
 

 

 

Abstract — This paper describes a solution to integrate 

disparate devices, both for perception and actuation, 

distributed amid distinct processing entities. Although the 

philosophy may be applied to many systems and machines, 

emphasis will be made on autonomous mobile robots’ 

perception, actuation and intercommunication abilities. The 

solution uses inter-process communication (IPC) and 

encapsulation of messages in standard forms in the same 

trend as the CARMEN framework, where inspiration was 

gotten from. The modular architecture derived thereof allows 

to continuously increase the system complexity without 

changing whatever was previously implemented. Besides this 

scalable nature, the resulting architecture represents a 

unified approach that makes it hardware-independent where 

each machine simply relies on small specific modules. The 

IPC and CARMEN insights have been successfully adapted to 

two different robots within only one development project. 

The implementation will focus particularly on image efficient 

transfer among processes for real-time autonomous 

navigation.  

I. INTRODUCTION 

UTONOMOUS robots tend to become more and more 

complex both in hardware and software when the 

challenges raise and performance is paramount. The 

increasing affordability of more advanced sensors and 

devices induces researchers to include them on their 

mobile robots for more robust perception and navigation 

abilities. However, and due also to the disparity of 

standards and protocols, adding up off-the-shelf equipment 

along with custom designed boards or devices is not 

always a straightforward task. Moreover, keeping the pace 

in software development when there are changes in the 

team of programmers is often a nuisance for project 

managers. 

To address these problems, the CARMEN (Carnegie 

Mellon Robot Navigation Toolkit) framework [1] appears 

as a tempting choice. It is a collection of modular software 

for mobile robots, and provides several useful functions for 

development of new modules and also for information 

exchanging amongst them. The communication between 

modules relies on the Inter Process Communication (IPC), 

developed by Reid Simmons [2] to be a flexible and 

efficient message exchanger; the potentialities of this IPC 

system are well assessed by its usage in paradigmatic 

projects related to NASA or the well known DARPA 

Challenge [6] [7] [8]. 

This work details the experience of adapting this new 

architecture in two competitions robots, named ATLAS 

MV and ATLAS 2008 [3], shown in Figure 1. 

In the remainder of the paper, the next chapter will detail 

the installed hardware in both ATLAS robots. Chapter III 

describes the previous installed software architecture, its 

drawbacks, and how the new proposed architecture 

overcomes them. Following that, different techniques of 

information exchange between modules are discussed, 

emphasizing the development of a new technique to 

overcome IPC transfer limitations. Finally, the currently 

developed modules and message structures are presented, 

followed by the conclusion and future steps. 

  

Figure 1 – Atlas 2008 (left) and the Atlas MV (right) robots. 

II. HARDWARE INVOLVED 

Both ATLAS robots have similar basic hardware 

interface like cameras, traction motor, steer motor and 

digital input/output. The ATLAS-MV, which is a redesign 

of its ancestor ATLAS-2008, also incorporates some 

innovative hardware. One of them is a Pan and Tilt Unit 

(PTU) that it is used to change the cameras orientation 

providing active perception capabilities. The system also 

accounts for a Laser Range Finder with an accuracy of a 

few centimeters and a range of up to 30 meters.  

The cameras are connected with the computer using a 

FireWire (IEEE 1394) interface and Direct Memory 

Access (DMA), which allow them to read or write to 

memory independently of the main computer processor.  

The ATLAS 2008 uses two cameras for navigation plus 

one for traffic lights recognition, while the new ATLAS 

MV uses four cameras mounted atop the PTU, and are 

employed in several tasks involving navigation and 

obstacles recognition. 

For the interface with the traction and steer motors, a 

microcontroller is used and connects to the computer using 

a RS232 link. 

The digital input/outputs are also interfaced using a 

microcontroller and a RS232 connection to the computer. 

The digital outputs are responsible for the brake and lights 

activation. Digital inputs, in other hand, receive readings 

from digital auxiliary sensors. This microcontroller board 

is projected in a way that it can easily incorporate more 

and distinct sensors. 

Both the PTU and the Laser Range Finder have their 

own controllers incorporated and are connected to the 

computer using an USB port. 

Modular Scalable Architecture for the Navigation of the ATLAS 

Autonomous Robots 

 M. Oliveira, P. Stein, J. Almeida, V. Santos 

{mriem, procopio, almeida.j, vitor}@ua.pt 

Department of Mechanical Engineering, TEMA - University of Aveiro 3810 Aveiro Portugal 

A 



 

 

 

III. PREVIOUS VS NEW ARCHITECTURE 

The previous software architecture installed on the 

robots has achieved successful results, but the code was 

based on a single large loop that would go through all 

hardware inputs/outputs sequentially, changing variable 

states that would affect the chosen behavior for the robot. 

