
Boost.Atomic
Helge Bahmann
Copyright © 2011 Helge Bahmann
Copyright © 2012 Tim Blechmann

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Introduction .. 2

Presenting Boost.Atomic ... 2
Purpose .. 2

Thread coordination using Boost.Atomic .. 3
Enforcing happens-before through mutual exclusion ... 3
happens-before through release and acquire .. 4
Fences ... 4
happens-before through release and consume .. 5
Sequential consistency .. 6

Programming interfaces ... 7
Memory order ... 7
Atomic objects .. 7
Fences ... 9
Feature testing macros .. 9

Usage examples ... 11
Reference counting ... 11
Spinlock ... 11
Singleton with double-checked locking pattern ... 12
Wait-free ring buffer ... 13
Wait-free multi-producer queue ... 15

Limitations .. 17
Porting ... 18

Unit tests .. 18
Tested compilers .. 18

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Introduction

Presenting Boost.Atomic
Boost.Atomic is a library that provides atomic data types and operations on these data types, as well as memory ordering constraints
required for coordinating multiple threads through atomic variables. It implements the interface as defined by the C++11 standard,
but makes this feature available for platforms lacking system/compiler support for this particular C++11 feature.

Users of this library should already be familiar with concurrency in general, as well as elementary concepts such as "mutual exclusion".

The implementation makes use of processor-specific instructions where possible (via inline assembler, platform libraries or compiler
intrinsics), and falls back to "emulating" atomic operations through locking.

Purpose
Operations on "ordinary" variables are not guaranteed to be atomic. This means that with int n=0 initially, two threads concurrently
executing

void function()
{
n ++;

}

might result in n==1 instead of 2: Each thread will read the old value into a processor register, increment it and write the result back.
Both threads may therefore write 1, unaware that the other thread is doing likewise.

Declaring atomic<int> n=0 instead, the same operation on this variable will always result in n==2 as each operation on this
variable is atomic: This means that each operation behaves as if it were strictly sequentialized with respect to the other.

Atomic variables are useful for two purposes:

• as a means for coordinating multiple threads via custom coordination protocols

• as faster alternatives to "locked" access to simple variables

Take a look at the examples section for common patterns.

2

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread coordination using Boost.Atomic
The most common use of Boost.Atomic is to realize custom thread synchronization protocols: The goal is to coordinate accesses of
threads to shared variables in order to avoid "conflicts". The programmer must be aware of the fact that compilers, CPUs and the
cache hierarchies may generally reorder memory references at will. As a consequence a program such as:

int x = 0, int y = 0;

thread1:
x = 1;
y = 1;

thread2
if (y == 1) {
assert(x == 1);

}

might indeed fail as there is no guarantee that the read of x by thread2 "sees" the write by thread1.

Boost.Atomic uses a synchronisation concept based on the happens-before relation to describe the guarantees under which situations
such as the above one cannot occur.

The remainder of this section will discuss happens-before in a "hands-on" way instead of giving a fully formalized definition. The
reader is encouraged to additionally have a look at the discussion of the correctness of a few of the examples afterwards.

Enforcing happens-before through mutual exclusion
As an introductory example to understand how arguing using happens-before works, consider two threads synchronizing using a
common mutex:

mutex m;

thread1:
m.lock();
... /* A */
m.unlock();

thread2:
m.lock();
... /* B */
m.unlock();

The "lockset-based intuition" would be to argue that A and B cannot be executed concurrently as the code paths require a common
lock to be held.

One can however also arrive at the same conclusion using happens-before: Either thread1 or thread2 will succeed first at m.lock().
If this is be thread1, then as a consequence, thread2 cannot succeed at m.lock() before thread1 has executed m.unlock(), con-
sequently A happens-before B in this case. By symmetry, if thread2 succeeds at m.unlock() first, we can conclude B happens-
before A.

