
Context
Oliver Kowalke

Copyright © 2009 Oliver Kowalke

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Overview .. 2
Requirements .. 3
Context .. 4

Struct fcontext_t and related functions ... 7
Stack allocation ... 9
Performance .. 10
Rationale .. 11

Other APIs ... 11
x86 and floating-point env .. 12

Reference ... 13
Todo .. 14
Acknowledgments .. 15

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview
Boost.Context is a foundational library that provides a sort of cooperative multitasking on a single thread. By providing an abstraction
of the current execution state in the current thread, including the stack (with local variables) and stack pointer, all registers and CPU
flags, and the instruction pointer, a fcontext_t instance represents a specific point in the application's execution path. This is useful
for building higher-level abstractions, like coroutines, cooperative threads (userland threads) or an equivalent to C# keyword yield
in C++.

A fcontext_t provides the means to suspend the current execution path and to transfer execution control, thereby permitting another
fcontext_t to run on the current thread. This state full transfer mechanism enables a fcontext_t to suspend execution from within
nested functions and, later, to resume from where it was suspended. While the execution path represented by a fcontext_t only runs
on a single thread, it can be migrated to another thread at any given time.

A context switch between threads requires system calls (involving the OS kernel), which can cost more than thousand CPU cycles
on x86 CPUs. By contrast, transferring control among them requires only fewer than hundred CPU cycles because it does not involve
system calls as it is done within a single thread.

In order to use the classes and functions described here, you can either include the specific headers specified by the descriptions of
each class or function, or include the master library header:

#include <boost/context/all.hpp>

which includes all the other headers in turn.

All functions and classes are contained in the namespace boost::context.

2

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://msdn.microsoft.com/en-us/library/9k7k7cf0%28v=vs.80%29.aspx
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements
Boost.Context must be built for the particular compiler(s) and CPU architecture(s)s being targeted. Boost.Context includes assembly
code and, therefore, requires GNU AS for supported POSIX systems, MASM for Windows/x86 systems and ARMasm for Windows/arm
systems.

Note

MASM64 (ml64.exe) is a part of Microsoft's Windows Driver Kit.

Important

Please note that address-model=64 must be given to bjam command line on 64bit Windows for 64bit build;
otherwise 32bit code will be generated.

Important

For cross-compiling the lib you must specify certain additional properties at bjam command line: target-os, abi,
binary-format, architecture and address-model.

3

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Context
Each instance of fcontext_t represents a context (CPU registers and stack space). Together with its related functions jump_fcontext()
and make_fcontext() it provides a execution control transfer mechanism similar interface like ucontext_t. fcontext_t and its functions
are located in boost::context and the functions are declared as extern "C".

Warning

If fcontext_t is used in a multi threaded application, it can migrated between threads, but must not reference thread-
local storage.

Important

The low level API is the part to port to new platforms.

Note

If fiber-local storage is used on Windows, the user is responsible for calling ::FlsAlloc(), ::FlsFree().

Executing a context

A new context supposed to execute a context-function (returning void and accepting intptr_t as argument) will be created on top of
the stack (at 16 byte boundary) by function make_fcontext().

// context-function
void f(intptr);

// creates and manages a protected stack (with guard page)
ctx::guarded_stack_allocator alloc;
void * sp(alloc.allocate(ctx::minimum_stacksize()));
std::size_t size(ctx::guarded_stack_allocator::minimum_stacksize());

// context fc uses f() as context function
// fcontext_t is placed on top of context stack
// a pointer to fcontext_t is returned
fcontext_t * fc(make_fcontext(sp, size, f));

Calling jump_fcontext() invokes the context-function in a newly created context complete with registers, flags, stack and instruction
pointers. When control should be returned to the original calling context, call jump_fcontext(). The current context information (re-
gisters, flags, and stack and instruction pointers) is saved and the original context information is restored. Calling jump_fcontext()
again resumes execution in the second context after saving the new state of the original context.

