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palavras-chave

resumo

Visdo por Computador, Percepcao Activa, Visdo Foveada, Controlo da
Foveacdo, Haar Features, Busca Visual, Mecanismos de Atencao, Seguimento
Visual, Filtro Gaussiano e Computacédo Réapida de Filtro Gaussiano.

Este trabalho descreve um sistema baseado em percepcao activa e em visdo
foveada, projectado para identificar e seguir objectos moéveis em ambientes
dindmicos. O sistema inclui uma unidade pan & tilt para facilitar o seguimento e
manter o objecto no centro do campo visual das camaras, cujas lentes grande-
angular e tele-objectiva proporcionam uma visdo periférica e foveada do
mundo, respectivamente. O método Haar features € utilizado para efectuar o
reconhecimento dos objectos. O algoritmo de seguimento baseado em
template matching continua a perseguir o objecto mesmo quando este ndo
mais esta a ser reconhecido pelo médulo de identificacdo. Algumas técnicas
utilizadas para melhorar o template matching sdo também apresentadas,
nomeadamente o Filtro Gaussiano e a Computacdo Répida de Filtro
Gaussiano. Sao indicados resultados relativos ao seguimento, identificacdo e
desempenho global do sistema. O sistema comporta-se muito bem, mantendo
0 processamento de, pelo menos, 15 fotogramas por segundo em imagens de
320x240, num computador portatil normal. Sdo também abordados alguns
aspectos para melhorar o desempenho do sistema.



keywords

abstract

Computer Vision, Active Perception, Foveated Vision, Foveation Control, Haar
Features, Visual Search, Attention Mechanisms, Visual Tracking, Gaussian
Filtering and Fast Gaussian Computation.

This work describes a system based on active perception and foveated vision,
intended to identify and track moving targets in dynamic environments. The full
system includes a pan and tilt unit to ease tracking and keep the interesting
target in the two cameras’ view, whose wide / narrow field lenses provide both
a peripheral and a foveal view of the world respectively. View-based Haar-like
features are employed for object recognition. A template matching based
tracking technique continues to track the object even when its view is not
recognized by the object recognition module. Some of the techniques used to
improve the template matching performance are also presented, namely
Gaussian Filtering and Fast Gaussian computation. Results are presented for
tracking, identification and global system'’s operation. The system performs well
up to 15 frames per second on a 320 x 240 image on an ordinary laptop
computer. Several issues to improve the system’s performance are also
addressed.
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1 Introduction

“Recent years have witnessed a dramatic increatieeinse of computer vision in embedded
systems. Computer vision was successfully usedriows mission-critical systems from the
landing of the recent rovers on mars to computgedisurgery”. This citation was found in
the call for papers of the first IEEE workshop amiiedded Computer Vision 2005. It clearly
shows how computer vision systems are swiftly gagrnmportance in the world today. The
pool of applications is immense, ranging from mabimaging to the robots that travel to
Mars, passing through industry applications andrmanous vehicles’ guidance.
This work intends to develop an active foveatedwisinit, study the techniques used to solve
the problems that this technology carries andnd possible innovative applications for such
a system. Active vision concerns of using visua@dfgack to execute servo motor control,
which enables directing the cameras towards pdatieweas of attention. In this case we have
employed a pan and tilt servo controlled unit tove for active vision capabilities. Foveated
vision was implemented by means of two, differexdal length, cameras that provided both a
peripheral and a foveated view of the world.
The work comprehended the following stages:
a) An analysis of the current state of the art intdwhnologies that were employed.
b) The development of low level software for hardwargeraction and basic image
processing algorithms.
c) Development of a controller that translates a Visaaget position into position and
speed values to the pan and tilt.
d) The development of algorithms that could handlewseal search problematic, i.e.,
deployment of attention techniques.
e) The development of visual tracking algorithms.
f) The applications of state-of-the-art object rectigni techniques, namely Haar-like
features.
g) The integration of the previous items into a moduslaftware architecture that could
identify and track moving objects in dynamic enwingents.

Some of the results here presented were alreadisped in [Oliveira and Santos, 2007].



2 The State of the Art

There are many applications using computer viséord so it is not possible to provide a
complete overview of the whole computer vision peatatic and applications. This project is
based on active vision. Active vision concerns omlly processing the information provided
by the cameras, but also on making use of thatrnmdtion to direct the cameras’ view
towards interesting features in the visual fieldhisTtechnology is also used by biological
vision systems, like, for example, human.

In fact, human eyes have a multitude of movemehtsording to [Laschi, 2006] there are
mainly five types of eye movements: saccades, wesyepursuit, vestibulo-ocular reflex and
opto-kinetic response. Saccades are ballistic egeements, i.e., cannot be interrupted or
redirected while they occur. They are very fasttag00 degrees per second, and last from 30
to 120 milliseconds, and are used to move the fetoehe next object or region of interest.
They present a latency of around 150 millisecoM#sgence changes the angle between the
eyes viewing axes. It is a slow movement that e&e up to a second and can be interrupted
while on course. Pursuit is a smooth eye moventeitdnables visual tracking. Obviously, a
human vision system possesses extra redundancglynaecause of the combination of head
and eye movements. However, head movements carenanbirely dedicated to visual
analysis/tracking. For example, the head may tarorder to better locate the source of a
sound. Visual processing is maintained during hteads by means of the vestibulo-ocular
reflex. This reflex stabilizes image on the retoharing head movement by producing an
opposite direction eye movement. Vestibulo-ocuddlex’s latency is around 14 milliseconds
and is performed without visual feedback (it occewen in total darkness). The opto-kinetic
response allows the eyes to track objects in matibie the head remains still. They make
use of visual feedback and therefore have a ldegency when compared to vestibulo-ocular
reflex. There are some other secondary eye moveamastpointed out by [Laschi, 2006].
Torsional eye movements rotate the eye around teeing axis and are employed to
compensate for body rotation. They present a ranfiges degrees. Fixations are alternated
with saccades and keep the eye motionless. Thegatiyplast from 200 to 600 milliseconds

and allow all of the scene information to be preees(used, for example, to read). As seen,
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there is a wide variety of eye movements with rpldtipurposes, i.e. tracking, foveation,
quick shift of the object of attention or compensatother degrees of freedom (DOFs). This
endorses the idea that active vision has evolvdaidlogical organisms to a high degree of
complexity.

In robotics applications, active vision is only netarting to spread. It has been implemented
in many humanoid robots, such as the ARMAR llInfr&Jniversitat Karlsruhe, in Germany,
that presents 4 DOFs at the neck combined with 2MD®Fs at the eyes. Altogether, 6 DOFs
provide a redundant mechanism which is being engaldp mimic natural human motions
[Asfour et. al, 2007][Azadet. al, 2007].

Yaw

Figure 1. ARMAR Il humanoid robot (left) activesion mechanisms. 4 DOFs at the neck (bellow
right) plus 2DOFs at the eyes (top right). All picts taken from [Asfour, 2006].

Italy’s Scuola Superiore Sant’/Anna also proposesbatic head mechanism, shown on Figure
2. They have successfully mimicked human saccagicneovements and proposed a way of
dealing with the neck and eyes redundancy [Lagfif].
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Figure 2. SSSA Robot Head (top left) and axes atéha (top right and bottom). Pictures taken
from [Laschi, 2006].

In Japan, there are also some examples of actreeptéon (Figure 3).

EEE h_}

Flufext Ab/ad General rota‘tmn | Fl>u’e:ct

i
Hip flx/ext Knee flext  Ankle flxext Fliest Abjad
Head E]
; pom
a Flifext:
Flex/extend
Abvack
Nod Rotation Abduct/adduct
(b) Rotation

Figure 3. DB humanoid robot full body (left) andad’s joints (right). Notice
the 5 combined DOFs per eye. All pictures takemffétkesonet. al.,2000].
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Japan’s ATR Computational Neuroscience Laboratdn@sanoid robot DB, i.e. Dynamic
Brain, also uses redundant degrees of freedom tteebcrecognize and pursue objects of
interest. Another DB project uses active visiorapture and learn movement sequences from
observing humans [Udst. al, 2004 a.

In the United States, MIT’'s COG project, a hum&e-liobotic torso was developed to “study
theories of cognitive science and artificial inggince.”, by creating a “robot which is capable
of interacting with the world — including both objs and people — in a human-like way, so
that we may study human intelligence by tryingngoiement it.” [COG homepage]. It also
takes advantage of active perception by makingotige 7DOFs from the neck up.

Figure 4. Full view of COG (top left) and respeetdOFs (right), both from [Fitzpatriait. al,
2003].COG interacting with the world (bottom letdken from [COG homepage].

As seen before, humanoid robots make use of stabhe @rt active vision systems to perceive
the world and act accordingly. However, active aisiis used by many other robotic
applications, like autonomous guided vehicles. @ithese, the most advanced would be the

Mars Exploration Rovers built by NASA’s Jet Propats Laboratory. These Rovers have 8
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onboard cameras. Two of them, calleclence Pancamare mounted on top of a mast, which
in turn is an actuated device with 2 DOFs, therefproviding pan and tilt movement
capabilities to the visual sensors. These camesay @ multiple filters wheel, allowing
multispectral imaging capabilities. One of thedtefs is a color solar-imaging filter, which,
combined with the active vision capabilities, alothe Rover to point the cameras at the Sun.
This, combined with the time of day, enables the#dRdo have an absolute heading sensor...

in Mars.

Figure 5. NASA’s Mars Exploration Rover (left) alstakes use of active perception. The mast (right),
where two high resolution cameras are mountedie®tand tilts. Pictures taken from [MERs
homepage].

It seems clear that many of the most advanced sobotthe world are using vision.

Furthermore they are employing active vision, byunmtong the cameras on some kind of
actuated platform. Of course that this sensory igardition accounts for some new, more
difficult issues that must be attended, but the keyght here is that an active perception
system is much more powerful, despite being ob¥woum®re complex, than a rigidly mounted

system.

