

- Connect points with edges which are "far" from curve Medial Axis

E But MA unknown

Curve from points- connect the dots

- Voronoi diagram of set of points on curve approximates Medial Axis - if points sampled densely enough

Sampling Criterion

- Good sample - sampling density (at least) inversely proportional to distance fro medial axis
- r-sample : distance from any point on surface to nearest sample point $\leq r$
- r-distance from point to $\quad r=0.5$ medial axis
- In general, $r \in(0,1]$
- $r=0.5$ good enough...

University of
British Columbia

- Use Voronoi vertices to represent MA
- Edge e in crust \Leftrightarrow circumcircle of e contains
 no other sample points or Voronoi vertices of S

Crust: Algorithm

- Compute Voronoi diagram of S
- Let V be set of Voronoi vertices

Crust: Algorithm

- Compute Voronoi diagram of S
- Let V be set of Voronoi vertices
- Compute Delaunay Triangulation of SuV

University of British Columbia Crust = all edges between points of S

Crust Algorithm - Theory

- Theorem 1: The crust of an r-sample from a smooth curve F, for $r \leq 0.25$ connects only adjacent samples of F

Crust Algorithm - in 2D (cont.)

- Nice Applet:
- http://valis.cs.uiuc.edu/~sariel/research/CG/a pplets/Crust/Crust.html

3D Crust Algorithm

- Extend 2D approach
- Voronoi vertex is equidistant from 4 sample points
- BUT in 3D not all Voronoi vertices are near medial axis (regardless of sampling density)

3D Crust Algorithm

- But some vertices of the Voronoi cell are near medial axis
- Intuitively - cell is closed not just from the sides but also from "top" \& "bottom"

3D Crust Algorithm

- Solution: use only two farthest vertices of V_{s} one on each side of the surface
- Call vertices poles of $s\left(p^{+}, p^{-}\right)$

3D Algorithm (basic)

- Compute Voronoi diagram of S
- For each s in S find ($\mathrm{p}^{+}, \mathrm{p}^{-}$)
- How?
- Let P be the set of all poles p^{+}and p^{-}
- Compute Delaunay triangulation T of S U P
- Add to crust all triangles in T with vertices in S

Reconstruction Example

- Crust of set of points and poles used in its reconstruction

Problems \& Modifications

- Alternative pole choice (better reconstruction): farthest \& second farthest Voronoi vertices, regardless of direction
- Plus: Correctness
- Minus:
- Slow -less of an issue
- Need dense samples

- Problems at sharp corners
- Noise

Delaunay Triangulation

Empty Circle Property:
No other vertex is contained within the circumcircle of any triangle

Delaunay Triangulation

- Obeys empty-circle property
- Exists for any set of vertices
- Is unique (up to degenerate cases)
- Proven to provide best triangles in terms of quality for given vertex positions
- To test - enough to check pairs of triangles sharing common edge

