
Boost.Integer
Beman Dawes
Daryle Walker
Gennaro Prota
John Maddock

Copyright © 2001-2009 Beman Dawes, Daryle Walker, Gennaro Prota, John Maddock

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Overview .. 2
Standard Integer Types .. 3
Integer Traits ... 6
Integer Type Selection ... 8
Integer Masks .. 12
Compile Time log2 Calculation ... 15
Compile time min/max calculation ... 17
History ... 19

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview
Boost.Integer provides integer type support, particularly helpful in generic programming. It provides standard C99 integer types,
such as might be found in <stdint.h>, without requiring that header. It provides the means to select an integer type based upon its
properties, like the number of bits or the maximum supported value, as well as compile-time bit mask selection. There is a derivative
of std::numeric_limits that provides integral constant expressions for min and max. Finally, it provides two compile-time algorithms:
determining the highest power of two in a compile-time value; and computing min and max of constant expressions.

PurposeHeaderComponent

Forward declarations of classes and class
templates - for use when just the name of
a class is needed.

<boost/integer_fwd.hpp>Forward Declarations.

Provides typedef's based on the 1999 C
Standard header <stdint.h>, wrapped
in namespace boost. This implementation
may #include the compiler supplied
<stdint.h>, if present.

<boost/cstdint.hpp>Standard Integer Types.

Class template boost::in-

teger_traits, derives from std::nu-
meric_limits and adds const_min
and const_max members.

<boost/integer_traits.hpp>Integer Traits.

Templates for integer type selection based
on properties such as maximum value or
number of bits: Use to select the type of
an integer when some property such as
maximum value or number of bits is
known. Useful for generic programming.

<boost/integer.hpp>Integer Type Selection.

Templates for the selection of integer
masks, single or lowest group, based on
the number of bits: Use to select a partic-
ular mask when the bit position(s) are
based on a compile-time variable. Useful
for generic programming.

< b o o s t / i n t e g e r / i n -

teger_mask.hpp>

Integer Masks.

Template for finding the highest power
of two in a number: Use to find the bit-
size/range based on a maximum value.
Useful for generic programming.

<boost/integer/static_log2.hpp>Compile time log2 Calculation.

Templates for finding the extrema of two
numbers: Use to find a bound based on a
minimum or maximum value. Useful for
generic programming.

< b o o s t / i n t e g e r / s t a t -

ic_min_max.hpp>

Compile time min/max calculation.

2

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/integer_fwd.hpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/cstdint.hpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/integer_traits.hpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/integer.hpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/integer/integer_mask.hpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/integer/integer_mask.hpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/integer/static_log2.hpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/integer/static_min_max.hpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/integer/static_min_max.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Standard Integer Types

Overview
The header <boost/cstdint.hpp> provides the typedef's useful for writing portable code that requires certain integer widths. All
typedef's are in namespace boost.

The specifications for these types are based on the ISO/IEC 9899:1999 C Language standard header <stdint.h>. The 64-bit types
required by the C standard are not required in the boost header, and may not be supplied for all platforms/compilers, because long
long is not [yet] included in the C++ standard.

See cstdint_test.cpp for a test program.

Rationale
The organization of the Boost.Integer headers and classes is designed to take advantage of <stdint.h> types from the 1999 C standard
without causing undefined behavior in terms of the 1998 C++ standard. The header <boost/cstdint.hpp> makes the standard integer
types safely available in namespace boost without placing any names in namespace std. The intension is to complement rather
than compete with the C++ Standard Library. Should some future C++ standard include <stdint.h> and <cstdint>, then
<boost/cstdint.hpp> will continue to function, but will become redundant and may be safely deprecated.

Because these are boost headers, their names conform to boost header naming conventions rather than C++ Standard Library header
naming conventions.

Caveat emptor
As an implementation artifact, certain C <limits.h> macro names may possibly be visible to users of <boost/cstdint.hpp>. Don't use
these macros; they are not part of any Boost-specified interface. Use boost::integer_traits<> or std::numeric_limits<>
instead.

As another implementation artifact, certain C <stdint.h> typedef names may possibly be visible in the global namespace to users of
<boost/cstdint.hpp>. Don't use these names, they are not part of any Boost-specified interface. Use the respective names in namespace
boost instead.

