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Summary

Reconstructing surfaces from unorganized sample point sets is a fundamental prob-

lem in both geometry processing and computer graphics. Given an input point

cloud P in R3, this thesis proposes a novel algorithm, termed as Layer Peeling, to

identify surface neighbors of each point p ∈ P respecting the underlying surface

S, and then to construct a piecewise linear surface for P . The algorithm does not

have any prior knowledge of the underlying surface or whether if there is such a

surface in the first place, and outputs a closed triangle mesh that best represents

the implied surface based on the input sample set.

The algorithm utilizes the simple k-nearest neighborhood in constructing local

surfaces. It makes use of two concepts: a local convexity criterion to extract a

set of surface neighbors for each point, and a global projection test to determine

an order for the reconstruction. These two concepts extend upon the k-nearest

neighborhood method which many other algorithms have based their reconstruc-

tion upon. By combining with the idea of visibility testing in the global projection

test, the algorithm is able to filter away points in the k-nearest neighborhood point

set of each point to better approximate the local surface.

Another advantage of this algorithm is that the computational cost of the al-

gorithm increases almost linearly in the size of the point cloud. This is largely

due to the localized nature of the algorithm, although some parts of the algo-
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rithm are nevertheless non-local, their computational cost is insignificant when

compared with the main algorithm. Most provable surface reconstruction algo-

rithms make use of global methods such as Delaunay based triangulation, which

can make reconstructing surfaces for large point sets to be very time-consuming

and impractical.

In this thesis, a proof is given such that if the input sampled point set is

sampled reasonably well from a smooth surface, our algorithm is able to produce a

topologically correct surface. Furthermore, the algorithm adapts well for handling

under-sampled point sets. One of the reasons for that is due to the nature of the

algorithm itself, as it is able to peel away layers of the surface systematically and

thus avoid constructing erroneous surfaces. In order to gauge the accuracy of the

reconstruction, this thesis compares the output with a commonly used algorithm

for surface reconstruction, TightCocone, for benchmarking purposes. The results

obtained are favourable and showed that the layer peeling algorithm is suitable for

under-sampled point sets.
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Chapter 1

Introduction

In the field of computer graphics, a lot of research has been done in striving to gen-

erate lifelike photo-realistic images and physically realistic simulations. To achieve

both aims, there is a need to represent real life objects in computers, which is known

as object modeling. There are two main approaches to object modeling. In the

CAD/CAM (Computer Aided Design and Manufacturing) industry, a computer

representation of an object is built by using a combination of simple primitives

and implicit surfaces which can be used to manufacture into physical models. An-

other approach to object modeling is by using image sensory equipments to obtain

a computer representation of an existing physical object. This approach is gener-

ally reserved for real life objects which are difficult to be decomposed into simple

shapes or surfaces, such as an art sculpture.

Technology like laser scanners have allowed us to accurately and directly cap-

ture the geometrical properties of physical objects. By using laser rays to strike the

surface of the object and then calculating the time delay, a 3D point sampling of the

object is precisely captured. A point set sampling of an object is a form of represen-

tation of the underlying object. It is simple to interpret without any complex data
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Figure 1.1: The surface reconstruction process.

structure, requires very little storage space and takes very little retrieval/reference

time. However, using a point-based representation is not very useful towards pro-

ducing photo-realistic computer images or physically realistic simulations. The

generation of photo-realistic images from virtual objects requires that the under-

lying object representation is able to handle texture mapping, provide occlusion

abilities and represent multiple level of details. For physical simulations, having a

continuous surface makes computing deformation, collision detection, and the cal-

culation of fractures easier. Thus, utilizing continuous surfaces, such as triangles or

any other primitive types, is a more natural and appropriate form of representation

for both visualization and physical simulations.

The problem of connecting the sample points appropriately to reconstruct the

surface is commonly know as surface reconstruction in the computer graphics com-

munity. However, surface reconstruction from an unorganized point set is a difficult

and ill-posed problem as no surface information is known and there is no unique

solution. This problem has been the focus of research across many fields because

of its wide applications. Such a reconstruction process usually involves a two-step

process of first acquiring data points on the surface of the model and then recon-

structing the surface from the data points, see Figure 1.1. In this thesis work, we
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focus on the latter portion of this process and furthermore do not assume any prior

knowledge of the original surface.

1.1 The Surface Reconstruction Problem

The first piece of work that addressed the problem of surface reconstruction from

scattered data was probably by Boissonnat [20] in the mid-1980s. The surface

reconstruction problem can be stated as follows: Given a set of points P that are

sampled from a surface S that is embedded in R3 , construct a surface M such that

the points in P lie on M, and M approximates S geometrically and is topologically

equivalent.

Some surface reconstruction algorithms follow another variation of the problem

definition by allowing the reconstructed surface M to be “close” to the point set

P , rather than directly passing through them.

The success of the surface reconstruction process depends largely on the sam-

pling rate of the surface. A low sampling rate usually results in a poor reconstruc-

tion, whereas an overly high sampling rate usually contains noisy data samples

which are difficult to handle. Most surface reconstruction algorithms depend on

the sampling rate to guarantee a faithful reconstruction. Current works can be cat-

egorized into three broad types with noisy sampling having high sampling density

at one end, under-sampling at the other end and lastly optimal sampling density.

Most existing algorithms focus on optimal [11] and noisy sampling types [30, 44, 31]

that require input data to be of good sampling density that satisfies the ε-sampling

criterion (described in Section 2.2.2). However, very few works have addressed the

issue on how to handle under-sampled point sets, or rather, to handle regions of

under-sampling in a point set. The ability to handle under-sampled regions in a
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point set is important because that is where most of the distortions and artifacts

of the reconstruction usually happen at. In this thesis, we present a surface re-

construction solution that can handle this group of under-sampled point sets or

regions.

There are many choices for the underlying representation of point sets, with

triangular and polygonal meshes being the most commonly used. There are many

practical reasons for using triangular meshes. Its data structure is not overly

complex and there has been a substantial amount of research being done regarding

the construction, manipulation, and visualization of triangular meshes. Other

types of representation include implicit surfaces, level sets, algebraic patches, etc.

Such representations allow the reconstructed surface to approximate the sample

point sets and are less suitable for performing theoretical analysis on the quality

of the output. In this dissertation work, we focus more on the former type of

representation.

Other than the success of the reconstruction of the surface, the speed of the

algorithm is also important. Most algorithms that produce triangular meshes as

their output surfaces rely on Delaunay based techniques which usually have O(n2)

time complexity. With the demand for higher quality object models, the number of

sampled points has to increase drastically. Hence, having a linear time complexity

surface reconstruction algorithm is very useful towards handling large point sets.

This is one of the objectives of our work, to provide a robust surface reconstruction

algorithm with output quality guarantees and yet able to achieve near-linear time

complexity.
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1.2 Contribution of this Thesis

This thesis proposes a novel surface reconstruction algorithm that is efficient and

robust in handling under-sampled point sets. Through the understanding of why

under-sampled points sets are difficult to deal with and their various characteris-

tics, the layer peeling technique of this algorithm is able to deal with them from

a fundamental approach. By itself, the layer peeling algorithm is also a reliable

surface reconstruction algorithm. In this thesis, we prove that given an appropri-

ately sampled point set, the reconstructed surface is topologically equivalent to its

original underlying sampled surface.

The general outline of the algorithm involves employing a layer peeling ap-

proach to uncover a surface in a layer-by-layer manner without the use of triangu-

lation techniques that are global in nature. At each layer, it strives to form triangle

fans for some data points in order to determine their neighborhood points. These

triangle fans are in turn merged together to form a surface for the input. By not

employing global triangulation techniques, the layer peeling algorithm avoids the

O(n2) worst case time complexity. This makes the layer peeling algorithm scale

almost linearly with the size of the input point set, thus making it an attractive

algorithm to be employed for large data point sets.

Here is a list of the contributions of the layer peeling algorithm towards the

problem of surface reconstruction from unorganized point sets.

1. A simple and intuitive algorithm for surface reconstruction that computes in

near linear timing and is comparable in output quality with other algorithms

of a globalized nature.

2. A detailed proof which shows that given an appropriately sampled point set
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input, the reconstructed surface formed by using the layer peeling algorithm

is topologically equivalent to the original sampled surface.

3. By categorizing the points lying within the k-nearest neighborhood set of a

typical point in an under-sampled region, a new perspective towards under-

standing their characteristics and how they can be handled is formed. This

understanding is then used to develop the layer-by-layer extraction approach

of the layer peeling algorithm which allows the effective reconstruction of ob-

jects that contain thin surfaces or objects that contain many different inner

surfaces.

1.3 Outline of this Thesis

Section 2 reviews previous work in this area and identifies issues in existing meth-

ods. Section 3 discusses the problems that exist in reconstructing under-sampled

point sets and introduces our proposed layer peeling algorithm. Section 4 describes

the implementation details of the layer peeling algorithm, including the construc-

tion and merging of triangle fans. Section 5 provides an analysis of the algorithm

with under-sampling and with optimal sampling conditions. Section 6 shows our

experimental results, and Section 7 concludes the paper. Lastly, in Appendix A,

a software implementation of the layer peeling algorithm is introduced.
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Chapter 2

Background Research

There have been many works on the problem of surface reconstruction from unor-

ganized point sets. Generally they can be classified into two broad types, namely

local and global approaches. Local approaches tend to make use of the concept of

k-nearest neighborhood for constructing local surfaces, whereas global approaches

use algorithms such as Voronoi diagrams and Delaunay triangulations. One of

the biggest advantages of using such global approaches is that the reconstruction

process can be more systematically analyzed and hence easier for formulating the

relationship between the input sample points with the final output. Local ap-

proaches however, tend to be computationally faster, which make the algorithms

very practical. There have also been works on achieving some balance between

the two major approaches by optimizing the global triangulation methods. In

addition, there are also a few other newer approaches to the problem of surface

reconstruction such as using geometric convection and template fitting. In this

chapter, we introduce and discuss the various algorithms, concepts and proofs

that are employed in surface reconstruction algorithms. A brief survey on surface

reconstruction from scattered points can be found in [57]. For the rest of this
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thesis, we refer to the set of input sample points as P , the original surface which

the points are sampled as S, and the reconstructed surface as M .

Section 2.1 reviews the techniques and algorithms of surface reconstruction that

are generally localized in nature. Section 2.2 introduces the concepts of Voronoi

diagrams and Delaunay triangulations, and the various algorithms that make use

of them. Section 2.3 describes the attempts that are made to optimize some of

the global algorithms in order to bring them nearer to a linear timing. Finally in

Section 2.4, we highlight some of the newer works in surface reconstruction.

2.1 Local Approaches

For the problem of surface reconstruction from unorganized point sets, the most

natural method that comes to mind is using the local neighborhood of each point to

form surfaces around them. The local neighborhood of a point consists of a set of

points, excluding itself, that is the closest to it. We refer to the local neighborhood

by the term, k-nearest neighborhood. The value k refers to the number of nearest

neighborhood points which we determine to be in a local neighborhood. The local

neighborhood estimate of a point refers to using its k-nearest neighborhood to

make some inference on the surface region around the point. Algorithms of this

nature fall into two general categories, discrete and continuous. Discrete algorithms

usually produce a piecewise linear surface, formed by the sample points, while

continuous algorithms tend to produce surfaces which is an approximation inferred

from the sample points. Hence, the surfaces produced by continuous algorithms

tend to be implicit surfaces which may or may not intersect with the sample points.

Before we present some of the local approaches used in surface reconstruction,

an introduction to two important k-nearest neighborhood implementation details
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is necessary. One is the efficient extraction of the set of k-nearest neighborhood

for each point in the point set, and the other is the extraction of some intrinsic

information useful to the reconstruction process from the k-nearest neighborhood.

2.1.1 k-Nearest Neighborhood Extraction

In order to extract the set of k-nearest neighbors for each point, a brute force

approach using O(n2) time is always possible but impractical. An ideal solution is

to preprocess the points in O(n log n) time, into a data structure requiring O(n)

space so that the queries can be answered in O(log n) time. In a 1-dimensional

context, the points can be sorted in sequence and binary search can be used to

answer queries. For the 3-dimensional case, a fast and efficient implementation of

this approach are implemented by Arya et al. [16]. Their data structure is based

on a hierarchical decomposition of space which they termed as a balanced box-

decomposition (BDD) tree. This tree has O(log n) height, and subdivides space

defined by axis-aligned hyper-rectangles (or cuboids in 3-dimensions) which have

a bounded ratio between the longest and shortest side. Space is recursively subdi-

vided into a collections of cells, each of which is either a 3-dimensional rectangle or

the set-theoretic difference of two rectangles, one enclosed within the other. The

tree has O(n) nodes and can be built in O(n log n) time. Querying for the nearest

neighbor of a point can be performed in O(d log n) time for d-dimensions. Their

construction is a generalized one, which allows them to not only efficiently extract

the nearest neighborhood set for each point in three dimensions, but also higher

dimensions. Their implementation of the nearest neighbor extraction is employed

in the algorithm proposed in this thesis.

A new piece of work on k-nearest neighborhood extraction algorithm is done
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by Sankaranarayanan et al. [56]. They make use of the locality of successive points

whose k-nearest neighbors are sought to significantly reduce the time needed for

neighborhood extraction. Their implementation however, is more suitable for large

data sets when it is not possible for the entire data set to be fitted into the memory.