This conveys a series of problems since small changes 

affect the whole code and pose difficulties in interfacing 

with new hardware. As the program was sequential, 

important events could be missed if the processor was 

taking too long to complete the loop, and if a “bug” or a 

deadlock happened, the whole program could hang.  

To overcome these limitations, a modular architecture 

based on the CARMEN toolkit [1] has been devised. The 

idea is to split the old code into several modules, where 

each part is responsible for a small number of tasks. 

Information is exchanged between modules using standard 

messages, so new processing techniques or hardware could 

be easily incorporated. The new system architecture relies 

on separate modules, i.e., computer processes that run in 

parallel. These modules were divided from the previous 

architecture bearing in mind that each would contain a 

simple task. Each module processes the information 

received and outputs the result. Hence, the way 

information must travel from one module to the other is a 

critical issue. Communicating with the sensors often 

requires constant monitoring by the process running on the 

computer. This new architecture uses small, dedicated 

modules that handle hardware and communicate with other 

parallel modules via IPC. The modular architecture is also 

more robust, because redundant parallel modules may 

compensate fails of others. Also, because the IPC [2] 

based communication is performed through TCP/IP 

connections, messages can be easily exchanged between 

processes running in different machines. Hence, the entire 

program may be distributed in several computers, 

increasing the computational power of the robots, if so 

required. This is usually an important issue when running 

real time vision-based algorithms. 

IV. INFORMATION EXCHANGE 

The information exchanged among modules must be 

classified so that a module receives only what it actually 

requires, and not everything else. This is accomplished by 

encapsulating information into messages. A module 

interested in some particular information can then ask to 

receive a specific message. On the other hand, a module 

that produces some specific output can constantly send a 

message containing a certain type of information. 

A. Publish/Subscribe Method 

Message exchanging can be done in several ways. The 

simplest method is called publish/subscribe (Figure 2). 

 
Figure 2 – A simple publish subscribe setup. 

In this scenario, a publisher module generates 

information that is packed into a message of a given type, 

let’s say, “A”. Every other module interested in the 

information contained in message type “A” should 

subscribe to it. When that information is available, the 

publisher module publishes a message type “A” that will 

be redirected by IPC to all modules that have previously 

subscribed to it. One disadvantage is that the publisher 

module requires that the subscribing module accepts all 

messages of type “A”, even if it does not require them all. 

This may become critical if the publisher’s cycle time is 

shorter than the one of the subscriber. Figure 3 shows a 

message exchange where this phenomenon takes place. 

 
Figure 3 – An example of a time sequence (vertical axis) of a 

publish/subscribe message exchange. The publishing module (left) has a 

faster cycle time (represented by brackets) than the subscriber module 

(right). Because of this, the subscriber module receives 2 messages while 

still processing the first one. 

In this case, there is going to be a growing queue of 

messages that, at some point, will overflow and cause the 

IPC central module to crash, as observed in practice, 

especially for large messages (hundreds of kilobytes). 

Because of this, the publish/subscribe message exchange 

methodology should be considered only if the subscriber 

module is faster than the publisher, or if the handling of the 

message reception performed by the subscriber is a very 

fast routine. For this reason, it is not advisable to send 

large messages containing images or laser scans using this 

specific methodology. 

B. Query/Respond 

As stated, the publish/subscribe method is appropriate 

for exchanging small messages or for fast processing 

modules. However, as seen in chapter II, the robots have 

several cameras/lasers onboard. Cameras installed on 

ATLAS robots usually produce 320×240, 3 channels RGB 

images at a rate of about 30 FPS. This means that a module 

performing image acquisition generates approximately 7 

Megabytes of information every second (320 × 240 pixels 

× 3 channels × 30 FPS ≈  7 MB). Publishing such a large 

amount of information caused IPC to overload during our 

preparing 
data 

message 
publication 

 

 

 
processing 

 
waiting new 

message 

T
im

e
  

preparing 
data 

message 
publication 

preparing 
data 

message 
publication 

preparing 
data 

message 
publication 

waiting new 
message 

message 
handling 

message type A Publisher 
Module 

Subscriber 

Module 



 

 

 

tests. This occurred especially when the subscriber module 

was not able to handle the information flow. Furthermore, 

if the subscriber modules cannot process the information 

fast enough, the messages are sent but not processed. 

