
Boost.Interprocess
Ion Gaztanaga
Copyright © 2005-2012 Ion Gaztanaga

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Introduction .. 2
Quick Guide for the Impatient .. 3
Some basic explanations .. 10
Sharing memory between processes ... 13
Mapping Address Independent Pointer: offset_ptr ... 29
Synchronization mechanisms .. 31
Managed Memory Segments .. 66
Allocators, containers and memory allocation algorithms ... 96
Memory allocation algorithms ... 122
Direct iostream formatting: vectorstream and bufferstream ... 124
Ownership smart pointers ... 131
Architecture and internals ... 142
Customizing Boost.Interprocess .. 148
Acknowledgements, notes and links ... 154
Indexes ... 162
Boost.Interprocess Reference .. 262

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Introduction
Boost.Interprocess simplifies the use of common interprocess communication and synchronization mechanisms and offers a wide
range of them:

• Shared memory.

• Memory-mapped files.

• Semaphores, mutexes, condition variables and upgradable mutex types to place them in shared memory and memory mapped
files.

• Named versions of those synchronization objects, similar to UNIX/Windows sem_open/CreateSemaphore API.

• File locking.

• Relative pointers.

• Message queues.

Boost.Interprocess also offers higher-level interprocess mechanisms to allocate dynamically portions of a shared memory or a
memory mapped file (in general, to allocate portions of a fixed size memory segment). Using these mechanisms, Boost.Interprocess
offers useful tools to construct C++ objects, including STL-like containers, in shared memory and memory mapped files:

• Dynamic creation of anonymous and named objects in a shared memory or memory mapped file.

• STL-like containers compatible with shared memory/memory-mapped files.

• STL-like allocators ready for shared memory/memory-mapped files implementing several memory allocation patterns (like
pooling).

Building Boost.Interprocess
There is no need to compile Boost.Interprocess, since it's a header only library. Just include your Boost header directory in your
compiler include path.

Boost.Interprocess depends on Boost.DateTime, which needs separate compilation. However, the subset used by Boost.Interprocess
does not need any separate compilation so the user can define BOOST_DATE_TIME_NO_LIB to avoid Boost from trying to automat-
ically link the Boost.DateTime.

In POSIX systems, Boost.Interprocess uses pthread system calls to implement classes like mutexes, condition variables, etc... In
some operating systems, these POSIX calls are implemented in separate libraries that are not automatically linked by the compiler.
For example, in some Linux systems POSIX pthread functions are implemented in librt.a library, so you might need to add that
library when linking an executable or shared library that uses Boost.Interprocess. If you obtain linking errors related to those pthread
functions, please revise your system's documentation to know which library implements them.

Tested compilers
Boost.Interprocess has been tested in the following compilers/platforms:

• Visual >= 7.1

• GCC >= 4.1

• Intel 11

2

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/date_time/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Quick Guide for the Impatient

Using shared memory as a pool of unnamed memory blocks
You can just allocate a portion of a shared memory segment, copy the message to that buffer, send the offset of that portion of shared
memory to another process, and you are done. Let's see the example:

#include <boost/interprocess/managed_shared_memory.hpp>
#include <cstdlib> //std::system
#include <sstream>

int main (int argc, char *argv[])
{

using namespace boost::interprocess;
if(argc == 1){ //Parent process

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create a managed shared memory segment
managed_shared_memory segment(create_only, "MySharedMemory", 65536);

//Allocate a portion of the segment (raw memory)
managed_shared_memory::size_type free_memory = segment.get_free_memory();
void * shptr = segment.allocate(1024/*bytes to allocate*/);

//Check invariant
if(free_memory <= segment.get_free_memory())

return 1;

//An handle from the base address can identify any byte of the shared
//memory segment even if it is mapped in different base addresses
managed_shared_memory::handle_t handle = segment.get_handle_from_address(shptr);
std::stringstream s;
s << argv[0] << " " << handle;
s << std::ends;
//Launch child process
if(0 != std::system(s.str().c_str()))

return 1;
//Check memory has been freed
if(free_memory != segment.get_free_memory())

return 1;
}
else{

//Open managed segment
managed_shared_memory segment(open_only, "MySharedMemory");

//An handle from the base address can identify any byte of the shared
//memory segment even if it is mapped in different base addresses
managed_shared_memory::handle_t handle = 0;

//Obtain handle value
std::stringstream s; s << argv[1]; s >> handle;

//Get buffer local address from handle
void *msg = segment.get_address_from_handle(handle);

3

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Deallocate previously allocated memory
segment.deallocate(msg);

}
return 0;

}

Creating named shared memory objects
You want to create objects in a shared memory segment, giving a string name to them so that any other process can find, use and
delete them from the segment when the objects are not needed anymore. Example:

#include <boost/interprocess/managed_shared_memory.hpp>
#include <cstdlib> //std::system
#include <cstddef>
#include <cassert>
#include <utility>

int main(int argc, char *argv[])
{

using namespace boost::interprocess;
typedef std::pair<double, int> MyType;

if(argc == 1){ //Parent process
//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Construct managed shared memory
managed_shared_memory segment(create_only, "MySharedMemory", 65536);

//Create an object of MyType initialized to {0.0, 0}
MyType *instance = segment.construct<MyType>

("MyType instance") //name of the object
(0.0, 0); //ctor first argument

//Create an array of 10 elements of MyType initialized to {0.0, 0}
MyType *array = segment.construct<MyType>

("MyType array") //name of the object
[10] //number of elements
(0.0, 0); //Same two ctor arguments for all objects

//Create an array of 3 elements of MyType initializing each one
//to a different value {0.0, 0}, {1.0, 1}, {2.0, 2}...
float float_initializer[3] = { 0.0, 1.0, 2.0 };
int int_initializer[3] = { 0, 1, 2 };

MyType *array_it = segment.construct_it<MyType>
("MyType array from it") //name of the object
[3] //number of elements
(&float_initializer[0] //Iterator for the 1st ctor argument
, &int_initializer[0]); //Iterator for the 2nd ctor argument