2.1.2 Eigenanalysis and PCA

Principle component analysis (PCA) [59] is a very useful and appropriate tool for

analyzing the k-nearest neighbors of each point. PCA decomposes a set of points

in n dimensional space into n number of axes, known as eigenvectors. Each eigen-

vector is associated with an eigenvalue and the eigenvectors are usually sorted by

the decreasing value of their eigenvalues. These eigenvectors are orthogonal to each

other and their eigenvalues indicate the spread of the points in the corresponding

directions. By using the coordinates of the k-nearest neighbors as input, we are

able to use PCA to estimate the direction of spread of the neighbors. Therefore, if

the sampling is adequate, meaning that the k-nearest neighbors should roughly be

lying on a 2D plane, then we can estimate the point’s normal by using the eigen-

vector with the smallest eigenvalue. The reason for that is because the spread of

the k-nearest neighbors should be the least in the direction of the normal at that

point. Therefore, the first two eigenvectors are likely to estimate the 2D plane

which the point is lying on, while the last eigenvector gives an estimate of the

normal at that point. In Figure 2.1, principle component analysis is performed on

a sample point in 2D. In the left figure, the sample point and its neighboring points

are shown. In the middle figure, the k-nearest neighbors are shown as lying within

the dotted red circle. By using PCA on the k-nearest neighbors, we can extract

two eigenvectors (in 3D, there are three eigenvectors) as shown in the right figure.
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Figure 2.1: Using principle component analysis on the neighborhood of a point in 2D.

These two eigenvectors generally represent the direction of spread of the k-nearest

neighborhood points, with their magnitude determined by their eigenvalues. The

eigenvector with the least eigenvalue is usually taken to be a good candidate for

an estimate of the initial normal vector .

Let Np denote the set of k-nearest neighbors of a point p and op to denote the

mean location of the points in Np. To compute the eigenvectors and the eigenvalues

of Np, the covariance matrix of Np is first formed. This is the symmetric 3 × 3

positive semi-definite matrix:

CovarianceMatrix =
∑
x∈Np

(x− op)⊗ (x− op)

where ⊗ denotes the outer product vector operator. The outer product vector

operator implies that if a and b have components ai and bj respectively, then the

matrix a ⊗ b has aibj as its ijth entry. For the covariance matrix, each x ∈ Np

is actually a vector that consists of the location of the point p in 3-dimensional

space. Once the covariance matrix is obtained, the eigenvectors and eigenvalues

can be extracted from the matrix easily [15].
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2.1.3 Discrete Algorithms based on Local Estimate

This section delivers a brief overview of the common approaches to surface re-

construction that are based on local neighborhood estimate and are of a discrete

nature. The outputs from such algorithms are usually a piecewise linear surface.

The main advantage of discrete and local algorithms over most other types of

algorithms is its computational speed.

Tangent Plane Estimation. One of the first attempt to tackle the problem of

surface reconstruction is by Hoppe et al. [38]. In their work, they first employ

PCA to construct a tangent plane for every point in the point set. In order to use

the tangent plane as a surface estimate, it is necessary to maintain a consistent

orientation between tangent planes of neighboring points. To achieve this aim,

they construct a minimum spanning tree of the point set based on the absolute

value of the dot product of normal vectors between neighboring points. Using this

minimum spanning tree, a favorable propagation sequence is generated whereby the

faces of the tangent planes are orientated based on their proximity to points that

already have their orientation determined. Once this is achieved, they construct

a signed distance function f by using the perpendicular distance to the tangent

plane of the nearest point. The zero set Z(f) of the signed distance function is

a piecewise linear surface, but it might contain discontinuities. Lastly, by using a

contouring algorithm, they discretely sample the signed function f over a portion of

a 3-dimensional grid near the data point set and construct a continuous piecewise

linear approximation to the zero set.

This method generally produces a decent surface estimate when there are ample

sampling. However, the main problem of this method is determining the correct
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Figure 2.2: Using local neighborhood for constructing triangle fan.

orientation of the point normals. In regions of under-sampling, PCA becomes

inaccurate and this leads to the formation of erroneous tangent planes. During

the propagation of normal orientation, one single error can lead to defective and

inconsistent surfaces being formed.

Triangle Fans. Another simple method related to surface reconstruction is using

triangle fans, or collectively known as fan clouds. The idea of using a triangle fan to

represent the local surface around a point is a very intuitive and computationally

fast method. Linsen [48, 49] uses triangle fans as an alternative to triangle meshes,

and as a choice of surface representation for points.

A fan cloud is a set of triangles that can be used to visualize and work with

point clouds. It is made up of triangle fans formed at each sample point. According

to Linsen [48, 49], to construct a triangle fan at a point p, one determines the set

of k-nearest neighbors Np = {p1, ..., pk}, computes the plane with the least sum

of squared distances to p, p1, ..., pk, and projects all the points into such a plane.
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After the projection, all the projected points are sorted into a sequence of angles

ϕi = ∠q1qqi, where qi is the projection of pi on the tangent plane; see Figure 2.2.

In this order, the points pi form a triangle fan of p. If the point density varies

sharply around p, then the k-nearest neighborhood might not be able to form a

triangle fan around p. Therefore, if 5ϕi = ϕi − ϕi−1 > 90◦, one replaces pk by

the (k + 1)st neighbor and if necessary by further neighbors till the angle criterion

5ϕi ≤ 90◦ is met. However, at regions where points are sampled from surfaces

with sharp corners or ridges, the best fitting plane may be normal to the surface

and hence fulfilling the angle criterion might be problematic. To solve this problem,

the fitting plane is rotated by 90◦ and the process is repeated. Once a triangle

fan is constructed at each point, a triangular mesh can be constructed by using an

advancing front algorithm by successively adding new triangles.

Similar to the previous tangent plane algorithm, the triangle fan approach

suffers when there is insufficient sampling since it too depends on the calculation

of the tangent plane using PCA. Furthermore, the formation of triangle fans based

on just angle difference is prone to errors.

Ball Pivoting. The ball pivoting algorithm [19] by Bernardini et al. is a method

that is similar to our approach. It is closely related to alpha-shapes [32], which is

an effective tool for computing the shape of a point set. In their approach, they

assume that the point set sampling P is dense enough such that a ρ-ball (a ball of

radius ρ) cannot pass through the surface without touching sample points. With

this assumption, they start the algorithm by placing a ρ-ball in contact with three

sample points. By keeping the ρ-ball in contact with any two points, they pivot

the ball until it touches another point. Each triplets of points that the ball comes

into contact forms a new triangle. By “walking” the ball throughout the entire
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point set, a piecewise linear surface can be formed.

Bernardini et al. [19] stated that the ball pivoting algorithm has provable re-

construction guarantees under some sampling assumptions. Their two assumptions

are such that for the smooth manifold S, the sampling P satisfies the following

properties.

1. The intersection of any ball of radius ρ with the manifold is a topological

disk.

2. Any ball of radius ρ centered on the manifold contains at least one sample

point in its interior.

These two properties ensure that the sampling is dense enough for a ρ-sized

ball to “walk” on the surface without passing through it. However, under less than

ideal sampling conditions as stated above, the ball pivoting algorithm might face

problems when there are ambiguous cases while “walking” the ball. To resolve

those situations, they assume the presence of point normals that come with range

data sets. These point normals give an indication of the orientation of the surface,

which allow the ball pivoting process to progress correctly.

2.1.4 Implicit Surface Algorithms based on Local Estimate

In the context of implicit surfaces, the surface reconstruction problem can be stated

as follows: Given n distinct points on a surface S in R3, find a surface S’ that is a

reasonable approximation to S. To achieve this, the main idea behind most implicit

surface interpolation techniques consist of building a function y = f(x) whose zero

level set f(x) = 0 approximates or interpolates the surface S. Usually y = f(x) is

constructed as a composition or weighted sum of simple primitives. A direct fit is
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normally not possible and the reconstructed implicit surface S ′ is an estimation of

the original surface S where the sample points might not be lying upon.

MLS Surfaces. One of the more well-established method that uses implicit sur-

faces is the MLS (Moving Least Squares) algorithm. The MLS approach is first

introduced by Levin [46] and subsequently developed further in [47, 3, 4]. Basically,

it introduces a projection procedure such that any point in R3 can be projected

onto an estimated surface, based on its nearby set of neighborhood set of points.

The projection procedure consists of two steps. The first is a plane estimation

stage, which is similar to PCA. However, they attach weights to the neighborhood

points, with priority given to closer points. The priority is determined by a θ

function, where θ is a smooth, radial, monotone decreasing function. With the 2D

tangent plane estimated, the second step consists of computing a local bivariate

polynomial approximation to fit the neighborhood points. The projection of the

point onto the estimated surface is then defined by the bivariate polynomial value

at the origin. Levin proves that the surface defined as the points that project onto

themselves is a two-dimensional manifold [47]. Furthermore, a general analysis of

moving least squares [46] leads to the conjecture that the resulting surface is in-

finitely smooth as long as θ ∈ C∞. However, this traditional projection approach

is computationally expensive because of the non-linear optimization problem when

performing the bivariate polynomial approximation. In a piece of work by Amenta

and Kil [13], they analyze the stability of the projection operator for points that

are not sufficiently close to the MLS surface. They notice that Levin’s projection

function produces output points on the MLS surface that are very near, but not

actually on, to the original surface.

Adamson and Alexa [1, 2] propose a simpler projection technique for the defini-
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tion of an implicit surface from point cloud data. They iteratively project a point

x onto a plane defined by a weighted average of neighboring points:

a(x) =

∑
j θ(‖ x− pj ‖)pj∑
j θ(‖ x− pj ‖)

and the normal value n(x). They assume that the normals nj for the sample points

are given. Thus, the value of n(x) can be computed by averaging the input point

normals:

n(x) =

∑
j θ(‖ x− pj ‖)nj

‖ ∑
j θ(‖ x− pj ‖)nj ‖

If however the input point normals are not available, the value of n(x) is de-

termined by using PCA on the nearby neighborhood points. Further improvement

to the MLS algorithm includes the work by Fleishman et al. [33] where they make

use of the forward search method to detect outlier points which can affect the

reconstructed surface. The forward search method iteratively refines the surface

by adding one sample at a time and generally adds the good sample points first

before adding outlier points. In this way, their approach is able to handle sharp

features well.

Radial Basis Functions. Radial Basis Functions (RBF) are used commonly in

implicit surface reconstruction algorithms. Carl et al. [23] and Turk and O’Brien

[37] use globally supported radial basis functions to fit data points by solving a

large dense linear system. They use a composite function f : R3 → R defined as a

linear combination of simple primitives:

17



f(p) =
m∑

i=1

αiφ(‖ p− ci ‖)

where αi and ci are unknown weights and φ : R+ → R is the radial basis

function. Some common radial basis functions include φ(r) = r, φ(r) = r3 or

φ(r) = r2 log(r). Surface reconstruction using these radial basis functions gives a

smooth implicit interpolating surface, since the zero level set of the function have

the same continuity properties. To interpolate a surface through the sample point,

a function is constructed such that it evaluates to zero at the surface, and non-

zero at off-surface points. The function values of sample points naturally evaluate

to zero, since they are lying on the surfaces. Off-surface points are generated by

adding new sample points, usually along the normals of the original set of sample

points. Hence, let F = fi be a set of n values of the function f at some scattered

distinct points P = pi ∈ R3:

f(pj) =
m∑

i=1

αiφ(‖ x− ci ‖) = fj

for ∀i = j . . . n.

However, the computation process of solving the linear system of equations is

very involved and time-consuming. To improve on the timing of computing the

fitting function, Morse et al. [51] reduce the computational cost of the linear system

by using locally supported radial basis functions. They segment the entire point set

into regions (or patches) which they fit radial basis function onto. Developing this

idea further is Ohtake et al. [53], they propose the Multi-level Partition of Unity

Implicits method which is a hybrid between algebraic patches and radial basis
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functions. They use an adaptive octree based segmentation method to subdivide

the region of space which is occupied by the input point set. Inside each cell, they

choose different fitting functions based on the property of the sample points located

within it. Each patch within a cell is then subsequently blended together. Xie et al.

[61] use a similar approach by employing the use of the modified Shepard’s blending

method for blending multiple patches together. In a recent work by Samozino et

al. [55], they use a set of points located on the medial axis as centers of the RBF

instead of the input point set. In this way, fewer centers of RBF are used and this

leads to faster computations.

Iso-Surface Extraction. A newer approach of using implicit functions for surface

reconstruction is by calculating the characteristic function of the solid model which

the input point set data is sampled from and then using iso-surfacing techniques to

extract the boundary of the solid model. In the work by Kazhdan [42], he makes

use of the Stokes’ Theorem for computing the characteristic function. Specifically,

by only using the location and normal information of the input point set data, the

Fourier coefficients of the characteristic function can be computed. Henceforth,

the characteristic function can be calculated by using inverse Fourier transform.

Similar to this idea is the work by Kazhdan et al. [43], where a Poisson formulation

is adopted instead.

In both [42, 43], they require the knowledge of oriented normals for the input

point sets. In the work by Hornung [39], an iso-surface can be extracted without

having normal information. By using a voxel grid, their method reconstructs the

surface from a volumetric unsigned distance function. This unsigned distance

function represents the probability that the surface passes through a given voxel.

The closed surface can then be extracted via graph-cut based energy minimization.
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They can efficiently process highly non-uniformly sampled input data with large

gaps, without loosing fine details in densely sampled regions.