These limitations can be circumvented using a second 

methodology available in IPC: the module that can send 

the information, called in this case the server module, does 

so only when asked by the receiving module, here called 

the query module. Message exchange rate is set by the 

query module, instead of being arbitrarily defined by the 

server. 

 

Figure 4 - A query respond with heartbeat setup. 

To support this method of exchange, three messages are 

defined: the heartbeat, the query and the response 

messages (Figure 4). The heartbeat message indicates that 

the server has new information available and is able to 

send it; it is a small message, a mere notification to 

whoever is interested in the new information generated that 

a new one is available. Because of this, heartbeat messages 

are broadcasted by the server module, using the 

publish/subscribe technique, thus allowing several modules 

to be informed. The image acquisition module would 

publish thirty heartbeat messages every second. 

 

Figure 5 – A query response time flow. Heartbeat messages (dotted line) 

are published whenever the server module (on the left) generates new 

information. The query module (on the right) queries the information 

(dashed line) only when it actually requires it. 

The query message is also a small one, and is sent by the 

query module to the server in a peer to peer 

communication. After sending the query message, the 

query module waits for the response. The response 

message can be large (could contain an image, for 

example), and is sent by the server to the query module 

only in reply to a query. The response is also peer to peer. 

Though more complex, this setup is particularly useful 

for transmitting large messages since that transmission 

only occurs when the query module actually needs the 

information, reducing the message traffic. If the query 

module is faster than the server module, heartbeat 

messages ensure that no query is done unless new 

information is available on the server’s side. The flow of 

messages is shown in Figure 5. Heartbeat and queries are 

control messages that synchronize both modules so the 

information is exchanged only when actually needed. In 

this case, the complexity increase is compensated by 

avoiding sending unneeded large messages. Because of 

this, this setup should only be employed when the 

messages to be exchanged are large. 

C. Shared Memory Query/Respond Method 

The disadvantage of the query/respond method is that 

because messages are queried by a specific module, the 

server responds only to this one, i.e. it is a peer to peer 

communication. If the server module is meant to send large 

amounts of information to several query modules, the 

message traffic would increase as many times as the 

number of receiving modules. In the worst case scenario, if 

the number of query modules is large enough, the server 

module may not be able to respond to them all in the time 

allocated to listen to the queries.  

To solve this problem, a new method has been devised, 

where the server module writes the message containing the 

response to a shared memory address. This technique takes 

advantages of IPC marshal/unmarshal functionalities. 

Marshaling is the process of transforming the message into 

a configurable easily reversible linear byte array. Messages 

are defined as C language structures, but before being sent 

must previously be transformed, i.e., marshaled, into byte 

arrays. To be marshaled, the format of the message 

structure is first defined. Figure 6 shows an example of a 

message. 

 

Figure 6 - An example data structure in C and its format definition. This 

could be a message to be exchanged between processes. 

In the case of Figure 6, marshaling would take the 

format of the structure (msgA_format) as one integer 

followed by a char followed by an array of 2 integers. The 

modules use IPC to marshal every message structure when 

sending, and to unmarshal when receiving. 

In this particular information exchange setup, the server 

module allocates a shared memory segment with the size 

of the message, and then stores the message directly onto 

the shared memory. After this operation, a heartbeat 

message is published indicating that new information is 

available.  

 
 
 
 
 
 
 

other 
processing 

T
im

e
  

responding 
to query 

handling 
response 

query 

waiting 
response 

heartbeat 
publication 

query 
waiting 

preparing 
data 

heartbeat 
publication 

query 
waiting 

preparing 
data 

heartbeat  
 

Server 
Module 

 

 
Query 

Module  

response 

query 

typedef struct 
{ 
 int var1; 
 char var2; 
 int var3[2]; 
}type_msgA; 
 
#define msgA_format “{int, char, <int:2>}” 



 

 

 

The query module attaches itself to the memory segment 

and unmarshals the information to a variable of type 

type_msgA. The attach operation requires the shared 

memory address (Figure 7). For this purpose a new 

message is defined containing shared memory information, 

its address and size. This message is queried to the server 

during the query module’s initialization procedures. 

Afterwards, whenever a heartbeat is received, the query 

module just unmarshals the information from the shared 

memory and gets a copy of the message. 

 
Figure 7 – A query response time flow using shared memory. The query 

module (on the right) queries for the shared memory id (dashed arrow). 

