
  cluster points into planes and 
  planes into main directions to 

  obtain the most likely set of planes and 
main directions. 

Maximum Likelihood Estimation 



84,660 points 

3 planes 

2 main directions 

Example 

Main directions are normal vectors of planes. 



Graphical Model for Standard EM 

correspondences    
(hidden) 

planes 

measurements 



Graphical Model for Hier. EM 

main directions 

correspondences    
(hidden) 

planes 

correspondences 
(hidden) 

measurements 



 Goal: Find     and     so that JPD is 
maximized 

  Take expectation over hidden variables 
  Start with initial planes and main directions 
  Iterate until convergence: 

Expectation Maximization 



The E-Step in Hierarchical EM 



The E-Step in Hierarchical EM 



The M-Step 

  Find planes and main directions so that the 
expected log-likelihood is maximized 

  No closed-form solution (LL is non-linear) 

 Optimization technique: conjugate gradient 
based method 



Model Complexity 

  Problem: number of planes / main 
directions not known 

  Evaluate model complexity using Bayesian 
Information Criterion (BIC): 

Log-likelihood Model complexity Data size 

Choose model with minimum BIC 



Overall Algorithm 

1.  Start with initial     and  
2.  Run EM until convergence 
3.  While BIC decreases: 

a) Remove one plane and calculate new 
BIC 

b) Remove one main direction and 
calculate new BIC 

4.  If no change stop, else: 
a)  Insert new plane and main direction 
b) Go to 2. 



Post Processing 

  Project points belonging to a plane into the 
plane 

  Cluster points into polygonal areas (region-
growing) 

  Find 2D contours for each cluster (alpha-
shapes) 

  Constraint: polygonal areas should not 
contain holes  



Real Data Experiment (2) 



Typical Result 

Standard EM: Hierarchical EM: 



Real Data Experiment 



Real Data Experiment 

Plain EM 

Hierarchical EM 



Quantitative Evaluation (1) 



Quantitative Evaluation (2) 

Plain EM 

Hierarchical EM 



Results 
  Hierarchical approach that simultaneously 

clusters data into planes and planes into main 
directions 

  Expectation Maximization to find most likely 
model 

  Automatic estimation of model complexity using 
BIC 

  Yields more accurate models by utilizing the 
estimated “global constraints” 



More than 3 Main Directions 



Terrain Modeling (Revisited) 

  Common representations for terrain data: 

Point clouds Grid maps 



Terrain Modeling (Revisited) 

  Common representations for terrain data: 

Point clouds Grid maps 

+ in continuous 3D 
+ max. resolution 
- sparse 
- noisy 



Terrain Modeling (Revisited) 

  Common representations for terrain data: 

Point clouds Grid maps 

+ compact 
+ reduced noise 
- sparse 
- fixed resolution 

+ in continuous 3D 
+ max. resolution 
- sparse 
- noisy 



Modeling Terrain Elevation 

  Terrain mapping seen as a regression problem: 



Modeling Terrain Elevation 

  Terrain mapping seen as a regression problem: 



Modeling Terrain Elevation 

  Terrain mapping seen as a regression problem: 



LA-GP: Locally Adaptive GPs 

  Approach: Gaussian process regression 

  Two extensions: 

1. Nonstationary covariances: 
Adapting the smoothness locally 

2. Model tiling: 
Sparse approximations for large data sets 



Gaussian Process Regression 
  Prediction of a new value     at location    ? 



Gaussian Process Regression 
  Stationary covariance functions model global 

function smoothness 

broad medium narrow 

smooth medium wiggly 



Observation (with 
white noise σ=0.3) 

Kernels Predicted Map Local errors 

Iterative Adaptation 



Experiments 

1. We scanned a terrain board, learned an LA-GP 
model and compared it to the known ground truth. 

2. We evaluated the usefulness for motion planning. 

3. We used the learned model to traverse a terrain. 



Experiments 



Experiments 



Experiments 



Observations: 

The adapted terrain model: 

Experiments 



Ground Truth Observations 

Experiments 



Prediction 

Experiments 



Autonomous Parking 

approx. 260MB 



Navigation with the 
Autonomous Car Junior 
  Task: reach a parking spot on the upper 

level of the garage. 