2.2 Global Approaches

The Voronoi diagram of a set of points is the subdivision of the whole space into

convex cells where each cell is associated with exactly one point. The dual of

the Voronoi diagram is the Delaunay triangulation, which is a cell complex that

subdivides the convex hull of the points. Using Delaunay triangulation as a tool

for surface reconstruction is especially suitable, since surface reconstruction boils

down to establishing neighborhood connections between nearby sample points. In

the previous Section 2.1, we introduced some of the local approaches to surface

reconstruction. One of the disadvantages of using local approaches is that it is diffi-

cult to perform any theoretical analysis on them, although they might be practical

algorithms. Global algorithms, on the other hand, are suitable for such analysis.

For a general survey on Delaunay based surface reconstruction methods, see [24].

In this section, we first introduce some of the basic concepts of Voronoi diagrams,

Delaunay triangulations and the sampling definitions. Then we introduce some of

the commonly used surface reconstruction algorithms involving these structures.

2.2.1 General Concepts

The Voronoi diagram V (P ) of P is a cell decomposition of R3 to convex polytopes.

Every Voronoi cell corresponds to exactly one sample point and contains all points

of R3 that do not have a shorter distance to any other sample points, i.e. the

Voronoi cell corresponding to p ∈ P is given as follows:
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Figure 2.3: The dual relationship between Delaunay simplices and Voronoi Cells. Clock-
wise from top: a Delaunay point with a Voronoi polyhedron, a Delaunay edge with a
Voronoi face, a Delaunay face with a Voronoi edge, and a Delaunay tetrahedron with a
Voronoi vertex.

Vp = {x ∈ R3 : ∀q ∈ P, ‖x− p‖ ≤ ‖x− q‖}

Facets shared by two Voronoi cells are called Voronoi facets, edges shared by three

Voronoi cells are called Voronoi edges and points shared by four Voronoi cells are

called Voronoi vertices. The term Voronoi object can denote either a Voronoi cell,

facet, edge or vertex. The Voronoi diagram is the collection of all Voronoi objects.

The Delaunay triangulation D(P ) of P is the dual of the Voronoi Diagram, in

the following sense (see Figure 2.3). Whenever a collection V1, ..., Vk of Voronoi
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Figure 2.4: The restricted Voronoi cell of a point p, shown in shaded region. It is formed
by the intersection of the Voronoi cell of p with the surface S.

cells corresponding to points p1, ..., pk have a non-empty intersection, the simplex

whose vertices are p1, ..., pk belong to the Delaunay triangulation. It is a simplicial

complex that decomposes the convex hull of the points in P . That is, the convex

hull of four points in P defines a Delaunay cell (tetrahedron) if the common inter-

section of the corresponding Voronoi cells is non empty. Analogously, the convex

hull of three or two points defines a Delaunay face or Delaunay edge, respectively,

if the intersection of their corresponding Voronoi cells is non empty. Every point in

P is a Delaunay vertex. The term Delaunay simplex can denote either a Delaunay

cell, face, edge or vertex.

We call the restricted Voronoi diagram of P restricted to S as the intersection

of every Voronoi object in V (P ) with S. In Figure 2.4, an illustration depicting

the intersection of a Voronoi cell with the surface to form a restricted Voronoi cell

is shown. The restricted Voronoi diagram is then denoted as VS(P ). The dual

of VS(P ) is the restricted Delaunay triangulation of P restricted to S, denoted as

DS(P ) (see Figure 2.5).
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Figure 2.5: The restricted Delaunay triangulation of a partial sampling on a surface S.
The dashed lines are the restricted Voronoi polygons and the solid lines are the restricted
Delaunay triangulation.

2.2.2 Epsilon Delta Sampling

The medial axis of the surface S is the closure of the set of points in R3 that has

two or more closest points in S. The local feature size, f(p), at a point p on S is the

least distance of p to the medial axis. Figure 2.6 shows the medial axis of a surface.

The dotted line connecting the point p to the medial axis is the local feature size

of p. The medial balls at p are defined as the balls that touch S tangentially at p

and have their centers on the medial axis. A point cloud P is called an ε-sample

of S (where 0 < ε < 1), if every point p ∈ S has another point in P at a distance

of at most εf(p). Thus, for an ε-sample of S:

∀p ∈ P : ∃q ∈ P, ‖p− q‖ ≤ εf(p)

An ε-sample generally gives an estimation on the minimum number of sam-

ples that is required to sample a surface. For global algorithms, this condition is

necessary in order to place some guarantee on the accuracy of the output surface.

Generally, the more samples that the point set has, the more accurate the com-

puted surface will be. However, this is not strictly the case for local algorithms,

as local algorithms depend a lot on the uniform spread of the k-nearest neighbors
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Figure 2.6: Medial Axis Diagram.

around the local region. Thus, having a highly but irregularly sampled point set

can actually work against a localized algorithm. Thus, another stricter sampling

condition, known as an (ε, δ)-sampling [28] is required.

An ε-sample of S is called an (ε, δ)-sample if it satisfies an additional condition:

∀p, q ∈ P : ‖p− q‖ ≥ δf(p)

for ε
2
≤ δ < ε < 1.

Essentially, an (ε, δ)-sample implies that any two sample points have to be

sufficiently apart from each other, yet the whole point set must be sufficiently well

sampled. A method to obtain an (ε, δ)-sample from an ε-sample in linear time is

provided in [34].
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2.2.3 Algorithms based on Global Triangulations

Global triangulation methods such as Delaunay triangulations form triangles where

their vertices tend to be points which are close together. The reason is that Delau-

nay triangulation is the dual complex of the Voronoi diagram, which divides the

total space according to which point that it is closest to. Hence, such a construction

naturally has its application in surface reconstruction, since surface reconstruction

too requires the formation of surfaces among points that are close together. How-

ever, using Delaunay triangulation in 3-dimensions forms a tetrahedralization, and

thus most algorithms need to deal with the problem of removing triangles from

the tetrahedralization in order to form a 2-dimensional manifold.

Crust and Power Crust. One of the earliest works which aims to provide a

provable surface reconstruction algorithm is [10, 8]. It is the first piece of work

that provides a constraint on the input point set in order to guarantee that the

reconstructed surface is homeomorphic to the original surface that the points are

sampled from. Their work is an extension from curve reconstruction in 2D [9]. For

each sample point, they consider its Voronoi cell and choose two farthest Voronoi

vertices as the “poles” of the sample point. The two poles ideally should be lo-

cated on both sides of the surface. Since the surface is unknown, the first pole

(also known as the positive pole) is selected as the farthest Voronoi vertex, while

the other (negative pole) is the farthest Voronoi vertex in the opposite half-space.

After the poles are found, a Delaunay triangulation of the sampled point set com-

bined with the poles are computed. By removing all the triangles in the Delaunay

triangulation except those triangles whose three vertices are all sample points, an

initial manifold surface is obtained. They then proceed to filter away triangles
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whose normals form a large angle with any of the poles of its vertices. Finally, a

vertex lying on the convex hull of the point set is selected and its orientation is de-

termined by setting the pole facing away from the point set to be a positive pole.

Using this vertex, a breath first search is applied to orientate all the poles and

triangle to produce a piecewise linear surface, termed as the crust. In their paper

[8], they claim that if the sampling is an ε-sample with ε ≤ 0.06, the computed

crust is homeomorphic to the original sampled surface.

Developing the idea is the work on Power Crust [12]. In this paper, Amenta et

al. notice that the poles of the sample points are actually a good approximation to

the medial axis of the original surface. The poles can be divided into two sets, one

that exists inside the surface manifold and the other outside. Using the two sets of

poles to construct polar balls, the intersection between them can be used to roughly

approximate the surface. Therefore, they first construct a Voronoi diagram using

the sample points, and use the poles of each point to further construct a power

diagram to produce a piecewise-linear surface approximation of the surface. It

should be noted that the piecewise-linear surface that is produced does not always

go through all the original sample points.

Generally, the main criticism against these two approaches is that it take too

long for practical computation. In both algorithms, they require two calculations

of the Voronoi diagram or Delaunay triangulation.

Cocone And Tight Cocone. Cocone [11] is the first paper that presents a

proof that its reconstructed surface is homeomorphic to the original surface if their

sampling requirement is fulfilled. Their proof is based on the following observation.

Let T be a set of triangles spanning the sampling points satisfying the following

three conditions :
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1. T contains all triangles whose dual Voronoi edges intersect S.

2. Each triangle in T is small, that is, their circum-circle has a small radius

compared to the local feature size.

3. All triangles in T are flat, that is, their normals make small angles with the

normals to the surface at their vertices.

Then, if T fulfills the three conditions, then any piecewise linear manifold

extracted from T that spans all its vertices must be homeomorphic to S. With

that, they define the term Cocone, see Figure 2.7. The definition of Cocone Cp of

a point p is as follows:

Cp = {y ∈ Vp : ∠((y − p),n) ≥ 3π

8
}

In other words, Cp is the complement of a double cone (clipped within Vp)

centered at p with an open angle 3π
8

around the axis aligned with n, the vector

from p to the positive pole of p.

To obtain such a triangle set T , Amenta et al. used a similar method to the

crust algorithm. A pole is obtained for each point as the farthest vertex in its

Voronoi cell. Based on this pole, they defined the Cocone. Voronoi edges which

make an intersection with the Cocone of each of its 3 corresponding sample points

are placed in a set E. The dual Delaunay triangle set of all the Voronoi edges in E

is then formed. Similar to the crust algorithm, triangles which make sharp angles

with their adjacent triangles are filtered away. Finally, a depth-first walk over

the adjacency graph of the remaining triangles extracts the final reconstructed

piecewise linear surface. Similarly, they prove that their algorithm computes a
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Figure 2.7: Left: A Voronoi cell of a point p intersecting with the surface S. The two
poles p+ and p− is shown. Right: An illustration of the Cocone shown as two inverted
cones.

piecewise linear surface homeomorphic to a surface for which P is an ε-sample

with ε ≤ 0.06

A provable surface reconstruction algorithm tells us about the quality of the

output when its sampling condition is met. However, in most practical situations

the sampling requirement is seldom fulfilled. Hence, for practical reasons, it is

important to take extra steps when handling areas of under-sampling in order to

produce reasonable outputs. The Cocone algorithm faces exactly such problems

around areas of under-sampling. The reason for this is because of the fact that at

areas of under-sampling, the Voronoi cell of a point is no longer of an elongated

shape. Thus, the poles of the point differ greatly from the actual normal, resulting

in erroneous triangles being placed in set E.

In [27], they attempt to detect areas where under-sampling is occurring by
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testing for two properties in each Voronoi cell. The first property is that the

largest possible ball centered at a sample point that is enclosed by its Voronoi

cell must be less than the distance to its pole by a factor of ρ, a parameter used

in their algorithm. The second property is that the angle between the estimated

normals of itself and its neighboring Cocone neighbors is less than 0.14 radians.

The Cocone neighbors are defined as the set CNp = {q ∈ P : Cp ∩ Vq 6= ∅}. Once

a point fails either of the two properties, it is marked as being located in an area

of under-sampling. Thus, by identifying which are the points that are located in

areas of under-sampling, the Cocone algorithm can choose to ignore constructing

triangles that contain vertices from those points.

Having a surface reconstruction algorithm producing holes on the surface is

not desirable to many applications. For most applications, such as CAD designs,

they require that the output surface be water-tight, i.e. a surface that bounds a

solid. A piece of work by Dey and Goswami [29] expands and develops the Cocone

algorithm further by producing a water-tight output, even when there are regions

of under-sampling in the point set. The main idea in their work, TightCocone,

is to label the Delaunay tetrahedra computed from the input sample as “in” or

“out” according to an initial approximation of the surface and then peeling off all

the tetrahedra that are marked as “out”, leaving the rest as the “in” tetrahedra.

The tetrahedra are classified based on the set of surface triangles at each point,

depending on which side of the surface triangles that they lie on. The boundary

of the remaining “in” tetrahedra is output as the water-tight surface. The initial

approximation is obtained through the Cocone algorithm which is possibly having

holes and other artifacts. In a way, the TightCocone approach can be seen as

a “sculpting” process. Another piece of work that is similar in this aspect is by
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Attene and Spagnuolo [17].

2.3 Linear Time Triangulation Algorithm

Global triangulation algorithms are usually based on algorithms such as Delaunay

triangulations and Voronoi diagrams. These approaches are very algorithmic and

thus more open to theoretical analysis, which is a big advantage. However, De-

launay triangulation algorithms have a worst-case computational timing of O(n2),

which is undesirable for large point sets. Furthermore, in constructing a piecewise

linear surface, a point is only likely to form triangles with nearby points. Hence, it

seems that redundant operations are wasted to construct a global structure when

a local structure seems to suffice.

Funke and Ramos Algorithm. Funke and Ramos [34] observe that the Cocone

algorithm uses 3D Delaunay triangulation which can result in a worst case timing

of quadratic size. Furthermore, a point is only likely to form triangles with nearby

points. Hence, the Cocone algorithm can be optimized further to produce a near-

linear timing. The most time consuming operation in the Cocone algorithm is the

generation of the Voronoi diagram, which is a global data structure. They deduce

an initial estimate of the Voronoi cell of each point p, by using a well-separated-pair

decomposition technique [22]. Using this initial estimate, they decimate the point

set to get a sampling similar to (ε, δ)-sample (described in Section 2.2.2). Once such

a point set is obtained, they use an incremental approach to calculate the Voronoi

cell for each point which can then be used in the Cocone algorithm. Hence, they

are able to avoid creating the Voronoi diagram as a global structure and thus avoid

incurring a worst case quadratic time complexity. The time complexity for their
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approach is O(n log n). However, it should be noted in perspective that although

their time complexity is near linear, some of the approximations that are used can

be too time consuming, making the algorithm unsuitable for practical usage.