//Launch child process
std::string s(argv[0]); s += " child ";
if(0 != std::system(s.c_str()))

return 1;

4

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Check child has destroyed all objects
if(segment.find<MyType>("MyType array").first ||

segment.find<MyType>("MyType instance").first ||
segment.find<MyType>("MyType array from it").first)
return 1;

}
else{

//Open managed shared memory
managed_shared_memory segment(open_only, "MySharedMemory");

std::pair<MyType*, managed_shared_memory::size_type> res;

//Find the array
res = segment.find<MyType> ("MyType array");
//Length should be 10
if(res.second != 10) return 1;

//Find the object
res = segment.find<MyType> ("MyType instance");
//Length should be 1
if(res.second != 1) return 1;

//Find the array constructed from iterators
res = segment.find<MyType> ("MyType array from it");
//Length should be 3
if(res.second != 3) return 1;

//We're done, delete all the objects
segment.destroy<MyType>("MyType array");
segment.destroy<MyType>("MyType instance");
segment.destroy<MyType>("MyType array from it");

}
return 0;

}

Using an offset smart pointer for shared memory
Boost.Interprocess offers offset_ptr smart pointer family as an offset pointer that stores the distance between the address of the
offset pointer itself and the address of the pointed object. When offset_ptr is placed in a shared memory segment, it can point safely
objects stored in the same shared memory segment, even if the segment is mapped in different base addresses in different processes.

This allows placing objects with pointer members in shared memory. For example, if we want to create a linked list in shared memory:

5

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/offset_ptr.hpp>

using namespace boost::interprocess;

//Shared memory linked list node
struct list_node
{

offset_ptr<list_node> next;
int value;

};

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create shared memory
managed_shared_memory segment(create_only,

"MySharedMemory", //segment name
65536);

//Create linked list with 10 nodes in shared memory
offset_ptr<list_node> prev = 0, current, first;

int i;
for(i = 0; i < 10; ++i, prev = current){

current = static_cast<list_node*>(segment.allocate(sizeof(list_node)));
current->value = i;
current->next = 0;

if(!prev)
first = current;

else
prev->next = current;

}

//Communicate list to other processes
//. . .
//When done, destroy list
for(current = first; current; /**/){

prev = current;
current = current->next;
segment.deallocate(prev.get());

}
return 0;

}

To help with basic data structures, Boost.Interprocess offers containers like vector, list, map, so you can avoid these manual data
structures just like with standard containers.

Creating vectors in shared memory
Boost.Interprocess allows creating complex objects in shared memory and memory mapped files. For example, we can construct
STL-like containers in shared memory. To do this, we just need to create a special (managed) shared memory segment, declare a
Boost.Interprocess allocator and construct the vector in shared memory just if it was any other object.

6

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The class that allows this complex structures in shared memory is called boost::interprocess::managed_shared_memory
and it's easy to use. Just execute this example without arguments:

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/containers/vector.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <string>
#include <cstdlib> //std::system

using namespace boost::interprocess;

//Define an STL compatible allocator of ints that allocates from the managed_shared_memory.
//This allocator will allow placing containers in the segment
typedef allocator<int, managed_shared_memory::segment_manager> ShmemAllocator;

//Alias a vector that uses the previous STL-like allocator so that allocates
//its values from the segment
typedef vector<int, ShmemAllocator> MyVector;

//Main function. For parent process argc == 1, for child process argc == 2
int main(int argc, char *argv[])
{

if(argc == 1){ //Parent process
//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create a new segment with given name and size
managed_shared_memory segment(create_only, "MySharedMemory", 65536);

//Initialize shared memory STL-compatible allocator
const ShmemAllocator alloc_inst (segment.get_segment_manager());

//Construct a vector named "MyVector" in shared memory with argument alloc_inst
MyVector *myvector = segment.construct<MyVector>("MyVector")(alloc_inst);

for(int i = 0; i < 100; ++i) //Insert data in the vector
myvector->push_back(i);

//Launch child process
std::string s(argv[0]); s += " child ";
if(0 != std::system(s.c_str()))

return 1;

//Check child has destroyed the vector
if(segment.find<MyVector>("MyVector").first)

return 1;
}
else{ //Child process

//Open the managed segment
managed_shared_memory segment(open_only, "MySharedMemory");

//Find the vector using the c-string name
MyVector *myvector = segment.find<MyVector>("MyVector").first;

//Use vector in reverse order
std::sort(myvector->rbegin(), myvector->rend());

7

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//When done, destroy the vector from the segment
segment.destroy<MyVector>("MyVector");

}

return 0;
};

The parent process will create an special shared memory class that allows easy construction of many complex data structures associated
with a name. The parent process executes the same program with an additional argument so the child process opens the shared
memory and uses the vector and erases it.

Creating maps in shared memory
Just like a vector, Boost.Interprocess allows creating maps in shared memory and memory mapped files. The only difference is
that like standard associative containers, Boost.Interprocess's map needs also the comparison functor when an allocator is passed
in the constructor:

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/containers/map.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <functional>
#include <utility>

int main ()
{

using namespace boost::interprocess;

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Shared memory front-end that is able to construct objects
//associated with a c-string. Erase previous shared memory with the name
//to be used and create the memory segment at the specified address and initialize resources
managed_shared_memory segment

(create_only
,"MySharedMemory" //segment name
,65536); //segment size in bytes

//Note that map<Key, MappedType>'s value_type is std::pair<const Key, MappedType>,
//so the allocator must allocate that pair.
typedef int KeyType;
typedef float MappedType;
typedef std::pair<const int, float> ValueType;

//Alias an STL compatible allocator of for the map.
//This allocator will allow to place containers
//in managed shared memory segments
typedef allocator<ValueType, managed_shared_memory::segment_manager>

ShmemAllocator;

//Alias a map of ints that uses the previous STL-like allocator.
//Note that the third parameter argument is the ordering function
//of the map, just like with std::map, used to compare the keys.
typedef map<KeyType, MappedType, std::less<KeyType>, ShmemAllocator> MyMap;

//Initialize the shared memory STL-compatible allocator
ShmemAllocator alloc_inst (segment.get_segment_manager());

8

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Construct a shared memory map.
//Note that the first parameter is the comparison function,
//and the second one the allocator.
//This the same signature as std::map's constructor taking an allocator
MyMap *mymap =

segment.construct<MyMap>("MyMap") //object name
(std::less<int>() //first ctor parameter
,alloc_inst); //second ctor parameter

//Insert data in the map
for(int i = 0; i < 100; ++i){

mymap->insert(std::pair<const int, float>(i, (float)i));
}
return 0;

}

For a more advanced example including containers of containers, see the section Containers of containers.