Planned Trajectories 

Local plan 
towards the goal 

Global trajectory 



Experiment with Junior 



Mapping in Dynamic 
Environments 
Problem:  
 Often models of non-stationary objects are 

not available. 
 Often we cannot assume that there is a 

separation between non-stationary and 
static objects. 

Solution: 
  Using EM to learn beams reflected by 

dynamic objects. 



The Measurement Model 
1.  pose at time t: 

2.  beam n of scan t: 

3.  maximum range reading: 

4.  beam reflected by dynamic object:  

5.  beam reflected by static object: 

0 n 1 



Application of EM 

E-Step: 

M-Step: 
Compute most likely map by considering the 
expectations et,n during SLAM. 

else 



Computing the Most Likely Map 

Suppose 



Computing the Most Likely Map 
We assume that all cells mj are independent: 

If we set 

Computing the most likely map amounts to 
counting how often a cell has reflected a 
measurement. 

we obtain 



EM-based Estimation  
of the Most Likely Map 

etn: Expectation that ztn is reflected by 
a dynamic object 

Compute map m based 
on the expectations etn 

Compute the expectation 
etn that beam n in scan t is 
reflected by a dynamic 
object given m  

M-Step: 

E-Step: 



Byzantine Museum, Athens 



Wean Hall 



Wean Hall (Hallway) 



Wean Hall (Hallway) 



Pittsburgh 
Craig Street/Forbes Ave 



3D Maps in Dynamic 
Environments 



A Fly-Through 



Landmark Selection 

Task:  
Autonomous navigation  
in the context of  
embedded systems. 

Problem: 
  Simultaneous localization and mapping (SLAM) 

has high computational and memory demands. 
  Embedded devices only provide limited 

computational power and memory capacity. 



EKF-SLAM 

 Given:  
 A sequence of observations  
 A sequence of actions  

  Jointly estimate at each point in time t: 
 Pose of the robot: 
 Positions of N landmarks:   

  Here: Unscented Kalman Filter (UKF) 



Scenario 

  Limited computational resources. 
 Only few landmarks can be integrated. 

  Solve navigation task as good as possible. 
 Reach target location as accurate as possible. 

  Idea: Learn what to do. 
  Learn which landmark to consider. 

  Desired properties: 
 Better than manually tuned heuristic. 
 Good generalization of learned policies. 
 Compress policies so they become applicable 

on systems with restricted memory capacity. 



  Idea: Learn from interaction with 
the environment. 

  Episode: 

Monte-Carlo Reinforcement Learning 
  Estimate the Q-function as the average return 

over sample episodes. 

Reinforcement Learning 

Estimate Q function which maps each state/
action pair to a cost value. 

    Choose policy    with                                   

  state s   action a    state s‘   action a‘       final cost 



B 

A 

Single Goal Task 

  Robot should move from A to B. 
  N landmarks in the environment. 
 Only M landmarks can be used. 

Learning target:  
Select the optimal landmarks for the 
navigation such that the distance  
between true pose of the robot  
and the goal B is minimized. 



B 

A 

Single Goal Task 

  Robot should move from A to B. 
  N landmarks in the environment. 
 Only M landmarks can be used. 

Learning target:  
Select the optimal landmarks for the 
navigation such that the distance  
between true pose of the robot  
and the goal B is minimized. 

? 



B 

A 

Single Goal Task 

  Robot should move from A to B. 
  N landmarks in the environment. 
 Only M landmarks can be used. 

Learning target:  
Select the optimal landmarks for the 
navigation such that the distance  
between true pose of the robot  
and the goal B is minimized. 