Since this already exhausts all options, we can conclude that either A happens-before B or B happens-before A must always hold.
Obviously cannot state which of the two relationships holds, but either one is sufficient to conclude that A and B cannot conflict.

Compare the spinlock implementation to see how the mutual exclusion concept can be mapped to Boost.Atomic.

3

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

happens-before through release and acquire

The most basic pattern for coordinating threads via Boost.Atomic uses release and acquire on an atomic variable for coordination:
If ...

• ... thread1 performs an operation A,

• ... thread1 subsequently writes (or atomically modifies) an atomic variable with release semantic,

• ... thread2 reads (or atomically reads-and-modifies) the value this value from the same atomic variable with acquire semantic
and

• ... thread2 subsequently performs an operation B,

... then A happens-before B.

Consider the following example

atomic<int> a(0);

thread1:
... /* A */
a.fetch_add(1, memory_order_release);

thread2:
int tmp = a.load(memory_order_acquire);
if (tmp == 1) {
... /* B */

} else {
... /* C */

}

In this example, two avenues for execution are possible:

• The store operation by thread1 precedes the load by thread2: In this case thread2 will execute B and "A happens-before B"
holds as all of the criteria above are satisfied.

• The load operation by thread2 precedes the store by thread1: In this case, thread2 will execute C, but "A happens-before C"
does not hold: thread2 does not read the value written by thread1 through a.

Therefore, A and B cannot conflict, but A and C can conflict.

Fences
Ordering constraints are generally specified together with an access to an atomic variable. It is however also possible to issue "fence"
operations in isolation, in this case the fence operates in conjunction with preceding (for acquire, consume or seq_cst operations)
or succeeding (for release or seq_cst) atomic operations.

The example from the previous section could also be written in the following way:

4

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

atomic<int> a(0);

thread1:
... /* A */
atomic_thread_fence(memory_order_release);
a.fetch_add(1, memory_order_relaxed);

thread2:
int tmp = a.load(memory_order_relaxed);
if (tmp == 1) {
atomic_thread_fence(memory_order_acquire);
... /* B */

} else {
... /* C */

}

This provides the same ordering guarantees as previously, but elides a (possibly expensive) memory ordering operation in the case
C is executed.

happens-before through release and consume

The second pattern for coordinating threads via Boost.Atomic uses release and consume on an atomic variable for coordination:
If ...

• ... thread1 performs an operation A,

• ... thread1 subsequently writes (or atomically modifies) an atomic variable with release semantic,

• ... thread2 reads (or atomically reads-and-modifies) the value this value from the same atomic variable with consume semantic
and

• ... thread2 subsequently performs an operation B that is computationally dependent on the value of the atomic variable,

... then A happens-before B.

Consider the following example

atomic<int> a(0);
complex_data_structure data[2];

thread1:
data[1] = ...; /* A */
a.store(1, memory_order_release);

thread2:
int index = a.load(memory_order_consume);
complex_data_structure tmp = data[index]; /* B */

In this example, two avenues for execution are possible:

• The store operation by thread1 precedes the load by thread2: In this case thread2 will read data[1] and "A happens-before
B" holds as all of the criteria above are satisfied.

• The load operation by thread2 precedes the store by thread1: In this case thread2 will read data[0] and "A happens-before
B" does not hold: thread2 does not read the value written by thread1 through a.

Here, the happens-before relationship helps ensure that any accesses (presumable writes) to data[1] by thread1 happen before before
the accesses (presumably reads) to data[1] by thread2: Lacking this relationship, thread2 might see stale/inconsistent data.

5

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note that in this example, the fact that operation B is computationally dependent on the atomic variable, therefore the following
program would be erroneous:

atomic<int> a(0);
complex_data_structure data[2];

thread1:
data[1] = ...; /* A */
a.store(1, memory_order_release);

thread2:
int index = a.load(memory_order_consume);
complex_data_structure tmp;
if (index == 0)
tmp = data[0];

else
tmp = data[1];

consume is most commonly (and most safely! see limitations) used with pointers, compare for example the singleton with double-
checked locking.

