
Pedestrian detection at 100 frames per second

Rodrigo Benenson, Markus Mathias, Radu Timofte and Luc Van Gool
ESAT-PSI-VISICS/IBBT, Katholieke Universiteit Leuven, Belgium

firstname.lastname@esat.kuleuven.be

Abstract

We present a new pedestrian detector that improves both
in speed and quality over state-of-the-art. By efficiently
handling different scales and transferring computation from
test time to training time, detection speed is improved.
When processing monocular images, our system provides
high quality detections at 50 fps.

We also propose a new method for exploiting geomet-
ric context extracted from stereo images. On a single
CPU+GPU desktop machine, we reach 135 fps, when pro-
cessing street scenes, from rectified input to detections out-
put.

1. Introduction
Visual object detection is under constant pressure to in-

crease both its quality and speed. Such progress allows for
new applications. A higher speed enables its inclusion into
larger systems with extensive subsequent processing (e.g.
as an initialization for segmentation or tracking), and its
deployment in computationally constrained scenarios (e.g.
embedded system, large-scale data processing).

In this paper we focus on improving the speed of pedes-
trian (walking persons) detection, while providing state-
of-the-art detection quality. We present two new algorith-
mic speed-ups, one based on better handling of scales (on
monocular images), and one based on better exploiting the
depth information (on stereo images). Altogether we ob-
tain speed-ups by a factor ∼ 20, without suffering a loss in
detection quality. To the best of our knowledge, this is the
first time that pedestrian detections at 100 fps (frames per
second) has been reached with such high detection quality.

1.1. Related work

Providing an exhaustive overview of previous, fast object
detection work is beyond the scope of this paper. Yet, most
of the work on improving detection speed (without trading-
off quality) exploits one or more of the following ideas:

Better features Having cheap to compute features that

Figure 1: Example result on the Bahnhof sequence. Green
line indicates the stixels bottom, blue line the stixels top and
the red boxes are the obtained detections.

capture best the input image information is crucial for
fast and good detections.
Viola and Jones popularized the use of integral images
to quickly compute rectangular averages [18]. Later,
Dalal and Triggs popularized the idea that gradient ori-
entation bins capture relevant information for detec-
tions [4]. In the same vein, bag-of-words over dense
SIFT features has been used [12].
It has also been shown multiple times that exploiting
depth and motion cues further improves the detection
quality [5, 2, 11], but so far usually at the cost and not
the benefit of speed.

Better classifier For a given set of features, the choice
of classifier has a substantial impact on the resulting
speed and quality, often requiring a trade-off between
these two. Non-linear classifiers (e.g. RBF SVMs)
provide the best quality, but suffer from low speed.
As a result, linear classifiers such as Adaboost, linear
SVMs, or Random/Hough Forests are more commonly
used. Recent work on the linear approximation of non-
linear kernels seems a promising direction [16].

Better prior knowledge In general, image processing
greatly benefits from prior knowledge . For pedestrian
detection the presence of a single dominant ground

1

plane has often been used as prior knowledge to im-
prove both speed and quality [9, 14, 17, 3].

Cascades A frequently used method for speeding up clas-
sifiers is to split them up into a sequence of simpler
classifiers. By having the first stages prune most of the
false positives, the average computation time is signif-
icantly reduced [18, 20, 10].

Branch and bound Instead of accelerating the evaluation
of individual hypotheses, branch-and-bound strategies
attempt to reduce their number [12, 13]. By prioritiz-
ing the most promising options, and discarding non-
promising ones, the speed is increased without a sig-
nificant quality loss.

Coarse-to-fine search is another popular method to arrive at
fast object detection [15]. It can be considered a specific
case of cascades, where the first stages take decisions on
the basis of a coarser resolution. Coarse-to-fine approaches
trade-off quality for speed. If the coarse resolution were
good enough, then all computations could be done at this
level, otherwise we are guaranteed to incur a quality loss.

1.2. Contributions

Our main result is a novel object detector, which we here
demonstrate to provide high quality pedestrian detection at
135 fps. This detector is 20 times faster than previous re-
sults of equal quality [6, 8], and has only half as many false
positives on the INRIA dataset compared to previous results
obtained at equal speed [17]. This result is based on two
core contributions.