B 

A 

Round Trip Task 

  Robot should move from A to B 
and back to A twice. 

Learning target:  
Minimize the average distance  
between pose estimate and true  
pose over the whole trajectory. 

 Focus on loop-closure. 



State and Action Space 

Potential state space: 
  Full UKF state (high-dimensional) 

Relevant features: 
1.  Estimated distance to the sub-goal B 
2.  Number of landmarks integrated in UKF 

3.  Yaw angle to potential new landmark 
4.  Distance of potential new landmark to 

closest landmark already integrated 

5.  (Entropy of the robot pose) 

Binary action:  
  Accept landmark / reject landmark 
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Representation of the Q-Function 

Q: (s,a)  cost 

k-Nearest Neighbor Regression: 
  Store training data in a KD-tree. 
  Find up to k nearest neighbors of query point 

(s,a) within a fixed search radius. 
  Return mean of neighbors. 

Properties: 
 Generalizes in sparse areas, and  
 is accurate in dense areas. 
 No overfitting. 
 Model is expressed explicitly by the data (as 

Gaussian Processes), but very fast. 
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Quantitative Results 
  10 independent trainings run consisting of 2000 episodes. 
  For each episode a new random environment is created. 
  Each trained policy is tested in 1000 episodes. 
  Single goal task: Learned policies lead to significantly 

smaller average errors compared to hand-tuned heuristics. 

  Round trip task: Learned policies (± m) are significantly 
better than equidistant heuristic (m). 



Generalization 
  So far we did learning and testing using the same 

setting. 
  Desired property: 

•  Learn the landmark selection policy in one training 
scenario. 

•  Apply the learned policy successfully in other scenarios. 

Crucial Parameters: 
  M - the number of landmarks to select. (5-10-15) 
  N - the landmark density in the environment.  

(50-100) 

  Adjust state space accordingly: 
•  E.g., percentage of landmarks already integrated. 



High Degree of Generalization 

  Each policy (e.g., 5/50) is trained 10 times. 
  Each trained policy is evaluated using 1000 episodes. 



Real-Robot Experiment 

Pioneer robot with 
upward looking camera 

View of the robot: detected visual 
landmarks on the ceiling 

Policy trained in simulation, tested on robot. 
 Learned policy is significantly better than equidistant. 

Average error: 0.50 m (learned) versus 0.66 m (equidistant) 



Uncompressed Policy 
20.000 labelled data points of the uncompressed policy: 



Policy Compression Using 
Neural Network Classification 

  Neural network structure: 

  15 weights, 4 bias parameters 

4 input units  
(4d state space) 

3 hidden units 1 output unit 
(select/reject 

landmark) 

sigmoid activation function 



Comparison: Compressed 
Versus Uncompressed Policies 



Compressed Policy 
20.000 labelled data points created by the neural network: 



Deletion of Landmarks?  

  Idea: Marginalize out old landmark in order to 
cope with limited memory. 

  Deletion leads to a more complex problem since 
the required state and action space increases 
significantly. 
•  Which old landmark should be replaced by the new one? 

  First investigations reveal that the following 
selection policy is promising: 
•  Keep some landmarks fixed for re-localization. 
•  Perform incremental pose correction with set of frequently 

replaced landmarks. 

  More research has to be done. 



Conclusion 

  Novel approach for landmark selection in 
the context of autonomous navigation. 

  Important for robots with limited 
resources. 

  The learned policies are significant better 
then manually designed strategies such 
as the equidistant heuristic. 

  Learned policy generalizes to new 
environment (with different properties). 

  Landmark selection policy learned in 
simulation has successfully been applied 
on a real robot. 



Robustness towards Shorter/
Longer Paths? 

 We can mimic longer/shorter trajectories 
with by the help of the landmark capacity M 
and landmark density N. 
• If the path length is doubled the, we 

simple double M and N. 
  Limitation: We did not adapt the sensor 

and motion noise accordingly. 
• How robust is the approach towards 

different sensor/motion noise? 
• More research has to be done here! 