9

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Some basic explanations

Processes And Threads
Boost.Interprocess does not work only with processes but also with threads. Boost.Interprocess synchronization mechanisms can
synchronize threads from different processes, but also threads from the same process.

Sharing information between processes
In the traditional programming model an operating system has multiple processes running and each process has its own address
space. To share information between processes we have several alternatives:

• Two processes share information using a file. To access to the data, each process uses the usual file read/write mechanisms. When
updating/reading a file shared between processes, we need some sort of synchronization, to protect readers from writers.

• Two processes share information that resides in the kernel of the operating system. This is the case, for example, of traditional
message queues. The synchronization is guaranteed by the operating system kernel.

• Two processes can share a memory region. This is the case of classical shared memory or memory mapped files. Once the processes
set up the memory region, the processes can read/write the data like any other memory segment without calling the operating
system's kernel. This also requires some kind of manual synchronization between processes.

Persistence Of Interprocess Mechanisms
One of the biggest issues with interprocess communication mechanisms is the lifetime of the interprocess communication mechanism.
It's important to know when an interprocess communication mechanism disappears from the system. In Boost.Interprocess, we can
have 3 types of persistence:

• Process-persistence: The mechanism lasts until all the processes that have opened the mechanism close it, exit or crash.

• Kernel-persistence: The mechanism exists until the kernel of the operating system reboots or the mechanism is explicitly deleted.

• Filesystem-persistence: The mechanism exists until the mechanism is explicitly deleted.

Some native POSIX and Windows IPC mechanisms have different persistence so it's difficult to achieve portability between Windows
and POSIX native mechanisms. Boost.Interprocess classes have the following persistence:

10

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 1. Boost.Interprocess Persistence Table

PersistenceMechanism

Kernel or FilesystemShared memory

FilesystemMemory mapped file

ProcessProcess-shared mutex types

ProcessProcess-shared semaphore

ProcessProcess-shared condition

ProcessFile lock

Kernel or FilesystemMessage queue

Kernel or FilesystemNamed mutex

Kernel or FilesystemNamed semaphore

Kernel or FilesystemNamed condition

As you can see, Boost.Interprocess defines some mechanisms with "Kernel or Filesystem" persistence. This is because POSIX allows
this possibility to native interprocess communication implementations. One could, for example, implement shared memory using
memory mapped files and obtain filesystem persistence (for example, there is no proper known way to emulate kernel persistence
with a user library for Windows shared memory using native shared memory, or process persistence for POSIX shared memory, so
the only portable way is to define "Kernel or Filesystem" persistence).

Names Of Interprocess Mechanisms
Some interprocess mechanisms are anonymous objects created in shared memory or memory-mapped files but other interprocess
mechanisms need a name or identifier so that two unrelated processes can use the same interprocess mechanism object. Examples
of this are shared memory, named mutexes and named semaphores (for example, native windows CreateMutex/CreateSemaphore
API family).

The name used to identify an interprocess mechanism is not portable, even between UNIX systems. For this reason, Boost.Interprocess
limits this name to a C++ variable identifier or keyword:

• Starts with a letter, lowercase or uppercase, such as a letter from a to z or from A to Z. Examples: Sharedmemory, sharedmemory,
sHaReDmEmOrY...

• Can include letters, underscore, or digits. Examples: shm1, shm2and3, ShM3plus4...

Constructors, destructors and lifetime of Interprocess named
resources
Named Boost.Interprocess resources (shared memory, memory mapped files, named mutexes/conditions/semaphores) have kernel
or filesystem persistency. This means that even if all processes that have opened those resources end, the resource will still be accessible
to be opened again and the resource can only be destructed via an explicit to their static member remove function. This behavior
can be easily understood, since it's the same mechanism used by functions controlling file opening/creation/erasure:

11

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 2. Boost.Interprocess-Filesystem Analogy

Corresponding POSIX operationCorresponding std fileNamed Interprocess resource

openstd::fstream constructorConstructor

closestd::fstream destructorDestructor

unlinkNone. std::removeMember remove

Now the correspondence between POSIX and Boost.Interprocess regarding shared memory and named semaphores:

Table 3. Boost.Interprocess-POSIX shared memory

POSIX operationshared_memory_object operation

shm_openConstructor

closeDestructor

shm_unlinkMember remove

Table 4. Boost.Interprocess-POSIX named semaphore

POSIX operationnamed_semaphore operation

sem_openConstructor

closeDestructor

sem_unlinkMember remove

The most important property is that destructors of named resources don't remove the resource from the system, they only liberate
resources allocated by the system for use by the process for the named resource. To remove the resource from the system the
programmer must use remove.

Permissions
Named resources offered by Boost.Interprocess must cope with platform-dependant permission issues also present when creating
files. If a programmer wants to shared shared memory, memory mapped files or named synchronization mechanisms (mutexes,
semaphores, etc...) between users, it's necessary to specify those permissions. Sadly, traditional UNIX and Windows permissions
are very different and Boost.Interprocess does not try to standardize permissions, but does not ignore them.

All named resource creation functions take an optional permissions object that can be configured with platform-dependant
permissions.

Since each mechanism can be emulated through diferent mechanisms (a semaphore might be implement using mapped files or native
semaphores) permissions types could vary when the implementation of a named resource changes (eg.: in Windows mutexes require
synchronize permissions, but that's not the case of files). To avoid this, Boost.Interprocess relies on file-like permissions,
requiring file read-write-delete permissions to open named synchronization mechanisms (mutex, semaphores, etc.) and appropiate
read or read-write-delete permissions for shared memory. This approach has two advantages: it's similar to the UNIX philosophy
and the programmer does not need to know how the named resource is implemented.

