Iterative Closest Point (ICP) Algorithm. L_1 solution...

Yaroslav Halchenko

CS @ NJIT

Registration

Registration

ICP is a straightforward method [Besl 1992] to align two free-form shapes (model X, object P):

Initial transformation

Iterative procedure to converge to local minima

1. $\forall p \in P \text{ find closest point } x \in X$

- 2. Transform $P_{k+1} \leftarrow Q(P_k)$ to minimize distances between each p and x
- 3. Terminate when change in the error falls below a preset threshold
- Choose the best among found solutions for different initial positions

Specifics of Original ICP

Converges to local minima
Based on minimizing squared-error
Suggests 'Accelerated ICP'

ICP Refinements

Different methods/strategies to speed-up closest point selection K-d trees, dynamic caching sampling of model and object points to avoid local minima removal of outliers stochastic ICP, simulated annealing, weighting use other metrics (point-to-surface vs -point) use additional information besides geometry (color, curvature)

ICP Refinements

Different methods/strategies to speed-up closest point selection K-d trees, dynamic caching sampling of model and object points to avoid local minima removal of outliers stochastic ICP, simulated annealing, weighting use other metrics (point-to-surface vs -point) use additional information besides geometry (color, curvature) All closed-form solutions are for squared-error on

Found on the Web

Tons of papers/reviews/articles
No publicly available Matlab code
Registration Magic Toolkit (http://asad.ods.org/RegMagicTKDoc) - full featured registration toolkit with modified ICP

Implemented in This Work

Original ICP Method [Besl 1992] Choice for caching of computed distances

Absolute Distances or L_1 **norm**

Why bother?

More stable to presence of outliers

 Better statistical estimator in case of non-gaussian noise (sparse, high-kurtosis)

might help to avoid local minima's

Absolute Distances or L_1 **norm**

Why bother?

More stable to presence of outliers

 Better statistical estimator in case of non-gaussian noise (sparse, high-kurtosis)

might help to avoid local minima's

How?

use some parametric approximation for y = |x| and do non-linear optimization

present this as a convex linear programming problem

Absolute Values y = |x|

 $x \leq y$ and $-x \leq y$ while minimizing y

Euclidean Distance $||\vec{v}|| = \sqrt{v_x^2 + v_y^2}$

LP: Rigid Transformation

Arguments: rotation matrix R and translation vector \vec{t} Rigid Transformation:

LP: Rigid Transformation

Arguments: rotation matrix R and translation vector \vec{t} Rigid Transformation:

 $\vec{\dot{p}} = R\vec{p} + \bar{t}$

Problem: How to ensure that *R* is rotation matrix? "Solution": Take a set of "support" vectors in object space and specify their length explicitly.

 $\|\vec{p}_j - \vec{p}_k\| - \|\vec{p}_j - \vec{p}_k\| = 0 \qquad \vec{p}_i, \vec{p}_j \in P$

$$\vec{p} = R\vec{p} + \vec{t} \\ \|\vec{p}_i - \vec{x}_i\| - d_i = 0 \quad \forall i, \text{ s.t. } \vec{p}_i \in P, \vec{x}_i \in X \\ \|\vec{p}_j - \vec{p}_k\| - \|\vec{p}_j - \vec{p}_k\| = 0 \qquad \vec{p}_i, \vec{p}_j \in P \end{cases}$$

Objective: minimize $C = \sum_i d_i$

LP: Problems

Contraction (shrinking):

 $\|\vec{p}_j - \vec{p}_k\| - \|\vec{p}_j - \vec{p}_k\| = 0$ is actually

$\|\vec{p}_j - \vec{p}_k\| - \|\vec{p}_j - \vec{p}_k\| \le 0$

R matrix needs to be "normalized" to the nearest orthonormal matrix due to our ||x|| LP approximation even if no contraction occurred.

LP: Results

LP: Results

Iterative Closest Point (ICP) Algorithm. – p.

Presented problem is suitable to minimize L₁ error instead of L₂ error commonly used.
 Using L porm improved solution in the presence of

• Using L_1 norm improved solution in the presence of strong outliers.