Object detection without image resizing Common de-
tection methods require resizing the input image and com-
puting features multiple times. Viola and Jones [18] showed
the benefits of “scaling the features not the images”, how-
ever such approach cannot be applied directly to HOG-
like feature because of blurring effects. To the best of our
knowledge, we present the first detector based on orienta-
tion gradients that requires no image resizing (see section
3). This can be seen as a “better classifier”.
This improvement provides a ∼ 3.5 times algorithmic
speed-up on the features computation stage. We show state-
of-the-art (monocular) detections running at 50 Hz on GPU;
this is 10 times faster than previous HOG+SVM GPU results
and two times better quality-wise (see section 6).

Object detection using stixels Depth information is
known to be a strong cue for detections. However depth
maps are too slow to compute. For the first time, we show
that a recently introduced fast depth information method
(“stixels world”, see figure 1) [3] can be used to acceler-
ate objects detection in practice (see section 5).

Using the stixel world (“better prior knowledge”), the de-
tection search space is reduced by a factor 44 (factor 5 with
respect to using ground plane constraints only), enabling a
significant speed-up in practice. We obtain (stereo-based)
detections at 135 Hz without quality loss, while running on
a single CPU+GPU desktop machine. The same algorithm
runs at 80 Hz on a high-end laptop (see section 6).

In the next section, we succinctly describe our baseline
detector and proceed to describe our contributions in sec-
tions 3 and 5. Section 6 discusses our experiments, and
spells out the effects on the speed and quality of pedestrian
detection that the different novelties bring. Section 7 con-
cludes the paper with some general considerations.

2. Baseline detector
Our baseline detector is ChnFtrs of Dollar et al. [7].

Based on the exhaustive evaluations presented in [8], this
detector yields state-of-the-art results, on par with the pop-
ular part-based detectors [10]. Since then, we are aware
of only two quality improvements over this baseline. The
release of LatSvmV4 [10] seems to present significant im-
provements over LatSvmV2. Also, Park et al. [14] pre-
sented a multi-scales detector that evaluates multiple detec-
tors (including part-based models) at multiple scales to im-
prove results. We are comfortable claiming that ChnFtrs
provides state-of-the-art results for single part templates
(significantly outperforming HOG+SVM [4]), and is compet-
itive with the initial versions of part-based detectors. Our
own detector, will improve on top of ChnFtrs.

The ChnFtrs detector is based on the idea of “Inte-
gral Channel Features”, which are simple rectangular fea-
tures that sum a filter response over a given image area.
For pedestrian detection it was shown that using 6 quan-
tized orientations, 1 gradient magnitude and 3 LUV color
channels was enough to obtain state-of-the-art results (see
figure 5, upper row). On top of these rectangular features
a set of level-two decision trees (three stump classifiers per
tree) are constructed and then linearly weighted to obtain a
strong classifier. The set of decision trees and their weights
is learned via discrete Adaboost.

Unless specified otherwise, we use the same setup as
used for the best results in the original paper [7]. The strong
classifier consists of 2000 weak classifiers, the features are
selected from a random pool of 30000 rectangles. The train-
ing starts with a set of 5000 random negative samples and
then bootstraps twice, each time adding 5000 additional
hard negative sample. The classifier is trained and evalu-
ated using the INRIA pedestrians dataset. For faster train-
ing and evaluation we also shrink the features by a factor 4
(after computing the feature responses, before creating the
integral image), as described in [7, addendum].

The results presented here correspond to a complete re-
implementation of the original method. Details of the fea-

ture computation and the bootstrapping procedure came out
to have a significant impact on the final results. An all too
naive implementation may lead up to about 10 % in perfor-
mance loss when compared to the reported results.

We produced two implementations of the ChnFtrs de-
tector, a CPU version and a compatible GPU version. Eval-
uated over 640 × 480 pixels images (evaluating all shrunk
pixels, all 55 scales, and without using a cascade), the CPU
version runs at about 0.08 Hz when running on an 8 cores
machine Intel Core i7 870; the GPU version runs roughly
15 times faster, at 1.38 Hz on an Nvidia GeForce GTX 470.
At test time the GPU code spends roughly half of the time
resizing the images and computing the integral channels,
and half of the time computing the feature responses and
detection scores.