Sequential consistency
The third pattern for coordinating threads via Boost.Atomic uses seq_cst for coordination: If ...

• ... thread1 performs an operation A,

• ... thread1 subsequently performs any operation with seq_cst,

• ... thread1 subsequently performs an operation B,

• ... thread2 performs an operation C,

• ... thread2 subsequently performs any operation with seq_cst,

• ... thread2 subsequently performs an operation D,

then either "A happens-before D" or "C happens-before B" holds.

In this case it does not matter whether thread1 and thread2 operate on the same or different atomic variables, or use a "stand-alone"
atomic_thread_fence operation.

6

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Programming interfaces

Memory order
The enumeration boost::memory_order defines the following values to represent memory ordering constraints:

DescriptionConstant

No ordering constraint. Informally speaking, following opera-
tions may be reordered before, preceding operations may be
reordered after the atomic operation. This constraint is suitable
only when either a) further operations do not depend on the
outcome of the atomic operation or b) ordering is enforced
through stand-alone atomic_thread_fence operations

memory_order_relaxed

Perform release operation. Informally speaking, prevents all
preceding memory operations to be reordered past this point.

memory_order_release

Perform acquire operation. Informally speaking, prevents
succeeding memory operations to be reordered before this point.

memory_order_acquire

Perform consume operation. More restrictive (and usually more
efficient) than memory_order_acquire as it only affects
succeeding operations that are computationally-dependent on
the value retrieved from an atomic variable.

memory_order_consume

Perform both release and acquire operationmemory_order_acq_rel

Enforce sequential consistency. Implies memory_or-

der_acq_rel, but additional enforces total order for all opera-
tions such qualified.

memory_order_seq_cst

See section happens-before for explanation of the various ordering constraints.

Atomic objects
boost::atomic<T> provides methods for atomically accessing variables of a suitable type T. The type is suitable if it satisfies one
of the following constraints:

• it is an integer, boolean, enum or pointer type

• it is any other data-type (class or struct) that has a non-throwing default constructor, that is copyable via memcpy and comparable
via memcmp.

Note that all classes having a trivial default constructor, no destructor and no virtual methods satisfy the second condition according
to C++98. On a given platform, other data-types may also satisfy this constraint, however you should exercise caution as the behaviour
becomes implementation-defined. Also be warned that structures with "padding" between data members may compare non-equal
via memcmp even though all members are equal.

boost::atomic<T> template class

All atomic objects supports the following operations:

7

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionSyntax

Initialize to an unspecified valueatomic()

Initialize to initial_valueatomic(T initial_value)

Checks if the atomic object is lock-freebool is_lock_free()

Return current valueT load(memory_order order)

Write new value to atomic variablevoid store(T value, memory_order order)

Exchange current value with new_value, returning current
value

T exchange(T new_value, memory_order order)

Compare current value with expected, change it to desired
if matches. Returns true if an exchange has been performed,
and always writes the previous value back in expected. May
fail spuriously, so must generally be retried in a loop.

bool compare_exchange_weak(T & expected, T de-

sired, memory_order order)

Compare current value with expected, change it to desired
if matches. Returns true if an exchange has been performed,
and always writes the previous value back in expected. May
fail spuriously, so must generally be retried in a loop.

bool compare_exchange_weak(T & expected, T de-

sired, memory_order success_order, memory_order

failure_order)

Compare current value with expected, change it to desired
if matches. Returns true if an exchange has been performed,
and always writes the previous value back in expected.

bool compare_exchange_strong(T & expected, T

desired, memory_order order)

Compare current value with expected, change it to desired
if matches. Returns true if an exchange has been performed,
and always writes the previous value back in expected.

bool compare_exchange_strong(T & expected, T

desired, memory_order success_order, memory_or-

der failure_order))

order always has memory_order_seq_cst as default parameter.