12

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Sharing memory between processes

Shared memory

What is shared memory?

Shared memory is the fastest interprocess communication mechanism. The operating system maps a memory segment in the address
space of several processes, so that several processes can read and write in that memory segment without calling operating system
functions. However, we need some kind of synchronization between processes that read and write shared memory.

Consider what happens when a server process wants to send an HTML file to a client process that resides in the same machine using
network mechanisms:

• The server must read the file to memory and pass it to the network functions, that copy that memory to the OS's internal memory.

• The client uses the network functions to copy the data from the OS's internal memory to its own memory.

As we can see, there are two copies, one from memory to the network and another one from the network to memory. And those
copies are made using operating system calls that normally are expensive. Shared memory avoids this overhead, but we need to
synchronize both processes:

• The server maps a shared memory in its address space and also gets access to a synchronization mechanism. The server obtains
exclusive access to the memory using the synchronization mechanism and copies the file to memory.

• The client maps the shared memory in its address space. Waits until the server releases the exclusive access and uses the data.

Using shared memory, we can avoid two data copies, but we have to synchronize the access to the shared memory segment.

Creating memory segments that can be shared between processes

To use shared memory, we have to perform 2 basic steps:

• Request to the operating system a memory segment that can be shared between processes. The user can create/destroy/open this
memory using a shared memory object: An object that represents memory that can be mapped concurrently into the address
space of more than one process..

• Associate a part of that memory or the whole memory with the address space of the calling process. The operating system looks
for a big enough memory address range in the calling process' address space and marks that address range as an special range.
Changes in that address range are automatically seen by other process that also have mapped the same shared memory object.

Once the two steps have been successfully completed, the process can start writing to and reading from the address space to send to
and receive data from other processes. Now, let's see how can we do this using Boost.Interprocess:

Header

To manage shared memory, you just need to include the following header:

#include <boost/interprocess/shared_memory_object.hpp>

Creating shared memory segments

As we've mentioned we have to use the shared_memory_object class to create, open and destroy shared memory segments that
can be mapped by several processes. We can specify the access mode of that shared memory object (read only or read-write), just
as if it was a file:

• Create a shared memory segment. Throws if already created:

13

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using boost::interprocess;
shared_memory_object shm_obj

(create_only //only create
,"shared_memory" //name
,read_write //read-write mode
);

• To open or create a shared memory segment:

using boost::interprocess;
shared_memory_object shm_obj

(open_or_create //open or create
,"shared_memory" //name
,read_only //read-only mode
);

• To only open a shared memory segment. Throws if does not exist:

using boost::interprocess;
shared_memory_object shm_obj

(open_only //only open
,"shared_memory" //name
,read_write //read-write mode
);

When a shared memory object is created, its size is 0. To set the size of the shared memory, the user must use the truncate function
call, in a shared memory that has been opened with read-write attributes:

shm_obj.truncate(10000);

As shared memory has kernel or filesystem persistence, the user must explicitly destroy it. The remove operation might fail returning
false if the shared memory does not exist, the file is open or the file is still memory mapped by other processes:

using boost::interprocess;
shared_memory_object::remove("shared_memory");

For more details regarding shared_memory_object see the boost::interprocess::shared_memory_object class reference.

Mapping Shared Memory Segments

Once created or opened, a process just has to map the shared memory object in the process' address space. The user can map the
whole shared memory or just part of it. The mapping process is done using the mapped_region class. The class represents a memory
region that has been mapped from a shared memory or from other devices that have also mapping capabilities (for example, files).
A mapped_region can be created from any memory_mappable object and as you might imagine, shared_memory_object is a
memory_mappable object:

14

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using boost::interprocess;
std::size_t ShmSize = ...

//Map the second half of the memory
mapped_region region

(shm //Memory-mappable object
, read_write //Access mode
, ShmSize/2 //Offset from the beginning of shm
, ShmSize-ShmSize/2 //Length of the region
);

//Get the address of the region
region.get_address();

//Get the size of the region
region.get_size();

The user can specify the offset from the mappable object where the mapped region should start and the size of the mapped region.
If no offset or size is specified, the whole mappable object (in this case, shared memory) is mapped. If the offset is specified, but
not the size, the mapped region covers from the offset until the end of the mappable object.

For more details regarding mapped_region see the boost::interprocess::mapped_region class reference.

A Simple Example

Let's see a simple example of shared memory use. A server process creates a shared memory object, maps it and initializes all the
bytes to a value. After that, a client process opens the shared memory, maps it, and checks that the data is correctly initialized:

15

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/shared_memory_object.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <cstring>
#include <cstdlib>
#include <string>

int main(int argc, char *argv[])
{

using namespace boost::interprocess;

if(argc == 1){ //Parent process
//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create a shared memory object.
shared_memory_object shm (create_only, "MySharedMemory", read_write);

//Set size
shm.truncate(1000);

//Map the whole shared memory in this process
mapped_region region(shm, read_write);

//Write all the memory to 1
std::memset(region.get_address(), 1, region.get_size());

//Launch child process
std::string s(argv[0]); s += " child ";
if(0 != std::system(s.c_str()))

return 1;
}
else{

//Open already created shared memory object.
shared_memory_object shm (open_only, "MySharedMemory", read_only);

//Map the whole shared memory in this process
mapped_region region(shm, read_only);

//Check that memory was initialized to 1
char *mem = static_cast<char*>(region.get_address());
for(std::size_t i = 0; i < region.get_size(); ++i)

if(*mem++ != 1)
return 1; //Error checking memory

}
return 0;

}

Emulation for systems without shared memory objects

Boost.Interprocess provides portable shared memory in terms of POSIX semantics. Some operating systems don't support shared
memory as defined by POSIX:

• Windows operating systems provide shared memory using memory backed by the paging file but the lifetime semantics are different
from the ones defined by POSIX (see Native windows shared memory section for more information).

• Some UNIX systems don't fully support POSIX shared memory objects at all.