Exact-width integer types
The typedef int#_t, with # replaced by the width, designates a signed integer type of exactly # bits; for example int8_t denotes
an 8-bit signed integer type. Similarly, the typedef uint#_t designates an unsigned integer type of exactly # bits.

These types are optional. However, if a platform supports integer types with widths of 8, 16, 32, 64, or any combination thereof,
then <boost/cstdint.hpp> does provide the corresponding typedefs.

The absence of int64_t and uint64_t is indicated by the macro BOOST_NO_INT64_T.

Minimum-width integer types
The typedef int_least#_t, with # replaced by the width, designates a signed integer type with a width of at least # bits, such that
no signed integer type with lesser size has at least the specified width. Thus, int_least32_t denotes the smallest signed integer
type with a width of at least 32 bits. Similarly, the typedef name uint_least#_t designates an unsigned integer type with a width
of at least # bits, such that no unsigned integer type with lesser size has at least the specified width.

The following minimum-width integer types are provided for all platforms:

• int_least8_t

• int_least16_t

3

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/cstdint.hpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/cstdint_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• int_least32_t

• uint_least8_t

• uint_least16_t

• uint_least32_t

The following types are available only if, after including <boost/cstdint.hpp>, the macro BOOST_NO_INT64_T is not defined:

• int_least64_t

• uint_least64_t

All other minimum-width integer types are optional.

Fastest minimum-width integer types
The typedef int_fast#_t, with # replaced by the width, designates the fastest signed integer type with a width of at least # bits.
Similarly, the typedef name uint_fast#_t designates the fastest unsigned integer type with a width of at least # bits.

There is no guarantee that these types are fastest for all purposes. In any case, however, they satisfy the signedness and width require-
ments.

The following fastest minimum-width integer types are provided for all platforms:

• int_fast8_t

• int_fast16_t

• int_fast32_t

• uint_fast8_t

• uint_fast16_t

• uint_fast32_t

The following types are available only if, after including <boost/cstdint.hpp>, the macro BOOST_NO_INT64_T is not defined:

• int_fast64_t

• uint_fast64_t

All other fastest minimum-width integer types are optional.

Greatest-width integer types
The typedef intmax_t designates a signed integer type capable of representing any value of any signed integer type.

The typedef uintmax_t designates an unsigned integer type capable of representing any value of any unsigned integer type.

These types are provided for all platforms.

Integer Constant Macros
The following macros are always defined after inclusion of this header, these allow integer constants of at least the specified width
to be declared: INT8_C, UINT8_C, INT16_C, UINT16_C, INT32_C, UINT32_C, INTMAX_C, UINTMAX_C.

The macros INT64_C and UINT64_C are also defined if the the macro BOOST_NO_INT64_T is not defined.

4

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The C99 macro __STDC_CONSTANT_MACROS is also defined as an artifact of the implementation.

For example:

#include <boost/cstdint.hpp>

// Here the constant 0x1FFFFFFFF has the correct suffix applied:
static const boost::uint64_t c = INT64_C(0x1FFFFFFFF);

5

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Integer Traits

Motivation
The C++ Standard Library <limits> header supplies a class template numeric_limits<> with specializations for each fundamental
type.

For integer types, the interesting members of std::numeric_limits<> are:

static const bool is_specialized; // Will be true for integer types.
static T min() throw(); // Smallest representable value.
static T max() throw(); // Largest representable value.
static const int digits; // For integers, the number of value bits.
static const int digits10; // The number of base 10 digits that can be represented.
static const bool is_signed; // True if the type is signed.
static const bool is_integer; // Will be true for all integer types.

For many uses, these are sufficient. But min() and max() are problematical because they are not constant expressions (std::5.19), yet
some usages require constant expressions.

The template class integer_traits addresses this problem.