Another relevant feature of this detector is that the train-
ing is fairly fast. In our implementation the full training
from raw training dataset to final classifier (including the
bootstrapping stages) takes about three hours, on a single
CPU + GPU machine. Importantly, the training time and
memory consumption is stable even if the learned model
has larger dimensions; this is a enabler for the approach de-
scribed in section 3.

Comparison with HOG+SVM At a first glance it may be
surprising to see that such a simple classifier may be able to
compete with sophisticated approaches such as HOG part-
based models [10]. A key difference is the use of learned
features versus hand designed features. Whereas Dalal and
Triggs [4] chose to place the HOG cells uniformly, the
ChnFtrs detector instead learns where to place the fea-
tures so as to maximize its discriminating power.

3. Improving multi-scale handling
Ideally, a class-specific object detector yields the cor-

rect number of object instances, as well as their positions
and scales. A naive approach would create a classifier for
each position and scale, and make them compete against
each other. The strongest responses would then be selected.
Since responses overlap, some non-maximum suppression
should determine the number of instances. This is an ab-
stract description of the most commonly used object detec-
tor architecture (sliding-windows type).

Due to the pixel discretization, the object appearance at
different scales changes by more than just scaling. In small
scales objects appear “blurry”, while bigger scales provide
more detailed images. Assuming that object appearance
is invariant to translations in the image, to implement the
naive approach we should train as many models as there are
scales, see figure 2a. The number of scales N is usually in
the order of ∼ 50 scales.

Training 50 models seems like a daunting task. The
traditional approach for object detection at multiple scales

(used by [7, 10]), is to train a single model for one canonical
scale, and then rescale the image N times, see figure 2b. A
detection with the canonical model scale on a resized image
becomes equivalent to a detection on a different scale.

This traditional approach has been shown to be effec-
tive, but nonetheless it poses two problems. First, training a
canonical scale is delicate, as one needs to find the optimal
size and learn a model that will trade-off between the rich
high resolution scales and the blurry low resolution scales.
Secondly, at run-time one needs to resize the input image
50 times, and recompute the image features 50 times too.
In the rest of the section we will explain how to sidestep
these issues, without having to naively train N models.

3.1. Approximating nearby scales

Recently, Dollar et al. [6] proposed a new approach for
fast pedestrian detections, named FPDW. Instead of rescal-
ing the input image N times, they propose to rescale it only
N/K times, see figure 2c. Each rescaled image is used to
compute the image features, and these image features are
then in turn used to approximate the feature response in the
remaining N − N/K scales. By reducing the number of im-
age resizing and feature computations by a factorK (∼ 10),
the total detection time is significantly reduced.

The core insight of the FPDW approach is that the feature
responses of nearby scales can be approximated accurately
enough (up to half an octave). This empirical approxima-
tion can be described as follows (see [6] for details),

r(s) =

{
au · sbu if s > 1

ad · sbd otherwise
(1)

where s is the scaling factor (the new height of the detec-
tion window is equal to the old height times s), r(s) is the
ratio between a feature response at scale 1 versus scale s,
and au, bu, ad, bd are parameters empirically estimated for
the up-scaling and down-scaling case.

In our implementation we use au = 1, bu = 0, ad =
0.89, bd = 1.586, for the orientation channels, and au =
ad = 1, bu = bd = 2 for the LUV color channels; following
the empirical evaluation from [6].

3.2. Object detection without image resizing

The core idea of our paper it to move the resizing of the
image from test time to training time. To do so we will
use the insight of the FPDW detector and reverse it. Since
we can approximate the feature responses across scales, we
can decide how to adjust a given stump classifier to classify
correctly, as if the feature response had been computed at a
different scale.

The strong classifier is built from a set of decision trees,
with each decision tree containing three stump classifiers.
Each stump classifier is defined by a channel index, a rect-
angle over such a channel, and a decision threshold τ . When

N models, 1 image scale

(a) Naive approach

1 model, N image scales

(b) Traditional approach

1 model, N/K image scales

(c) FPDW approach

N/K models, 1 image scale

(d) Our approach

Figure 2: Different approaches to detecting pedestrians at multiple scales.

rescaling a stump by a relative scale factor s, we keep the
channel index constant, scale the rectangle by s and update
the threshold as τ ′ = τ · r(s).