The compare_exchange_weak/compare_exchange_strong variants taking four parameters differ from the three parameter
variants in that they allow a different memory ordering constraint to be specified in case the operation fails.

In addition to these explicit operations, each atomic<T> object also supports implicit store and load through the use of "assignment"
and "conversion to T" operators. Avoid using these operators, as they do not allow explicit specification of a memory ordering con-
straint.

boost::atomic<integral> template class

In addition to the operations listed in the previous section, boost::atomic<I> for integral types I supports the following operations:

DescriptionSyntax

Add v to variable, returning previous valueT fetch_add(T v, memory_order order)

Subtract v from variable, returning previous valueT fetch_sub(T v, memory_order order)

Apply bit-wise "and" with v to variable, returning previous valueT fetch_and(T v, memory_order order)

Apply bit-wise "or" with v to variable, returning previous valueT fetch_or(T v, memory_order order)

Apply bit-wise "xor" with v to variable, returning previous valueT fetch_xor(T v, memory_order order)

8

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

order always has memory_order_seq_cst as default parameter.

In addition to these explicit operations, each boost::atomic<I> object also supports implicit pre-/post- increment/decrement, as
well as the operators +=, -=, &=, |= and ^=. Avoid using these operators, as they do not allow explicit specification of a memory
ordering constraint.

boost::atomic<pointer> template class

In addition to the operations applicable to all atomic object, boost::atomic<P> for pointer types P (other than void pointers)
support the following operations:

DescriptionSyntax

Add v to variable, returning previous valueT fetch_add(ptrdiff_t v, memory_order order)

Subtract v from variable, returning previous valueT fetch_sub(ptrdiff_t v, memory_order order)

order always has memory_order_seq_cst as default parameter.

In addition to these explicit operations, each boost::atomic<P> object also supports implicit pre-/post- increment/decrement, as
well as the operators +=, -=. Avoid using these operators, as they do not allow explicit specification of a memory ordering constraint.

Fences

DescriptionSyntax

Issue fence for coordination with other threads.void atomic_thread_fence(memory_order order)

Issue fence for coordination with signal handler (only in same
thread).

void atomic_signal_fence(memory_order order)

Feature testing macros
Boost.Atomic defines a number of macros to allow compile-time detection whether an atomic data type is implemented using "true"
atomic operations, or whether an internal "lock" is used to provide atomicity. The following macros will be defined to 0 if operations
on the data type always require a lock, to 1 if operations on the data type may sometimes require a lock, and to 2 if they are always
lock-free:

9

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

Indicate whether atomic<char> (including signed/unsigned
variants) is lock-free

BOOST_ATOMIC_CHAR_LOCK_FREE

Indicate whether atomic<short> (including signed/unsigned
variants) is lock-free

BOOST_ATOMIC_SHORT_LOCK_FREE

Indicate whether atomic<int> (including signed/unsigned
variants) is lock-free

BOOST_ATOMIC_INT_LOCK_FREE

Indicate whether atomic<long> (including signed/unsigned
variants) is lock-free

BOOST_ATOMIC_LONG_LOCK_FREE

Indicate whether atomic<long long> (including signed/un-
signed variants) is lock-free

BOOST_ATOMIC_LLONG_LOCK_FREE

Indicate whether atomic<T *> is lock-freeBOOST_ATOMIC_ADDRESS_LOCK_FREE

10

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Usage examples

Reference counting
The purpose of a reference counter is to count the number of pointers to an object. The object can be destroyed as soon as the reference
counter reaches zero.

