Iterative Closest Point (ICP) Algorithm. L_{1} solution. .

Yaroslav Halchenko

CS @ NJIT

Registration

Registration

Iterative Closest Point

ICP is a straightforward method [Besl 1992] to align two free-form shapes (model X, object P):
\square Initial transformation

- Iterative procedure to converge to local minima

1. $\forall p \in P$ find closest point $x \in X$
2. Transform $P_{k+1} \leftarrow Q\left(P_{k}\right)$ to minimize distances between each p and x
3. Terminate when change in the error falls below a preset threshold

- Choose the best among found solutions for different initial positions

Specifics of Original ICP

- Converges to local minima
- Based on minimizing squared-error
- Suggests 'Accelerated ICP'

ICP Refinements

Different methods/strategies
\square to speed-up closest point selection

- K-d trees, dynamic caching
- sampling of model and object points
\square to avoid local minima
\square removal of outliers
\square stochastic ICP, simulated annealing, weighting
- use other metrics (point-to-surface vs -point)
- use additional information besides geometry (color, curvature)

ICP Refinements

Different methods/strategies
\square to speed-up closest point selection

- K-d trees, dynamic caching
- sampling of model and object points
\square to avoid local minima
\square removal of outliers
\square stochastic ICP, simulated annealing, weighting
- use other metrics (point-to-surface vs -point)
- use additional information besides geometry (color, curvature)

Found on the Web

- Tons of papers/reviews/articles
\square No publicly available Matlab code
\square Registration Magic Toolkit (http://asad.ods.org/RegMagicTKDoc) - full featured registration toolkit with modified ICP

Implemented in This Work

- Original ICP Method [Besl 1992]
\square Choice for caching of computed distances

Absolute Distances or L_{1} norm

Why bother?
\square More stable to presence of outliers

- Better statistical estimator in case of non-gaussian noise (sparse, high-kurtosis)
\square might help to avoid local minima's

Absolute Distances or L_{1} norm

Why bother?
\square More stable to presence of outliers

- Better statistical estimator in case of non-gaussian noise (sparse, high-kurtosis)
\square might help to avoid local minima's
How?
\square use some parametric approximation for $y=|x|$ and do non-linear optimization
\square present this as a convex linear programming problem

LP: Formulation

Absolute Values

$x \leq y$ and $-x \leq y$ while minimizing y

Euclidean Distance

LP: Rigid Transformation

Arguments: rotation matrix R and translation vector \vec{t} Rigid Transformation:

LP: Rigid Transformation

Arguments: rotation matrix R and translation vector \vec{t} Rigid Transformation:

Problem: How to ensure that R is rotation matrix? "Solution": Take a set of "support" vectors in object space and specify their length explicitly.

$$
\begin{aligned}
\vec{p}=R \vec{p}+\vec{t} & \\
\left\|\vec{p}_{i}-\vec{x}_{i}\right\|-d_{i}=0 & \forall i, \text { s.t. } \vec{p}_{i} \in P, \vec{x}_{i} \in X \\
\left\|\vec{p}_{j}-\vec{p}_{k}\right\|-\left\|\vec{p}_{j}-\vec{p}_{k}\right\|=0 & \vec{p}_{i}, \vec{p}_{j} \in P
\end{aligned}
$$

Objective: minimize $C=\sum_{i} d_{i}$

LP: Problems

■ Contraction (shrinking): is actually
$\square R$ matrix needs to be "normalized" to the nearest orthonormal matrix due to our $\|x\|$ LP approximation even if no contraction occurred.

LP: Results

Iterative Closest Point (ICP) Algorithm. - p.

LP: Results

LP: Conclusions

- Presented problem is suitable to minimize L_{1} error instead of L_{2} error commonly used.
- Using L_{1} norm improved solution in the presence of strong outliers.