We can now take a canonical classifier, and convert it
intoK classifiers for slightly different scales. Based on this,
we then proceed to train N/K (∼ 5) classifiers, one for each
octave (scale 0.5, 1, 2, etc.), see figures 2d and 5. Given that
training our baseline detector takes three hours beginning to
end in a single desktop computer, we can easily train our
five classifiers in a few hours.

At test time we use the described approximation to trans-
form our N/K classifiers into N classifiers (one per scale),
we compute the integral channel features on the original in-
put image, and then compute the response for each scale
using the N classifiers. The proposed approach effectively
enables to use the naive approach initially described (fig-
ure 2a). We name our “no image rescaling approach” the
VeryFast detector.

Algorithmic speed-up Being able to skip the effort of
computing multiple times the features, is clearly interesting
speed-wise. Assuming half of the time is spent computing
features for 50 scales and half of the time evaluating clas-
sifier responses, computing features only once would pro-
vide at best a speed-up of 1.9 times. Compared to FPDW,
assuming canonical scales 0.5, 1, 2 and 4; avoiding image
resizing reduces by a factor 3.75 the features computation
time. Then using VeryFast instead of FPDW, provides
theoretical 1.57× speed-up.

Measured speed-up In our GPU code the VeryFast
method is twice as fast as using the ChnFtrs detector
(2.68 Hz versus 1.38 Hz), while at the same time showing
a slight quality improvement (results presented in section
6). As expected, our VeryFast detector is also faster than
FPDW (2.68 Hz versus 1.55 Hz).

After modifying the handling of scales, the GPU code
now spends only 5% of the time computing features and
the remaining 95% is solely dedicated to computing the
features responses at different scales and positions. Even
more, now the code does not need anymore to alternate be-

tween computing detection scores and computing the fea-
tures; having a more streamlined execution path has signif-
icant impact in practice. This creates ideal conditions to
further speed-up our detector, as described in section 4.

3.3. Training the multi-scale classifier

To train the N/K classifiers we rescale the positive train-
ing images to fit the desired object size. All large pedes-
trians can be converted into small training examples, how-
ever when rescaling small examples into large sizes blurring
artefacts appear. The INRIA Persons dataset contains only
few examples (< 600) of pedestrians taller than 256 pixels,
so training the larger scales using only appropriate example
sizes risks leading to poor classifiers for these larger scales.

In the experiments presented here we rescaled all exam-
ples to all scales, without taking any measure to lessen the
negative effect of blurred examples. We acknowledge that a
better handling of scales during training will certainly lead
to a further improved quality. However we focus on speed
more than quality.

Another issue to handle during training is calibrating the
different detectors amongst themselves. Here, again, we
take a simplistic approach that leaves room for improve-
ment. We simply normalize the maximum possible score of
all detectors to 1.

4. Soft cascade design
Up to now we have discussed speed(-up) results when

using all of the 2000 stages of our base Adaboost classifier.
Dollar et al. suggested to use a soft-cascade to accelerate
the detections. The soft-cascade aborts the evaluation of
non-promising detections if the score of a given stage drops
below a learned threshold. The suggested method [19] sets
such stage threshold at the minimal score of all accepted
detections on a training or validation set.

In our experiments building such cascade over the train-
ing set leads to over-fitting of the thresholds and poor detec-
tions at test time. Instead we adjusted quality results with-
out using soft-cascade, and then tuned the soft-cascade to
keep the exact same quality results, but provide the desired
speed-up. In practice, we use the INRIA test set as a val-

idation set to adjust the soft-cascade that will be used to
accelerate the results on the Bahnhof dataset (see section
6).

After using the INRIA test set, adding a small offset
(10% of the lowest threshold) allowed to make the cas-
cade run as desired (higher speed, same quality). In the
VeryFast method, each model has its own specific soft-
cascade thresholds.

Algorithmic speed-up The speed-up of a soft-cascade is
content dependent and hard to predict, however a ten times
speed-up is expected. The soft-cascade should equally ben-
efit the detection scores stage of ChnFtrs, FPDW, and
VeryFast. Since the latter spends a larger portion of
the time computing score (and a lower portion computing
features), we expect it to benefit the most from the soft-
cascade.