Implementation

#include <boost/intrusive_ptr.hpp>
#include <boost/atomic.hpp>

class X {
public:
typedef boost::intrusive_ptr<X> pointer;
X() : refcount_(0) {}

private:
mutable boost::atomic<int> refcount_;
friend void intrusive_ptr_add_ref(const X * x)
{
x->refcount_.fetch_add(1, boost::memory_order_relaxed);

}
friend void intrusive_ptr_release(const X * x)
{
if (x->refcount_.fetch_sub(1, boost::memory_order_release) == 1) {
boost::atomic_thread_fence(boost::memory_order_acquire);
delete x;

}
}

};

Usage

X::pointer x = new X;

Discussion

Increasing the reference counter can always be done with memory_order_relaxed: New references to an object can only be formed
from an existing reference, and passing an existing reference from one thread to another must already provide any required synchron-
ization.

It is important to enforce any possible access to the object in one thread (through an existing reference) to happen before deleting
the object in a different thread. This is achieved by a "release" operation after dropping a reference (any access to the object through
this reference must obviously happened before), and an "acquire" operation before deleting the object.

It would be possible to use memory_order_acq_rel for the fetch_sub operation, but this results in unneeded "acquire" operations
when the reference counter does not yet reach zero and may impose a performance penalty.

Spinlock
The purpose of a spin lock is to prevent multiple threads from concurrently accessing a shared data structure. In contrast to a mutex,
threads will busy-wait and waste CPU cycles instead of yielding the CPU to another thread. Do not use spinlocks unless you are
certain that you understand the consequences.

11

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Implementation

#include <boost/atomic.hpp>

class spinlock {
private:
typedef enum {Locked, Unlocked} LockState;
boost::atomic<LockState> state_;

public:
spinlock() : state_(Unlocked) {}

void lock()
{
while (state_.exchange(Locked, boost::memory_order_acquire) == Locked) {
/* busy-wait */

}
}
void unlock()
{
state_.store(Unlocked, boost::memory_order_release);

}
};

Usage

spinlock s;

s.lock();
// access data structure here
s.unlock();

Discussion

The purpose of the spinlock is to make sure that one access to the shared data structure always strictly "happens before" another.
The usage of acquire/release in lock/unlock is required and sufficient to guarantee this ordering.

It would be correct to write the "lock" operation in the following way:

lock()
{
while (state_.exchange(Locked, boost::memory_order_relaxed) == Locked) {
/* busy-wait */

}
atomic_thread_fence(boost::memory_order_acquire);

}

This "optimization" is however a) useless and b) may in fact hurt: a) Since the thread will be busily spinning on a blocked spinlock,
it does not matter if it will waste the CPU cycles with just "exchange" operations or with both useless "exchange" and "acquire"
operations. b) A tight "exchange" loop without any memory-synchronizing instruction introduced through an "acquire" operation
will on some systems monopolize the memory subsystem and degrade the performance of other system components.

Singleton with double-checked locking pattern
The purpose of the Singleton with double-checked locking pattern is to ensure that at most one instance of a particular object is created.
If one instance has been created already, access to the existing object should be as light-weight as possible.

12

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Implementation

#include <boost/atomic.hpp>
#include <boost/thread/mutex.hpp>

class X {
public:
static X * instance()
{
X * tmp = instance_.load(boost::memory_order_consume);
if (!tmp) {
boost::mutex::scoped_lock guard(instantiation_mutex);
tmp = instance_.load(boost::memory_order_consume);
if (!tmp) {

tmp = new X;
instance_.store(tmp, boost::memory_order_release);

}
}
return tmp;

}
private:
static boost::atomic<X *> instance_;
static boost::mutex instantiation_mutex;

};

boost::atomic<X *> X::instance_(0);

Usage

X * x = X::instance();
// dereference x

Discussion

The mutex makes sure that only one instance of the object is ever created. The instance method must make sure that any dereference
of the object strictly "happens after" creating the instance in another thread. The use of memory_order_release after creating and
initializing the object and memory_order_consume before dereferencing the object provides this guarantee.