The server module (on the left) responds with the information (dotted 

arrow). The query process then attaches itself to the shared memory and 

unmarshals the data whenever a heartbeat is received. 

A limitation of this method is that, because it is not 

based on TCP/IP, it does not work when the processes run 

on separate machines. Another glitch is that on large 

messages, there is some possibility that the query module 

may be still reading part of the message while the server is 

writing. This may lead to reading messages that are 

actually a combination of two different messages. In our 

particular case, this is not an issue, although if required, it 

could nevertheless be prevented by using semaphores. The 

bottom line is that the method is very fast and addresses 

the problems discussed deriving from the usage of multiple 

query modules.  

V. PROPOSED MODULES FOR ATLAS 

Several modules have been developed in the process of 

migration from the old architecture to the new, modular 

one. The modules can be roughly divided into three 

categories: hardware interface, features extractors and 

planning/decision. The first is responsible for every 

interaction with the hardware: data acquisition and motors 

command. The feature extractors will process the acquired 

data, where each module is responsible for one type of 

feature such as obstacle or lane detection. The last 

category is dedicated to the reasoning capabilities of the 

robots. It makes use of all the detected features and, based 

on the context, will decide and plan the robot’s behavior. 

In this paper, only the first category of hardware 

communication modules will be described. 

A. Cameras acquisition module 

The cameras acquisition module (Figure 8) is intended 

to acquire images from the Firewire cameras installed on 

the robots. All message exchange methodologies have 

been developed: publish/subscribe query/response and 

shared memory.  

 

Figure 8 – The cameras acquisition module. 

The published messages have the format of Figure 9. 

 
Figure 9 – The image message format structure. 

This module also enables the real time setting of the 

cameras parameters. Brightness, saturation, white balance, 

shutter and others can be set to a particular value. The 

module is also capable of handing out distortion corrected 

images taken from wide angle lens cameras, if a prior 

chessboard calibration has been performed. 

B. Laser acquisition module 

The laser acquisition module (Figure 10) acquires laser 

data from the laser and sends the information to other 

modules.  

 

Figure 10 – The laser acquisition module. 

The message structure of the laser module is shown in 

Figure 11. Several laser parameters can be set at startup: 

angular resolution, start/end scan angle, among others. 

 
Figure 11 – The laser message format. Structure proposed by CARMEN. 

typedef struct 
{ 
 carmen_laser_laser_type_t laser_type; /*laser model*/ 
 double start_angle; /*angle of the first beam*/ 
 double fov; /*field of view of the laser*/ 
 double angular_resolution; /*up to 0.25*/ 
 double maximum_range; /*30 meters*/ 
 double accuracy; /*0.1 meters*/ 
 carmen_laser_remission_type_t remission_mode; /*not used*/ 
} lar_laser_laser_config_t; 
 
typedef struct 
{ 
 int id; /*laser id*/ 
 carmen_laser_laser_config_t config; /*above*/ 
 int num_readings; /*number of range values sent*/ 
 float *range; /*laser range values*/ 
 int num_remissions; /*number of remission values*/ 
 float *remission; /*remission laser values*/ 
 double timestamp; /*timestamp of message*/ 
 char *host; /*used by IPC*/ 
} lar_laser_laser_message; 

 
query 

shared 
memory 

information 

unmarshal 
from shared 

memory 

 
 
 

other 
processing 

waiting 
response 

listen shared 
memory query 

shared memory 
info respond 

other 
processing 

other 
processing 

marshal to 
shared memory 

heartbeat 
publication 

typedef struct 
{ 
 int width; /*width in pixels*/ 
 int height; /*height in pixels*/ 
 int bytes_per_pixel; /* 3 (RGB) */ 
 int image_size; /*w*h*3*/ 
 char *image; /*pointer to image data*/ 
 double timestamp; /*timestamp of message*/ 
 char *host; /*used by IPC*/ 
} lar_ubcamera_image_message; 

T
im

e
  



 

 

 

It is also possible to use any one of the three methods 

described in chapter IV to exchange the laser messages. 

C. PTU module 

The PTU module (Figure 12) is capable of commanding 

the pan and tilt unit based on orders received from other 

modules. It can also inform other modules of the pan and 

tilt state, i.e., axis position, speed and acceleration. 

 

Figure 12 – The PTU control module. 

Because the messages related to the PTU 

control/monitoring are small, only the publish/subscribe 

method has been implemented. If a module requires 

information on the state of PTU it subscribes to messages 

of type lar_ptu_status_message, defined in Figure 13.  

