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Iterative Closest Point

ICP is a straightforward method [Besl 1992] to align two
free-form shapes (model X , object P ):

Initial transformation

Iterative procedure to converge to local minima
1. ∀p ∈ P find closest point x ∈ X

2. Transform Pk+1 ← Q(Pk) to minimize distances
between each p and x

3. Terminate when change in the error falls below a
preset threshold

Choose the best among found solutions for different
initial positions
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Specifics of Original ICP

Converges to local minima

Based on minimizing squared-error

Suggests ‘Accelerated ICP’
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ICP Refinements

Different methods/strategies

to speed-up closest point selection
K-d trees, dynamic caching
sampling of model and object points

to avoid local minima
removal of outliers
stochastic ICP, simulated annealing, weighting
use other metrics (point-to-surface vs -point)
use additional information besides geometry
(color, curvature)
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ICP Refinements

Different methods/strategies

to speed-up closest point selection
K-d trees, dynamic caching
sampling of model and object points

to avoid local minima
removal of outliers
stochastic ICP, simulated annealing, weighting
use other metrics (point-to-surface vs -point)
use additional information besides geometry
(color, curvature)

All closed-form solutions are for squared-error on
distances
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Found on the Web

Tons of papers/reviews/articles

No publicly available Matlab code

Registration Magic Toolkit
(http://asad.ods.org/RegMagicTKDoc) - full
featured registration toolkit with modified ICP
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Implemented in This Work

Original ICP Method [Besl 1992]

Choice for caching of computed distances
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Absolute Distances or L1 norm

Why bother?

More stable to presence of outliers

Better statistical estimator in case of non-gaussian
noise (sparse, high-kurtosis)

might help to avoid local minima’s
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Absolute Distances or L1 norm

Why bother?

More stable to presence of outliers

Better statistical estimator in case of non-gaussian
noise (sparse, high-kurtosis)

might help to avoid local minima’s

How?

use some parametric approximation for y = |x| and
do non-linear optimization

present this as a convex linear programming problem
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LP: Formulation

Absolute Values y = |x|

x ≤ y and −x ≤ y while minimizing y

Euclidean Distance ‖~v‖ =
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LP: Rigid Transformation

Arguments: rotation matrix R and translation vector ~t
Rigid Transformation:

~̇p = R~p + ~t

Iterative Closest Point (ICP) Algorithm. – p. 11



LP: Rigid Transformation

Arguments: rotation matrix R and translation vector ~t
Rigid Transformation:

~̇p = R~p + ~t

Problem: How to ensure that R is rotation matrix?
“Solution”: Take a set of “support” vectors in object
space and specify their length explicitly.

‖~̇pj − ~̇pk‖ − ‖~pj − ~pk‖ = 0 ~pi, ~pj ∈ P
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LP

~̇p = R~p + ~t

‖~̇pi − ~xi‖ − di = 0 ∀i, s.t. ~pi ∈ P, ~xi ∈ X

‖~̇pj − ~̇pk‖ − ‖~pj − ~pk‖ = 0 ~pi, ~pj ∈ P

Objective: minimize C =
∑

i di
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LP: Problems

Contraction (shrinking):

‖~̇pj − ~̇pk‖ − ‖~pj − ~pk‖ = 0

is actually

‖~̇pj − ~̇pk‖ − ‖~pj − ~pk‖ ≤ 0

R matrix needs to be “normalized” to the nearest
orthonormal matrix due to our ‖x‖ LP
approximation even if no contraction occurred.
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LP: Results
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LP: Results
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LP: Conclusions

Presented problem is suitable to minimize L1 error
instead of L2 error commonly used.

Using L1 norm improved solution in the presence of
strong outliers.
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