Synopsis

namespace boost {
template<class T>
class integer_traits : public std::numeric_limits<T>
{
public:

static const bool is_integral = false;
//
// These members are defined only if T is a built-in
// integal type:
//
static const T const_min = implementation-defined;
static const T const_max = implementation-defined;

};
}

Description
Template class integer_traits is derived from std::numeric_limits. The primary specialization adds the single bool
member is_integral with the compile-time constant value false. However, for all integral types T (std::3.9.1/7 [basic.fundamental]),
there are specializations provided with the following compile-time constants defined:

valuetypemember

trueboolis_integral

equivalent to std::numeric_lim-

its<T>::min()

Tconst_min

equivalent to std::numeric_lim-

its<T>::max()

Tconst_max

6

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note: The is_integral flag is provided, because a user-defined integer class should specialize std::numeric_limits<>::is_in-
teger = true, while compile-time constants const_min and const_max are not provided for that user-defined class, unless
boost::integer_traits is also specialized.

Test Program
The program integer_traits_test.cpp exercises the integer_traits class.

Acknowledgements
Beman Dawes, Ed Brey, Steve Cleary, and Nathan Myers discussed the integer traits idea on the boost mailing list in August 1999.

7

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/integer_traits_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Integer Type Selection
The <boost/integer.hpp> type selection templates allow integer types to be selected based on desired characteristics such as number
of bits or maximum value. This facility is particularly useful for solving generic programming problems.

Synopsis

namespace boost
{
// fast integers from least integers
template<typename LeastInt>
struct int_fast_t
{

typedef implementation-defined-type type;
};

// signed
template<int Bits>
struct int_t
{

/* Member exact may or may not be defined depending upon Bits */
typedef implementation-defined-type exact;
typedef implementation-defined-type least;
typedef int_fast_t<least>::fast fast;

};

// unsigned
template<int Bits>
struct uint_t
{

/* Member exact may or may not be defined depending upon Bits */
typedef implementation-defined-type exact;
typedef implementation-defined-type least;
typedef int_fast_t<least>::fast fast;

};

// signed
template<long long MaxValue>
struct int_max_value_t
{

typedef implementation-defined-type least;
typedef int_fast_t<least>::fast fast;

};

template<long long MinValue>
struct int_min_value_t
{

typedef implementation-defined-type least;
typedef int_fast_t<least>::fast fast;

};

// unsigned
template<unsigned long long Value>
struct uint_value_t
{

typedef implementation-defined-type least;
typedef int_fast_t<least>::fast fast;

};
} // namespace boost

8

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/integer.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Easiest-to-Manipulate Types
The int_fast_t class template maps its input type to the next-largest type that the processor can manipulate the easiest, or to itself
if the input type is already an easy-to-manipulate type. For instance, processing a bunch of char objects may go faster if they were
converted to int objects before processing. The input type, passed as the only template parameter, must be a built-in integral type,
except bool. Unsigned integral types can be used, as well as signed integral types. The output type is given as the nested type fast.

Implementation Notes: By default, the output type is identical to the input type. Eventually, this code's implementation should be
customized for each platform to give accurate mappings between the built-in types and the easiest-to-manipulate built-in types. Also,
there is no guarantee that the output type actually is easier to manipulate than the input type.

Sized Types
The int_t, uint_t, int_max_value_t, int_min_value_t, and uint_value_t class templates find the most appropiate built-
in integral type for the given template parameter. This type is given by the nested type least. The easiest-to-manipulate version of
that type is given by the nested type fast. The following table describes each template's criteria.

9

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 1. Criteria for the Sized Type Class Templates

Template Parameter MappingClass Template

The smallest, built-in, signed integral type with at least N bits,
including the sign bit. The parameter should be a positive num-

boost::int_t<N>::least

ber. A compile-time error results if the parameter is larger than
the number of bits in the largest integer type.

The easiest-to-manipulate, built-in, signed integral type with at
least N bits, including the sign bit. The parameter should be a

boost::int_t<N>::fast

positive number. A compile-time error results if the parameter
is larger than the number of bits in the largest integer type.

A built-in, signed integral type with exactly N bits, including
the sign bit. The parameter should be a positive number. Note

boost::int_t<N>::exact

that the member exact is defined only if there exists a type with
exactly N bits.

The smallest, built-in, unsigned integral type with at least N bits.
The parameter should be a positive number. A compile-time

boost::uint_t<N>::least

error results if the parameter is larger than the number of bits
in the largest integer type.

The easiest-to-manipulate, built-in, unsigned integral type with
at least N bits. The parameter should be a positive number. A

boost::uint_t<N>::fast

compile-time error results if the parameter is larger than the
number of bits in the largest integer type.