Robustness towards Changes in 
Sensor and Motion Noise? 
 We applied policy learned in simulation 

successfully on a real robot. 
 We estimated the motion and sensor noise 

parameter only very roughly. 
 Small indication that the approach is 

somehow robust towards changes in noise. 

  But: More research has to be done here! 
• Inclusion of noise specific features in the state 

space might increase the robustness… 



Action Selection  

  Variant of ε–greedy to boost the training: 

¼ ( s ) = 

8 
> > > > > > < 

> > > > > > : 

a r g m a x a Q ( s ; a ) i f Q ( s ; a a c c e p t ) 6 = Q ( s ; a r e j e c t ) 
a n d Â 1 < 1 ¡ ² 

a a c c e p t i f [ Q ( s ; a a c c e p t ) = Q ( s ; a r e j e c t ) o r Â 1 · ² ] 
a n d Â 2 < M 

N v i s i b l e 
a r e j e c t e l s e 



Compact Representation 
  K-NN is very fast, but the memory requirements is linear to the 

number of training data. 
  Use approach that Armin Hornung, Maren Bennewitz, and I applied 

for a similar learning task: Efficient visual navigation in known 
environment. 

  Problem: Some areas in 
the state space/action are 
visited very rarely (the 
values are “nonsense”.) 

  Idea: Express state space 
by the state/action values 
visited in 1000 episode 
using the learned policy. 

  Use clustering technique. 



Localization Using a Camera 

Advantages of cameras: 
  Provide valuable information  
 Compact 
  Lightweight 

Ideal sensor for humanoid robots and UAVs 



Problem of Vision-based 
Localization 

  Fast movements of the robot introduce motion blur 
in the images 

v=0.05 m/s v=0.4 m/s v=1.0 m/s 
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Problem of Motion Blur 
  Features cannot be extracted and matched reliably 

anymore 

  Degradation depends on  

 Camera quality, shutter speed 

  Lighting conditions 

 Velocity of the robot 

  Image preprocessing possible, but does not 
completely restore the image 



  Let the robot learn how to control its motion in 
order to reach the destination fast and reliably 

  Take the influence of motion blur into account 
to generate an efficient navigation policy 

Approach 



Task Description 

  Navigation from the start to a goal point (or to an 
intermediate waypoint) 

  Localization based on visual features 

  UKF to track the robot’s pose 

  Task is finished when reaching the destination 
(physically) 

  Goal: Learn a navigation strategy which minimizes 
the time to the destination 



Learning Navigation Policies 

  Formulation as reinforcement learning task 

  Defined as Markov decision process (MDP) using 
the states S, the actions A, and the rewards R 

  In our case: Augmented MPD 



State Space 
  Use relevant features to represent the complete 

state 
 Uncertainty of UKF, entropy over the Gaussian 

  Estimated Euclidean distance to the goal 

  Estimated relative angle to the goal 

  Based on the most-likely pose estimate 



Actions 

  Choosing the velocity v 

  Possible actions  
A={0.1,0.2,0.3,0.4,1.0} in m/s 

  Discretization determined according to the effect 
of motion blur 

  The selected velocity v is sent to the navigation 
controller 

  Note: The collision avoidance stops the robot in 
dangerous cases 



Rewards 

  Reward at t: 

  Drives the robot to reach the destination as fast as 
possible 

  No explicit punishment for delocalization  

  Implicit punishment: Time to stop, re-localize, and 
accelerate again 



Experiments 

  Learning and parameter evaluation 
in simulation 

  The policy is learned in a scenario 
with 2 waypoints 

  The landmark observation probability 
is estimated from real data 

  Each learning run: 500 episodes 

  The landmark positions are 
randomized in each episode 
(landmark density: 40 L/    ) 



Trajectory of the Learned Policy 
(in Simulation) 



Indoor Robot  

Pioneer 2 robot with 
downlooking camera 

Observed floor patch with 
SURF as visual landmarks 



Outdoor Robot  

Powerbot robot with 
downlooking camera 

Observed floor patch with 
SURF as visual landmarks 



Evaluation -  Indoor Robot 

  Two-waypoint 
scenario 

  Evaluation: 10 runs 
of the learned policy 

  Compared to driving 
at constant velocity 
(10 runs for each 
velocity) 

  Our learned policy 
is significantly 
faster! 