Measured speed-up When using the cascade our
VeryFast implementation has a 20× speed gain, reach-
ing 50 Hz (see section 6 for speed evaluation details). In
comparison ChnFtrs and FPDW barelly reach a 5× speed
gain (∼ 10 Hz). This is mainly due to the need to alternate
between features computation and detection scores which
significantly hinders the GPU speed. Even if this was not
a factor, VeryFast would still be faster, since it requires
less computation by design (as seen in section 3).

5. Exploiting geometry
Previous work has shown that using scene geometry as

prior for object detection can improve both the quality (by
re-weighting the detection scores) [9, 14] and speed (by re-
ducing the detections search space) [17, 3].

Common approaches based on processing dense stereo
depth maps are a no-go, since producing depth maps at
100 Hz is a challenge in itself. Instead we follow the
approach of Benenson et al. [3], where objects above
the ground are modelled using the so-called “stixel world
model” (stixel ≈ sticks above the ground in the image) [1].
For each column in the image, the bottom pixel, top pixel
and distance to the (unclassified) object are estimated (see
figure 1). The key feature of this approach is that the stixel
world model can be estimated directly from the stereo im-
ages quickly, without having to compute the full depth map.

In our implementation we are able to estimate the ground
plane and the stixels at about 135 Hz, using only a CPU, 80
disparities, and a fixed stixel height of 1.75 m.

Although Benenson et al. [3] presented the idea of cou-
pling a detector with stixels, they did not realize such cou-
pling. Showing the actual speed impact of tightly coupling
stixels estimation and objects detection is a contribution of
this paper.

In section 6.2 we compare the unconstrained detections
using our detector, those constrained by a ground plane esti-
mated for each stereo-frame, and those using stixels to con-
strain the detections.

When using a ground plane estimate, the detections are
required to touch the ground plane with their bottom within
a margin (e.g. ±30 pixels). When using stixels, they are
required to fit the bottom of the stixel crossing the detec-
tion centre (up to the same margin as in the ground plane
case). We also limit the scales of detection to a small range
around the scale indicated by the central stixel distance (e.g.
±5 scales, when scale step is 1.05).

Algorithmic speed-up When processing a
640 × 480 pixels image over 55 scales, using stix-
els with ±30 pixels and ±5 scales provides a 44×
reduction in search space (since we only consider
640 × 60 pixels · 10 scales). In comparison using ground
plane constraints only provides a 8× reduction in search
space (since we only consider 640 × 60 pixels · 55 scales).
We show in section 6.2 that these parameters values provide
no relevant degradation in the detection quality.

Measured speed-up Unconstrained detections run at
50 Hz (see section 4), however we may still want faster de-
tections when additional computations are done in the real-
time system. When using the ground plane we reach 100 Hz
(ground plane computation itself runs at 300 Hz on CPU).
When using stixels, the detections run at 145 Hz on GPU,
but the stixel estimation itself runs at 135 Hz on CPU, mak-
ing detections CPU bound at 135 fps.

For both ground plane and stixel constraints the speed-
ups obtained (see table 1) are lower than the candidate win-
dow search space reduction because the discarded areas also
are those where soft-cascade (section 4) is most effective.

The details of the speed evaluation and the detection
quality are presented in section 6.

6. Pedestrian detection at 100 fps
In the past sections we have presented the evolution from

a baseline CPU detector running at 0.08 Hz up to GPU de-
tections at 135 Hz. We resume this evolution in the table
1.

Speed-wise our monocular results at 50 Hz are more than
7 times faster than the reported 6.5 Hz on CPU from Dol-
lar et al. [8]. Also our result is 10 times faster than the
cudaHOG results reported from the GPU implementation
in [17], and at the same time the quality is twice as good
than cudaHOG (see section 6.1).