16

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

In those platforms, shared memory is emulated with mapped files created in a "boost_interprocess" folder created in a temporary
files directory. In Windows platforms, if "Common AppData" key is present in the registry, "boost_interprocess" folder is created
in that directory (in XP usually "C:\Documents and Settings\All Users\Application Data" and in Vista "C:\ProgramData"). For
Windows platforms without that registry key and Unix systems, shared memory is created in the system temporary files directory
("/tmp" or similar).

Because of this emulation, shared memory has filesystem lifetime in some of those systems.

Removing shared memory

shared_memory_object provides a static remove function to remove a shared memory objects.

This function can fail if the shared memory objects does not exist or it's opened by another process. Note that this function is similar
to the standard C int remove(const char *path) function. In UNIX systems, shared_memory_object::remove calls
shm_unlink:

• The function will remove the name of the shared memory object named by the string pointed to by name.

• If one or more references to the shared memory object exist when is unlinked, the name will be removed before the function returns,
but the removal of the memory object contents will be postponed until all open and map references to the shared memory object
have been removed.

• Even if the object continues to exist after the last function call, reuse of the name will subsequently cause the creation of a
boost::interprocess::shared_memory_object instance to behave as if no shared memory object of this name exists (that
is, trying to open an object with that name will fail and an object of the same name can be created again).

In Windows operating systems, current version supports an usually acceptable emulation of the UNIX unlink behaviour: the file is
renamed with a random name and marked as to be deleted when the last open handle is closed.

Anonymous shared memory for UNIX systems

Creating a shared memory segment and mapping it can be a bit tedious when several processes are involved. When processes are
related via fork() operating system call in UNIX systems a simpler method is available using anonymous shared memory.

This feature has been implemented in UNIX systems mapping the device \dev\zero or just using the MAP_ANONYMOUS in a POSIX
conformant mmap system call.

This feature is wrapped in Boost.Interprocess using the anonymous_shared_memory() function, which returns a mapped_region
object holding an anonymous shared memory segment that can be shared by related processes.

Here is an example:

17

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/anonymous_shared_memory.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <iostream>
#include <cstring>

int main ()
{

using namespace boost::interprocess;
try{

//Create an anonymous shared memory segment with size 1000
mapped_region region(anonymous_shared_memory(1000));

//Write all the memory to 1
std::memset(region.get_address(), 1, region.get_size());

//The segment is unmapped when "region" goes out of scope
}
catch(interprocess_exception &ex){

std::cout << ex.what() << std::endl;
return 1;

}
return 0;

}

Once the segment is created, a fork() call can be used so that region is used to communicate two related processes.

Native windows shared memory

Windows operating system also offers shared memory, but the lifetime of this shared memory is very different to kernel or filesystem
lifetime. The shared memory is created backed by the pagefile and it's automatically destroyed when the last process attached to the
shared memory is destroyed.

Because of this reason, there is no effective way to simulate kernel or filesystem persistence using native windows shared memory
and Boost.Interprocess emulates shared memory using memory mapped files. This assures portability between POSIX and Windows
operating systems.

However, accessing native windows shared memory is a common request of Boost.Interprocess users because they want to access
to shared memory created with other process that don't use Boost.Interprocess. In order to manage the native windows shared
memory Boost.Interprocess offers the windows_shared_memory class.

Windows shared memory creation is a bit different from portable shared memory creation: the size of the segment must be specified
when creating the object and can't be specified through truncate like with the shared memory object. Take in care that when the
last process attached to a shared memory is destroyed the shared memory is destroyed so there is no persistency with native
windows shared memory.

Sharing memory between services and user applications is also different. To share memory between services and user applications
the name of the shared memory must start with the global namespace prefix "Global\\". This global namespace enables processes
on multiple client sessions to communicate with a service application. The server component can create the shared memory in the
global namespace. Then a client session can use the "Global" prefix to open that memory.

The creation of a shared memory object in the global namespace from a session other than session zero is a privileged operation.

Let's repeat the same example presented for the portable shared memory object: A server process creates a shared memory object,
maps it and initializes all the bytes to a value. After that, a client process opens the shared memory, maps it, and checks that the data
is correctly initialized. Take in care that if the server exits before the client connects to the shared memory the client connection
will fail, because the shared memory segment is destroyed when no proces is attached to the memory.

This is the server process:

18

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/windows_shared_memory.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <cstring>
#include <cstdlib>
#include <string>

int main(int argc, char *argv[])
{

using namespace boost::interprocess;

if(argc == 1){ //Parent process
//Create a native windows shared memory object.
windows_shared_memory shm (create_only, "MySharedMemory", read_write, 1000);

//Map the whole shared memory in this process
mapped_region region(shm, read_write);

//Write all the memory to 1
std::memset(region.get_address(), 1, region.get_size());

//Launch child process
std::string s(argv[0]); s += " child ";
if(0 != std::system(s.c_str()))

return 1;
//windows_shared_memory is destroyed when the last attached process dies...

}
else{

//Open already created shared memory object.
windows_shared_memory shm (open_only, "MySharedMemory", read_only);

//Map the whole shared memory in this process
mapped_region region(shm, read_only);

//Check that memory was initialized to 1
char *mem = static_cast<char*>(region.get_address());
for(std::size_t i = 0; i < region.get_size(); ++i)

if(*mem++ != 1)
return 1; //Error checking memory

return 0;
}
return 0;

}

As we can see, native windows shared memory needs synchronization to make sure that the shared memory won't be destroyed before
the client is launched.

XSI shared memory

In many UNIX systems, the OS offers another shared memory memory mechanism, XSI (X/Open System Interfaces) shared memory
segments, also known as "System V" shared memory. This shared memory mechanism is quite popular and portable, and it's not
based in file-mapping semantics, but it uses special functions (shmget, shmat, shmdt, shmctl...).

Unlike POSIX shared memory segments, XSI shared memory segments are not identified by names but by 'keys' usually created
with ftok. XSI shared memory segments have kernel lifetime and must be explicitly removed. XSI shared memory does not support
copy-on-write and partial shared memory mapping but it supports anonymous shared memory.