Gopi Algorithm. Gopi et al. [36] similarly see the potential in reducing the

computational complexity of Delaunay triangulation for surface reconstruction.

Their reconstruction process is based on the advancing front techniques. They

used a normal estimation method, similar to Hoppe et al. [38], to create local

surfaces at each point. The local surface that is constructed at each point, is based

on a 3D Delaunay triangulation that is projected onto a 2D plane. By using such

a projection, they are able to effectively speed up the calculation for the Delanuay

triangulation computation. And similarly with [38], the tangent plane estimation

process is unreliable at regions of undersampling and reconstruction tends to fail.

2.4 Meshing Fitting Algorithm

Another different approach to the problem of surface reconstruction is by the

gradual deformation of a coarse representation and approximation of the surface

towards a more detailed mesh representation of the input point set. Such an

approach can either start from a simple template model which resides within the

surface manifold and gradually growing it to fit the input point set, or from the

convex hull of the input point set and then gradually sculpting it.

Geometric Convection Algorithm. The geometric convection algorithm [25]

is based on the convection model introduced by Zhao et al. [62]. They solve the

surface reconstruction problem by first computing a closed surface that minimizes
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a global distance function to the input point set. Such a closed surface is usually

the convex hull of the input point set. The approximated closed surface is then

gradually shrunk to fit more closely to the point set. Each facet of the surface

(usually Delaunay in nature) must be oriented consistently towards the interior of

the shape that fulfills an oriented Gabriel property. This means that each oriented

facet must have half of its minimum enclosing sphere, which is directed towards the

interior of the closed manifold, empty of any point in its interior. This approach is

then further developed by Allègre et al. [5, 6] whereby a framework is developed

to adapt the geometric convection algorithm for large point sets.

Template Fitting Algorithm. In contrast to the geometric convection algorithm

where a coarse mesh is gradually shrunk to fit the point set, another approach

is to gradually grow a small coarse mesh model to fit the input set. Such an

algorithm is termed as template fitting algorithm. In the work by Sharf et al.

[58], they gradually grow a deformable mesh model inside the point cloud and

evolve it in incremental steps to finally fit the input point set. In the process of

deformation, mesh optimization operators are applied to maintain a high mesh

quality. It guarantees water-tightness and allows simple tracking of topological

events. When the model is sufficiently close to the input point set, a moving

least squares projection [3] is applied to map it to the final deformed mesh model.

Other type of template fitting algorithms include works by Kraevoy and Sheffer

[45] and Stoll et al. [60]. Their works comprise of having a template model which

is generally similar to the surface which the input point set is sampled from. This

template model is then used to guide the reconstruction process. However, these

methods require user interaction to establish reference points between the template

model and the input point set.
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2.5 Overview of Existing Approaches

The following figure shows an overview of the characteristics of the existing ap-

proaches that are used in surface reconstruction.

Algorithm
Require

Normals

Points on 

Surface

Non Linear 

Time

Piecewise 

Linear

Handle

Noisy Data

Tangent Plane Yes Yes

Triangle Fans Yes Yes

Ball Pivo!ng Yes Yes

MLS Yes Yes

RBF Yes Yes

Iso-Surface Yes Yes

Power Crust Yes Yes

TightCocone Yes Yes Yes

Linear Time 

Triangula!on
Yes Yes

Geometric 

Convec!on
Yes Yes Yes Yes

Template 

Fi"ng
Yes Yes Yes

Figure 2.8: Summary of existing methods in surface reconstruction.

Referring to Figure 2.8, “require normals” states whether the algorithm re-

quires normal information from the input data set. “Points on Surface” refers to

whether the input points lie on the reconstructed surface. “Non linear time” states

whether the algorithm scales non-linearly with the size of the data set. The last
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two categories of “piecewise linear” and “handle noisy data” refers to whether the

output is a triangulated surface and whether the algorithm is capable of applying

it to noisy data sets. It should be noted however, that none of the methods that are

introduced has openly tackled the issue of undersampling in the input point set.

Hence, in our piece of work we attempt to address the problem of undersampling

directly.
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Chapter 3

The Layer Peeling Algorithm

This chapter develops an effective surface construction algorithm which focuses on

under-sampled point data sets. As to be illustrated in chapter 5, this algorithm

produces a piecewise linear surface that is homeomorphic to the original surface

that the point set is sampled from, provided that the sampling fulfills certain cri-

terion. We term this algorithm the Layer Peeling Algorithm. Our layer peeling

algorithm is derived fundamentally from two areas. The first area is from the ren-

dering perspective and the second is from the segregation of the different categories

of points that exist in a k-nearest neighbor set within an under-sampled region.

By utilizing both concepts, the algorithm is able to filter away undesirable points

in the neighborhood, using a combination of both local and global methods.

Section 3.1 discusses some of the problems that face current surface reconstruc-

tion algorithms when dealing with under-sampled point sets. Section 3.2 illustrates

the different categories of points that exist in an under-sampled k-nearest neigh-

borhood. Section 3.3 introduces the fundamental principles that the layer peeling

algorithm is based on. Finally in Section 3.4, an outline of the layer peeling algo-

rithm is given.
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3.1 Problems of Under-Sampled Points Sets

As introduced in Section 2, there are mainly two ways to perform surface recon-

struction. The first way uses k-nearest neighborhood to form local surfaces such as

tangent planes, triangle fans, or implicit surfaces for each point. The local surfaces

that are formed are then merged together to form a single 2D manifold. The other

method uses global triangulation methods such as Voronoi diagrams or Delaunay

triangulations. By working on the simplicial complexes that these two methods

provide, a piecewise linear surface can be extracted.

In most cases where there are adequate sampling, the surface reconstruction

process tend to be smooth and error free. However, in regions where under-

sampling occur, it is possible to see distortions, artifacts, and holes appearing

in these reconstructions. The problem that most algorithms face is the fact that

the importance value given to each neighborhood point when constructing local

surfaces is independent of their distance value, which can lead to inaccurate re-

construction. Variations include imposing a radial [23] or Gaussian function [3, 4]

on the distance value to further lessen the impact of erroneous neighboring points.

For local surface estimates, the accuracy of the extracted normal vector for each

point usually determine how much the reconstructed surface resembles the original

sampled surface.

As shown in Figure 3.1, there are usually two reasons why using the k-nearest

neighborhood tend to make erroneous normals estimation in under-sampled point

sets. On the left picture, two points p and q are very near to each other. Using a

k-nearest neighborhood approach, the point p is located within q’s neighborhood

and vice versa. As such, it is difficult to correctly orientate the normals at both p

and q in the correct direction. On the right picture, a k-nearest neighborhood of a
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Figure 3.1: Left: Two points p and q are too close to each other and their normals
orientations are difficult to resolve. Right: The PCA performed in an under-sampled
neighborhood of a point p does not provide an accurate estimation.

point p has included some other points which do not lie geodesically close to p. A

PCA performed on the k-neighborhood of p gives a slightly different estimation of

the normal n′ than the correct normal n at p. Using Hoppe et al. [38] algorithm

as an example to run on the Screwdriver point set model in Figure 3.2, the effects

of under sampling can be seen clearly. The tip of the screwdriver point model

is sharp and the two opposite surfaces are close to each other. The two images

show the direction of the normal vectors at each point sample near the tip of the

screwdriver point model. The left image shows the normal estimation result when

a simple k-nearest neighborhood approach in Hoppe el at. algorithm is employed.

The right image shows a better normal estimation when the correct neighborhood

of each point is used. By correct neighborhood, it is taken to mean points which

lie geodesically close, rather than geometrically close.

For most triangulation algorithms such as Crust or Cocone [8, 11], they too

require an initial normal vector estimate in order to start their surface construction

process. Their estimation is based on the concept of poles, as described in Sec-

tion 2.2.3. The choice of using poles to estimate the normal values comes from the

observation that the shape of the Voronoi cells of sampled points from a surface
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Figure 3.2: Normal estimation on the Screwdriver point set model. Two different
neighborhood is used. The result on the left is done by using k-nearest neighborhood,
while on the right the result is obtained by using the correct set of neighbors.

is usually elongated, and most likely along the direction of their normal vectors.

Hence, the choice of using the furthest Voronoi vertex as an estimate of the normal

vector is typically a good choice. However, in regions of under-sampling, such a

property does not always hold true and can therefore lead to erroneous results.

3.2 Different Types of Neighborhood Points

The assumption that most local approach algorithms depend on is that all the

points in the k-nearest neighborhood set are geodesically nearby. In other words,

it means that the surface which all the k-nearest points are lying on forms a

connected component. If this assumption is fulfilled, most local approaches tend

to work correctly and produce a reasonable surface that approximate the original

manifold well. However, when under-sampling occurs, such an assumption may

not always be true. In those situations, the k-nearest neighborhood is likely to

contain points from other regions of the original surface.

In general, there are three possible types of sampled points in the region of
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Figure 3.3: The k-nearest neighborhood set of a point in both dense sampling and
under-sampling conditions.

interest around a single sampled point p; see Figure 3.3. Taking the points lying

on the original surface as a divider, it is possible that other sampled points are

lying above and below in the k-nearest neighborhood set. With no additional

information that is available on the point set or the sampled surface, it is difficult

to differentiate among the three types of points. This is the main challenge for

any surface reconstruction algorithm. For under-sampled point sets, most of the

k-nearest neighborhood sets contain all three types of sampled points.

3.3 Algorithmic Rationale

In our layer peeling algorithm, the central idea is determining how to differentiate

between the three types of sampled points in a typical k-nearest neighborhood set.

In order to explain how the layer peeling manages to resolve that, we begin first

with two simple observations about closed-manifold in general and their influences

on our algorithm.
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Fact 1 For any closed-manifold surface in 3D that is watertight and bounds a

volume, a ray intersecting the surface is always alternating between front-facing

(i.e., from outside the bounded volume to the inside) and back-facing intersection.

(a) (b)

Figure 3.4: Intersection between a closed manifold and a ray in 2D.

For a closed manifold, there exists no path that leads from the inside of the

bounded volume to the outside (or vice versa) without passing through the sur-

face. In Figure 3.4(a), a typical manifold in 2D is shown. For any ray coming

from infinity which intersects the manifold, it first strikes the front face of the

manifold. Thereafter, the ray will be inside the manifold and the next intersection

of the ray with the manifold be with a back facing one. This process, as shown in

Figure 3.4(b), can potentially happen a few times for a single ray. Generally speak-

ing, each intersection brings the ray from outside into the inside of the bounded

volume, and another intersection is needed to bring the ray out of the bounded

volume.

Fact 2 Consider a rendering of a point set using splats or small disc at each point.

For a viewpoint aligned along the normal of a point, the point itself is visible if,
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and only if, no splats rendered at the other points intersect with the normal ray

from the point.

(a) (b)

Figure 3.5: Visible line of sight for a point on the manifold.

In rendered images, any object closer to viewpoint occludes the other. Fact 2

thus follows. Refer to Figure 3.5(a), the black point is visible if the viewpoint is

placed along the normal at that point (shown as the green arrow). Conversely for

Figure 3.5(b), it is obvious that the point is occluded and thus not visible from

the viewpoint. These two facts allow us to infer a few things about manifold in

general. Firstly, for points lying on the convex hull of the point set, it is trivial

to use Fact 2 to claim that they can always be visible if the viewpoint is placed

along the direction of their normal vectors. The term visible meant that no other

points should be lying between the viewpoint and the local surface at the point. In

other words, for such a point lying on the convex hull, there are only two types of

points in its k-nearest neighborhood set, since no point will be lying above its local

surface. Secondly, once we determine the local surface for a point, by removing and
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keeping the viewpoint at the normal vector, we are able to see some back facing

surface inside the manifold (Fact 1). Similarly using Fact 2, for a point lying on

the back facing surface inside the manifold, its k-nearest neighborhood set consists

of two types of points, since no point is lying below its local surface.

Constructing the local surface for a point with only two types of points in its

k-nearest neighborhood is generally much easier, since we only have to take the

convex hull from one particular direction as its local surface. Hence, the approach

is to process or propagate the surface construction from the outermost surface

(or layer), since those are the points that are having only two types of points

in their k-nearest neighborhood set. After we construct the surfaces for these

points, we remove them and expose another layer which is back facing. Points

lying on this newly exposed layer are also likely to contain only two types of points

in their k-nearest neighborhood set. By repeating this process, we can perform

surface reconstruction on the point set. This is the rationale of our layer peeling

algorithm.

3.4 Algorithm Outline

In this section, an outline of the layer peeling algorithm is given. Most of the

implementation details such as the global projection test and the triangle fan

construction are omitted and are explained further in Section 4. Using the two

facts as stated in the previous section, we approach the problem of reconstructing

surfaces from point sets as follows. We start the reconstruction process from points

that lie on the outermost layer (i.e. points that lie on the convex hull of the point

set). By using Fact 2, we can extract the local surface around those points. Once

a layer is found, we can use Fact 1 to recursively extract the remaining layers. The

42



1. Compute k-nearest neighbors of each point using the ANN software [16,
52].

2. Perform eigenanalysis for each point so as to select a seed to start the
layer peeling process to construct the surface mesh M .

3. Divide points that are not yet part of M into subsets where two points
are in the same subset when one is a k-nearest neighbor of the other.

4. For each subset, repeatedly construct a triangle fan at a boundary point
(based on Fact 2 applied to within each subset) to merge it into M . Note
that the orientation of a triangle fan is flipped during the even iterations
of this step (as stated by Fact 1).