Learned Policy – Indoor Robot 



Scenario with Multiple Waypoints 
Simulation Results 

 When the pose estimate is sufficiently close to the 
waypoint, the next waypoint is regarded as goal 



Learned Policy – Outdoor Robot 

start 
dest. 



Learned Policy – Outdoor Robot 



Learned Policy – Outdoor Robot 



Learned Policy – Outdoor Robot 



Generalization over the 
Landmark Density 
  Evaluate the policy learned in an 

environment with a landmark density of  
40 L/      in  

 sparser (10 L/    ) and  

 denser (70 L/    ) environments 

  Compare the performance to a policy 
learned in an environment matching the 
respective test environment 



Generalization over the 
Landmark Density 

  No need to explicitly account for environmental 
conditions in the learning scenario since no 
significant difference! 



Policy Compression  
  Learned policy is represented by a table 

whose size depends on the discretization 
  For each visited state (d,  ,h), the chosen 

velocity v is regarded as classification  
  Apply X-Means (k-Means+BIC) to find the 

number of clusters and their centers 

  Significantly 
more compact 
representation 

  Yields a similar 
performance pr
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Conclusions (1) 

  New approach to learning an efficient 
policy for vision-based navigation 

  Via reinforcement learning, the robot 
learns to reach its destination as fast as 
possible 

  The impact of motion blur on the feature 
detection is implicitly taken into account 

 Our learned policy outperforms any 
strategy of driving at a constant velocity  



Conclusions (2) 

  The learned policy generalizes over 
different environments 

  X-means clustering on the visited state 
space for compressing the learned policy 

  Compressed policy is an order of 
magnitude smaller without a loss of 
performance 



SA-1 

Place Classification 
  Indoor environments can be decomposed into different 

places 

  How can we determine the type of place a robot is at 
and how can we utilize it to improve navigation tasks? 

Room Room 

Corridor Corridor Doorway Doorway 
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Room Room Doorway Doorway Corridor Corridor 



SA-1 

Place Classification using Boosting 

Observation:  
There exists a variety of simple features fi 
we can define on laser range scans. 

Problems:  
Each single feature fi gives poor 
classification rates. 

Idea:  
Combine multiple simple features to form 
a strong classifier using AdaBoost. 



SA-1 

Simple Features 

•  gap = d > θ 
•  f = #gaps 

minimum 

•  f = area •  f = perimeter •  f = d 

d di 
d

•  f = d •   

d 

Σ di  



Learning 

AdaBoost 

multi-class classifier 

Room Room Corridor Corridor Doorway Doorway 

features features features features features features 



Classification 

Multi-class 
classifier  

observation 

features Corridor Corridor 
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Application Result 

 Training 
 # examples: 

 16045 

Test  
# examples:  

18726 
classification: 

94% 

Room Room Corridor Corridor Doorway Doorway 
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Application to a New Environment 

Training map 



SA-1 

Training map 

Room Room Corridor Corridor Doorway Doorway 

Application to a New Environment 



Related Work 

  Minimizing the uncertainty in the belief distribution 
during SLAM or navigation  
[Kollar&Roy ‘06, He et al. ’08, Roy et al. ‘99] 

  Consider shaking movements of the head, acquire 
only images during stable phases 
[Ido et al. ’09] 

  Image preprocessing to restore an image and 
reduce the effects of motion blur  
[Pretto et al. ’09] 



Thank you! 