It would be permissible to use memory_order_acquire instead of memory_order_consume, but this provides a stronger guarantee
than is required since only operations depending on the value of the pointer need to be ordered.

Wait-free ring buffer
A wait-free ring buffer provides a mechanism for relaying objects from one single "producer" thread to one single "consumer" thread
without any locks. The operations on this data structure are "wait-free" which means that each operation finishes within a constant
number of steps. This makes this data structure suitable for use in hard real-time systems or for communication with interrupt/signal
handlers.

13

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Implementation

#include <boost/atomic.hpp>

template<typename T, size_t Size>
class ringbuffer {
public:
ringbuffer() : head_(0), tail_(0) {}

bool push(const T & value)
{
size_t head = head_.load(boost::memory_order_relaxed);
size_t next_head = next(head);
if (next_head == tail_.load(boost::memory_order_acquire))
return false;

ring_[head] = value;
head_.store(next_head, boost::memory_order_release);
return true;

}
bool pop(T & value)
{
size_t tail = tail_.load(boost::memory_order_relaxed);
if (tail == head_.load(boost::memory_order_acquire))
return false;

value = ring_[tail];
tail_.store(next(tail), boost::memory_order_release);
return true;

}
private:
size_t next(size_t current)
{
return (current + 1) % Size;

}
T ring_[Size];
boost::atomic<size_t> head_, tail_;

};

Usage

ringbuffer<int, 32> r;

// try to insert an element
if (r.push(42)) { /* succeeded */ }
else { /* buffer full */ }

// try to retrieve an element
int value;
if (r.pop(value)) { /* succeeded */ }
else { /* buffer empty */ }

Discussion

The implementation makes sure that the ring indices do not "lap-around" each other to ensure that no elements are either lost or read
twice.

Furthermore it must guarantee that read-access to a particular object in pop "happens after" it has been written in push. This is
achieved by writing head_ with "release" and reading it with "acquire". Conversely the implementation also ensures that read access
to a particular ring element "happens before" before rewriting this element with a new value by accessing tail_ with appropriate
ordering constraints.

14

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Wait-free multi-producer queue
The purpose of the wait-free multi-producer queue is to allow an arbitrary number of producers to enqueue objects which are retrieved
and processed in FIFO order by a single consumer.

Implementation

template<typename T>
class waitfree_queue {
public:
struct node {
T data;
node * next;

};
void push(const T &data)
{
node * n = new node;
n->data = data;
node * stale_head = head_.load(boost::memory_order_relaxed);
do {
n->next = stale_head;

} while (!head_.compare_exchange_weak(stale_head, n, boost::memory_order_release));
}

node * pop_all(void)
{
T * last = pop_all_reverse(), * first = 0;
while(last) {
T * tmp = last;
last = last->next;
tmp->next = first;
first = tmp;

}
return first;

}

waitfree_queue() : head_(0) {}

// alternative interface if ordering is of no importance
node * pop_all_reverse(void)
{
return head_.exchange(0, boost::memory_order_consume);

}
private:
boost::atomic<node *> head_;

};

15

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Usage

waitfree_queue<int> q;

// insert elements
q.push(42);
q.push(2);

// pop elements
waitfree_queue<int>::node * x = q.pop_all()
while(x) {
X * tmp = x;
x = x->next;
// process tmp->data, probably delete it afterwards
delete tmp;

}

Discussion

The implementation guarantees that all objects enqueued are processed in the order they were enqueued by building a singly-linked
list of object in reverse processing order. The queue is atomically emptied by the consumer and brought into correct order.

It must be guaranteed that any access to an object to be enqueued by the producer "happens before" any access by the consumer.
This is assured by inserting objects into the list with release and dequeuing them with consume memory order. It is not necessary
to use acquire memory order in waitfree_queue::pop_all because all operations involved depend on the value of the atomic
pointer through dereference

16

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Limitations
While Boost.Atomic strives to implement the atomic operations from C++11 as faithfully as possible, there are a few limitations
that cannot be lifted without compiler support:

• Using non-POD-classes as template parameter to atomic<T> results in undefined behavior: This means that any class con-
taining a constructor, destructor, virtual methods or access control specifications is not a valid argument in C++98. C++11 relaxes
this slightly by allowing "trivial" classes containing only empty constructors. Advise: Use only POD types.