A built-in, unsigned integral type with exactly N bits. The
parameter should be a positive number. A compile-time error

boost::uint_t<N>::exact

results if the parameter is larger than the number of bits in the
largest integer type. Note that the member exact is defined only
if there exists a type with exactly N bits.

The smallest, built-in, signed integral type that can hold all the
values in the inclusive range 0 - V. The parameter should be a
positive number.

boost::int_max_value_t<V>::last

The easiest-to-manipulate, built-in, signed integral type that can
hold all the values in the inclusive range 0 - V. The parameter
should be a positive number.

boost::int_max_value_t<V>::fast

The smallest, built-in, signed integral type that can hold all the
values in the inclusive range V - 0. The parameter should be a
negative number.

boost::int_min_value_t<V>::least

The easiest-to-manipulate, built-in, signed integral type that can
hold all the values in the inclusive range V - 0. The parameter
should be a negative number.

boost::int_min_value_t<V>::fast

The smallest, built-in, unsigned integral type that can hold all
positive values up to and including V. The parameter should be
a positive number.

boost::uint_value_t<V>::least

10

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Template Parameter MappingClass Template

The easiest-to-manipulate, built-in, unsigned integral type that
can hold all positive values up to and including V. The parameter
should be a positive number.

boost::uint_value_t<V>::fast

Example

#include <boost/integer.hpp>

//...

int main()
{

boost::int_t<24>::least my_var; // my_var has at least 24-bits
//...
// This one is guarenteed not to be truncated:
boost::int_max_value_t<1000>::least my1000 = 1000;
//...
// This one is guarenteed not to be truncated, and as fast
// to manipulate as possible, its size may be greater than
// that of my1000:
boost::int_max_value_t<1000>::fast my_fast1000 = 1000;

}

Demonstration Program
The program integer_test.cpp is a simplistic demonstration of the results from instantiating various examples of the sized type class
templates.

Rationale
The rationale for the design of the templates in this header includes:

• Avoid recursion because of concern about C++'s limited guaranteed recursion depth (17).

• Avoid macros on general principles.

• Try to keep the design as simple as possible.

Alternative
If the number of bits required is known beforehand, it may be more appropriate to use the types supplied in <boost/cstdint.hpp>.

Credits
The author of most of the Boost integer type choosing templates is Beman Dawes. He gives thanks to Valentin Bonnard and Kevlin
Henney for sharing their designs for similar templates. Daryle Walker designed the value-based sized templates.

11

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/integer_test.cpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/cstdint.hpp
http://www.boost.org/people/beman_dawes.html
http://www.boost.org/people/kevlin_henney.htm
http://www.boost.org/people/kevlin_henney.htm
http://www.boost.org/people/daryle_walker.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Integer Masks

Overview
The class templates in <boost/integer/integer_mask.hpp> provide bit masks for a certain bit position or a contiguous-bit pack of a
certain size. The types of the masking constants come from the integer type selection templates header.

Synopsis

#include <cstddef> // for std::size_t

namespace boost
{

template <std::size_t Bit>
struct high_bit_mask_t
{

typedef implementation-defined-type least;
typedef implementation-defined-type fast;

static const least high_bit = implementation-defined;
static const fast high_bit_fast = implementation-defined;

static const std::size_t bit_position = Bit;
};

template <std::size_t Bits>
struct low_bits_mask_t
{

typedef implementation-defined-type least;
typedef implementation-defined-type fast;

static const least sig_bits = implementation-defined;
static const fast sig_bits_fast = implementation-defined;

static const std::size_t bit_count = Bits;
};

// Specializations for low_bits_mask_t exist for certain bit counts.

} // namespace boost

Single Bit-Mask Class Template
The boost::high_bit_mask_t class template provides constants for bit masks representing the bit at a certain position. The
masks are equivalent to the value 2Bit, where Bit is the template parameter. The bit position must be a nonnegative number from
zero to Max, where Max is one less than the number of bits supported by the largest unsigned built-in integral type. The following
table describes the members of an instantiation of high_bit_mask_t.