5. Each point in an isolated group of three or less points (that cannot pos-
sibly form a volume) is merged to its nearest triangle in M .

6. Step 3 to Step 5 create a layer of the point set; we now repeat from
Step 3 to Step 5 until no more triangle fans (i.e., another layer) can be
constructed.

Figure 3.6: The outline of the Layer Peeling Algorithm.

outline of the algorithm is given in Figure 3.6.

Refer to Figure 3.7 for a 2D description of the layer peeling process. The

algorithm first starts with some preprocessing on the point set, Figure 3.7(a). Using

the software from [16, 52], the k-nearest neighbors of each point are computed. For

each set of k-nearest neighbors, a PCA is performed and triplets of eigenvectors

and eigenvalues are extracted. An octree spatial partitioning structure is created

on the point set which is used for the global projection test. The first layer begins

with finding a suitable point to start the reconstruction, calling it a seed. We

sort all points in increasing order of their eigenvalue ratios to select a seed. We

define eigenvalue ratio ep for each point p as the ratio of its smallest eigenvalue

to the sum of all its three eigenvalues. However, we ignore points whose two

out of three eigenvalues are having very low values, which indicate that their k-

nearest neighborhood forms a straight line instead of a planar region. To determine
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whether a point p can be a seed, we use the ray r which is the third (smallest)

eigenvector associated with p, and check whether it passes the global projection

test. If it does, p qualifies as a seed and r is assigned as its normal. Otherwise we

repeat the test for −r to determine whether p can still be a seed with −r as its

normal.

Once the seed is found, we construct a triangle fan at the chosen seed, Fig-

ure 3.7(b). This triangle fan becomes the initial mesh M for us to iteratively

select another point which is lying on the boundary of M to form a triangle fan

to merge into M . We term boundary points as points in M whose triangle fans

have yet to be constructed. There are generally many boundary points and thus

many possible triangle fans to consider for merging into M . As such, we prioritize

all triangle fans using a heap with preference given to one with the smallest vari-

ance of dihedral angles. Each dihedral angle in a triangle fan is defined between

a pair of triangles sharing an edge. A triangle fan can only be added to the heap

if it passes the global projection test with its normal as the test ray. Each time

a triangle fan is merged to M , the boundary of M changes with new points, and

new triangle fans on these points are constructed for consideration to merge into

M , Figure 3.7(c). The construction of this layer ends when no triangle fans can

be constructed for the boundary points of M and at the same time no new seeds

can be found, Figure 3.7(d).

The algorithm then moves on to the next layer of peeling by subdividing the

input points not included in previous layers into subsets where two points are in

the same subset when one is a k-nearest neighbor of the other. Breaking the point

set down into smaller subsets is essentially a divide and conquer approach. Note

that in Figure 3.7(e), there is only one such subset. Since each subset is spatially
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Figure 3.7: The various stages of the Layer Peeling process.
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Figure 3.8: The various stages of the layer peeling algorithm (from left to right, top to
bottom) on the Armadillo point set. The different colors of the reconstructed surface
represent the different layers created by the layer peeling algorithm.
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apart from each other, thereby making the computation of the global projection

test much faster. We then create a new octree structure for each subset to extract

its next layer with respect to the reverse side of the surface (i.e., the orientations of

normals are now inverted), Figure 3.7(f). We continue the extraction process from

all the boundary points again, but with a reversed orientation (Fact 1). Once this

is completed, all the normals that are found in the process are flipped (negated)

back, Figure 3.7(g). For the subsequent layers (if needed), we flip the normals once

every alternate layer. The final reconstruction result is shown in Figure 3.7(h). An

actual rendering of the layer peeling process performed on the Armadillo point set

is shown in Figure 3.8.

This layer peeling approach to surface reconstruction can be used on objects

with very complex topology also. An example of a reconstructed surface from such

a point set with complex topology is shown in Figure 3.9. The various stages of

the reconstruction can be seen with the formation of surfaces from the outermost

regions of the Heptoroid point set and moving towards the inner regions.
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Figure 3.9: The various stages (from left to right, top to bottom) of surface reconstruc-
tion using the Layer Peeling algorithm on the Heptoroid point set.
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Chapter 4

Implementation

In this chapter, we describe the implementation details of the layer peeling algo-

rithm. There are two main processes to the layer peeling algorithm, the first is

the global projection testing and the second is constructing a local surface for a

point. For the global projection test, we use an octree data structure to test for

an intersection between a ray and the point set. To construct local surfaces, we

make use of a simple geometric structure known as triangle fans.

4.1 Global Projection Test

A common operation needed in our algorithm is the global projection test (refer

to Fact 2 in Section 3.3). It tests for intersection of a ray with the surface of the

point cloud, while on the other hand the surface has yet to be constructed. Since

we have no pre-knowledge of the original sampled surface, we determine when any

point is within a certain proximity to a ray to indicate that the ray has intersected

with the surface. In our case, an intersection with the surface (or close proximity

to any point) is deemed to have failed the global projection test. To efficiently
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perform this global projection test, we build an octree on the smallest bounding

cube of the point set, and we say a ray intersects the surface of the point cloud

when the ray passes through one or more leaf nodes of the octree containing input

sample points. In Figure 4.1, an illustration of the global projection test in 2D

is given. In Figure 4.1(a), a small subset portion of the point set is shown and

Figure 4.1(b) shows the construction of the octree in 2D. The occupied leaf nodes

in the octree are shown as shaded. In Figure 4.1(c), a point p is tested for the

global projection test. The path traversed by the ray is shown as colored in grey.

The point p failed the test as it hits an occupied leaf node in both directions of

the ray.

The choice of using an octree for our purposes is an appropriate one, as op-

posed to a regular grid structure. Since surface reconstruction deals with point set

sampled from a surface manifold, most of the spaces within the smallest bounding

cube of the point cloud are usually empty. In the construction of the octree, two

notes are in order. First, we need to decide when to stop subdividing a cube and

designating it as a leaf node. Our input point sets can possibly be regularly or

irregularly sampled. For the former, we can fix the length of the leaf node, i.e.

recursively dividing the cube into smaller cubes whenever there are points in it

until the cube’s length reaches a pre-determined limit. However, this approach

does not work for the latter. Therefore, to handle both cases, we first define the

estimated sampling distance of a point to be the distance from itself to its kth

nearest neighbor. Then, we only subdivide a cube when the estimated sampling

distances of all the points in the cube is shorter than half the length of the cube.

This is to efficiently and appropriately size the leaf node, depending on the sam-

pling density around its vicinity. Second, the global projection test is performed
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through marching from a leaf node to an adjacent one (using [54]), starting from

the origin of the ray and along the ray.

(a)

(b)

(c)

Figure 4.1: The global projection test in 2D.

4.2 Triangle Fan

The triangle fan of a point p ∈ P is a convenient notion for approximating a small

region of the surface around p. We use it to support the extraction of local surfaces.

We note that there are also similar notions of triangle fans in previous works on

surface reconstruction [49]. Our work differs in the criteria of a suitable triangle fan,
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and its use within a novel layer peeling approach to determine surface neighbors.

This section details the construction (Section 4.2.1) and merging (Section 4.2.2) of

triangle fans, and finally the generation of a closed manifold (Section 4.2.3).

4.2.1 Triangle Fan Construction

Let Np denote the set of k-nearest neighbors of p. A triangle fan Tp of p is formed

by a ring of triangles t0, t1, . . . , ti where i < k. These triangles are formed using

points p0, p1, . . . , pi where p0, . . . , pi ∈ Np. For 0 ≤ j < i, tj uses vertices pj, p and

pj+1, and ti uses vertices pi, p and p0 = pi+1. The vertices p0, p1, . . . , pi form the

set Qp, which we term as the surface neighbors of p. Since we always construct

new triangle fans on points that lie in the current boundary point set, there always

exist a vertex q ∈ Qp which has already constructed its triangle fan Qq (unless p is

a seed). Using q, we can determine the facing of each triangle in the triangle fan

of p, and subsequently the approximated normal at p. Let ∠αj denote the angle

at the vertex p in triangle tj, and tj the normal of triangle tj. We approximate

the normal at p by:

n =
i∑

j=0

(tj · ∠αj)

With the definition of the triangle fan, we are ready to define the characteristics

of our triangle fan. We require that Tp satisfies the following criteria:

• Local Convexity Criterion: Each triangle tj is such that no other point

within the set Np−Qp can be projected from above (based on normal direc-

tion and orientation of tj) into tj. This means tj lies on the outermost layer

of its neighborhood.

• Normal Coherence Condition: For all tj ∈ Tp, we have n · tj > 0. This
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Figure 4.2: Construction of the triangle fan.

is because we want a triangle fan to represent a local surface that is similar

to a topological disk.

• Global Projection Test: A ray from p (in the direction of n) passes the

global projection test. This is in the spirit of processing the input point set

from outer layer towards inner ones.

The local convexity condition allows the triangle fan to exclude points that

may not be lying on its nearby surface. Furthermore, together with the normal

coherence condition, it allows the triangulation within a nearby region of a point

to be projectable onto a 2D plane (more details is given in Section 5.2.1). The last

condition, the global projection test, governs the sequence of the propagation of the

mesh construction. It generally guides the layer peeling algorithm to progress from

the outer layer of the point set towards the inner layers. It is easier to construct

triangle fans for points that lie on the outermost later of the point sets, since they

only have two types of neighborhood points and one can be easily filtered away by

the local convexity condition.
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The dihedral angle φAB between two triangles, A and B, sharing an edge is

the angle between their two normal unit vector nA and nB. A dihedral angle can

be signed; the dihedral angle φAB is defined as the angle through which triangle

A must be rotated (about their common edge) to align it with triangle B. Thus,

φAB = −φBA. In Figure 4.2, the dihedral angle made with the newly added

triangle can be calculated by taking the difference between the plane angle with

180◦. Dihedral angles are used both during the construction of the triangle fan and

during the selection of the next triangle fan to be used for merging into the mesh

M . One of the criteria of selecting the next triangle fan to be used for merging is

by calculating the variances of all the dihedral angles in the triangle fan:

var(φTP
) =

1

i + 1

i∑
j=0

(φj − φ)2

where φj represent the dihedral angle between tj and tj+1 if j < i, and between ti

and t0 if j = i.

In the construction of a triangle fan for point p, we do not seek to construct a

unique or optimum triangle fan that best represents the local surface around p. For

our purposes, any triangle fan selecting only points from Np and fulfilling the above

three criteria is sufficient. As stated earlier, we start the construction from point

q. Using q, we employ a greedy algorithm to search for the next triangle (selecting

another point from Np) by giving each triangle a priority value with preference to

smaller area and small dihedral angle (made with the previous triangle). (Note that

we only select a triangle if it passes the local convexity criterion.) If no suitable

triangle can be found, the algorithm backtracks and searches for the triangle with

the next highest priority value. The construction terminates when a triangle fan

is formed, or when it backtracks to point q. The triangle fan thus constructed, if
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any, that passes the three criteria is then a candidate for triangle fan merging as

described in the next subsection.

4.2.2 Triangle Fan Merging

We approximate the local surface region around p using Tp, with the intention of

forming a single piecewise linear surface covering over the entire point set. Starting

with the first triangle fan that is created at the seed, the algorithm merges each

successive new triangle fan into M . We describe the merging process in the next

paragraph. Before that, we note that a triangle fan has the normal direction as

given in Section 4.2.1, and the orientation by the global projection test (depending

on whether the layer requires flipping). Also, a triangle is considered to have two

faces: the front face whose normal makes a positive dot product with the triangle

fan’s normal, and the back face otherwise.

(a) (b)

Figure 4.3: Merging of two triangle fans.

We merge two triangle fans together based on a rule that is similar to the global

projection test. Consider two triangle fans, Tp and Tq. Note that one particular

vertex of Tp is colored as green, and one particular vertex of Tq is colored as blue as

shown in Figure 4.3. For the triangle fan Tp, we project a ray from all its triangles’
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(a) (b)

Figure 4.4: Merging process of a single point to a triangle fan.

front faces along n. For any two triangle fans Tp and Tq, we merge them together

if either the ray from any triangle in Tp hits any back face of any triangle in Tq

or vice versa, where q ∈ Np. Figure 4.3(a) shows the case where the ray from Tp

hits Tq around the blue vertex area, hence a merging process is required. The two

triangle fans Tp and Tq are then merged together as shown in Figure 4.3(b). Note

that the merging process as described in this section is for general case between

any two triangle fans. Merging is formed by a simple triangulation process through

the addition of points into a triangle fan as shown in Figure 4.4. When a new point

is added into a triangle fan Tp, it is added into the triangle that it is projected

onto, along the direction of the normal of Tp, shown as the addition of the blue

vertex in Figure 4.4(a). However, new points do not always have to be projected

onto the triangle fan itself in order to be merged, a point can also be added to a

triangle if it is projected within the range of that triangle. This situation is shown

in Figure 4.4(b), where the green vertex from Tp is projected within the range of a

triangle in Tq (as shown within the wedge defined by the two dotted lines) and then

merged into Tq. The rationale for merging new points into triangle fans with such

an approach is essentially to maintain the normal coherence property of triangle

fans after merging.

When the above simple triangulation is performed, we next seek to optimize
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the resulting mesh to fit it more closely to the original surface. We achieve this by

performing edge flips in 3D to minimize the absolute value of the dihedral angles

in the mesh. Our rationale is stemmed from the fact that as sampling density

increases, every edge in the restricted Delaunay triangulation tends to have a

dihedral angle close to 0◦ [50].