• C++98 compilers may transform computation- to control-dependency: Crucially, memory_order_consume only affects
computationally-dependent operations, but in general there is nothing preventing a compiler from transforming a computation
dependency into a control dependency. A C++11 compiler would be forbidden from such a transformation. Advise: Use
memory_order_consume only in conjunction with pointer values, as the compiler cannot speculate and transform these into
control dependencies.

• Fence operations enforce "too strong" compiler ordering: Semantically, memory_order_acquire/memory_order_consume
and memory_order_release need to restrain reordering of memory operations only in one direction. Since there is no way to
express this constraint to the compiler, these act as "full compiler barriers" in this implementation. In corner cases this may lead
to worse code than a C++11 compiler could generate.

• No interprocess fallback: using atomic<T> in shared memory only works correctly, if atomic<T>::is_lock_free == true

17

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Porting

Unit tests
Boost.Atomic provides a unit test suite to verify that the implementation behaves as expected:

• fallback_api.cpp verifies that the fallback-to-locking aspect of Boost.Atomic compiles and has correct value semantics.

• native_api.cpp verifies that all atomic operations have correct value semantics (e.g. "fetch_add" really adds the desired value,
returning the previous). It is a rough "smoke-test" to help weed out the most obvious mistakes (for example with overflow,
signed/unsigned extension, ...).

• lockfree.cpp verifies that the BOOST_ATOMIC_*_LOCKFREE macros are set properly according to the expectations for a
given platform, and that they match up with the is_lock_free member functions of the atomic object instances.

• atomicity.cpp lets two threads race against each other modifying a shared variable, verifying that the operations behave atomic
as appropriate. By nature, this test is necessarily stochastic, and the test self-calibrates to yield 99% confidence that a positive
result indicates absence of an error. This test is very useful on uni-processor systems with preemption already.

• ordering.cpp lets two threads race against each other accessing multiple shared variables, verifying that the operations exhibit
the expected ordering behavior. By nature, this test is necessarily stochastic, and the test attempts to self-calibrate to yield 99%
confidence that a positive result indicates absence of an error. This only works on true multi-processor (or multi-core) systems.
It does not yield any result on uni-processor systems or emulators (due to there being no observable reordering even the order=relaxed
case) and will report that fact.

Tested compilers
Boost.Atomic has been tested on and is known to work on the following compilers/platforms:

• gcc 4.x: i386, x86_64, ppc32, ppc64, armv5, armv6, alpha

• Visual Studio Express 2008/Windows XP, i386

If you have an unsupported platform, contact me and I will work to add support for it.

18

Boost.Atomic

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Atomic
	Table of Contents
	Introduction
	Presenting Boost.Atomic
	Purpose

	Thread coordination using Boost.Atomic
	Enforcing happens-before through mutual exclusion
	happens-before through release and acquire
	Fences
	happens-before through release and consume
	Sequential consistency

	Programming interfaces
	Memory order
	Atomic objects
	boost::atomic<T> template class
	boost::atomic<integral> template class
	boost::atomic<pointer> template class

	Fences
	Feature testing macros

	Usage examples
	Reference counting
	Implementation
	Usage
	Discussion

	Spinlock
	Implementation
	Usage
	Discussion

	Singleton with double-checked locking pattern
	Implementation
	Usage
	Discussion

	Wait-free ring buffer
	Implementation
	Usage
	Discussion

	Wait-free multi-producer queue
	Implementation
	Usage
	Discussion

	Limitations
	Porting
	Unit tests
	Tested compilers