Another core technology that is being employedhis project concerns the use of foveated
vision. Foveated vision, from the term fovea, tlemtcal highest resolution region of the
human eye’s retina, explores image resolution disps in order to process visual

information in real time. Computer vision demandghhcomputational power because the

amount of raw information, i.e. the pixel's inteysvalues across multiple channels, in an
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image is quite large, but also due to the virtuadiinite amount of covert, but deducible,
information present. Real time applications haweited time to spare to visual processing
before an action becomes mandatory. Limited timglias limited processing or, on the other
hand, focalized processing, i.e. processing ofith@ge regions that are in fact important,
neglecting others. This decision making processetéction is called attention. [Rothenstein
et. al, 2006] also highlight the difficulties of reahte visual processing: “Those who build
complete vision application systems invoke atter@iomechanisms because they must
confront and defeat the computational load in otdeachieve the goal of real-time processing
(...). But the mainstream of computer vision doesgie¢ attention processes, especially task-
directed attention, much consideration”

In real applications, the foveal area of a giveragm region must have a high resolution,
while, for real time demands, the rest of the imalgeuld have a coarse resolution. This can
be achieved by one of three distinct manners, ri#)ethe cameras provide very high
resolution images overall, which is then downgradedon foveal regions or b) the cameras
have varying resolution CCDs or c) two camerasvpgral element are assembled and used as
a single visual perception entity. In this lastezabe two cameras must have different lenses,
one with a wide lens and the other with a narrogldfilens, in order to provide both a
peripheral and a foveal view of the world.

The first approach (a) is not very common one siheg, by applying a posterior resolution
downgrade, it enforces the acquisition of a veghhiesolution image even in the regions of
the image where this is not desired, only to dd¢hem with a log-polar transformation soon
after. However, Scuola Superiore Sant’Anna has nsmderal tests with these techniques,
mainly to study digital conversion of a standardge to a foveal image by using a log-polar

transformation.
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Figure 6. Foveal images (top) obtained by transiiognstandard images using the log-polar
transformation (down). Pictures taken from [Las@@i06].

The second approach (b) is based on retina-likét@&emmeras. Giotto cameras use a circular
geometry CCD whose resolution is maximum at theesesf the image and decreases towards

the periphery. These cameras are implemented iWe! robotic head of the Takanishi Lab,

Waseda, Japan.

Figure 7. WE-4 robotic head with two foveal resmntGiotto cameras (left) and a view of those
cameras (right). Pictures taken from [Laschi, 2006]

The third approach (c) dictates the use of a placameras per visual sensing unit. It is the
most commonly used approach. [Uele al, 2006] have chosen this alternative “While log-
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polar-sensors and lenses with space-variant résolatre conceptually appealing, they are
difficult to construct and prevent us from usinghquality standard cameras and lenses.
High-definition cameras are problematic for readdi humanoid vision because of the form
factor and bandwidth. We therefore follow the fiagiproach and use two cameras per eye to

realize foveation.” [Ude et. al., 2006].

Figure 8. Two cameras per eye DB humanoid robattpperal (left) and foveal (right) view. Pictures
taken from [Ude et. al., 2006].

In fact, many researchers have applied this tecieniq solve the foveal view problem (Figure
9).

Figure 9. Dual camera foveation systems. DB (fedtn [Ude et. al., 2006]), ARMAR llI, (middle, frorh
[Asfour, 2006]) and COG (right, from [COG homep3dge]

This chapter reviewed state of the art technologssd to employ active foveated vision.
Based on the analysis exposed, it was decided tmtreo dual camera foveation setup on a
pan and tilt servo controlled unit. The followinigapters will focus in detail the problems that

arise from this particular setup and the technighaswere employed to solve them.
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3 Visual Search

Visual Search is a mechanism that occurs duringptaettentive stage of a vision system and
is responsible for the selection of particular Gieas for posterior in depth processing. Studies
of biological vision systems suggest that only aalreet of basic features like color, size,
motion, and orientation are used in a visual seafdbo, pre-attentive processing (where
attention plays its role) produces reaction tinteg aire somewhat independent of the amount
of objects in display, as stated in [Wolfe, 200Bis weak or inexistent correlation between
the amount of features and the reaction times érapientive processing seems to imply that
they “... only use information about the categorisi@tus of items. In orientation, that means
that it is only easy to find a target if it is uo&ly steep, shallow, tilted left or right” [Wolfe,
2003]. In Figure 10 four images are presented.nfryo find a vertical line seems trivial for

(a) and (b) whereas the same operation is quite ehemanding in (c) and (d).

Figure 10. Pre-attentive recognition of a vertioad is easy when its orientation is unique [(a)
and (b)] but pre-attentive orientation detectidistations are brought up if the features
orientations are similar [(c) and (d)]. Taken frfiolfe, 2003].

Another example also present in [Wolfe, 2003] ysesattentive color recognition to justify

why finding the molecule present in Figure 11 iscmeasier in (a) than in (b).
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Figure 11. Pre-attentive color recognition allowsach faster finding of the molecule in (a)
than in (b) because the red color is unique inTaken from [Wolfe, 2003].

[Ude et. al, 2004 b] provide a general description of theuaissearch phenomenon’s

implementation issues by stating that “it does make sense to implement complex search
schemes when a humanoid robot looks for a particidature or object in an unknown

dynamic and cluttered environment”. Given these<laf the attention mechanisms involved
in biological vision systems, it makes sense tenaftt one or several simple implementations
of attention capturing mechanisms. These shouldbge¢he systems attention to a particular
object by foveating it. This attention capturingahanisms must be simple (fast to compute)
and rely on object properties that may be detewati¢iibut a foveal, high resolution view, of

the object. These mechanisms are meant to be usew thve system is searching for a known
object to track. This chapter intends to descritm@es simple algorithms that play the role of
attention mechanisms and have already been impleshemd tested for this purpose. They

will be described in detail in the following chagge

3.1 Color Detection

Simple color recognition may work as a good attenthechanism. [Udet. al, 2004 b] use it

as signal detectors that deploy attention on aqodait image blob. The object to be followed
can be physically tagged with color markers andeheill capture the system’s attention.
Alternatively, the object's dominant color can bet s one worthy of attention. Color
recognition is performed in the HSV color space alihsuits perfectly for color recognition

since, unlike RGB, it separates color from lightirsity and saturation (Figure 12).
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1] 60 120 180 240 300 360

Figure 12. Graphical representations of RGB (lafij) HSV (right) color models. Unlike RGB,
HSV isolates color information on one single chdrfreie) and is therefore easier to use for
color detection. Images taken from Wikipe@iavw.wikipedia.com).

Therefore, the simplest approach might be to fiitkrthe pixels with Hue values between
some pre-defined limits. Using a mask built witkga conditions, the pixels with the desired
color are filtered.

if (min,,, >src,,, > max,,) mask,=1

else  mask ZUZ) ()
Wheresragy,e is the Hue value for a given pixel anmhsk,, is the value of the Boolean mask
that is being built and indeed holds the objechfpeiegmented. The undeniable advantage of
this method, its simplicity, is on the other hamhitadicted by the fact thating,e andmadyye
values have to be precisely tuned. A very restliatéerval may discard some of the object’'s
pixels, while a large, undemanding interval faits filter background noise and does not
entirely segment the object. A balance can be aetid post processing is used to attempt to
extract the remaining background pixels with sortieocriteria. Upon the application of an
additional filter to remove isolated pixels, thisechanism usually achieves satisfactory
results. Another possibility is to use pixel conmngty to separate the image into several spots
and then select the spot with the largest amourgixadls. After some experiments, it was
found that the final solution is to find adequatdues formaxy,e and mingue perform an
isolated pixel filtering and, finally, calculateettiltered pixels’ mass center, i.e. the object’s
centroid. Mass center works well because the wedfjlihe object’'s pixels (being far more
than the rest, assuming that the color being &ttesppears only in the object) pulls it to the

object center. The mass center is calculated ubmépllowing expression:
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c=w-1Eh 1

mask, (19 |

c=0_ 1=0
_ n
MC(X) T c=w-lEh1 (2)
mask, (19" ¢
c=0_ 1=0

n
WhereMC is the vector representing the mass center’s quates,| is the line,c the column
andn represents the total number of filtered pixels.
OpenCV’'s functions to access image pixelsv@et2D are quite slow [OpenCV
documentation] and only unrestricted pointer bageckss to pixels is very fast (about 10
times faster thavGet2D. To avoid free pointer access and to keep so#tveénucture it is
preferable instead to use OpenCV’s built-in funasido perform mass center calculation, for
which a method has been devised. Two matrices thvélsame size of the image are defined,
where the first, calleMi.e, has for each pixel its corresponding line, arelsacondMcoumn

has for each pixel the column index of its locatidafining what is frequently called a mesh

grid.
0 o .. O 0 1 ... w-1
1 1 .1 0O 1 ... w-1
Ivlline = Mcolumn: (3)
h-1 1 .. R 1 0O 1 ... w-1

Both these matrices are constant for every image and are therefore created only once at
the beginning of the program. No real time compaortetl power is spent in this calculation.
To getMC, it is simply necessary to sum the pixels for guwaesh grid, using the color mask
as a conditioner for the operation, and dividefihal result byn, the total number of pixels of
the object (= mask,, ):

(mask, A M,.)

(mask, A Maym) (4)

n

MC(x) =

Where A is the symbol for pixel multiplication. This prabg&e avoids user retrieval of the
original image information (safe access), usingy@penCV'’s functions, and so, boosting the
time of MC calculation when compared to the common OpenC¥iage data retrieval

functions (8~9 times faster than if usiogGet2Dwith the method of equation (2)).
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Regarding color segmentation, there are some opesathat are far more complex and
effective. Pyramid segmentation [OpenCV documenthtcan be used to group pixels with
color similarity and divide the image into a sebtdbs. Each of these blobs represents a group
of connected pixels whose color is similar. Howevlese methods are obviously more time
costing and therefore are not used. An attentiochax@sm must be a simple and fast process,
since it does not try to detect complex featurelsdmly some particular attention capturing
properties.