4.2.3 Closed Manifold

Since for each point p, Tp uses only points from Np, thus it is likely that holes in M

may exist after the layer peeling algorithm is completed. This is generally a conse-

quence of utilizing the k-nearest neighborhood method, since no large triangles are

able to form over patches of under-sampled regions. Hence for a practical solution

to produce a closed manifold, we use a simple hole filling algorithm. Throughout

the triangle fan construction and merging process, we maintain a list of boundary

points. For each point in this list, there are two boundary edges that are incident

to it and a priority value is attached to the point based on the angle formed by

the two edges. Small angles are given high priority values. The algorithm then

proceeds to insert a triangle into the mesh M which is formed by the two boundary

edges incident to the point with the highest priority value. The list of boundary

points thus changes and priorities are updated accordingly. This process repeats

until no boundary point exists. In the event that self intersection occurs due to the

insertion of a new triangle, the affected triangles are removed from M and in the

process creating new boundary points. This new list of boundary points is closed

up in a similar fashion.
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Figure 4.5: The irregular sampling of points around a point p in the Dragon point set
is shown.

4.3 Handling Irregularly Sampled Point Sets

The success of the construction of a triangle fan Tp for p relies on the uniform

distribution of Np. For irregularly sampled point sets, two problems can exist;

refer to Figure 4.5. The first problem occurs when some neighbors (relative to the

other k-nearest neighbors) are too close to p. Having neighboring points that are

too close present several issues during the construction of its triangle fan, such

as forming non-uniformly sized triangles which can lead to projection problems

during the merging process. More importantly, points that are too close together

provide very little new information about the sampled surface since it implies that

both points are sampled around the same position. The second problem is due to

an uneven sampling around a point, resulting in the situation that its k -nearest

neighbors are all located on one side of the point. Constructing triangle fans for

such points result in awkwardly shaped triangles.

To handle the first problem, we run a decimation process after the k-nearest

neighbors are calculated for each input point. In this process, we scan through

each point in some order (such as the input order) to remove its neighbors that
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are within 1
10

of its estimated sampling distance, which is the distance to their

kth nearest neighbor. Those surviving points at the end of the decimation process

then have their k-nearest neighbors re-calculated, and used to form the mesh M

with the layer peeling algorithm. Thereafter, those points previously removed are

merged into their nearest triangles in M . For the second problem, for each point

p, we augment its k-nearest neighborhood to include points which have p in their

k-nearest neighborhood. This provides more choices for the construction of the

triangles fan at p.
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Chapter 5

Analysis

In this chapter, we provide an analysis of our layer peeling algorithm. There

are three parts in this chapter. Section 5.1 provides an intuitive explanation on

why the proposed layer peeling algorithm can handle under-sampled point sets

well. Section 5.2 gives a detailed proof regarding the termination of the algorithm

and the correctness of the reconstruction. Similar to other algorithms in provable

surface reconstruction, the proof only states the correctness of the reconstruction

when optimum sampling is present. In other words, under what conditions in

which the algorithm is guaranteed to reconstruct correctly. The proof, however,

does not cover under what conditions the reconstruction is likely to fail. Lastly,

Section 5.3 discusses the computational time complexity of our algorithm.

5.1 Under-Sampled Point Sets

As stated in Section 3.1, the main problem facing under-sampled point set is that

the k-nearest neighborhood of a point usually contains points which does not lies

on its nearby surface. In general, there are three types of points that can exist in
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Figure 5.1: The k-nearest neighborhood of a point p lying on the outermost layer and
a point q lying in the inner layer of the Heptoroid point set.

a typical k-nearest neighborhood, points that lies on top and below the surface,

and points lying on the nearby surface itself, as shown in Figure 5.1 (bottom

right) image. The layer peeling algorithm is directed towards the identification

and removal of points that lie above and below the nearby surface when creating

the local surface.

From the construction of the triangle fan itself, the local convexity criterion

allowed the algorithm to avoid effectively the problem of differentiating between

points in Np lying below the surface and on the surface containing p when forming

a triangle fan for p. However, this approach of using the local convexity criterion

to form triangle fans to exclude point from “under” the surface can only work if

there are no points lying “above” the local region. Note that the terms “above” and

“under” are used loosely in the context, since due to the alternative flipping nature

of the layer peeling algorithm. Thus, the two terms can be taken to mean either side

of the surface. The solution to this problem comes from the propagation sequence

(the order of constructing new triangle fans) of the layer peeling algorithm.

The algorithm starts with a seed to construct a triangle fan. This seed is
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taken to be a point lying on the convex hull of the point set. Based on the local

convexity criterion and the global projection test, the triangle fan at the seed is

free of problems with points above and below the surface containing p. Figure 5.1

(top right image) shows a point p which lies on the convex hull of the point set.

It only has points that either lie on its nearby surface, or below it. Next, for each

triangle fan constructed, we test whether it passes the global projection test before

adding it to the heap for selection during the merging process. In this way, the

layer peeling algorithm can be visualized to be progressing from the outer portion

of the point set, and then slowing moving inwards. As alluded by Theorem 1

(below), at any instance of the algorithm, there exists a point with no triangle

fan constructed yet and is free of points lying above (or below, depending on the

current iteration) its local surface. By always choosing such a point as the next

candidate to construct and merge its triangle fan, we can avoid the problem of

points within Np that lie above and below the local surface around p.

5.2 Optimal-Sampled Point Sets

For this section, we assume the point set P to be an (ε, δ)-sample. As stated in

Section 2.2.2, a method to obtain an (ε, δ)-sample from an ε-sample in almost linear

time is provided in [34]. We require two lemmas from [8, 35]. The first lemma

bounds the maximum length of an edge in a restricted Delaunay triangulation.

The second lemma bounds the angle of the normals between two points that are

sufficiently close. Note that the function f refers to the distance to the medial

axis.

Lemma 1 [35] For p, q ∈ P , if pq is an edge of the restricted Delaunay triangula-
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tion, then

‖p− q‖ ≤ 2ε

1− ε
min{f(p), f(q)}.

Lemma 2 [8] For any two points p and q on S with ‖ p−q ‖ ≤ ρ min{f(p), f(q)},
for any ρ < 1/3, the angle between the normal to S at p and at q is at most

ρ/(1− 3ρ).

Based on the above lemmas, we have the following corollary:

Corollary 3 For p, q ∈ P , if pq is an edge of the restricted Delaunay triangulation,

then the angle between the normal at p and at q is at most 40◦ for ε ≤ 0.1.

Proof. Combining Lemma 1 and Lemma 2, we let ρ be 2ε
1−ε

to obtain ρ
1−3ρ

=

2ε/(1−ε)
1−6ε/(1−ε)

= 2ε
1−7ε

. The maximum angle difference of 38.1◦ is achieved with ε = 0.1.

¤

For the following proofs, we define the local region around a point p as the

space where all points within that region is at most a distance of 2ε
1−ε

away from p.

Hence, the value of k should be such that the k-nearest neighborhood encompass

all the samples points within the local region. By doing so, no potential edge

connections that are present within a restricted Delaunay triangulation will be

lost when taking the k-nearest neighborhood local approach. For an (ε, δ)-sample,

[14] provides a formula to calculate the value of k, such that Np contains all the

neighboring sample points within the local region around p. Hence, the value of δ

directly affects the value of k that is required. Generally, the larger the value of δ,

the lower the value of k. In their paper [14], Andersson et al. use a packing theory

to calculate the maximum number of neighboring points that is bound to contain

all its possible restricted Delaunay neighbors.
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5.2.1 Theorem on Complete Reconstruction

The first theorem shows that the layer peeling algorithm does not prematurely

terminate before a manifold is constructed. Essentially, it implies that the algo-

rithm can always find another point to create a new triangle fan. For the proof,

it is sufficient to show the existence of a new seed to construct a triangle fan each

time. In order to so do, the algorithm has to be able to locate a new seed where

the three criteria of triangle fan construction can be satisfied within its k-nearest

neighborhood. In this proof we simplify the propagation sequence by using a new

point each time, rather than in the actual implementation where the algorithm

usually utilizes points from the boundary of M for the purpose. Note that in the

way we derive subsets of P (in Step 3 of Figure 3.6), the following Theorem 1 also

holds for each subset.

Theorem 1 At any instance during the execution of the layer peeling algorithm

on a point set P , it always exists a point p to construct a triangle fan Tp to become

a part of M .

Proof. We pick p ∈ P ′ to be a vertex of the convex hull of P ′ ⊆ P where each

point in P ′ has no triangle fan constructed yet. Next, we construct a triangle fan

Tp for p. Clearly, p with Tp passes the global projection test, since p is lying on

the convex hull of P ′. We next show that Tp satisfies the local convexity criterion

and the normal coherence condition.

Refer to Figure 5.2. For point p, the local region around p (shown in dashed red

circle) is bounded by two medial balls on each side of the surface, both of radius

f(p). Now consider one of the balls B. We tilt the ball in any one random direction

while pivoting at point p until a point q is hit. Similar to [19], we now pivot the ball

on the edge pq. By rotating the ball on the edge pq, ball B comes into contact with
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Figure 5.2: A medial ball centered at m is pivoted at point p. The maximum deviation
of the line pm is pm′.

another point r (not shown in the 2D Figure 5.2), forming a triangle pqr. Since

the surface S is ε-sampled, a ball of radius εf(p) cannot penetrate S. Thus the

maximum radius of the circum-circle of pqr can be at most εf(p). The maximum

tilt of ball B happens when its surface intersects with the tilted medial ball B′ to

form a circle of radius at most εf(p). (In the case when ε is 0.1, the maximum

tilt is only 12◦ by a simple calculation.) The maximum tilt of ball B is shown as

B′ in Figure 5.2. Furthermore, we note that p, q, and r exist in Np as q and r are

of at most 2εf(p) distance away from p, since 2εf(p) < 2ε
1−ε

f(p). (Note that all

sample points within 2ε
1−ε

f(p) are contained within the k-nearest neighborhood.)

To extract the full Tp, we continue to pivot the ball B on the edge pr and rotate

away from q to extract the next triangle. We continue in this fashion until Tp is

formed.
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To prove that Tp obeys the local convexity criterion, we consider each triangle

of Tp in turn. For each triangle, ball B is able to pivot on its three vertices. Since

ball B is empty of points, the local convexity rule is easily seen to obey.

To show that normal coherence is obeyed by Tp, we consider the line pm, where

m is the center of ball B. During the extraction of Tp, the line pm′ traverses within

a cone-like space. After Tp is formed, n lies within this cone-like space. Since the

tilt of pm′ never exceeds 90◦ (recall the maximum tilt for ε = 0.1 is only 12◦),

normal coherence condition is obeyed. ¤

5.2.2 Theorem on Correctness of Reconstruction

The following lemma proves that the intersection of S with the local region around

any particular point p is a topological disk. By proving that the local region is a

topological disk, it provides a basis where the linear piecewise surface produced

by the layer peeling algorithm can be compared against the restricted Delaunay

triangulation.

Lemma 4 Consider a point p ∈ P with n being the normal to S at p, and a region

S ′ ⊆ S where S ′ is the intersection of S with the local region around p. Then there

exists an injective function to map S ′ to a 2D plane with a normal of n for ε ≤ 0.1.

Proof. For any q ∈ S ′, we know that the maximum angle difference between the

normals to S at p and q is 40◦ by Corollary 3. Consider a line along the direction

of n. It can intersect S ′ at most once, since for intersection to occur twice, the

normal at some part of S ′ needs to be at least more than 90◦ away from n. Thus we

can define the function µ as a linear projection from S ′ using n as the projection

normal. Such a linear projection allows S ′ to be projected onto a 2D plane with
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Figure 5.3: The sequence of transformation from the triangulation produced by the
layer peeling algorithm to a restricted Delaunay triangulation.

a normal of n. It can be easily seen that µ is an injective function, since no two

points within S ′ can be projected to a single point. ¤

From here, we can now begin to show how the output from our layer peeling

algorithm is homeomorphic to the original surface where the point set is obtained.

Theorem 2 The piecewise linear surface constructed by our layer peeling algo-

rithm is homeomorphic to the surface S for an (ε, δ)-sampled point set P where

ε ≤ 0.1.

Proof. We aim to prove that, through a series of local operations, we are able to

transform the piecewise linear surface constructed by our algorithm to the Delau-

nay triangulation of the input point set P restricted to S. The theorem thus follows

as a Delaunay triangulation of P restricted to S with ε ≤ 0.1 is homeomorphic to

the original surface S as proved in [11].
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Refer to Figure 5.3. First, we show that the restricted Delaunay triangulation

within the local region of p can be projected to a 2D plane. By Lemma 4, the

local region around p can be projected into a 2D plane smoothly. Since those

restricted Voronoi cells are on the surface within the local region of p, they can

also be projected similarly. Thus, it follows that the dual edges of the restricted

Voronoi edges, which are the restricted Delaunay edges, can be projected as well.

Next, we consider the piecewise linear surface produced by our algorithm. It

cannot be projected straightforwardly to a 2D plane as in the restricted Delaunay

triangulation case. This is because, with a small chance, the merging of a triangle

fan at p to the mesh M can produce a triangle incident to p whose normal can

be almost orthogonal to n, where n is the normal to S at p. Such a triangulation

occurs because of badly shaped slivers, for example splinters or spike slivers, as

classified in [26], where edge flipping may not be able to remove. Nevertheless, we

can transform the triangulation around the local region of p to one that minimizes

the maximum slope via the edge insertion technique [18]. Such a triangulation does

not have badly shaped triangles (slivers) as the local region to be reconstructed

is known to obey Lemma 4. Note that the edge insertion technique requires that

the initial triangulation is projectable onto a 2D plane and the local convexity rule

(enforced at the triangle fan at p) ensures that such a projection is always possible.