Speed measurement We measure the speed taken by the
CPU+GPU starting when the rectified stereo images are

Detector aspect Relative Absolute
speed speed

Baseline detector (§2) 1× 1.38 Hz
+Single scale detector (§3) 2× 2.68 Hz
+Soft-cascade (§4) 20× 50 Hz
+Estimated ground plane (§5) 2× 100 Hz
+Estimated stixels (§5) 1.35× 135 Hz
Our monocular detector - 50 Hz
Our stereo (stixels) detector - 135 Hz

Table 1: Relative speed-up of each aspect of the proposed
detector, with respect to the baseline detector.

available both to the CPU and the GPU. The measured time,
does include all CPU computations, GPU computations and
the time to download the GPU results and run the non-
maximum suppression on CPU. The ground plane and stix-
els are estimated at frame t−1 and fed to the GPU computa-
tions at frame t. All speed results are given when computing
over the Bahnhof images (640× 480 pixels) over 55 scales
(unless otherwise specified), averaged over the 1000 frames
of the sequence.

As previously indicated our desktop computer is
equipped with an Intel Core i7 870 and an Nvidia GeForce
GTX 470. Our fastest result VeryFast+stixels is
CPU bound (GPU runs at 145 Hz, CPU at 135 Hz), how-
ever the current CPU stixels code is sub-optimal and we be-
lieve it should be amenable for further speed-up (to match
the GPU speed).

When running on a high end laptop (Intel Core
i7-2630QM @ 2.00GHz, Nvidia GeForce GTX
560M), we reach 20 Hz for VeryFast, 38 Hz
for VeryFast+ground plane, and 80 Hz for
VeryFast+stixels.

6.1. INRIA Persons dataset results

We use the INRIA dataset to train our detector and to
evaluate its quality. Although this dataset is rather small,
the diversity of its content helps to highlight the differences
in performance of various methods. As a matter of fact,
the relative ordering of methods seems roughly preserved
across different pedestrian datasets [8].

In figure 3a we present the results of the different detec-
tor variants discussed in section 3. We also evaluate using
the N/K detectors, while still rescaling the input image to
compute the feature responses at different scales (i.e. we
do not use the FPDW approximation), this variant is named
MultipleScales detector.

Figure 3b compares our detector with other state-of-the-
art methods. Our detector is competitive in terms of the de-
tection quality with respect to ChnFtrs and provides sig-
nificant improvement over HOG+SVM.

10
−2

10
−1

10
0

10
1

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7
0.8
0.9

1

false positives per image

m
is

s
 r

a
te

HOG (23.1%)

Ours−FPDW (12.6%)

FPDW (9.3%)

ChnFtrs (8.7%)

Ours−ChnFtrs (8.7%)

Ours−MultipleScales (6.8%)

Ours−VeryFast (6.8%)

(a) Quality of our detector variants (and reference detectors)

10−2 10−1 100 101

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7
0.8
0.9
1

false positives per image

m
is
s
ra
te

VJ (47.5%)
HOG (23.1%)
LatSvm−V2 (9.3%)
FPDW (9.3%)
ChnFtrs (8.7%)

(6.8%)Ours−VeryFast

(b) Comparison with other methods

Figure 3: Results on the INRIA persons dataset.

6.2. Bahnhof sequence results

The Bahnhof sequence presents a challenging stereo se-
quence, acquired from a stroller moving along a crowded
side-walk. This sequence allows us to evaluate the bene-
fits of using stereo information and its impact on detection
quality. We use the PASCAL VOC evaluation criterion.

The evaluation from Dollar et al. [8], showed that on
this sequence the results between different methods is sig-
nificantly reduced (due to the low intra-variance of the
dataset). On this sequence we expect ChnFtrs to be only
marginally better than HOG+SVM from Dalal and Triggs [4].

In figure 4 we present the results obtained from the meth-
ods described in section 5. We observe that the quality
of our detector stays roughly constant when using ground
plane and stixels, despite the 2.7× speed-up and reaching
135 fps. Equally important, we show that our VeryFast

Figure 4: Results on the Bahnhof stereo sequence.

detector is above the HOG+SVM, confirming the expected
quality gain.

In [3] the authors presented higher quality detections
when using stixels than when using ground plane. We do
not observe this in figure 4 (ground plane and stixels have
overlapping quality). This can be explained by a few fac-
tors. First, our detector makes different kind of errors than
HOG+SVM, which changes the stixels related gain. Second,
we use the stixels to limit the scales search (to gain more
speed), while [3] did not consider this in their black box.
Thirdly and more importantly, to reach our desired speed
we use the stixels from t − 1 to guide the detections are
frame t, this was a slight negative impact on quality. All
factors together, using stixels provides a pure speed gain,
with no noticeable quality loss.