Also, finding the mass center of a color filter a$,course, a somewhat statistical process. No
high resolution or special details are mandatanyfakct, experiences with this method have
proved that no noticeable difference arises frormgu$40x480 or conversely 320x240
images. Because of this, color detection has beemiost widely used attention mechanism
and is, at it most recent version, being calculategl 160x120, 3 channel images at a rate of
about 4 milliseconds and with no noticeable lossefféctiveness. Of course that color
detection highly depends on the camera’s interaedrpeters such as white-balance, saturation

and others. It is also sensitive to light condi@mnange.

3.2 Motion Detection

Another possible attention capturing property isdsh on movement detection. Motion
detection techniques are now quite standard. Sdntleemn have been implemented. Optical
flow techniques try to find corresponding pixels {@atures, for that matter) in two sequential
frames. Using this correspondence a vector fontbeement of each tracked pixel/feature can
be obtained. [Shi and Tomasi, 1993] present twoeisotbr image motion. A given feature

may change its position due to object displacemend object deformation. The correlation

of patterns present on two images at instardadt+¢ satisfies equation (5)

L,y t+e) =1 (x-e(x y,tt) ¥y A (xyt)) (5)
where d=(e h) is the displacement. Equation’s (5) law is ofteplated due to feature

occlusion, light conditions change, or even ligkftaction change (reflection is a function of
the viewpoint, that may change when an object isgpracked). However, [Shi and Tomasi,
1993] found that equation (5) is “by and largefad at surface markings that are away from

occluding contours” and also that "at these locegtjdhe image intensity changes fast with
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and y, and the location of this change remains wellrdefieven in the presence of moderate
variations of overall brightness around it”. [ShidaTomasi, 1993]define affine motion field
as

d=D(x,y)+d (6)
where d is the translation of the feature’s windmmter (or displacement vector) and D is the
deformation matrix given by

d

XX Clxy
D=4 4 (7)

yo Gy
If a given feature, at image suffers no deformation on its path to image then D takes
the form a 2x2 identity matrix. Hence one can state that

.., ((| +D)x +d) =1,(x) (8)
Despite that smaller features make harder to estimate (low variation in motion), thee
still preferable for the reason that the likelihoofdthe feature containing pairs of patches at
different depths and, thus, a depth discontinuéggrdases with the decrease of the feature’s
window size. Because of this, [Shi and Tomasi, 1998opose to use a pure translation
model, neglecting the deformation. Therefore, eéqugB) is approximated by

e (1x+d) =10 O 1, (% d)= 1.9 (9)
According to this formulation, [Shi and Tomasi, B§define tracking as “determining the six

parameters that appear in deformation mawifneglected in this case) and displacement
vector d ” that best minimize the dissimilarity

e= I, (x+d)- () wxXdx (10)

w
The weightw(x) may be, in the simplest case, equal to 1, or it bea function of in order
to, for example, emphasize the center of the featindow. Usually a Gaussian-like function
is used for this. To minimize the dissimilarigy we set equation (10)’s differential to zero

fe _

ja° 2 e d L& G wydx 0 (11)

Where G=[1I,,, /T 1., /%]" is the spatial gradient of the image’s intensRearranging

equation (11)

23



1'|' -
ﬁ: ) L, (x+d)- 1,() G wRdx 0 (12)

Assuming that the image motion is small, the termx+d) can be approximated by its

Taylor series truncated to the linear term

|, (x +0) =—f0(lg!' ®). ((x+ d)- '+ —fl(ltl*!’ ®) ((x o ¥ (13)
which results in
L (x+d) =1, () +G" " d (14)

Substituting in equation (12) the result of equaiib4) we obtain the following equation

L, 0)+GT " d () G wHdx @

N (15)
O 1., 1,x) G wxdx G d'G wxd

w w

Expanding equation (15)

G, , G, ., d, .
w(x)dx G G v X tx

In{(x)'lt(x) G G d
w y w y y (16)
. G Gy o G, .
0 o Gu T LG g W dx

[Shi and Tomasi, 1993] have formulated the prob&drtracking a moving object in equation
(16). They have also defined a criteria for which be the best features to track based on
eigenvalues. Optical flow detection implementatisimainly based on [Stavens, 2007], that

formalizes optical flow as the attempt to find thenimum e(q, q) given by

Uy + Wy Lly+Wy

ed, q)=

XU W U W

(120690 1,0+ doy+ Q) (17)

This is the Lucas-Kanade formulation which assuthes the optical flow is constant in a

small image region delimited by the, and w, in order to overcome the aperture problem.

The question of which are the best pixels/featucesrack was approached with the Shi-
Tomasi method that considers the best feature® tihdd ones with the highest eigenvalues.
There is also the possibility of matching only arse set of features instead of all of the
image’s pixels, hence using a smaller amount akirg data [Bouget, unknown] [Stavens,
2007].
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4 View-based Object Recognition

4.1 Template Matching

Template matching is one of the simplest formslehtification. A template is a matrix that is
tested on an image by finding some measure of aiityil between the template and the
image’s pixel values. The template is tested irpaisible image locations so, if the image has
W’ H pixels and the template” h, then the matrix that results from the templatecimag
operation should have size:

(H-h+1) (W w1 (18)
These so-called measures of similarity can be madkieally expressed in several ways.
Using the minimum square differences, the bestiplessnatch is obtained for the smallest

R(x y) (smallest difference between image and template).

w-1h1
RxY=  [T(xy- (* %y W (19)
x¢&=0y &0
Where R(x y) is the resulting valuer the value of the template andthe value of the image,
x¢ and y¢ the template’s line and column coordinates respagt while x andy are the

images line and column coordinates.

Another method is the correlation technique:

R(x w:i [TOL <K&y (20)

In this case, the best match is achieved wirgsey) is higher (higher correlation). Template

matching is a computationally demanding operatimtes the template is tested on every
possible location on the image. However, using @8 template matching function, and
Intel Performance Primitives, these operationshEdone in real time.

4.2 Haar Features

Haar features were proposed by [Viola and Jone@1]28s an alternative method for face
detection. The general idea was to describe arcbagea cascade of simple feature classifiers.
This is a very fast method which performs face cteia as effectively as any other methods.
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As sated in 24 [Viola and Jones, 2001], in the CNWF test set, a reference test set , the
method performed 15 times faster than the Balujagdle detector and about 600 times faster
than the Schneiderman-Kanade detector.

The classification of images is based on the vafusmple features. Features are used instead
of simple raw pixel values generally because treyact to encode ad-hoc domain knowledge
but also, in this particular case, because theyrareh faster to process. Later on, [Lienhart
and Maydt, 2002] proposed to extend the pool diufes by utilizing also 45° rotated features
thus “significantly enhancing the expressional powofethe learning system and consequently
improving the performance of the object detectigsteam” [Lienhart and Maydt, 2002].

The features that were used by [Viola and Jone3]2(asic set) and latter by [Lienhart and
Maydt, 2002] (extended set) are shown in Figure 13.

Figure 13. Basic set of Haar features used by p/arid Jones, 20Q1(]Jeft) and extended set
applied by [Lienhart and Maydt, 2002] (right)

It is important to emphasize that these are mevéotypes of features. They are then scaled
independently in horizontal and vertical directiansorder to get an over complete set of

features (with the 24x24 window used by 24 [Viotad @ones, 2001] the amount of possible
features is around 180000). The result of the apptin of each feature to a particular image
region is given by the sum of the pixels that lighin the black rectangles of the feature

subtracted by the sum of the ones overlapping thigewectangles.

feature = wRe cSurfy jU VWRe cSul,x.y w, (21)

ihE{,..N} iT={1,..,N}
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The values ofN,w and ofr,. are arbitrarily chosen. In the case of [Lienhad 8aydt, 2002],
it has been defined that black rectanglge$ have negative weighty and white(r,) have
positive weights. Furthermore, the relationshipseetn weights is given by the difference of
area occupied by the black and white rectangles.

- wyx Areg( ) = w xAred J) (22)
Assumingw, = -1, one can obtain:

_ Area(t)
- Area(t)

Consequently, for example for feature (2a) of Fegli8, with a heighti=2 and widthw=6

(23)

the outcome of the feature application to a reatbargegion positioned at x,y would be:

featurg, = - IxRe cSunf x y6,2}+6 ; xRe cSurf x 2, y2,7 (24)

>
In order to compute the value of each feature veapgidly an intermediate image
representation is calculated. This representatsoocalled integral image or Summed Area
Table (SAT). The value of the integral image atrdomates X,y , is given by the sum of all the

pixels that are above and to the left of x, y:
SAT(x y= (X Y) (25)

X'EXYEY
Wherel (x¢y ¥ is the value of the image.
The value of anyrecSum( x y w ) can be obtained by simply four lookups at the SAT.
RecSum(x y w = SAT X w# )h SAFx,wy SAT+X ¥ h §AT, (26)

This procedure is shown on Figure 14.
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Figure 14. FasRecSun{r)calculation.

Viola et al. have set up a framework to combine several fesiiate a cascade. For an object
to be recognized, it must pass through all of tages of the cascade. The cascade is built by
supplying a set of positive and negative exampteghe training algorithm. The used
algorithm is called Adaboost, known for its highrfpemance in what concerns generalization
speed. At each stage of the cascade, the mactanarig algorithm selects the feature or a
combination of features that best separate negdttora positive examples, by tuning the
threshold classification function. There is a traxfé relationship between the number of
stages in a cascade and features in each stagheaiathount of time it takes to process the
cascade. [Viola and Jones, 2001] define, for etanes a target for the minimum reduction in
false positives and a maximum decrease in deteclibe mentioned rates are obtained by
using a validation set made up of the positive meghtive examples.