4

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.kernel.org/doc/man-pages/online/pages/man2/getcontext.2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace ctx = boost::context;

ctx::fcontext_t fcm, * fc1, * fc2;

void f1(intptr_t)
{

std::cout << "f1: entered" << std::endl;
std::cout << "f1: call jump_fcontext(fc1, fc2, 0)" << std::endl;
ctx::jump_fcontext(fc1, fc2, 0);
std::cout << "f1: return" << std::endl;
ctx::jump_fcontext(fc1, & fcm, 0);

}

void f2(intptr_t)
{

std::cout << "f2: entered" << std::endl;
std::cout << "f2: call jump_fcontext(fc2, fc1, 0)" << std::endl;
ctx::jump_fcontext(fc2, fc1, 0);
BOOST_ASSERT(false && ! "f2: never returns");

}

int main(int argc, char * argv[])
{

ctx::guarded_stack_allocator alloc;
void * sp1(alloc.allocate(ctx::minimum_stacksize()));
std::size_t size(ctx::guarded_stack_allocator::minimum_stacksize());

fc1 = ctx::make_fcontext(sp1, size, f1);
fc2 = ctx::make_fcontext(sp2, size, f2);

std::cout << "main: call jump_fcontext(& fcm, fc1, 0)" << std::endl;
ctx::jump_fcontext(& fcm, fc1, 0);

std::cout << "main: done" << std::endl;

return EXIT_SUCCESS;
}

output:
main: call jump_fcontext(& fcm, & fc1, 0)
f1: entered
f1: call jump_fcontext(& fc1, & fc2, 0)
f2: entered
f2: call jump_fcontext(& fc2, & fc1, 0)
f1: return
main: done

First call of jump_fcontext() enters the context-function f1() by starting context fc1 (context fcm saves the registers of main()).
For jumping between context's fc1 and fc2 jump_fcontext() is called. Because context fcm is chained to fc1, main() is entered
(returning from jump_fcontext()) after context fc1 becomes complete (return from f1()).

Warning

Calling jump_fcontext() to the same context from inside the same context results in undefined behaviour.

Important

The size of the stack is required to be larger than the size of fcontext_t.

5

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

In contrast to threads, which are preemtive, fcontext_t switches are cooperative (programmer controls when switch
will happen). The kernel is not involved in the context switches.

Transfer of data

The third argument passed to jump_fcontext(), in one context, is passed as the first argument of the context-function if the context
is started for the first time. In all following invocations of jump_fcontext() the intptr_t passed to jump_fcontext(), in one context, is
returned by jump_fcontext() in the other context.

namespace ctx = boost::context;

ctx::fcontext_t fcm, * fc;

typedef std::pair< int, int > pair_t;

void f(intptr_t param)
{

pair_t * p = (pair_t *) param;

p = (pair_t *) ctx::jump_fcontext(fc, & fcm, (intptr_t) (p->first + p->second));

ctx::jump_fcontext(fc, & fcm, (intptr_t) (p->first + p->second));
}

int main(int argc, char * argv[])
{

ctx::guarded_stack_allocator alloc;
void * sp(alloc.allocate(ctx::minimum_stacksize()));
std::size_t size(ctx::guarded_stack_allocator::minimum_stacksize());

pair_t p(std::make_pair(2, 7));
fc = ctx::make_fcontext(sp, size, f);

int res = (int) ctx::jump_fcontext(& fcm, fc, (intptr_t) & p);
std::cout << p.first << " + " << p.second << " == " << res << std::endl;

p = std::make_pair(5, 6);
res = (int) ctx::jump_fcontext(& fcm, fc, (intptr_t) & p);
std::cout << p.first << " + " << p.second << " == " << res << std::endl;

std::cout << "main: done" << std::endl;

return EXIT_SUCCESS;
}

output:
2 + 7 == 9
5 + 6 == 11
main: done

Exceptions in context-function

If the context-function emits an exception, the behaviour is undefined.

6

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Important

context-function should wrap the code in a try/catch block.

Preserving floating point registers

Preserving the floating point registers increases the cycle count for a context switch (see performance tests). The fourth argument
of jump_fcontext() controls if fpu registers should be preserved by the context jump.

Important

The use of the fpu controlling argument of jump_fcontext() must be consistent in the application. Otherwise the
behaviour is undefined.

Stack unwinding

Sometimes it is necessary to unwind the stack of an unfinished context to destroy local stack variables so they can release allocated
resources (RAII pattern). The user is responsible for this task.

Struct fcontext_t and related functions

struct stack_t
{

void * sp;
std::size_t size;

};

struct fcontext_t
{

< platform specific >

stack_t fc_stack;
};

intptr_t jump_fcontext(fcontext_t * ofc, fcontext_t const* nfc, intptr_t vp, bool pre↵
serve_fpu = true);
fcontext_t * make_fcontext(void * sp, std::size_t size, void(* fn)(intptr_t));

sp

Member: Pointer to the beginning of the stack (depending of the architecture the stack grows downwards or upwards).

size

Member: Size of the stack in bytes.

fc_stack

Member: Tracks the memory for the context's stack.

intptr_t jump_fcontext(fcontext_t * ofc, fcontext_t * nfc, intptr_t p, bool preserve_fpu = true)

Effects: Stores the current context data (stack pointer, instruction pointer, and CPU registers) to *ofc and restores the context
data from *nfc, which implies jumping to *nfc's execution context. The intptr_t argument, p, is passed to the current

7

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

context to be returned by the most recent call to jump_fcontext() in the same thread. The last argument controls
if fpu registers have to be preserved.