7. Conclusion

We presented a novel pedestrian detector running at 135
fps in one CPU+GPU enabled desktop computer. The core
novelties of our approach are reverting the FPDW detector of
Dollar et al. [6] in order to avoid resizing the input image at
multiple scales and using a recent method to quickly access
to geometric information from stereo [3].

Our approach tallies with the Viola and Jones idea of
“scale the features not the images” [18], applied to HOG-
like features.

Given the high parallelism of our solution, it will directly
benefit from future hardware improvements. We wish to im-
prove the quality of the classifier training (see section 3.3),
and extend the current system to the multi-class/multi-view
detection of cars, bikes and other mobile objects. We are
also interested in exploring a monocular equivalent of the
current stereo stixels estimation.

Acknowledgement Work partly supported by the Toyota
Motor Corporation, the EU project EUROPA (FP7-231888)
and the ERC grant COGNIMUND.

References
[1] H. Badino, U. Franke, and D. Pfeiffer. The stixel world -

a compact medium level representation of the 3d-world. In
DAGM, 2009. 5

[2] M. Bajracharya, B. Moghaddam, A. Howard, S. Brennan,
and L. H. Matthies. A fast stereo-based system for detect-
ing and tracking pedestrians from a moving vehicle. IJRR,
28:1466–1485, 2009. 1

[3] R. Benenson, R. Timofte, and L. Van Gool. Stixels estima-
tion without depthmap computation. In ICCV, CVVT work-
shop, 2011. 2, 5, 7

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, CA, USA, 2005. 1, 2, 3, 6

[5] N. Dalal, B. Triggs, and C. Schmid. Human detection using
oriented histograms of flow and appearance. In ECCV, 2006.
1

[6] P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian
detector in the west. In BMVC, 2010. 2, 3, 7

[7] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel
features. In BMVC, 2009. 2, 3

[8] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian
detection: An evaluation of the state of the art. TPAMI, 2011.
2, 5, 6

[9] A. Ess. Visual Urban Scene Analysis by Moving Platforms.
PhD thesis, ETH Zurich, October 2009. 2, 5

[10] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade
object detection with deformable part models. In CVPR,
2010. 2, 3

[11] C. Keller, D. Fernandez, and D. Gavrila. Dense stereo-based
roi generation for pedestrian detection. In DAGM, 2009. 1

[12] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond
sliding windows: object localization by efficient subwindow
search. In CVPR, 2008. 1, 2

[13] A. Lehmann, P. Gehler, , and L. Van Gool. Branch&rank:
Non-linear object detection. In BMVC, 2011. 2

[14] D. Park, D. Ramanan, and C. Fowlkes. Multiresolution mod-
els for object detection. In ECCV, 2010. 2, 5

[15] M. Pedersoli, A. Vedaldi, and J. Gonzalez. A coarse-to-fine
approach for fast deformable object detection. In CVPR,
2011. 2

[16] V. Sreekanth, A. Vedaldi, C. V. Jawahar, and A. Zisserman.
Generalized RBF feature maps for efficient detection. In
BMVC, 2010. 1

[17] P. Sudowe and B. Leibe. Efficient use of geometric con-
straints for sliding-window object detection in video. In
ICVS, 2011. 2, 5

[18] P. Viola and M. Jones. Robust real-time face detection. In
IJCV, 2004. 1, 2, 7

[19] C. Zhang and P. Viola. Multiple-instance pruning for learn-
ing efficient cascade detectors. In NIPS, 2007. 4

[20] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan. Fast human
detection using a cascade of histograms of oriented gradi-
ents. In CVPR, 2006. 2

Figure 5: Visualization of the trained multi-scales model. First row shows an example of the different features used, one
per column. Each row below shows the trained model, one scale per row. Each model column is individually normalized to
maximize contrast (relative influence not visible). Red and blue indicate positive and negative contributions to the detection
score, respectively. Scale one has size 64× 128 pixels.