In order to improve the time performance of theoatgm, [Viola and Jones, 2001] have also
presented the notion of attentional cascade. Tha abnsists of using the first stages of the

cascade to effectively discard most of the regitret have no objects. This is done by
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adjusting the classifier's threshold so that thisdanegative is close to zero. By discarding
many candidate regions early in the cascade, [\aokh Jones, 2001§ignificantly improve
the method’s performance. In fact, it makes a fatemse that the detection system is able to
quickly discard obvious negative regions of an imaging valuable time to better test much
more promising regions by submitting them to higlesel stages that yield more complex
features.

It has already been said that Haar features wewelajged to perform face detection.
However, the framework is all-purpose. Some otlpgr@aches have successfully used it for
pedestrian detection [Monteiret. al., 2006], hand detection [Chen, 2006] or liceptae
detection [Dlagnekov, 2005]

29



5 Visual Tracking

“View-based strategies are receiving an increasitbgntion because it has been recognized
that 3D reconstruction is difficult in practice amdso because of some psychophysical
evidence for such strategies” [Ua¢ al, 2004 b]. Therefore, to have a detector that can
recognize an object and track it from every possiéw is still a very demanding challenge.
Furthermore, the dimension of a database that woartiain all of the object’s possible points
of view should be immense just for each single abjenleashing some other problems
concerned with real time processing. As an alterean method for tracking fully rotating
objects based on simple template matching has blegeloped. The idea is to track a
previously classified object. Templates are setfatipd when the identification module fails
and redefined when they succeed, allowing the olfeéreely move and rotate overcoming
temporary failures of the identification module.nf@ate tracking is very simple. Every new
frame is compared to the previous template at epesgible location. The best match defines
a region of the image that is latter used to previdformation for the analysis of the next
frame by, somehow, updating .the template. Thelprolof how to update the template is a
difficult one to attend to. [Kaneko and Hori, 200#jve goaled the problem very well: “There
is a trade-off relationship between accumulatedorsrrand errors caused by image
deformations. If templates are updated frequertttg, accumulated errors become large.
Conversely, if a template is not updated for a lorge, a fatal large error occurs as a result of
an image deformation.” Kanelat al. approach the problem in a very complex way, degni
inclusively an advanced template update criterinrihis study a very simple method is used.
The template used for comparisgrcan be the last acquired templakes1, or an average of
the latestN templates.

1= Log
C_nzlﬁ n (27)

T,is defined after the intensity values in the imagg, its width (w) and height §), and also
after its last best match position

Tc = Tc (-I;x y)? Twidth’ Theight’ T;) (28)
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Template tracking technique only updates, and r, width and height are not touched.

Therefore, this technique requires another modoésdd on Haar features or any other) to
trigger the tracking system by fully defining arsiteg T, when a positive identification occurs.
Figure 15 shows the tracking of a car’s rear, a6 agea graph representing the results of the

template matching operation (TMR).

Figure 15. Template tracking (top left) and TMRwihe best match in lighter areas (top right).
Overlay view (down).

Figure 15’s TMR image clearly shows that, despiie flact that the brightest area is around
the car's effective position, there are some otaeras with a high match result. This

observation is related to low car/background cattréhe car’s color was purposely chosen to
avoid that better results were achieved based tarreat factors. The same experience works

much better for an object of higher contrast.
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5.1 Gaussian Conditioning

The template update criterion that is being useddsmentioned, a very simple one. Perhaps
some optimization of this routine could improve tAemplate Tracking mechanism.
Nonetheless, another approach has been attemphedid€a is to condition TMR, i.e. to
weight it by some other matrix. This other matrinudd supply additional information to the
tracking mechanism, other than the absolute meastrsimilarity inherent to template
matching.

Relevant information is related to the positionahtinuity of objects in time, i.e. objects do
not warp from one place to another without follogvisome connecting trajectory between
these points. Of course that frame by frame arglgsi is the case, is always a discrete process
and warping might occur due to low sampling frequerHowever, assuming that the frame

rate is high enough, it can be fairly trusted @ratobject early positioned at some coordinates
""" at instantN - 1, will have, in the following iteration, a highergbability of its positionr"

being in the neighborhood of .

1

N N-1
r -r

P(r|r )= f (29)

In order to embed this “common sense” into ouresystit was decided to use a 2D Gaussian
probability distribution centered at "= x"*y*' ', embedded into a matrix with the same

size as TMR that will be referred to as GaussiatrimgGM). GM is calculated as follows:

a2_*_b2
1 T os2
G(a, b)=we 2 (30)
Where G(a b)is the function’s value considering=x"+x"*, b=y"+y"“* while is the
standard deviation expressing how “wide” the Gausss defined. This enables centering the

matrix at the previous template position, as iruFegl6.
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Figure 16. GM overlapped onto its correspondingnfa

After being properly normalized, GM is used to ctiod TMR by performing a simple pixel
by pixel multiplication, thus decreasing the masclre for pixels that where distant from the

previousr" .

Figure 17. TMR (left), GM centered at (middle) and conditioned GM (right).

This technique was able to considerably improvekireg performance. The phenomena of
warping disappeared completely. The tracking waksn when objects do not have a high

contrast with the background.

5.2 Fast Gaussian Computation

The Gaussian function calculation is not fast tonpate, especially considering that any

tracking mechanism should be fast when compare@ntoobject recognition technique.

Calculating a new GM in all iterations (for evergwr'" ) would considerably decrease the

frame rate. Hence, an alternative method had taldweloped. As a part of the program
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initialization processes, an extended Gaussian xn@EGM) is calculated. To calculate
EMG’s minimum size, note that, by absurd, the sesaltemplate one can use is of sizé.1
Therefore, recovering chapter 4.1 template matchesylts matrix size equation (18), the
biggest size that the template match results matix have isv” H, i.e., the image’s size.
The EGM is also a Gaussian 2D function represeintexh image of sizew” 2H, with the

function centered in the center of the image. kerggivenT, and TMR size, a specific sub-

window of the EGM can be used without having toosafion the probability distribution thus
recalculating the probability value of every pixéhe EGM sub-window’s upper left corner’s

coordinates are given by:

TMRnsight

height - 2 px

EGM

EGM (31)

upperleft —

py

TMR,
EGMwidth_ % T,

Its size is equal to the size of TMR. Using thishteique, the Gaussian matrix’s calculation is
limited to the definition of a particular region afterest of the EGM, therefore saving

precious computation time (Figure 18).

Figure 18. Fast Gaussian computation.
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6 Foveation Control

Foveation control is closely related to the tersual servoing: “Machine vision can provide
closed-loop position control for a robot end eféect this is referred to as visual servoing”
[Hutchinsonet. al, 1996]. Foveation control regards the technighas were used to, having

captured the system’s attention, center the obijecthe foveated image. Although the
implementation issues were always handled in argéeapproach perspective avoiding loss of
generality, the solutions here implemented are cthe towards specific hardware
characteristics. Therefore, this chapter starth wibrief description of the Pan and Tilt unit as

well as the cameras setup.

6.1 Pan and Tilt and Cameras Setup

For visual tracking, a servo controlled Pan and tnit is used, model PTU46C from Directed
Perception. Its Pan and Tilt axis have 270°/18Q08itipming range respectively and both
support speeds of up to 300°s. The system allowpdsition, speed and acceleration control

based on RS232 communications.

Figure 19. Pan and Tilt setup.
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Two low cost Unibrain IEEE1394 cameras are instabe the unit. They are positioned so
that both cameras’ vertical axes are coincident whie tilt plane, while pan movements shift
the image horizontally. With this setup and disrdgey lenses distortion it is possible to have
independent control of the images’ horizontal aedtival axes shift related to pan and tilt
movements respectively. The lower camera has a lsie installed while the upper camera
uses a narrow lens. Frame rates of 30 fps with @®agf 640x480YUV411l or
320x240YUV422 are supported. Similar setups haen h@oposed by [Udet. al, 2006] in

this case for robotic humanoid heads with two caneer eye.

Figure 20. Cameras setup proposed by [edal, 2006].

As can be seen on Figure 20, the registration kmiwleveal and peripheral cameras is
proposed either with vertical or horizontal axisncodence. The mechanism should be able to

compensate for the distance (horizontal or veiticatween the cameras.

6.2 Tracking Controller

Object tracking implies following a given objectoWever, in this approach and for the sake
of program modularity, the tracker module doesmexd to be aware of what it is following

nor of its properties. This approach was chosemuxe it ensures total independence of the
tracker module. Its inputs are the current perighénage coordinates= x,y, " of the

object to track and the desired coordinates, ileeres the object is and where it ought to be.
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Usually, the desired coordinates, named Tavgebzp, fzp are the image’s center. However,

that may not always be the case. In this case anduse the foveal camera is positioned on

top of the peripheral image (in which tracking asjuv should be placed above the image’s
center as well. This problem will be addressedherahead (chapters 6.4 and 6.5). For now,

the important issue is of how to bring the recogdibbject located at current coordinateto

some predefined target coordinates

Figure 21. Pan & Tilt controller schematics andtoolier implementation.
Figure 21 illustrates a schematic of the perceptioh The pan errorK, ) is given by:
Paror =%, = %, (32)

While the tilt error .

error

) is defined as:

Terror = yp - §p (33)
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Two independent controllers, one for each imags,ax. one for pan control and one for tilt
control, are implemented. Nonetheless, both cdetobre similar and therefore only the Pan
controller will be addressed. Note that the phifggoof the whole implementation is not to
use vision for exact metric measurements, but aselg to use it for some kind of self

calibrating control using only correlations betwegxxel distances. Therefore, there is no need

to calculate the world coordinates that corresptnd nor to v. Without possessing this
information, it is hard to specify the desired asgto pan/tilt based only on the object image

coordinates. These angles have to be specifiedetthardware unit. To solve this problem,

fixed angle values are set. That is, if the objeabn the right side ot (T, >0), the pan

rror

position’s value @,.,,,) is a predetermined one that pans the cameraslgnto the right,

osition
while the opposite occurs when the object is orlgfte
If (Pe > 0) Pposition = 200C
else P =-200°

position —

rror

(34)

The controller is actually a speed controller (fagtice, position only reports the signal of the
speed value). Pan speed is controlled based orDacétroller that accounts foPerror
magnitude, its past history and future trends.