 
Figure 13 – The message format to get information on the PTU’s state. 

If, on the other hand, a module wishes to command the 

PTU positioning or speed, it should publish a message of 

the type lar_ptu_command_message (Figure 14).  During 

startup, the PTU control module subscribes to this message 

type. It is actually possible to have different modules 

competing for the PTU’s command sending the same 

message type. The PTU module will just receive all the 

messages and execute them sequentially. 

 
Figure 14 – The message format used to give orders to the PTU module. 

D. Robot Base module 

This module is responsible for interfacing with the 

traction and steer motors. Also digital input readings and 

digital output commands are performed here (Figure 15). 

 

Figure 15 – The base module. 

The Robot base module receives the message 

lar_atlas_dir_and_speed_message (Figure 16), and 

translates that information to the specific robot hardware. 

In this way, different robots will have different base 

modules, but will be able to receive the same command 

messages. This module also publishes a message 

containing information about the robot current speed, steer 

angle, lights state and digital inputs readings, by means of 

a lar_atlas_status_message. 

 
Figure 16 – Definition of the message for commanding the base. 

E. Teleoperation module 

This module allows the remote command of the 

hardware related features of the robot using a standard 

gamepad. It does not have any specific 

publication/subscription routines. Instead, it simply makes 

use of the routines implemented by each of the modules it 

wants to control. 

 

Figure 17 - Definition of the message for commanding the base. 

It has two distinct operation modes: a command mode 

and a tutorial mode. In the first, it can command the speed, 

steering, lights and the PTU unit, publishing a 

lar_atlas_dir_and_speed_message (Figure 16) and a 

ptu_command_message (Figure 14). In tutorial mode, 

pressing the buttons or axes provides an audio tutorial. 

This is accomplished by instructing the sound player 

module to reproduce the audio that matches to the button 

pressed. 

F. Sound Player module 

The Sound Player module (Figure 18) is capable of 

generating audio output. For synchronization purposes, it 

can also inform other modules if it is busy playing a sound.  

 

Figure 18 – Sound player Module. 

Any module can require a sound message to be played 

by publishing a lar_soundplayer_message. This message 

is defined in Figure 19, with the identification of the media 

to be played, given as a file name (string) or as a numeric 

identification. 

 
Figure 19 - Definition of the message for commanding the sound player. 

typedef struct {double pan;double tilt;}TYPE_pantil; 
 
typedef struct { 
 char *dev; /*serial port device*/ 
 int devnum;   /*serial port device number*/ 
 int baudrate; /*communications baurate*/ 
 struct { 
 TYPE_pantil position;   /*in radians*/ 
 TYPE_pantil speed; /*in radians per sec*/ 
 }current; /*current position and speed*/ 
 struct { 
 TYPE_pantil position;   /*in radians*/ 
 TYPE_pantil speed; /*in radians per sec*/ 
 }desired;  /*desired position and speed*/ 
typedef struct{ 
 char purevelocity; /*is pure velocity set*/ 
 char imediatepositionexecution; /*IPE flag*/ 
 }flg;  /*ptu state flags*/ 
 double timestamp;  /*timestamp of message*/ 
 char *host;           /*used by IPC*/ 
}lar_ptu_status_message; 

typedef struct { 
 double dir;  /*steer direction*/ 
 int speed;  /*speed*/ 
 double timestamp;  /*timestamp of message*/ 
 char *host;  /*used by IPC*/ 
}lar_atlas_dir_and_speed_message; 

typedef struct { 
 TYPE_pantil position;  /*ordered position*/ 
 TYPE_pantil speed;  /*ordered speed*/ 
 int usepurevelocity;  /*use pure velocity*/ 
 double timestamp;  /*timestamp of message*/ 
 char *host;  /*used by IPC*/ 
}lar_ptu_command_message; 

typedef struct { 
 int filenumber;  /*numeric id*/ 
 char *filename;  /*file name to be played*/ 
 int mode;  /*mode (id by number or by name)*/ 
 double timestamp;  /*timestamp of image*/ 
 char *host;  /*used by IPC*/ 
}lar_soundplayer_message; 



 

 

 

Upon receiving the command, the sound player makes 

use of Libao library [5] functions to reproduce it. The 

sound player module indicates its status (busy or available) 

by publishing a lar_soundplayer_status_message, defined 

in Figure 20. This module allows improved user/robot 

interactivity and also provides debug facilities. 

 
Figure 20 – The message format to get the status of the sound player. 