Boost.Interprocess offers simple (xsi_shared_memory) and managed (managed_xsi_shared_memory) shared memory classes
to ease the use of XSI shared memory. It also wraps key creation with the simple xsi_key class.

19

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Let's repeat the same example presented for the portable shared memory object: A server process creates a shared memory object,
maps it and initializes all the bytes to a value. After that, a client process opens the shared memory, maps it, and checks that the data
is correctly initialized.

This is the server process:

#include <boost/interprocess/xsi_shared_memory.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <cstring>
#include <cstdlib>
#include <string>

using namespace boost::interprocess;

void remove_old_shared_memory(const xsi_key &key)
{

try{
xsi_shared_memory xsi(open_only, key);
xsi_shared_memory::remove(xsi.get_shmid());

}
catch(interprocess_exception &e){

if(e.get_error_code() != not_found_error)
throw;

}
}

int main(int argc, char *argv[])
{

if(argc == 1){ //Parent process
//Build XSI key (ftok based)
xsi_key key(argv[0], 1);

remove_old_shared_memory(key);

//Create a shared memory object.
xsi_shared_memory shm (create_only, key, 1000);

//Remove shared memory on destruction
struct shm_remove
{

int shmid_;
shm_remove(int shmid) : shmid_(shmid){}
~shm_remove(){ xsi_shared_memory::remove(shmid_); }

} remover(shm.get_shmid());

//Map the whole shared memory in this process
mapped_region region(shm, read_write);

//Write all the memory to 1
std::memset(region.get_address(), 1, region.get_size());

//Launch child process
std::string s(argv[0]); s += " child ";
if(0 != std::system(s.c_str()))

return 1;
}
else{

//Build XSI key (ftok based)
xsi_key key(argv[0], 1);

//Create a shared memory object.
xsi_shared_memory shm (open_only, key);

20

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Map the whole shared memory in this process
mapped_region region(shm, read_only);

//Check that memory was initialized to 1
char *mem = static_cast<char*>(region.get_address());
for(std::size_t i = 0; i < region.get_size(); ++i)

if(*mem++ != 1)
return 1; //Error checking memory

}
return 0;

}

Memory Mapped Files

What is a memory mapped file?

File mapping is the association of a file's contents with a portion of the address space of a process. The system creates a file mapping
to associate the file and the address space of the process. A mapped region is the portion of address space that the process uses to
access the file's contents. A single file mapping can have several mapped regions, so that the user can associate parts of the file with
the address space of the process without mapping the entire file in the address space, since the file can be bigger than the whole address
space of the process (a 9GB DVD image file in a usual 32 bit systems). Processes read from and write to the file using pointers, just
like with dynamic memory. File mapping has the following advantages:

• Uniform resource use. Files and memory can be treated using the same functions.

• Automatic file data synchronization and cache from the OS.

• Reuse of C++ utilities (STL containers, algorithms) in files.

• Shared memory between two or more applications.

• Allows efficient work with a large files, without mapping the whole file into memory

• If several processes use the same file mapping to create mapped regions of a file, each process' views contain identical copies of
the file on disk.

File mapping is not only used for interprocess communication, it can be used also to simplify file usage, so the user does not need
to use file-management functions to write the file. The user just writes data to the process memory, and the operating systems dumps
the data to the file.

When two processes map the same file in memory, the memory that one process writes is seen by another process, so memory
mapped files can be used as an interprocess communication mechanism. We can say that memory-mapped files offer the same inter-
process communication services as shared memory with the addition of filesystem persistence. However, as the operating system
has to synchronize the file contents with the memory contents, memory-mapped files are not as fast as shared memory.

Using mapped files

To use memory-mapped files, we have to perform 2 basic steps:

• Create a mappable object that represent an already created file of the filesystem. This object will be used to create multiple mapped
regions of the the file.

• Associate the whole file or parts of the file with the address space of the calling process. The operating system looks for a big
enough memory address range in the calling process' address space and marks that address range as an special range. Changes in
that address range are automatically seen by other process that also have mapped the same file and those changes are also transferred
to the disk automatically.

21

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Once the two steps have been successfully completed, the process can start writing to and reading from the address space to send to
and receive data from other processes and synchronize the file's contents with the changes made to the mapped region. Now, let's
see how can we do this using Boost.Interprocess:

Header

To manage mapped files, you just need to include the following header:

#include <boost/interprocess/file_mapping.hpp>

Creating a file mapping

First, we have to link a file's contents with the process' address space. To do this, we have to create a mappable object that represents
that file. This is achieved in Boost.Interprocess creating a file_mapping object:

using boost::interprocess;
file_mapping m_file

("/usr/home/file" //filename
,read_write //read-write mode
);

Now we can use the newly created object to create mapped regions. For more details regarding this class see the boost::inter-
process::file_mapping class reference.

Mapping File's Contents In Memory

After creating a file mapping, a process just has to map the shared memory in the process' address space. The user can map the whole
shared memory or just part of it. The mapping process is done using the mapped_region class. as we have said before The class
represents a memory region that has been mapped from a shared memory or from other devices that have also mapping capabilities:

using boost::interprocess;
std::size_t FileSize = ...

//Map the second half of the file
mapped_region region

(m_file //Memory-mappable object
, read_write //Access mode
, FileSize/2 //Offset from the beginning of shm
, FileSize-FileSize/2 //Length of the region
);

//Get the address of the region
region.get_address();

//Get the size of the region
region.get_size();

The user can specify the offset from the file where the mapped region should start and the size of the mapped region. If no offset or
size is specified, the whole file is mapped. If the offset is specified, but not the size, the mapped region covers from the offset until
the end of the file.

If several processes map the same file, and a process modifies a memory range from a mapped region that is also mapped by other
process, the changes are inmedially visible to other processes. However, the file contents on disk are not updated immediately, since
that would hurt performance (writing to disk is several times slower than writing to memory). If the user wants to make sure that
file's contents have been updated, it can flush a range from the view to disk. When the function returns, the flushing process has
startd but there is not guarantee that all data has been written to disk:

22

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Flush the whole region
region.flush();

//Flush from an offset until the end of the region
region.flush(offset);

//Flush a memory range starting on an offset
region.flush(offset, size);

Remember that the offset is not an offset on the file, but an offset in the mapped region. If a region covers the second half of a file
and flushes the whole region, only the half of the file is guaranteed to have been flushed.