N Pn _ Pn-l
Pspeed = K lPerror+ Ki Pnerror+ Kd errorDt S (35)

=0
WhereK,, Ki andKy are the proportional, integral and derivative gai@spectivelyn is the

iteration index N the max amount of iterations to account for, ahdorresponds to the time
that has elapsed between iteratiorendn-1. TheK, K; andKy parameters were tuned by the
method of empirical calibration. Pan acceleraticayralso be controlled by a PID controller

but for now it is set as a constant high value \aitheptable results so far.
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Figure 22. Tracking controller experiment.

or T occurs. Independent axis control

error

andT

speed

Figure 22 shows how. vary when arP,

peed rror

is noticeable since a,, (x error in Figure 22) implies only that,, increases. Also, no

overshooting is noticeable.

6.3 Estimating Lens Scaling Factors

According to the vendor, the cameras’ pixel shapged 5.6:m. Considering a resolution of
640" 480pixels, the usable size of the CCD would be:

CCD,” CCD= 56 10° 640 56 I6 480 '3.58 26N (36)

The vendor also provides the following table.
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Table 1. Unibrain cameras lenses.

Lens focal Horizontal |Vertical viewing] Diagonal Size of the reality Size of the reality
length viewing angle angle viewing angle forD=05m (see note)

f a hor o vert d diag w H w H
{mm) ) ) ) {m) (m) {m) (m)
2,10 80,95 65,24 93,70 0,853 0,640 8,53 6,40
2,50 71,27 56,52 83,72 0,717 0,538 717 538
3,00 €1,70 48,26 73,49 0,597 0,448 597 448
3,60 52,93 40,94 63,78 0,498 0,373 4,98 3,73
4,00 48,26 37,14 58,50 0,448 0,336 448 3,36
4,30 45,25 34,71 55,03 0,417 0,313 417 3,13
6,00 33,26 25,25 40,54 0,299 0,224 299 224
8,00 25,25 19,07 31,28 0,224 0,168 224 1,68
12,00 16,99 12,78 21,15 0,149 0,112 1,49 1,12
16,00 12,78 9,60 19,94 0,112 0,084 112 0,84

Note : each lens has a minimum object distance, that may be longer than 0,5 m

The peripheral lens hasimmfocal distance. Hence, the scaling factors (peremet subject

distance) for this camera’s horizontal and vertedbk,.a, and s, respectively, are calculated

as follows.

Which results in a constant scale factor for botadtions a,

a,

2’ W fd=2.1mm

0.5m

cch,

2’ H fd=2.1mm

0.5m

cch,

p

476.0

=476.2

In the case of the foveal lens, the scale fact@s a

0.5m

ccD,

2’ Wfd:Smm

0.5m

CcCh,

B 2’ H fd=8mm

125.0

=125.0

125.0

b

476.1.

Also for this lens, the scale factors are siméar 5,

6.4

Modeling the Foveation Setup Assuming Pinhole Camas

(37)

(38)

The aim of this mathematical formulation was toumately find the values of the peripheral

image’s target point in order to maintain the object in the centerhaf toveated image. This

is a difficult problem to address, since no infotima regarding the disparity map is present.
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[Ude et. al, 2006] have formulated the problem by focusing tesues that would need to be
considered when analyzing the foveation setup tithcameras:

1) Given a 3-D point that projects onto the ceofethe foveal image, where will the point be
projected onto the peripheral image? This will be tdeal position in the periphery for
foveation.

2) If a 3-D point projects onto the peripheral iraagvay from the ideal position described
above, how far is the projection of the point frime center of the foveal image?

Both cameras can be modeled based on a standandlgicamera model. Most of the

following deduction as well as assumptions are thase[Udeet. al, 2006].

A 3D point is denoted bym =[x Y Z' while a 2-D point by m=[x '. Let

M=[x Y z 1" andm=[x y 1" be the homogeneous coordinatesmfand m. A 3-D
point M and its projectiorm are related by

sm=AR }M (39)
Where s is an arbitrary scale factor ardand t are the rotation and translation extrinsic

parametersA is the intrinsic matrix and can be expanded devid

a g x
A= 0 b (40)
00 1

a and p are the axes scale factors whiledescribes the skewness of the two image axes,
and y, are the principal point coordinates. Without lasfs generality we assume that
X =Y, =0. In most of the standard cameras the principaitga., the point that is coincident
with the camera’s optical axis, does not coincidactly to the image center in pixel
coordinates but it is close to it (about 10 pixdistance in a 640x480 image). The pinhole
camera model does not consider effects of lensrtizh. In the foveal image distortion is not
noticeable because of the long focal lengths. Hawnehis is not the case for the wide lens of
the peripheral image whose distortion is quite @®rable. This study did not include
previous distortion correction of the peripheralage. Distortion is mainly due to radial
components, which are higher in the periphery & image. It is known from previous

applications that the target position at the peniphimage should be around some few dozens
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of pixels. Therefore, one might assume that thigmitade of values is still very close to the

center of the image and so will suffer minor digtor effects. LetA,,R .t be the intrinsic and
extrinsic foveated camera’s parameters, wiiler .t represent the same for the peripheral

image. Assuming, as [Udd. al, 2006], that the world coordinate system is adymith the
coordinates system of the foveated image, thendta¢gion parameters for the foveated camera

are neutral, i.eR, =1, wherel is the identity matrix and the translation parametfor the

same camera are null, i.e.=0. The translation required to shift from the woideeated to

the peripheral coordinates system is denoteﬁ aghile IA?respects to the same transformation

but in what rotation is concerned, we have
RM+t =R M-t (41)

Expanding equation (41) one can obtain the praactif a 3-D point for the foveal and the

peripheral images. The foveal image is the eagestlculate

X
X a g 0 1000 v axX+gY @ X+g Y) Z
y, = 0 b 0 0100 s = bY = b Y IZ (42)
1 0 0 1 0010 1 z 1

While the peripheral camera’s projection is théoiwing

y, = 0 b, OR M-t (43)
0

ReplacingFAz for the expansion ; then we have

Xp a, g, 0 i T T3 n
Yo = 0 b, 0 1y 1, 13 M-t (44)
1 0 0 1 ry ry; g

As mentioned before, the objective is to find toiskh point in the peripheral image
corresponds the center of the foveated image (asguthe center is coincident with the
principal point). Hence, assuming thitt projects into the foveated image’s principal ppint

then x, =y, =0. Also, M must be in front of the camera £0). From equation (42) we

obtain

42



0 (@ X+g,Y)l z X=0
0 = bYlZ Y=0 (45)
1 1 1=1

Which means thatv is aligned with the foveated camera’s optical a8sbstituting in

Aooa T

equation (44) one gets the following for the idealipheral positiorv= x,y,

A

Xp

A a, Y, 0 i T Tyg 0 a
Yo = 0 b, 0 1, ry 1,y 0-t (46)
1 0 0 1 ry 1y, ryy Z
Consideringr, the f" row of R
Xp a, g, 0 -tz -ntagnfZas rutgr .9,
Yo = 0 b, 0 -rtrr,Z = -t b, 47)
1 0 01 Stz - Itz

which results in

.ta,+r.tg, - (rzsgp+ Ms ap)Z

Xp _ Iy t- 1.7 (48)
Yo .t - 1,072
3 t- rasz

The first observation is that the foveated cameiratisnsic parameters,,6, and g, do not

appear in equation (48) and therefore, the ideditipa in the peripheral camera is
independent of those parameters. The distanceetmltfect z is, conversely a variable to
account for. [Udeet. al, 2006] continue this deduction further on expregshe relationship
between the displacement of a given M point infthweated view and its displacement in the
peripheral view. In this particular case, howelbis analysis is not required because all that
is required is to achieve an accurate value of b@position the controller’'s target in order
to best foveate an image.
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6.5 Selecting Peripheral Imagev to Center the Object in the Foveal Image

Since cameras are precisely registered, one camasg=1 where! is the identity matrix,
i.e. it is assumed with some degree of trust thatet is no rotation between both cameras’
coordinates’ axes. This enables the replacemergqaftion (48) taking into account that
M =T =l =l .= = ,,=0 and thatr, =r,, =r_ =1

A A A

.ta,+r,tg, nta,

" Xp r.t-Z r.t- Z
v= = T (49)
Yo rz*tbp

r3*€-Z
Assuming a perfect pinhole camera the skewnessegeated, which resulted in the

approximation made fo&p.in equation (49). The cameras’ support structuas wespecially
machined for this application. Having ensured teeigs precision, one can state that the
optical axes the cameras are almost perfectly afigimnd so that

0

t= t, =55mm (50)
0

For our foveation setup)Ay corresponds to the vertical displacement of thmeras’ and is

approximately 55 millimeters. Substituting equati@®) in equation (49) and recovering

chapter 6.3 estimated values of the lenses scilotgrs @, b, 476.1) we get

p

X 0 0

p

. = 55b, = 55 476.1 (51)
Yo -Z -Z
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Figure 23. Plotted equation (51) by varying Z fr6r@ to 4 meters. Notice that for

distances bellow 1 metey, varies abruptly and then tends to be more ordesstant.