G. Sensor Fusion Module 

The sensor fusion module (Figure 21) is the responsible 

for merging the information coming from the cameras and 

the laser sensors installed on the robots. It creates a 

common reference representation of the measurements 

taken, whether they are images or range scans. Because 

cameras are mounted on the PTU, cameras’ positions are a 

function of the PTU orientation. 

 

Figure 21 – The sensor fusion module’s input and output messages. 

The module can fuse several images captured from 

multiple cameras along with laser information, generating 

enhanced images of the road, in a birdview perspective. 

This algorithm is described in detail in [4]. Figure 22 

shows a birdview of the road obtained by merging the 

images of two different cameras. 

 

Figure 22 – The images taken from the left and right camera and the 

birdview of the road obtained by merging both images. 

During initialization, this module reads some parameters 

that define a box of interest. This rectangular region, 

viewed in Figure 22, is the area where the robot is 

interested on receiving sensory data. If, for some reason, 

one particular sensor harvests information of an 

uninteresting area for the robot, i.e., an area outside the 

box of interest, this module ensures that this information, 

being regarded as unimportant, is clipped away from the 

merged information. The ultimate goal of this task is to 

find a common representation for a multitude of sensor 

types and/or configurations. This ensures that, no matter 

the specific sensorial setup of a given robot, it is reshaped 

into a common reference. The advantage here is that 

subsequent modules (like feature extractors, road 

detectors, obstacle detectors, etc) can rely on a constant, 

predefined representation of the data and so may work 

without need for reconfiguration, regardless of the current 

sensorial setup, regardless of the robot. 

VI. CONCLUSIONS AND FINAL REMARKS 

The paper described a successful adaptation of the CMU 

CARMEN and IPC approaches to two distinct autonomous 

robots. The resulting architecture has proven fully scalable 

since any modules can be added or suppressed without 

compromising the global operability.  The encapsulation of 

information in predefined messages, by dividing the code 

in small task oriented modules and experimenting different 

forms of information exchange, has been a central issue. 

The IPC framework available at the CARMEN 

community proved reliable except for some limitations 

regarding the transmission of large data sets at a high 

frequency. This was overcome with the development of a 

mixed method that involved the well known shared 

memory intercommunication together with IPC structures 

and functions, resulting in a seamless integration with the 

already developed modules, and can be seen as an 

extension of them. 

The modules presented are all hardware-related (with 

exception of the Sensor Fusion Module, which is a 

preprocessing module), as this was the first step in the 

effort of migrating to the new architecture, and as so it had 

to be carefully planned to serve as the foundation for the 

further development of higher level modules as the 

features extractors and decision/planning modules. 

A final important outcome of this work is the strongly 

organized software and functional architecture on the 

ATLAS robots, allowing an unlimited team of developers 

to cooperate together. This was indeed the major 

breakthrough, and represents a significant step towards 

more demanding projects on complex perception and 

autonomous navigation of advanced machines. 

VII. REFERENCES 

[1] CARMEN, Carnegie Mellon Navigation Toolkit, found at 

http://carmen.sourceforge.net/ on February 2009. 

[2] R. Simmons, and D. Apfelbaum, “ A task description language for 

robot control”. In 1998 Proceedings of the Conference on 

Intelligent Robots and Systems (IROS), Victoria, CA. 

[3] M. Oliveira, V. Santos,  A Vision-based Solution for the 

Navigation of a Mobile Robot in a Road-like Environment, 

Robótica, nº69, 2007 p.8 (ISSN: 0874-9019) 

[4] Oliveira M., Santos V., Multi-Camera Active Perception System 

with Variable Image Perspective for Mobile Robot Navigation, 8th 

Conference on Mobile Robots and Competitions, Portuguese 

Robotics Open, Aveiro, April 2008. 

[5] Libao, Open Source Audio Output Library, found at 

http://www.xiph.org/ao/ on January 2009. 

[6] DARPA Grand Challenge, http://www.darpa.mil/grandchallenge/, 

February 2009. 

[7] M. Montemerlo, et al., “Junior: The Stanford entry in the Urban 

Challenge,” Journal of Field Robotics, vol. 25, 2008, pp. 569-597. 

[8] C. Urmson, et al., “Autonomous driving in urban environments: 

Boss and the Urban Challenge,” Journal of Field Robotics, vol. 25, 

2008, pp. 425-466. 

 

typedef struct { 
 int status;  /*Status of the sound generator*/ 
 double timestamp;  /*timestamp of image*/ 
 char *host;  /*used by IPC*/ 
}lar_soundplayer_status_message; 