Returns: The third pointer argument passed to the most recent call to jump_fcontext(), if any.

fcontext_t * make_fcontext(void * sp, std::size_t size, void(*fn)(intptr_t))

Precondition: Stack sp function pointer fn are valid and size > 0.

Effects: Creates an fcontext_t at the beginning of the stack and prepares the stack to execute the context-function fn.

Returns: Returns a pointer to fcontext_t which is placed on the stack.

8

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Stack allocation
A fcontext_t requires a stack which will be allocated/deallocated by a StackAllocator (examples contain an implementation of
simple_stack_allocator).

Note

The implementation of a StackAllocator might include logic to protect against exceeding the context's available
stack size rather than leaving it as undefined behaviour.

Note

The stack is not required to be aligned; alignment takes place inside make_fcontext().

Note

Depending on the architecture StackAllocator returns an address from the top of the stack (grows downwards) or
the bottom of the stack (grows upwards).

9

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../../../../libs/context/example/simple_stack_allocator.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Performance
Performance of Boost.Context was measured on the platforms shown in the following table. Performance measurements were taken
using rdtsc, with overhead corrections, on x86 platforms. In each case, stack protection was active, cache warm-up was accounted
for, and the one running thread was pinned to a single CPU. The code was compiled using the build options, 'variant = release cxxflags
= -DBOOST_DISABLE_ASSERTS'.

Applying -DBOOST_USE_UCONTEXT to cxxflags the performance of ucontext will be measured too.

The numbers in the table are the number of cycles per iteration, based upon an average computed over 10 iterations.

Table 1. Performance of context switch

boost::functionfcontext_t without fpufcontext_t with fpuucontext_tPlatform

15 cycles43 cycles65 cycles846 cyclesAMD Athlon 64 Dual-
Core 4400+ (32bit
Linux)

25 cycles63 cycles172 cycles1481 cyclesIntel Core2 Q6700
(64bit Linux)

10

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Rationale
No inline-assembler

Some newer compiler (for instance MSVC 10 for x86_64 and itanium) do not support inline assembler. 1. Inlined assembler generates
code bloating which his not welcome on embedded systems.

fcontext_t

Boost.Context provides the low level API fcontext_t which is implemented in assembler to provide context swapping operations.
fcontext_t is the part to port to new platforms.

Note

Context switches do not preserve the signal mask on UNIX systems.

Because the assembler code uses the byte layout of fcontext_t to access its members fcontext_t must be a POD. This requires that
fcontext_t has only a default constructor, no visibility keywords (e.g. private, public, protected), no virtual methods and all members
and base classes are PODs too.

Protecting the stack

Because the stack's size is fixed -- there is no support for split stacks yet -- it is important to protect against exceeding the stack's
bounds. Otherwise, in the best case, overrunning the stack's memory will result in a segmentation fault or access violation and, in
the worst case, the application's memory will be overwritten. stack_allocator appends a guard page to the stack to help detect
overruns. The guard page consumes no physical memory, but generates a segmentation fault or access violation on access to the
virtual memory addresses within it.

Other APIs

setjmp()/longjmp()

C99 defines setjmp()/longjmp() to provide non-local jumps but it does not require that longjmp() preserves the current stack
frame. Therefore, jumping into a function which was exited via a call to longjmp() is undefined 2.

ucontext_t

Since POSIX.1-2003 ucontext_t is deprecated and was removed in POSIX.1-2008! The function signature of makecontext()
is:

void makecontext(ucontext_t *ucp, void (*func)(), int argc, ...);

The third argument of makecontext() specifies the number of integer arguments that follow which will require function pointer
cast if func will accept those arguments which is undefined in C99 3.

The arguments in the var-arg list are required to be integers, passing pointers in var-arg list is not guaranteed to work, especially it
will fail for architectures where pointers are larger than integers.

ucontext_t preserves signal mask between context switches which involves system calls consuming a lot of CPU cycles (ucontext_t
is slower by perfomance_link[factor 13x] relative to fcontext_t).