Unlike [Ude et. al, 2006], our foveation setup uses only two camdnmastead of four).
Therefore, no disparity map is obtained and cornsetlyithere is no information regarding the

value of z. However, this analysis was important to haveua cif the acceptable range of

A

values. Looking at Figure 23 we can see thatzZf®n meter,t, ranges from 30 to -5 pixels.

y

In 640x480 images this is quite insignificant (686 1% of the image’s height). The final

foveation control assumption is that the unit, withcurrent setup, should properly foveate

objects standing over 1 meter away. A value;of-zo is used as a constant by the tracking
program. If not entirely accurate, this scheme msathe mechanism to, at least, roughly (at
most max (- 5- { 20-( 30y ( 20) 1 pixels away from the desired position) point the
foveated camera at the object. In fact, althoughthi@ possession of a stereo distance
measuring setup, [Udet. al, 2006] also use a constantpproach for foveation because the

alternative strategy “is not practical on highlyndynic humanoid robots because it makes the

unrealistic assumption that we can maintain thebialon of the eyes during fast eye
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movements.” Also, the core idea of this work isotmain a self calibration system that does
not require complex setup/maintenance procedurestimy this in mind, the next step would
be to use both cameras to perform foveation comsiead of just the peripheral camera. A

simple law that would shift the control between tagneras according to the proximity of the

object to the target could be used. Peripheral camera would roughlygattie object into the
foveated image which would then take charge offtlveation control to accurately foveate

the object.
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7 Software Architecture

This chapter describes how all the previously egdosiodules, i.e. attention mechanisms
developed to perform visual search, view-basedobbgeognition, object tracking and others
are used and integrated into an application. Tipdaeation is mainly based on flowcharts. For

a better comprehension of these, the used conwveist&hown on Figure 24

Figure 24. Flowcharts symbol legend.

7.1 Image Acquisition Flowchart

Image acquisition is a fundamental module of thetesy. Both cameras images are grabbed at
a max resolution of 640x480 in YUV422 format. Ndreess, many of the subsequent

modules do not require such a high resolution. dloee, this module also downsamples the

images, making all three resolutions available qastured frame (640x480, 320x240 and

160x120).
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Figure 25. Image acquisition flowchart.

7.2 Visual Search Flowchart

Visual search implemented modules comprehend a®tection, motion detection and also
the use of Haar features cascades. All three shueligrably be processed separately, since
their levels of complexity are quite dissimilar.

Figure 26. Visual search flowchart.
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The Attention mechanisms’ integrator module hasyebtoeen developed. As a consequence,
only one attention mechanism may work at a time.
7.3 Visual Tracking Flowchart

As previously mentioned, the visual tracking’s miedwequires a full definition of the
templates characteristics but, once triggeredant self update the template’s intensity values,
which is reflected in the circular loop of Figuré'? flowchart.

Figure 27. Visual tracking flowchart.

7.4 View-Based Object Recognition Flowchart

Only two recognition techniques were employed: Haatures and template matching. Some
experiences were also made with an optical charaetognition application. This will be

mentioned more in detail in chapter 9.
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Figure 28. Object recognition flowchart.

7.5 Foveation Control Flowchart

Foveation control aims at positioning an objectwad in the peripheral image in the center of
the foveated view. For this a tracking controllesdule and a communications module were

developed (Figure 29).
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Figure 29. Foveation control flowchart.

7.6 Global Architecture Flowchart

Figure 30 shows the global architecture of the g explaining the interaction between
modulesAll previously mentioned modules are themd ahen identified, a more holistic
perspective can be achieved. Complexity derives ftbe multitude of crossed interactions

between all modules.
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Figure 30. A proposed solution for the integratidithe developed modules.

There are five overall modules: image acquisitieisual search, foveation control, object
recognition and object tracking. The developmenthef application intended to follow this
model of visual perception. Several class basedrigs have been developed. All of the
libraries share a common global structure that $1alidl the information that is relevant, i.e.
unimportant local class variables are not includ&ido, every developed library includes

thread support which enables the launching of gnara independent thread and the desired
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execution frequency. The architecture supportslleanarocessing between threads whose
priority can be preset. Thread support is provide@T3, a toolbox very similar to GTK with

a vast amount of functionalities. There is but prigram whose mission is to setup the initial
configuration and to launch the required threadpure 31 highlights the threads that are now

available to be launched.

Figure 31. Thread flowchart.

Due to real time demands, not all threads may being at the same time. However, good
results were achieved by trying several combinatiaf these. Of course that parallel

processing brings forward problems due to synckadiun of events. The core idea is to have
a global pool of information shared by all threatisreads operate based on this information
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and update some other when they are processed:ole @nflicts arising from simultaneous
variable writing and reading, a QT3 based, mutxalusion system was applied. Variables
are locked when accessed by a thread. Some thdeausavy processing over images and for
this reason may lock the variable for a long tifie.avoid this, a more efficient strategy was
implemented. Local copies are made, during whiehrdspective global images are locked.
Copying is a very fast process compared to somer®thnd so, the thread will lock the
variables for a short period of time, after whi¢tpérforms the time demanding processing
without halting other threads that could require same variables. All threads are processed
at the same time and therefore one admits thatythehronization is performed in a statistical
basis, i.e. the best information is always the Ugstated one.
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8 Experimental Results

This chapter will present the most important expents that were performed. Several
practical implementations were attempted in ordetest foveation control, either based on
Haar features combined with template tracking dorcaletection. The idea is to try to
identify, track and foveate small models of caeve3al Haar cascades were trained to provide
robust real time identification of these. Motiorntetgion has also been tested tough it was not
integrated into the system as an attentional mesimarThe objective of these experiments
was to be able to direct peripheral attention padicular object, identify it, and then follow it
as it moves and rotates freely. At the same titne,abject could undergo additional foveal

processing.

8.1 Detection of Small Model Car Using Haar Cascades

For experimental purposes, it was decided to trfplow the rear of a small model of a car,
whose color was purposely selected to be very airtol the background in the test laboratory,
therefore demanding a higher effectiveness of #tedtion as well as the tracking modules.
The contrast between the object and the backgrausiginificantly low. Approximately 1400

images of the object were hand labeled. This psocessists of, for each training image,

defining the region of interest (ROI) where theedlbjis.

Figure 32. Car model used for training (top rigis@t of positive images used for training (other).

The training set was converted to grayscale and tieeluced to a size of 25x12 using
OpenCV’s embedded application. Considering [Viata dones, 2001] 24x24 face detector,
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the elected size appeared to be reasonable. ldatibh’s performance is very effective,

including when handling with a large zoom factoowéver, when the object is shown at a
slightly different angle than the one used forrtirag, the detection rates considerably fall. No
guantitative results can be provided since thatames testing was made only at real time in
order to test all of the other programming modul&$ien this experience was made, thread
programming was still not implemented and so tis& t& saving images slowed the program

and disrupted the systems performance.

8.2 A Generalized Cascade for the Detection of Car's Res

The next attempt was to train a generalized casftadbe detection of car’s rears, i.e. to train
a Haar cascade that would detect not a particaammdel, but a indiscriminate car’s rear
detector. As mentioned in chapter 4.2, Haar featare first trained to obtain a representation
to be used latter for real time object detectiaor. this purpose several image collections were

acquired.

8.2.1 Training Datasets Description

For training purposes, two image datasets wereobaad from the internet and a third was
home made. This chapter will describe in detaihesat, indicating the number of images per
set, their properties and locations were they waken. Table 2 sums up the training sets
information. Training datasets will, henceforth,immed as TDS followed by their respective

number.

Table 2. Training datasets description.

Name Num of Images Resolution Format Location Authis

TDS 1 1556 variable png California unknown
TDS 2 126 896x592 ipg California Weber

TDS 3 1004 752x512 png Portugal Oliveira, Santos

California Institute of Technology dataset is corsgub of 1156 images ipng format, tough
many are very similar (Figure 33). Image resolutisnvariable. This dataset is used for
training and will henceforth be named training datdl (TDS1).
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Figure 33. Samples from of California InstituteTafchnology dataset.

Markus Weber’s dataset is not as broad, bearing iz images. The resolution is 896 x 592,
jpg format and the images were taken in the Califomnsgtitute of Technology parking lots.

Some examples are on Figure 34. This will be natreading dataset 2 (TDS2).

Figure 34. Car dataset taken by Markus Weber, @ali Institute of Technology.
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A third dataset was home made. During a car travé?ortugal (from Algarve to Aveiro)
nearly 2 hours of footage was captured. Resolutiaa 752 x 512. Over 1000 images were
extracted from the film. Positive examples wereasafed and cars were also hand labeled

(Figure 35). No rescaling was performed. This Wélreferred to as training dataset 3 (TDS3).

Figure 35. Home made car’s rears dataset. Fronufagse roads.

Some of the images were taken during adverse weatheditions, such as rain. Some
examples are present on Figure 36. These imagaschuded in TDS3.

Figure 36. Home made car’s rears dataset with peather conditions.

8.2.2 Test Datasets Description

For the purpose of testing, three separate datasetssed. The first dataset was built by Brad
Philip and Paul Updike (Figure 37). It was takentloa freeways of southern California. It is

composed of 530 images jimeg format. Resolution is constant at 320x240 pixktgages are
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quite similar to TDS1 but are not included in ihig test dataset will be employed to measure

the performance of the cascades and will be mesdias performance dataset 1 (PDS1).

Figure 37. Example of the car dataset taken by Btatip and Paul Updike, California Institute of
Technology.

Performance dataset 2 (PDS2) is taken from theafmothat provided images for TDS3. The
images are not the same although they are sinlll282 consists of 105 images, 756x512 of
resolution, saved in png format. No demanding waratonditions, city environment or gas
stations images were included. The idea was t@awss@plified version of the footage. Finally,
performance dataset 3 (PDS3) is an extension of2P@lfained by including all kinds of
images: Poor weather, city, gas stations, bridgeqEgure 38).

Figure 38. Difficult images in PDS3.

PDS3 is a much harder set. It consists of 232 imagth the same resolution and format as
the ones of PDS2.
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Table 3. Performance datasets description.

Name Num of Images Resolution Format Location Authis

PDS 1 530 320x240 png California Philip, Updike
PDS 2 105 752x512 png Portugal Oliveira, Santos
PDS 3 232 752x512 png Portugal Oliveira, Santos

8.2.3 Cascades Description

Having ensured a wide variety of examples, handliiayp was performed over all images both
in training and performance sets. A semi-automiagicd labeling application was developed
to ease the process by enabling fast mouse seletitimso generates a text file were the ROI
is defined for every image. OpenCv’s Haar featwel tcreates samples by clipping the
defined ROIs from TDS images, converting them tygcale, rescaling them to window size,
and inserting them into a random background image. background image pool, or negative
set, has not yet been described. A negative sesisterof a set of images where no objects can
be found. They haven't been mentioned since theyirapaired with their respective TDS,
i.e., every TDS also has a set of negative examplsally road images where no cars are
present.