12

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/integer/integer_mask.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 2. Members of the `boost::high_bit_mask_t` Class Template

MeaningMember

The smallest, unsigned, built-in type that supports the given bit
position.

least

The easiest-to-manipulate analog of least.fast

A least constant of the value 2Bit.high_bit

A fast analog of high_bit.high_bit_fast

The value of the template parameter, in case its needed from a
renamed instantiation of the class template.

bit_position

Group Bit-Mask Class Template
The boost::low_bits_mask_t class template provides constants for bit masks equivalent to the value (2Bits - 1), where Bits is
the template parameter. The parameter Bits must be a non-negative integer from zero to Max, where Max is the number of bits
supported by the largest, unsigned, built-in integral type. The following table describes the members of low_bits_mask_t.

Table 3. Members of the [^boost::low_bits_mask_t] Class Template

MeaningMember

The smallest, unsigned built-in type that supports the given bit
count.

least

The easiest-to-manipulate analog of least.fast

A least constant of the desired bit-masking value.sig_bits

A fast analog of sig_bits.sig_bits_fast

The value of the template parameter, in case its needed from a
renamed instantiation of the class template.

bit_count

Implementation Notes
When Bits is the exact size of a built-in unsigned type, the implementation has to change to prevent undefined behavior. Therefore,
there are specializations of low_bits_mask_t at those bit counts.

13

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

#include <boost/integer/integer_mask.hpp>

//...

int main()
{

typedef boost::high_bit_mask_t<29> mask1_type;
typedef boost::low_bits_mask_t<15> mask2_type;

mask1_type::least my_var1;
mask2_type::fast my_var2;
//...

my_var1 |= mask1_type::high_bit;
my_var2 &= mask2_type::sig_bits_fast;

//...
}

Demonstration Program
The program integer_mask_test.cpp is a simplistic demonstration of the results from instantiating various examples of the bit mask
class templates.

Rationale
The class templates in this header are an extension of the integer type selection class templates. The new class templates provide the
same sized types, but also convenient masks to use when extracting the highest or all the significant bits when the containing built-
in type contains more bits. This prevents contamination of values by the higher, unused bits.

Credits
The author of the Boost bit mask class templates is Daryle Walker.

14

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/integer_mask_test.cpp
http://www.boost.org/people/daryle_walker.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Compile Time log2 Calculation
The class template in <boost/integer/static_log2.hpp> determines the position of the highest bit in a given value. This facility is
useful for solving generic programming problems.

Synopsis

namespace boost
{

typedef implementation-defined static_log2_argument_type;
typedef implementation-defined static_log2_result_type;

template <static_log2_argument_type arg>
struct static_log2
{
static const static_log2_result_type value = implementation-defined;

};

template < >
struct static_log2< 0 >
{
// The logarithm of zero is undefined.

};

} // namespace boost

Usage
The boost::static_log2 class template takes one template parameter, a value of type static_log2_argument_type. The
template only defines one member, value, which gives the truncated, base-two logarithm of the template argument.

Since the logarithm of zero, for any base, is undefined, there is a specialization of static_log2 for a template argument of zero.
This specialization has no members, so an attempt to use the base-two logarithm of zero results in a compile-time error.

Note:

• static_log2_argument_type is an unsigned integer type (C++ standard, 3.9.1p3).

• static_log2_result_type is an integer type (C++ standard, 3.9.1p7).

Demonstration Program
The program static_log2_test.cpp is a simplistic demonstration of the results from instantiating various examples of the binary log-
arithm class template.

Rationale
The base-two (binary) logarithm, abbreviated lb, function is occasionally used to give order-estimates of computer algorithms. The
truncated logarithm can be considered the highest power-of-two in a value, which corresponds to the value's highest set bit (for
binary integers). Sometimes the highest-bit position could be used in generic programming, which requires the position to be available
statically (i.e. at compile-time).

15

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/integer/static_log2.hpp
http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/static_log2_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Credits
The original version of the Boost binary logarithm class template was written by Daryle Walker and then enhanced by Giovanni
Bajo with support for compilers without partial template specialization. The current version was suggested, together with a reference
implementation, by Vesa Karvonen. Gennaro Prota wrote the actual source file.

16

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/people/daryle_walker.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Compile time min/max calculation
The class templates in <boost/integer/static_min_max.hpp> provide a compile-time evaluation of the minimum or maximum of two
integers. These facilities are useful for generic programming problems.