For more details regarding mapped_region see the boost::interprocess::mapped_region class reference.

A Simple Example

Let's reproduce the same example described in the shared memory section, using memory mapped files. A server process creates a
shared memory segment, maps it and initializes all the bytes to a value. After that, a client process opens the shared memory, maps
it, and checks that the data is correctly initialized::

#include <boost/interprocess/file_mapping.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <cstring>
#include <cstddef>
#include <cstdlib>

int main(int argc, char *argv[])
{

using namespace boost::interprocess;

//Define file names
const char *FileName = "file.bin";
const std::size_t FileSize = 10000;

if(argc == 1){ //Parent process executes this
{ //Create a file

file_mapping::remove(FileName);
std::filebuf fbuf;
fbuf.open(FileName, std::ios_base::in | std::ios_base::out

| std::ios_base::trunc | std::ios_base::binary);
//Set the size
fbuf.pubseekoff(FileSize-1, std::ios_base::beg);
fbuf.sputc(0);

}

//Remove on exit
struct file_remove
{

file_remove(const char *FileName)
: FileName_(FileName) {}

~file_remove(){ file_mapping::remove(FileName_); }
const char *FileName_;

} remover(FileName);

//Create a file mapping
file_mapping m_file(FileName, read_write);

23

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Map the whole file with read-write permissions in this process
mapped_region region(m_file, read_write);

//Get the address of the mapped region
void * addr = region.get_address();
std::size_t size = region.get_size();

//Write all the memory to 1
std::memset(addr, 1, size);

//Launch child process
std::string s(argv[0]); s += " child ";
if(0 != std::system(s.c_str()))

return 1;
}
else{ //Child process executes this

{ //Open the file mapping and map it as read-only
file_mapping m_file(FileName, read_only);

mapped_region region(m_file, read_only);

//Get the address of the mapped region
void * addr = region.get_address();
std::size_t size = region.get_size();

//Check that memory was initialized to 1
const char *mem = static_cast<char*>(addr);
for(std::size_t i = 0; i < size; ++i)

if(*mem++ != 1)
return 1; //Error checking memory

}
{ //Now test it reading the file

std::filebuf fbuf;
fbuf.open(FileName, std::ios_base::in | std::ios_base::binary);

//Read it to memory
std::vector<char> vect(FileSize, 0);
fbuf.sgetn(&vect[0], std::streamsize(vect.size()));

//Check that memory was initialized to 1
const char *mem = static_cast<char*>(&vect[0]);
for(std::size_t i = 0; i < FileSize; ++i)

if(*mem++ != 1)
return 1; //Error checking memory

}
}

return 0;
}

More About Mapped Regions

One Class To Rule Them All

As we have seen, both shared_memory_object and file_mapping objects can be used to create mapped_region objects. A
mapped region created from a shared memory object or a file mapping are the same class and this has many advantages.

One can, for example, mix in STL containers mapped regions from shared memory and memory mapped files. Libraries that only
depend on mapped regions can be used to work with shared memory or memory mapped files without recompiling them.

24

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mapping Address In Several Processes

In the example we have seen, the file or shared memory contents are mapped to the address space of the process, but the address
was chosen by the operating system.

If several processes map the same file/shared memory, the mapping address will be surely different in each process. Since each
process might have used its address space in a different way (allocation of more or less dynamic memory, for example), there is no
guarantee that the file/shared memory is going to be mapped in the same address.

If two processes map the same object in different addresses, this invalidates the use of pointers in that memory, since the pointer
(which is an absolute address) would only make sense for the process that wrote it. The solution for this is to use offsets (distance)
between objects instead of pointers: If two objects are placed in the same shared memory segment by one process, the address of
each object will be different in another process but the distance between them (in bytes) will be the same.

So the first advice when mapping shared memory and memory mapped files is to avoid using raw pointers, unless you know what
you are doing. Use offsets between data or relative pointers to obtain pointer functionality when an object placed in a mapped region
wants to point to an object placed in the same mapped region. Boost.Interprocess offers a smart pointer called boost::interpro-
cess::offset_ptr that can be safely placed in shared memory and that can be used to point to another object placed in the same
shared memory / memory mapped file.

Fixed Address Mapping

The use of relative pointers is less efficient than using raw pointers, so if a user can succeed mapping the same file or shared memory
object in the same address in two processes, using raw pointers can be a good idea.

To map an object in a fixed address, the user can specify that address in the mapped region's constructor:

mapped_region region (shm //Map shared memory
, read_write //Map it as read-write
, 0 //Map from offset 0
, 0 //Map until the end
, (void*)0x3F000000 //Map it exactly there
);

However, the user can't map the region in any address, even if the address is not being used. The offset parameter that marks the
start of the mapping region is also limited. These limitations are explained in the next section.

Mapping Offset And Address Limitations

As mentioned, the user can't map the memory mappable object at any address and it can specify the offset of the mappable object
that is equivalent to the start of the mapping region to an arbitrary value. Most operating systems limit the mapping address and the
offset of the mappable object to a multiple of a value called page size. This is due to the fact that the operating system performs
mapping operations over whole pages.

If fixed mapping address is used, offset and address parameters should be multiples of that value. This value is, typically, 4KB or
8KB for 32 bit operating systems.