Several cascades were trained using different aoettibns of TDS, number of stages, features
pool, i.e., BASIC for Viola Jones features’ pollda\LL meaning Lienhart and Maydt
extended set (review chapter 4.2) as well as thmbeu of positive and negative samples
generated after the dataset (T. Samples). Als@rabwindow sizes were attempted. Cascades
will henceforth be named by C followed by theirpestive number. A brief description can be

found on Table 4.

Table 4. Cascades Description.

Name Win Size Training Set(s) T. Samples (pos/neg) N° Stages Features Set
C1 30x20 TDS1 +2 unknown 20 BASIC
C2 60x40 TDS1 +2 1282 /754 20 BASIC
C3 30x20 TDS3 unknown 20 BASIC
C4 30x20 TDS3 unknown 20 ALL
C5 60x40 TDS3 unknown 20 BASIC
C6 30x20 TDS1+2+3 1556 /915 20 BASIC
C7 30x20 TDS1+2+3 1556 /915 20 ALL
Cs8 20x12 TDS1+2+3 1556 /915 30 ALL
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8.2.4 Performance Tests

OpenCV provides a tool for cascade performancéntgsthe tool applies the cascade to all
test images and compares the algorithm’s outcontagoeport generated by hand labeling.
Hit and false detection rate is generated basethisrcomparison. In order to assume a given
detection as one described in the report, someatates are given. These tolerances are
positional, i.e. how far is the detection from wéreught to be, and in terms of size, i.e. how
bigger/smaller is the detection from what it sholkd In order to allow for easy performance
comparison, the tolerances employed are the defaliles of the mentioned tool. PDS1 was

tested with several cascades and several scalotgr$ascaling factorsf, which is a Haar

detection parameter that indicates how much thereate window should be scaled up. Hit
rates are quite good (some above 95%) tough fédsm aates, i.e. false positive detections,
are quite high (Table 5).

Table 5. Performance results for PDS1.

Name sf Hits Missed False Alarms Hit Rate False Aten Rate
c1 1.05 508 18 400 0,966 0,760
1.9 370 156 263 0,703 0,500
1.05 501 25 444 0,952 0,844
Cc2 1.5 501 25 193 0,952 0,367
2.9 311 215 500 0,591 0,951
c3 1.05 440 86 4840 0,837 9,202
1.9 436 90 1529 0,829 2,907
1.05 449 77 2676 0,854 5,087
C5 1,9 495 31 953 0,941 1,812
2,9 397 129 874 0,755 1,662
C6 1.05 442 84 5799 0,840 11,025
1.05 429 97 3385 0,816 6,435
c7 1,9 396 130 925 0,753 1,759
2,9 193 333 868 0,367 1,650

The cascades that best perform wouldche, , andc2,_, .. The performance curves for both

is presented at Figure 39.
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Performance comparison between C1 1.05and C2 1.5t ested on PDS1
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Figure 39. Comparison of the cascades that befirpged on PDS1.

Figure 39 shows that cascade,_, . performs better thagy,_ .. Cascadec2,_ . can achieve

the same hit rate as1,_, at a lower cost, i.e., lower false alarm rate. 8@ramples of

C2,_,, detections can be seen on Figure 40.

Figure 40. Some detections made®%,,_, ;, on PDS1 dataset.

Regarding PDS2, fewer tests were executed.

Table 6. Performance results for PDS2.

Name sf Hits  Missed False Alarm Hit Rate False Alan Rate
C4 1.05 116 28 2150 0,806 14,931
C5 1.05 79 65 1213 0,549 8,424
C6 1.05 84 60 1081 0,583 7,507
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Table 6 clearly shows a much higher false alarmsatverage score. While4,,_, .. yields the

best hit rate, it also has a false alarm rate of.@4for every detection that should be made, 14
false alarms occur. This number may appear higieitascade is used for actual detection but
may loose relevance if the cascade is to be usadsample attention mechanism or if further
validation tests are to be implemented.

Performance comparison between C4 1.05, C5 1.05and C6 1.05 tested on
PDS2
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Figure 41. Comparison of the cascades that befirpged on PDS2.

Tests with PDS2 were not entirely satisfactory imatvconcerns false alarm rates. However,
this is a very difficult set and some additionabgedures could have been implemented to
ease the false alarm rate and also, in some daga®yve the hit rate. First of all, the images
from PDS3 could be clipped without loss of relial®&trapolation of the algorithm’s
performance. The upper and the lower parts of tivasges contain no information on the
road (sky/rear mirror and car interior panel). T¢lipping operation would lower considerably
the false alarm rate since many of these falsenalare in these areas of the images (Figure
42).
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Figure 42. PDS2 apparent problems.

Also, many detections are very close to each otheralgorithm for merging overlapping
detections could be easily implemented thus derrgayen more the false alarm rate. In the
case of Figure 42, one would go from a situatiothwii5 false alarms to none, if these
procedures were implemented, which would dramdgicadprove the false alarm rate. Taking
the previous considerations into account, it seemmigdesting to test some cascades on PDS3,
even knowing that it is even more demanding tha®2 [T he results are outlined on Table 7.

Table 7. Performance results for PDS3.

Name sf Hits Missed False Alarm Hit Rate False Alan Rate
C1 15 78 249 156 0,239 0,477
Cc2 15 89 238 612 0,272 1,872
C3 15 269 58 1510 0,823 4,618
ca 1,05 256 71 4837 0,783 14,792

1.5 204 123 2028 0,624 6,202
c5 1.5 158 169 1252 0,483 3,829
1.05 79 65 1213 0,549 8,424
C6 15 158 169 1457 0,483 4,456
Cc7 15 115 212 1649 0,352 5,043
1.05 295 32 4119 0,902 12,596
C8 1,9 30 297 43 0,092 0,131
2,9 189 138 837 0,578 2,560

Most of the cascades present a poor hit rate. Hewewascadescs,_., C4,., and

particularly cs,_, ., have acceptable hit rates. Of course that the &llrm rates are huge. But
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there is the conviction that these rates can betantially reduced by means of the already

mentioned clipping and merging techniques. Perfogaadata was not extracted frars,_, .

neither fromcs,,_, ., and so Figure 43 presents only the results4qf, ...

Performance of C4 1.05 tested on PDS3

0,9 -

08 +— 1 — 1 - - - - - -

_____
-

0,7 .

0,6 7~

L4
i
05 {7 ---:C41.05
1
H
r

Hit Rate

0,4
0,3 -
0,2
0,1 -

0 2 4 6 8 10

False Alarm Rate

Figure 43. Performance @&4,,_, ,, tested on PDS3.

Bearing in mind that false alarm rates could berste¢ed, and that PDS3 is a set of high

complexity including images in the rain, city antther tricky obstacles, the hit rate o8, _,

is quite acceptable.

Figure 44. Some detections made®¥,,_, ,, on PDS3.
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8.3 Color Recognition Based Foveation Control

In order to test the foveation control, a simpléocaecognition targeting mechanism was
employed. In the following images (Figure 45), d oross represents the target position for

foveation and the green cross the red color mass menter.

Figure 45. Foveation control by red color recogmitiPeripheral view.

Foveation can be used for detailed processingigar€é 46, a contour of the red color mask of
the foveal view was being calculated while the piegral view maintained the foveation
control (the bounding box is not always the desioew due to difficulties in the color

recognition process).

Figure 46. Foveation control by red color recogmitiPeripheral view (top row) and corresponding
foveal view (bottom row) used to calculate colorsknaontour.

Chapter 6 has stated that the preferable solutipfofeation control would be one that could
easily be calibrated, should this procedure bellatexessary. Figure 47 shows how robust
foveation control is, since in this sequence the grad tilt unit was picked up and held upside
down. Since both cameras remain properly regist¢beth are upside down), foveation

continues effectively, disregarding global orieiuat

66



Figure 47. Foveation control implementation handilesing pan and tilt upside down.

8.4 Combined Haar Detection Template Tracking Based Faation Control

This chapter presents the results obtained by pemigg Haar detection combined with
template tracking. Tracking is done whenever Hagedions fail to find a match. Mixing

both techniques improves the foveation control dargThe control program is drafted on
Figure 48.

Figure 48. Schematic of how to combine trackingwiar modules.
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Figure 49 shows a sequence where both Haar detsaiind tracking takes place. The first is
represented by a green box around the detectedtobigle tracking template is highlighted

by blue boxes.

Figure 49. Combined Haar detection template trarhkiodules.

Chapter 5 defined that templates width and heightoaly updated when a Haar detection
occurs. Figure 50 shows both the peripheral vievtae zoomed template, whose size change

due to a different Haar detection is noticeable.

Figure 50. Template updating details.

On Figure 51 another sequence is presented. Tleetabjfollowed and foveated consistently.
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Figure 51. Peripheral template tracking éhd 3 row). Foveated view (2 and 4" row).

Figure 52 shows a complete overview of the trackiragess.

Figure 52. Tracking €icol.). TMR (2 col.), conditioned TMR (8 col.) and Template f4col.).
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Globally, the combination of both techniques wadtful. The system is now capable of
following objects that are identified occasionally tracking them from the first detection

onwards.

8.5 Optical Flow Detection

A motion detection algorithm was also implementéticaigh its integration as an attention
mechanism was not fully implemented. Nonethelessiesinteresting results were obtained.
Figure 53 shows the detected optical flow of a seqa of images. In this sequence the pan
and tilt unit was executing the startup routinecbyering the entire pan range, i.e. it is not the

objects that are moving but the cameras.

Figure 53. Optical flow detection during a pan &ilideset routine.