Synopsis

namespace boost
{

typedef implementation-defined static_min_max_signed_type;
typedef implementation-defined static_min_max_unsigned_type;

template <static_min_max_signed_type Value1, static_min_max_signed_type Value2 >
struct static_signed_min;

template <static_min_max_signed_type Value1, static_min_max_signed_type Value2>
struct static_signed_max;

template <static_min_max_unsigned_type Value1, static_min_max_unsigned_type Value2>
struct static_unsigned_min;

template <static_min_max_unsigned_type Value1, static_min_max_unsigned_type Value2>
struct static_unsigned_max;

}

Usage
The four class templates provide the combinations for finding the minimum or maximum of two signed or unsigned (long)
parameters, Value1 and Value2, at compile-time. Each template has a single static data member, value, which is set to the respective
minimum or maximum of the template's parameters.

17

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../../../boost/integer/static_min_max.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

#include <boost/integer/static_min_max.hpp>

template < unsigned long AddendSize1, unsigned long AddendSize2 >
class adder
{
public:

static unsigned long const addend1_size = AddendSize1;
static unsigned long const addend2_size = AddendSize2;
static unsigned long const sum_size = boost::static_unsigned_max<AddendSize1, Addend↵

Size2>::value + 1;

typedef int addend1_type[addend1_size];
typedef int addend2_type[addend2_size];
typedef int sum_type[sum_size];

void operator ()(addend1_type const &a1, addend2_type const &a2, sum_type &s) const;
};

//...

int main()
{

int const a1[] = { 0, 4, 3 }; // 340
int const a2[] = { 9, 8 }; // 89
int s[4];
adder<3,2> obj;

obj(a1, a2, s); // 's' should be 429 or { 9, 2, 4, 0 }
//...

}

Demonstration Program
The program static_min_max_test.cpp is a simplistic demonstration of various comparisons using the compile-time extrema class
templates.

Rationale
Sometimes the minimum or maximum of several values needs to be found for later compile-time processing, e.g. for a bound for
another class template.

Credits
The author of the Boost compile-time extrema class templates is Daryle Walker.

18

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/doc/html/../../test/static_min_max_test.cpp
http://www.boost.org/people/daryle_walker.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

History
1.42.0

• Reverted Trunk to release branch state (i.e. a "known good state").

• Fixed issues: 653, 3084, 3177, 3180, 3568, 3657, 2134.

• Added long long support to boost::static_log2, boost::static_signed_min, boost::static_signed_max,
boost::static_unsigned_minboost::static_unsigned_max, when available.

• The argument type and the result type of boost::static_signed_min etc are now typedef'd. Formerly, they were hardcoded
as unsigned long and int respectively. Please, use the provided typedefs in new code (and update old code as soon as possible).

1.32.0

• The argument type and the result type of boost::static_log2 are now typedef'd. Formerly, they were hardcoded as unsigned
long and int respectively. Please, use the provided typedefs in new code (and update old code as soon as possible).

19

Boost.Integer

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/653
https://svn.boost.org/trac/boost/ticket/3084
https://svn.boost.org/trac/boost/ticket/3177
https://svn.boost.org/trac/boost/ticket/3180
https://svn.boost.org/trac/boost/ticket/3548
https://svn.boost.org/trac/boost/ticket/3657
https://svn.boost.org/trac/boost/ticket/2134
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Integer
	Table of Contents
	Overview
	Standard Integer Types
	Overview
	Rationale
	Caveat emptor
	Exact-width integer types
	Minimum-width integer types
	Fastest minimum-width integer types
	Greatest-width integer types
	Integer Constant Macros

	Integer Traits
	Motivation
	Synopsis
	Description
	Test Program
	Acknowledgements

	Integer Type Selection
	Synopsis
	Easiest-to-Manipulate Types
	Sized Types
	Example
	Demonstration Program
	Rationale
	Alternative
	Credits

	Integer Masks
	Overview
	Synopsis
	Single Bit-Mask Class Template
	Group Bit-Mask Class Template
	Implementation Notes
	Example
	Demonstration Program
	Rationale
	Credits

	Compile Time log2 Calculation
	Synopsis
	Usage
	Demonstration Program
	Rationale
	Credits

	Compile time min/max calculation
	Synopsis
	Usage
	Example
	Demonstration Program
	Rationale
	Credits

	History