1 MSDN article 'Inline Assembler'
2 ISO/IEC 9899:1999, 2005, 7.13.2.1:2
3 ISO/IEC 9899:1999, 2005, J.2

11

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://msdn.microsoft.com/en-us/library/4ks26t93.aspx
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Windows fibers

A drawback of Windows Fiber API is that CreateFiber() does not accept a pointer to user allocated stack space preventing the
reuse of stacks for other context instances. Because the Windows Fiber API requires to call ConvertThreadToFiber() if
SwitchFiber() is called for a thread which has not been converted to a fiber. For the same reason ConvertFiberToThread()
must be called after return from SwitchFiber() if the thread was forced to be converted to a fiber before (which is inefficient).

if (! is_a_fiber())
{

ConvertThreadToFiber(0);
SwitchToFiber(ctx);
ConvertFiberToThread();

}

If the condition _WIN32_WINNT >= _WIN32_WINNT_VISTA is met function IsThreadAFiber() is provided in order to detect if
the current thread was already converted. Unfortunately Windows XP + SP 2/3 defines _WIN32_WINNT >= _WIN32_WINNT_VISTA

without providing IsThreadAFiber().

x86 and floating-point env

i386

"The FpCsr and the MxCsr register must be saved and restored before any call or return by any procedure that needs to modify them
..." 4.

x86_64

Windows

MxCsr - "A callee that modifies any of the non-volatile fields within MxCsr must restore them before returning to its caller. Further-
more, a caller that has modified any of these fields must restore them to their standard values before invoking a callee ..." 5.

FpCsr - "A callee that modifies any of the fields within FpCsr must restore them before returning to its caller. Furthermore, a caller
that has modified any of these fields must restore them to their standard values before invoking a callee ..." 6.

"The MMX and floating-point stack registers (MM0-MM7/ST0-ST7) are preserved across context switches. There is no explicit
calling convention for these registers." 7.

"The 64-bit Microsoft compiler does not use ST(0)-ST(7)/MM0-MM7". 8.

"XMM6-XMM15 must be preserved" 9

SysV

"The control bits of the MxCsr register are callee-saved (preserved across calls), while the status bits are caller-saved (not preserved).
The x87 status word register is caller-saved, whereas the x87 control word (FpCsr) is callee-saved." 10.

4 'Calling Conventions', Agner Fog
5 MSDN article 'MxCsr'
6 MSDN article 'FpCsr'
7 MSDN article 'Legacy Floating-Point Support'
8 'Calling Conventions', Agner Fog
9 MSDN article 'Register Usage'
10 SysV ABI AMD64 Architecture Processor Supplement Draft Version 0.99.4, 3.2.1

12

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://http://msdn.microsoft.com/en-us/library/yxty7t75.aspx
http://http://msdn.microsoft.com/en-us/library/ms235300.aspx
http://msdn.microsoft.com/en-us/library/a32tsf7t%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/9z1stfyw%28v=vs.100%29.aspx
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference
ARM

• AAPCS ABI: Procedure Call Standard for the ARM Architecture

• AAPCS/LINUX: ARM GNU/Linux Application Binary Interface Supplement

MIPS

• O32 ABI: SYSTEM V APPLICATION BINARY INTERFACE, MIPS RISC Processor Supplement

PowerPC32

• SYSV ABI: SYSTEM V APPLICATION BINARY INTERFACE PowerPC Processor Supplement

PowerPC64

• SYSV ABI: PowerPC User Instruction Set Architecture, Book I

X86-32

• SYSV ABI: SYSTEM V APPLICATION BINARY INTERFACE, Intel386TM Architecture Processor Supplement

• MS PE: Calling Conventions

X86-64

• SYSV ABI: System V Application Binary Interface, AMD64 Architecture Processor Supplement

• MS PE: x64 Software Conventions

13

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://msdn.microsoft.com/en-us/library/k2b2ssfy.aspx
http://msdn.microsoft.com/en-us/library/7kcdt6fy%28VS.80%29.aspx
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Todo
• provide support for SPARC, SuperH (SH4), S/390

• support split-stack feature from gcc/gold linker

14

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Acknowledgments
I'd like to thank Adreas Fett, Artyom Beilis, Daniel Larimer, David Deakins, Fernando Pelliccioni, Giovanni Piero Deretta, Gordon
Woodhull, Helge Bahmann, Holger Grund, Jeffrey Lee Hellrung (Jr.), Keith Jeffery, Phil Endecott, Robert Stewart, Sergey Cheban,
Steven Watanabe, Vicente J. Botet Escriba, Wayne Piekarski.

15

Context

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Context
	Table of Contents
	Overview
	Requirements
	Context
	Struct fcontext_t and related functions

	Stack allocation
	Performance
	Rationale
	Other APIs
	x86 and floating-point env

	Reference
	Todo
	Acknowledgments