The implemented optical flow algorithm, even toumging a sparse optical flow algorithm, is
quite heavy computationally. Therefore, it was seey to calculate the optical flow of a
particular area, i.e., the region were the objéanterest is. A simple ROI definition using the
template tracking template’s position and sizernmiation is sufficient to limit the optical flow

detection region.

Figure 54. Confined optical flow detection whiladking a hand.
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9 Conclusions and Open Issues

This work’s primary objective was to study activevéated vision. A pan and tilt unit
equipped with two cameras providing both a periphand a foveated view was used. The
dual camera approach is the most common solutidrappears the most feasible one.

The pan and tilt unit is an old model (actuallyas a part of the Robuter Il robot acquired in
1996) and the latency time between successive cognay the serial line is quite high (80
milliseconds). A better and more up to date hardwaould certainly ease the systems
interface and possibly the controller's performantlee tracking controller is a simple PID
controller, which is not an advanced controlleri the objective was not to focus on this
subject but on how to make the most of visual faedbn order to execute a proper foveation
control.

Haar features are indeed state of the art detetddmiques, which proved to be very fast,
allowing for real time execution in both the peepal and the foveal images, in a standard 1.8
GHz Dual Core Laptop. For this reason they can hisemployed as attention mechanisms,
by electing a few image ROIs that could then begseed by other slower, yet more effective
methods.

The developed tracking technique is not entirely,nbut some contributions have been
added, namely Gaussian conditioning and especfally Gaussian computation. In our
laboratory, the tracker module usually runs smgotS8bme unimplemented ideas could also
improve the tracking module’s performance. Nam&dymake use of localized optical flow
detection to shape the Gaussian filter used foditioning. For example, in Figure 55 the
optical flow represented by the arrows clearly aaties an average movement direction. This
information can be utilized to define a Gaussidterfithat can have an elliptical footprint
instead of circular, as implemented. The ellipseld¢@lso be shifted, tilted and skewed by a
function of the average optical flow. If the vectsizero, then the elliptic axes would have the
same length and the ellipse becomes a circumfereecesquivalent likelihood of the object
moving (or starting to move) in any direction. d¢f) the other hand, an object is moving in a
given direction axis u (the axis of movement), éfigpse may be skewed by decreasing the v

octagonal axis’ length and increasing u axis lengtie ellipse may also be shifted along the u

71



axis by repositioning its center in the directidrtlee movement by a function of the average
optical flow magnitude, which works as a measurg¢hefobject’'s speed. The common sense
interpretation is related to the inertial propesfyobjects in motion. Objects are more likely to

continue on the same movement direction than ohging abruptly the motion vector's

direction (Figure 55).

Figure 55. Shaping Gaussian matrix as a functicdh@bptical flow average vector.

There is a strong conviction that this elliptic Gsian conditioning could further improve the
tracking’s performance. However it still has notbemplemented, especially due to the
difficulties in coming up with a technique as trpagent as the fast Gaussian computation one,
thus enabling real time computation of the elligtiGaussian filter.

The thread based, distributed, software architechas proved much more effective than a
standard, do-while based cycle, type of programpe@sally when it comes to asynchronous
tasks. It is very useful to be able to define tdrpaorities, because in fact processes should all
be asynchronous. For example, a foveal identibicaprocessing takes much longer than an
attention based tracking, that, in order to mamteacking, should not be waiting for the end
of other slower processing routines.

Future studies should include distributed foveationtrol, i.e., to use the foveated image for

precise foveation movements. Also, foveated view hat been employed all that much.
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Experiences with peripheral Haar / template tragkamd foveal Haar detection techniques
have been able to haul out the car model licenate pivhile it is moving around. Then,
standard optical character recognition (OCR) aptibnis could read the license plate number.
Unfortunately, the used foveal camera’s max regmuseems insufficient to hand out a clear
enough license plate image. Several open source @Gfams were testedesseractand

Gnu OCRwere the ones who performed better.

LY. PG 957]

Figure 56. License plate photo extracted from &&wview Haar detection (left).
Debug images for Gnu OCR application (right).

Perhaps with better cameras and professional OGiRcafions a real time license plate
recognition system of a dynamic scene (such asican®tion anywhere on a road track), can
be mounted, but for now, the hardware setup allowedest successfully the systems
philosophy, and lead to the conclusion that activm| camera, foveated vision is a good base

to work on several real world vision applicatiosigtic or dynamic.

73



10 References

1 [Asfour, 2006]

2 [Asfouret. al, 2007]

3 [Atkesonet. al.,2000]

4 [Azadet. al, 2007]

5 [Bouget, unknown]

6 [Chen, 2006]

7 [COG homepage]

8 [Dlagnekov, 2005]

9 [Fitzpatricket. al, 2003]

10 [Hutchinsoret. al, 1996]

11 [Kaneko and Hori, 2002]

12 [Laschi, 2006]

T. Asfour,Humanoid Robots: Design Issues and ContrBtesented at
International UJI Robotics School on Humanoid Reb&enicasim, Castello
de la Plana, Spain, 18-22 September 2006

T. Asfour, K. Welke, A. Ude, P. Azad, Joédt and R. Dillmann, P. Azad, J.
Hoeft and R. Dillmann,Perceiving Objects and Movements to Generate
Actions on a Humanoid Robdt IEEE International Conference on Robotics
and Automation (ICRA'07), 10-14 April, 2007

C. G. Atkeson, J.G. Hale, Frank Pollick, Riley, S. Kotosaka, S. Schaal, T.
Shibata, G. Tevatia, A. Ude, S. Vijayakumar and Khawato, Using
Humanoid Robots to Study Human Behaviblumanoid Robotics, IEEE
Intelligent Systems, 2000;

P. Azad, A. Ude, T. Asfour and R. Dillmatereo-based Markerless Human
Motion Capture for Humanoid Robot Systemin IEEE International
Conference on Robotics and Automation (ICRA'07},1407pril, 2007;

J. BougeRyramidal Implementation of the Lucas Kanade Feafliracker
Description of the Algorithm. Included into Open@istribution.

Q. Chen, 2006, Hand Detection withascade of Boosted Classifiers Using
Haar-like Features, Discover Lab, SITE, UniversityOttawa, May 2, 2006

COG homepage, founchtsp://www.ai.mit.edu/projects/humanoid-robotics-

group/cog/
L. Dlagnekov, unknownlicense Plate Detection Using AdaBqost

Department of Computer Science & Engineering, UG Biego, La Jolla, CA
92093-0114
Paul Fitzpatrick, Giorgio Metta, LorenzotBle, Sajit Rao, Giulio Sandini,
Learning About Objects Through Action - Initial $& Towards Atrtificial
Cognition, Accepted for the IEEE International Geneince on Robotics and
Automation (ICRA), Taipei, Taiwan, May 12 - 17, Z)0
S. Hutchinson, G. Hager and P. Corke, 199@utorial on Visual Servo
Control, IEEE Transactions on Robotics and Automationpdet 1996.

T. Kaneko, O. Hori. Tdatp Update Criterion for Template Matching of
Image Sequencesl6th International Conference on Pattern Recognitio
(ICPR'02) - Volume 2, 2002.

C. LaschVision and Eye Movements in Humans and RolRissented at

74



13 [Lienhart and Maydt, 2002]

14 [MERs homepage]

15 [Monteiroet. al, 2006]

16 [Oliveira and Santos, 2007]

17 [OpenCV documentation]

18 [Rothensteirt. al, 2006]

19 [Shi and Tomasi, 1993]
20 [Stavens, 2007]

21 [Udeet. al, 2004 a]

22 [Udeet. al, 2004 b]

23 [Udeet. al, 2006]

24 [Viola and Jones, 2001]

25 [Wolfe, 2003]

International UJI Robotics School on Humanoid Reb&enicasim, Castello
de la Plana, Spain, 18-22 September 2006

R. Lienhart and J.ydltlaAn Extended Set of Haar-like Features for Rapid
Object DetectionlEEE ICIP 2002, Vol. 1, pp. 900-903, Sep. 2002

Mars Exploration Rovers homepage found at
http://marsrovers.nasa.gov/overview/
G. Monteiro, P. Peixoto, U. Nunes, 200&idh-based Pedestrian Detection

using Haar-like FeatureEncontro Cientifico, Festival Nacional de Robotica
2006.

M. Oliveira and \an®s,Combining View-based Object Recognition with
Template Matching for the Identification and Trawkiof Fully Dynamic
Targets The 7th Conference on Mobile Robots and Competti April 2007

OpenCV version 0.9.7 excand cvaux documentationncluded into
OpenCV distribution
A. L. Rothenstein, J. K. TsotsoAftention links sensing to recognition,
unknown, 2006;

J. Shi and C. Tomasi31®bod Features to Track, unknown.

D. Stavens, Introduction to @pénStanford Artificial Intelligence Lab.
Found atttp://robots.stanford.edu/cs223b05/schedule.htimlanuary 2007.

A. Ude, C. G. Atkeson and M. Ril®ypgramming Full-Body Movements for
Humanoid Robots by ObservatjoRobotics and Autonomous Systems, vol.
47, 2004, pp. 93-108, 2004;

A. Ude, C. Gaskett, G. Cheng, 2084dpport Vector Machines and Gabor
Kernels for Object Recognition on a Humanoid witttive Foveated Visign
Proceedings of 2004 IEEEIRSI International Confeeson Intelligent Robots
and Systems, Sendai Japan
A. Ude, C. Gaskett, G. Cheng, Foveatemwisystems with two cameras per
eye, Proc. IEEE Int. Conf. Robotics and AutomatiGmlando, Florida, May
2006, pp. 3457-3462, 2006;

P. Viola, M. Jones 20R®4pid Object Detection using a Boosted Cascade of
Simple FeaturesConference on Computer Vision and Pattern Retiogni
2001
J. Wolfe, 2003vloving towards solutions to some enduring contrei in
visual searchTRENDS in Cognitive Sciences Vol.7 No.2 70 Feby2003

75