The need for such an operation stems from the fact that although each triangle fan

by itself is projectable onto a 2D plane, multiple triangles fans in the same local

region might not be able to projected onto a common 2D plane (due to slivers).

In the extreme case where a projection is not possible due to the occurence of

multiple slivers, the triangulation edges which cross when projected can always be

removed and re-triangulated. This is always possible because the local connectivity

68



of the vertices are known and the sampling is ε-sampled and follows Lemma 4.

With this, we can now project the triangulation around the local region of p to a

2D plane (Step 1 in Figure 5.3). Note that the set of vertices used in this projection

is the same as those for the case of the Delaunay triangulation, since both sets are

located within the local region of p.

With both the restricted Delaunay triangulation and our triangulation around

the local region of p projected to a 2D plane, we can use edge flip operations in

2D to transform from one to the other (Step 2 of Figure 5.3). This is because

in 2D for a fixed set of points, any triangulation is transformable to another one

through a series of edge flips. Thus, we can transform our piecewise linear surface

to the restricted Delaunay triangulation in 2D. Finally, the 2D restricted Delaunay

triangulation is transformed back to 3D (Step 3 of Figure 5.3). This completes our

series of operations and the proof. ¤

5.3 Computational Time

In general, our algorithm is mostly local. However, there are two portions of the

algorithm with non-linear time complexity. The first is the computation of the

k-nearest neighbors while the other is the global projection test. For both cases,

the data structure consists of a spatial tree decomposition approach. Both require

O(n log n) time to construct, and O(log n) time to process for each point where

n is the number of input points. For the former, we only construct it once at

the start of the algorithm and the actual timing taken by this process is quite

insignificant when compared with the rest of the algorithm. For the latter case,

the construction time is similarly insignificant, but the global projection test can

be expensive as each point may perform the test many times during its triangle
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fan construction. However, we note that for each subsequent layer, the size of

the octree gets progressively smaller as the point set is split into subsets. Hence,

the influence of the non-linear time complexity portions of the algorithm is not so

evident as shown in our experimental results reported in Section 6.
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Chapter 6

Experimental Results

In chapter 5, we provided a proof of the correctness of the layer peeling algorithm

under optimum sampling conditions. However, given such optimum sampling con-

ditions, most algorithms generally produce reasonable output and thus making it

difficult to make any comparison between different methods. Many algorithms

were tested and compared against the layer peeling algorithm, mostly triangula-

tion based algorithms rather than those based on implicit surfaces. Implicit surface

based algorithms generally require solving equations which is based on a number

of parameters. Furthermore, the resulting surface may or may not go through

the original set of input points, hence making comparisons difficult. Among those

triangulation based algorithms that were tested, Tightcocone produces the best

results. The other softwares that were tested include the Geomagic Studio soft-

ware (www.geomagic.com) and PowerCrust [12]. In this chapter, we compare the

layer peeling algorithm against the TightCocone algorithm under varying degrees

of under-sampling conditions. Lastly, we discuss some of the weakness and limita-

tions of the layer peeling algorithm.
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Figure 6.1: The Bunny point set is progressively down-sampled for our experiments.
The leftmost figure is the original point set, while the rightmost figure is 1

32 of the
original.

6.1 Experimental Settings and Details

The experiments are conducted on a Pentium IV 3.0GHz, 2GB DDR2 RAM and

nVidia GeForce 6600 with 256MB DDR3 video memory. In the layer peeling

algorithm, we take 16 to be the value of k. Although the upper bound stated in

[14] is 32, we found that for our experiments 16 is sufficient. For a comprehensive

comparison, we use 23 real point sets available from the web :

• http://www.cs.princeton.edu/gfx/proj/sugcon/models/

• http://www.cyberware.com/

• http://www-static.cc.gatech.edu/projects/large models/

• graphics.stanford.edu/data/3Dscanrep/

and one artificially created point set (E-shaped point model). The reconstructed

surfaces of all the point models are shown in Figure 6.2 and Figure 6.3. The point

sets have sizes ranging from 35947 points (Bunny) to 543652 points (Buddha).

The size of the point sets are shown in Table 6.1. For each of the point models,

we progressively sub-sampled them to get a new point set model that is half of

its original size. This process is repeated 5 times to get new point sets that is 1
2
,

1
4
, 1

8
, 1

16
and 1

32
of its original size, as shown in Figure 6.1. The purpose of using

smaller sub-sampled point models is to assess the robustness of the algorithms
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under the presence of under-sampling, and to see the behavior of both the output

quality and the amount of time taken for reconstruction. These smaller samples

are obtained by uniformly under-sampling the original point sets using Geomagic

Studio software. Each set of under-sampled point set, together with the original

point model, are tested with the algorithms against three criteria of Visual Quality,

Normal Vectors, and Running Time.

Point Set Point Size Point Set Point Size Point Set Point Size

Armadillo 172974 Goddess 137406 Male 303380
Buddha 543652 Hand 327323 Man 148138
Bunny 35947 Hipbone 139205 Maxplanck 49132
Club 209779 Horse 48484 RockerArm 40177
Cow 46433 Igea 134345 Santa 75781

Dinosaur 56194 Isis 187644 Ship 388165
Dragon 437645 Lion 183408 Teeth 116604

Egyptian 51095 Lucy 262909 E-Shaped 60483

Table 6.1: The sizes of the point sets that are used in the experiments.

Visual Quality. The most obvious mode of comparison for the quality of the

outputs from the various algorithms is visual comparison. For most of the orig-

inal point sets, they are usually sufficiently sampled enough to produce a good

reconstruction from the algorithms. By using the original as a benchmark, the

gradual deterioration of the reconstruction can be observed as the point sets get

more under-sampled. Such deterioration usually includes unusually long and thin

triangles linking from one part of the reconstructed manifold to another part which

is of quite a distance away. Other defects include the formation of holes due to

thin surfaces or in some situations, a failure to properly reconstruct the surface.

Hence, by visually observing the quality of the reconstruction as more and more
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Figure 6.2: The first set of point set models. (From left to right, top to bottom)
Armadillo, Buddha, Bunny, Club, Cow, Dinosaur, Dragon, Egyptian, Goddess, Hand,
Hipbone, Horse.
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Figure 6.3: The second set of point set models. (From left to right, top to bottom)
Igea, Isis, Lion, Lucy, Male, Man, Maxplanck, RockerArm, Santa, Ship, Teeth, E-Shaped
object.
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under-sampling occurs, a comparison can be made regarding the robustness of the

algorithm against under-sampling.

Normal. Visual observation allows us to see the obvious differences that exist

in two different meshes of the same point set. However, it does not provide any

insight into the quality of the results as both outputs use different sets of edges

and triangles but yet looked visually identical in most parts. Hence, we need

a similarity metric index, for comparing how faithful the reconstruction is to the

original when under-sampling takes place. Furthermore, by using such a metric, we

are able to compare the quality of the output as compared to the output produced

by current surface reconstruction approaches. However, the input point sample

does not provide an actual normal value at each sample point. Hence, we require a

standard set of normal values for each point set which the output of the algorithms

can be compared against.

To achieve this aim, we use the TightCocone method as the benchmark algo-

rithm. We take the original point sample set and run the TightCocone software on

it to obtain a piecewise linear surface. Using this output surface as the benchmark,

we can compare the result of the reconstruction of the under-sampled point sets

against it. It should be noted that there is no correspondence of points between

the original point set and the under-sampled point set. Thus, to compare the

normal values between the two point sets, we first scale both point sets to have

the same bounding box dimensions. Then a point in the under-sampled point set

is mapped to the nearest point in the original point set and compared against its

normal value. The similarity index is calculated based on the average difference

(in degrees) of the normal values for all the points in the under-sampled point set

and their corresponding nearest point in the original point set.
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Running Time. The time taken per point for each point set model is taken

and tabulated across the various under-sampled models. This allows us to see

the variation of the size of the point set model against the time taken per point.

A linear time complexity algorithm should generally register the same amount of

time taken per point, regardless of the size of the point model. A non-linear time

complexity algorithm, on the other hand, should have a longer time taken for each

point as the size of the point model increases. By noting the shape of the plotted

graph of time taken vs point set size, we are able to deduce whether an algorithm

is suitable for scalability with larger point sets.

6.2 Visual Quality

Figures 6.4 to 6.11 highlight the differences in some of the outputs of our algorithm

as compared to that of TightCocone. Our algorithm generally respects the local

feature of the point clouds, and handles thin regions well. It usually does not

generate erroneous triangles that span across unrelated parts of the surface. These

show that our algorithm can produce meshes that match well with human percep-

tions of the point clouds. Through the examples shown from Figures 6.4 to 6.11,

we can be seen that the layer peeling algorithm does in fact produce meshes that

are more accurate than those produced by TightCocone to the original.

6.3 Normal Values

Each of the 23 point sets uses the TightCocone software to generate a “benchmark”

surface manifold. This “benchmark” surface manifold is then compared against the

surface generated by both TightCocone and the Layer Peeling algorithm for the
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(a) (b)

Figure 6.4: Meshing results of the Armadillo point data (5787 points). (a) is produced
by TightCocone where abnormal triangles are formed between the ear and the hand area.
(b) is produced by our layer peeling algorithm.

(a) (b)

Figure 6.5: Meshing results of the Bunny point data (1220 points). The result of
TightCocone is shown in (a) where the ear of the Bunny is shown to be disconnected.
Our layer peeling result is shown in (b).
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(a) (b)

Figure 6.6: Meshing results of the Dinosaur point data (3973 points). It can be clearly
seen that the result of TightCocone in (a) shows the formation of triangles between the
back and the tail of the Dinosaur. Our layer peeling result is shown in (b).

(a) (b)

Figure 6.7: Meshing results of the Hand point data (10597 points). The result shown
in (a) by TightCocone clearly shows a failure of the reconstruction. The corresponding
result by our layer peeling result is shown in (b).
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(a) (b)

Figure 6.8: Meshing results of the Hipbone point data (1964 points). Result (a) is pro-
duced by TightCocone where various deficiencies in the meshing result are highlighted.
Result (b) is produced by our layer peeling algorithm.

(a) (b)

Figure 6.9: Meshing results of the Horse point data (3042 points). In the result produced
by TightCocone shown in (a), the hind area of the Horse contains some artifacts. The
result of the layer peeling algorithm is shown in (b).
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(a) (b)

Figure 6.10: Meshing results of the Lucy point data (16132 points). The rendered result
of the mesh produced by TightCocone is shown in (a) and the chest area of the Lucy
shows some surfaces having wrong orientations. The result of the layer peeling algorithm
is shown in (b).
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(a) (b)

Figure 6.11: Meshing results of the Santa point data (1098 points). (a) is produced by
TightCocone and it shows some disconnections at the hat area of the Santa. The result
of the layer peeling algorithm is shown in (b).

successive under-sampled point models. Note that the last point set (E-shaped

object) is artificially created and hence normals are known. However, in order

to obtain a better indication of the usefulness of the layer peeling algorithm, we

use a simplified version of Hoppe et al. [38] algorithm to provide another point

of reference. In the simplified algorithm, we uses PCA to run through the k-

nearest neighborhood of each point to get an initial estimate of the normal values.

Thereafter, we obtain a consistent orientation of the normal values by using the

propagation sequence as stated in [38]. This simplified algorithm gives us an

indication of the estimated normal values that most local algorithms generally

obtain when no filtering of the k-nearest neighborhood is done. Hence, using this

simplified algorithm as a point of reference, we are able to view the improvements

and benefits of the layer peeling algorithm.

In Table 6.2, we see the tabulated result of the average normal difference across

the various levels of under-sampling for the 23 point sets by the three methods.
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Fraction of original point set (23 Point sets)
Algorithm 1 1/2 1/4 1/8 1/16 1/32

Hoppe 2.391 4.198 6.208 8.961 14.201 32.572
TightCocone 0 4.391 5.242 7.132 8.848 12.386
Layer Peeling 1.719 3.865 5.326 6.874 8.724 10.976

Table 6.2: The average difference (in degree) of normals computed by different methods
for the 23 point set models.

Note that the tabulated result for the average normal different for the original

point set by the TightCocone method is zero (since it is comparing against itself).

In each of the column of Table 6.2 we can observe a similar trend. A significant

improvement of the average normal difference can be seen from the layer peeling

method over the simplified algorithm of Hoppe et al. This provides evidence that

the layer peeling approach of filtering the k-nearest neighborhood resulted in an

improvement of the accuracy of the normal values. Furthermore, the result of

average normal values over the successive under-sampled point sets are very similar

to the result produced by the TightCocone method.

Fraction of original point set (E-shaped point set)
Algorithm 1 1/2 1/4 1/8 1/16 1/32

Hoppe 1.608 1.83 2.386 3.954 5.515 93.929
TightCocone 1.482 1.589 1.724 2.292 3.089 13.158
Layer Peeling 1.488 1.59 1.726 2.295 3.099 5.02

Table 6.3: The average difference (in degree) of normals computed by different methods
for the E-shaped point set.

Other than the 23 point sets that were tested, we also test the algorithms on

the E-Shaped object as shown in Figure 6.12. By using an artificially created point

set, a set of perfect normal values set can be made available and compared against,
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(a) (b)

Figure 6.12: Meshing result of the artificially created under-sampled E-shaped point
set model (1728 points). The result of TightCocone is as shown in (a) having huge
distortion, while our result is as shown in (b).

without any error bias in the data set. The result is shown in Table 6.3. Similar

to the previous average result computed by the 23 point sets, the result once again

showed that the layer peeling algorithm improves on the simplified algorithm and

is very close to the result of TightCocone.

Fraction of original point set
1 1/2 1/4 1/8 1/16 1/32

Average Difference 1.719 0.843 0.242 0.795 1.224 1.787

Table 6.4: The average difference (in degree) of normals between the outputs produced
by TightCocone and the Layer Peeling algorithm.

By comparing the output of the normal value between corresponding outputs

by both the layer peeling and TightCocone method, we obtain the result listed in

Table 6.4. It can be seen from the result that the output of layer peeling is very

similar to the one produced by TightCocone across all the 24 point sets and their
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corresponding under-sampled point sets. This gives confidence to the fact that the

layer peeling algorithm does in fact produce correct output of high quality.

6.4 Running Time

The time taken for each of the 24 point sets to compute their surfaces are recorded

for both methods. In Figure 6.13(a), we see the graph plot of each point set versus

the time taken per point when using the layer peeling algorithm. Each line in the

graph represents the time taken per point for one point set throughout varying

degrees of under-sampling. In Figure 6.13(b), the time taken for the TightCocone

algorithm is shown. Through the observation of both graphs, a few points are

noted. First, it can be observed that almost all the line plots for each model follow

a distinct pattern. For the case of the layer peeling algorithm, there is a steady

decrease in time taken per point as point sampling gets more adequately sampled.

For the case of the TightCocone algorithm however, there is a steady increase in

time taken per point. This result for the TightCocone is expected as it employs a

Delaunay triangulation algorithm that is known to take O(n2) time in the worst

case.

Note that Figure 6.13 shows the time taken per point for various degrees of

under-sampling of each point set. Hence, a 1
32

sampling of the Buddha point set has

more sample points than the 1
4

sampling of the Bunny point set. To compare the

actual timing based on size of point set, Figure 6.14(a) shows the scattered graph

plot of time taken per point vs size of point set for the layer peeling algorithm. The

corresponding graph for the TightCocone algorithm is shown in Figure 6.14(b).

The general traits of both algorithms can be seen clearly in both graphs. The

time taken per point for the layer peeling algorithm stabilizes as point set sizes
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Figure 6.13: The average time taken to process a point for all the 24 point set models
based on their successively down-sampled point sets.
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Figure 6.14: The average time taken to process a point for all the 24 point set models
based on size of point sets.
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grows larger, while in the case for the TightCocone version, it can clearly be seen

increasing steadily.

Taking the average of time taken per point over all the 24 point sets, the

improvement in time taken is tabulated in Table 6.5. As can be seen from the

table, when point sets are small the layer peeling algorithm generally takes up to

around 49% more time than TightCocone. However, as the point size increases,

the situation is reversed. The average time improvement for the original point set

is shown to be around 46% for all the 24 point sets.

Fraction of original point set
1 1/2 1/4 1/8 1/16 1/32

Time Improvement 46.39% 36.39% 20.19% 2.38% -19.70% -49.08%

Table 6.5: The time improvement (in percentage) of the layer peeling algorithm
over the TightCocone algorithm.

6.5 Experiment Reviews

It is not surprising that the layer peeling method generally takes a shorter amount

of time than the TightCocone method to perform surface reconstruction, since it is

mainly a local algorithm. The noteworthy point is that the time taken for all the

different point sets with different number of genus have the same behavior when

the point sets are successively under-sampled. However, it remains to see if this

behavior can be maintained when the point sets reach a few tens of millions of

points. Currently, memory constrains do not allow the testing of such large point

sets as the layer peeling algorithm does not have an out-of-core implementation. In

the layer peeling algorithm, the neighborhood calculation and the global projection
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test are non linear time complexity processes. However, their influences on the time

taken for the point sets are not yet felt up to point set sizes of 500,000. Further

experiments can be conducted to determine the timing for super large point sets.

In conclusion, the results of the experiment are as follows:

• In most cases where point sets are heavily under-sampled, some distortions

and artifacts can be observed for the surfaces generated by TightCocone,

while the outputs by the layer peeling algorithm remain reasonable.

• The outputs from both our algorithm and TightCocone, based on normal

value similarity, are very alike, differing by at most an average of a few

degrees for each point.

• The time taken by the layer peeling algorithm is much faster than the Tight-

Cocone as the size of the point set gets larger. Furthermore, the trend of the

time plot indicates that the layer peeling algorithm is more suitable for large

point sets.

6.6 Weaknesses and Limitations

As shown in the results of the experiments, the layer peeling algorithm is able to

reconstruct the surfaces for all the point sets and their under-sampled point sets

reasonably well. However, one of the reason for that is because all the points sets

are not noisy. The layer peeling algorithm is dependent on the global projection

method and the local convexity criterion for correctly constructing a triangle fan

for each point. In the presence of noise however, most of the points are likely

to encounter difficulty during the construction of their triangle fans, leading to

further global projection problems in subsequent layers.
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Chapter 7

Conclusion

This thesis aims to develop an efficient and robust surface reconstruction algorithm

that is especially suitable for under-sampled point sets. The reconstructed surfaces

from the tested point models using our algorithm have shown good results, and

outperform standard algorithms that are used commonly. In addition, the layer

peeling algorithm has shown to be useful towards under-sampled point sets. During

the development of the layer peeling algorithm, many ideas were experimented and

explored. The major contributions of this thesis are:

• The characterizing of the k-nearest neighborhood into three different types

of neighborhood points. By doing so, the layer peeling algorithm can use

both the propagation sequence of the surface mesh construction and the

local convexity condition to effectively remove neighborhood points not on

the same nearby surface.

• An implementation of the layer peeling algorithm that is able to correctly

reconstruct surfaces which have thin surfaces and are under-sampled. In

the experiments, point set models are reduced to a fraction of their original
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point size. Even when reduced to 1
32

of their original size, the layer peeling

algorithm is able to correctly reconstruct them without suffering from visible

distortion.

• The layer peeling algorithm is mainly a localized one. Although certain

portions of the algorithm has non-linear time complexity, such as the global

projection test, their effects on the overall total time taken are still negligible.

As illustrated in the experiments performed for the layer peeling algorithm,

the increment in the time taken per point is very little even when the size of

the point set is doubled. The potential for using the layer peeling algorithm

on large point sets is very favorable.

• A proof is given such that with a sufficient sampling, the layer peeling al-

gorithm is able to generate a surface that is homeomorphic to the original

surface which the sample points are sampled from. Such a proof ensures that

the layer peeling algorithm is not just a specialized algorithm dealing with

under-sampled point sets, but also useful for general surface reconstruction

purposes.

The layer peeling algorithm was implemented and has shown to be a reliable

and robust algorithm for surface reconstruction. Many interesting future researches

and improvements can be made with regards to the layer peeling algorithm. The

first improvement that is possible is having a better implementation for the hole

filling algorithm. The current hole filling algorithm joins the boundary vertices

directly, thereby producing a “flat enclosure” for the boundary points even when

the surrounding surfaces are curved in shape. From an aesthetic viewpoint, the

current implementation is not pleasing to the eye when the hole is large. The second
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improvement that can be explored is the removal of points that are very close

together (as described in Section 4.3). In Funke’s algorithm [34], they estimate an

initial normal for each point and then proceed to estimate the size of the restricted

Voronoi cell. With that estimation, they begin to remove points from the point

set. Although their implementation might be erroneous in certain situations (since

the initial normal estimate is inaccurate), it is a heuristic that is useful in a highly

non-uniform point set. More research can be devoted towards this area.

Some of the future works that is based on the layer peeling algorithm is extend-

ing it for out-of-core surface reconstruction, improving the speed of visualization

by performing visibility determination and adapting the algorithm to noisy input

point sets. As one of the purposes of the layer peeling algorithm is to make recon-

structing surfaces for large point sets viable, more work can be done optimizing the

layer peeling algorithm when it comes to memory management and parallel pro-

cessing. With the current personal computers or workstations having dual or quad

cores CPUs, we should fully utilize all the available computing power. In some of

the newer works in out-of-core surface reconstruction [21, 40, 7], they make use of

incremental local refinements to a coarse representation of the final reconstructed

surface, making it suitable for out-of-core implementation. The layer peeling algo-

rithm is in general a local algorithm and we hope to develop the algorithm further

for adaptation to large point sets.

In another area, a new piece of work done by Katz et al. [41] uses the “Hidden”

Point Removal operator to determine the visible points as viewed from a given

viewpoint. This determination is performed without reconstructing the surface or

estimating normals. We found this work to be similar to our approach of the global

projection method, which performs the same task. Further research can be done
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to develop the global projection method into an algorithm that is suitable for large

scale visualization.

Finally, the last area which the layer peeling algorithm can be further adapted

towards is the handling of noisy point sets. Handling noisy point sets are currently

been researched upon in many other algorithms [30, 31]. The layer peeling algo-

rithm similarly can be developed into that direction, thereby making it a more

all-rounded algorithm that is suitable for all types of input point sets.
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Appendix A

The Layer Peeling Software

The layer peeling software is an application which implements the algorithm de-

scribed in this thesis. There are two versions of it, one having a graphical user

interface (GUI) (Figure A.1(a)), while the other is console-based (Figure A.1(b)).

They are built on the Windows platform in C++ language and are efficient, robust

and user friendly. In terms of the result of the reconstruction, both versions give

the same output. The GUI version provides the user with visualization capabil-

ities, while the console version computes the surface reconstruction faster. The

input is a set of 3D coordinate points without any additional information. In this

appendix, we describe the settings, operations, and visualization options of the

layer peeling software.

A.1 Software Setting

There are four parameter settings for both versions. These four parameters are as

follows:

Single Manifold The algorithm might produce more than one connected compo-
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(a)

(b)

Figure A.1: A screenshot of the layer peeling software with GUI is shown in (a), while
the console version is shown in (b).
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nent in the output. By selecting “yes”, the algorithm searches for the largest

connected component, and removes all the smaller ones.

Point Removal Some point sets have points having coordinates which are either

identical or very close to each other, making the construction of the triangle

fan to be extremely problematic. Based on a local estimate of the sampling

density (distance to the 16th nearest neighbor), the algorithm removes points

which are within a selected percentage of the distance.

Number of Layers The user can choose to construct only a stated number of

layers.

Sharp Faces Removes faces which are particularly sharp.

Of the few settings that are available to the layer peeling software, the point

removal function has the largest impact on the layer peeling algorithm. The layer

peeling algorithm is heavily dependent on the successful creation of triangle fans. A

highly irregular point sample tends to cause triangle fans to be very unbalanced in

both shape and size, making the merging operations to be problematic. For such

a point set, setting a high value for the point removal option will usually solve

the problem. From another viewpoint, the higher the point removal value, the

more points the software removes from the main surface reconstruction algorithm

(though those points are added back once the reconstruction is finished). By

removing more points the layer peeling algorithm takes less time to compute the

surface reconstruction. Thus, for a point set that is over sampled, this method

allows the user to compute the surface in a much shorter amount of time. Note

that the quality of the reconstruction tends to be affected slightly if the point

removal setting is set too high.
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A.2 Software Operation

Once the input set is loaded into the program, the software automatically calculates

the k-nearest neighborhood set of each point using the ANN software package

[16] that is packaged along with the layer peeling software. Along with that, the

eigenvectors and eigenvalues of all the points are also calculated. Points which

are deemed too close to each other are also culled away based on the settings of

the software. These points that are removed are then added back into the final

reconstructed surface.

For the GUI version, the user can use standard mouse operations to view the

input mode model. These operation includes:

Left Button Rotates the point model.

Middle Button Zooms in/out.

Right Button Pans the viewing plane.

In addition, there is a toolbar icon button which allows the user to modify the

left mouse button rotation functionality. The user can choose to set the rotation

functionality from a world view rotation (rotating the object) to a first person

perspective rotation (rotating the viewpoint).

After selecting the various settings, the user can then start the reconstruction

process. A progress bar is shown to notify the user of the progress of the re-

construction, including the current layer that the software is working on and the

number of points that have been processed so far. Once the surface reconstruction

is done, the triangulated piecewise linear surface is rendered on the viewing pane.

The user can also bring up the statistics panel (as shown in Figure A.2) to see the

time taken for the reconstruction.
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Figure A.2: The timing result of the reconstruction.

A.3 Visualization Tools

There are various visualization settings that the user can choose to view the re-

constructed model.

Wireframe View Display the wireframe model.

Backface Culling Hide/Show triangles faces that are facing away from the view-

point.

Natural Rendering View the reconstructed model using Gouraud shading model.

Reverse Faces Show the reverse faces.

Colored Layers Using different colors to represent the different layers that are

constructed by the layer peeling algorithm.

Screenshots of the reconstructed surface in two different rendering modes are

shown in Figure A.3. In addition to the different types of rendering modes, the
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(a)

(b)

Figure A.3: Two different visualization types of the reconstructed surface. In (a), the
reconstructed model is shown as shaded with the Gouraud shading model, while in (b)
the surface is colored based on the layer which it was reconstructed in.
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software has an animation sequence tool which shows the triangle fan propagation

sequence. By viewing the animation sequence, the user can get a better picture of

how the layer peeling algorithm progresses from the outermost layer to the inner

layers.

A.4 Software Download

The layer peeling software can be download at the following URL :

• www.comp.nus.edu.sg/∼tants/layerPeeling.html
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