25

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//These might fail because the offset is not a multiple of the page size
//and we are using fixed address mapping
mapped_region region1(shm //Map shared memory

, read_write //Map it as read-write
, 1 //Map from offset 1
, 1 //Map 1 byte
, (void*)0x3F000000 //Aligned mapping address
);

//These might fail because the address is not a multiple of the page size
mapped_region region2(shm //Map shared memory

, read_write //Map it as read-write
, 0 //Map from offset 0
, 1 //Map 1 byte
, (void*)0x3F000001 //Not aligned mapping address
);

Since the operating system performs mapping operations over whole pages, specifying a mapping size or offset that are not multiple
of the page size will waste more resources than necessary. If the user specifies the following 1 byte mapping:

//Map one byte of the shared memory object.
//A whole memory page will be used for this.
mapped_region region (shm //Map shared memory

, read_write //Map it as read-write
, 0 //Map from offset 0
, 1 //Map 1 byte
);

The operating system will reserve a whole page that will not be reused by any other mapping so we are going to waste (page size -
1) bytes. If we want to use efficiently operating system resources, we should create regions whose size is a multiple of page size
bytes. If the user specifies the following two mapped regions for a file with which has 2*page_size bytes:

//Map the first quarter of the file
//This will use a whole page
mapped_region region1(shm //Map shared memory

, read_write //Map it as read-write
, 0 //Map from offset 0
, page_size/2 //Map page_size/2 bytes
);

//Map the rest of the file
//This will use a 2 pages
mapped_region region2(shm //Map shared memory

, read_write //Map it as read-write
, page_size/2 //Map from offset 0
, 3*page_size/2 //Map the rest of the shared memory
);

In this example, a half of the page is wasted in the first mapping and another half is wasted in the second because the offset is not a
multiple of the page size. The mapping with the minimum resource usage would be to map whole pages:

26

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Map the whole first half: uses 1 page
mapped_region region1(shm //Map shared memory

, read_write //Map it as read-write
, 0 //Map from offset 0
, page_size //Map a full page_size
);

//Map the second half: uses 1 page
mapped_region region2(shm //Map shared memory

, read_write //Map it as read-write
, page_size //Map from offset 0
, page_size //Map the rest
);

How can we obtain the page size? The mapped_region class has a static function that returns that value:

//Obtain the page size of the system
std::size_t page_size = mapped_region::get_page_size();

The operating system might also limit the number of mapped memory regions per process or per system.

Limitations When Constructing Objects In Mapped Regions
When two processes create a mapped region of the same mappable object, two processes can communicate writing and reading that
memory. A process could construct a C++ object in that memory so that the second process can use it. However, a mapped region
shared by multiple processes, can't hold any C++ object, because not every class is ready to be a process-shared object, specially, if
the mapped region is mapped in different address in each process.

Offset pointers instead of raw pointers

When placing objects in a mapped region and mapping that region in different address in every process, raw pointers are a problem
since they are only valid for the process that placed them there. To solve this, Boost.Interprocess offers a special smart pointer that
can be used instead of a raw pointer. So user classes containing raw pointers (or Boost smart pointers, that internally own a raw
pointer) can't be safely placed in a process shared mapped region. These pointers must be replaced with offset pointers, and these
pointers must point only to objects placed in the same mapped region if you want to use these shared objects from different processes.

Of course, a pointer placed in a mapped region shared between processes should only point to an object of that mapped region.
Otherwise, the pointer would point to an address that it's only valid one process and other processes may crash when accessing to
that address.

References forbidden

References suffer from the same problem as pointers (mainly because they are implemented as pointers). However, it is not possible
to create a fully workable smart reference currently in C++ (for example, operator .() can't be overloaded). Because of this, if
the user wants to put an object in shared memory, the object can't have any (smart or not) reference as a member.

References will only work if the mapped region is mapped in the same base address in all processes sharing a memory segment.
Like pointers, a reference placed in a mapped region should only point to an object of that mapped region.

Virtuality forbidden

The virtual table pointer and the virtual table are in the address space of the process that constructs the object, so if we place a class
with a virtual function or virtual base class, the virtual pointer placed in shared memory will be invalid for other processes and they
will crash.

This problem is very difficult to solve, since each process needs a different virtual table pointer and the object that contains that
pointer is shared across many processes. Even if we map the mapped region in the same address in every process, the virtual table

27

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

can be in a different address in every process. To enable virtual functions for objects shared between processes, deep compiler
changes are needed and virtual functions would suffer a performance hit. That's why Boost.Interprocess does not have any plan to
support virtual function and virtual inheritance in mapped regions shared between processes.

Be careful with static class members

Static members of classes are global objects shared by all instances of the class. Because of this, static members are implemented
as global variables in processes.

When constructing a class with static members, each process has its own copy of the static member, so updating a static member in
one process does not change the value of the static member the another process. So be careful with these classes. Static members
are not dangerous if they are just constant variables initialized when the process starts, but they don't change at all (for example,
when used like enums) and their value is the same for all processes.

28

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mapping Address Independent Pointer: offset_ptr
When creating shared memory and memory mapped files to communicate two processes the memory segment can be mapped in a
different address in each process:

#include<boost/interprocess/shared_memory_object.hpp>

// ...

using boost::interprocess;

//Open a shared memory segment
shared_memory_object shm_obj

(open_only //open or create
,"shared_memory" //name
,read_only //read-only mode
);

//Map the whole shared memory
mapped_region region

(shm //Memory-mappable object
, read_write //Access mode
);

//This address can be different in each process
void *addr = region.get_address();

This makes the creation of complex objects in mapped regions difficult: a C++ class instance placed in a mapped region might have
a pointer pointing to another object also placed in the mapped region. Since the pointer stores an absolute address, that address is
only valid for the process that placed the object there unless all processes map the mapped region in the same address.

To be able to simulate pointers in mapped regions, users must use offsets (distance between objects) instead of absolute addresses.
The offset between two objects in a mapped region is the same for any process that maps the mapped region, even if that region is
placed in different base addresses. To facilitate the use of offsets, Boost.Interprocess offers offset_ptr.

offset_ptr wraps all the background operations needed to offer a pointer-like interface. The class interface is inspired in Boost
Smart Pointers and this smart pointer stores the offset (distance in bytes) between the pointee's address and it's own this pointer.
Imagine a structure in a common 32 bit processor:

struct structure
{

int integer1; //The compiler places this at offset 0 in the structure
offset_ptr<int> ptr; //The compiler places this at offset 4 in the structure
int integer2; //The compiler places this at offset 8 in the structure

};

//...

structure s;

//Assign the address of "integer1" to "ptr".
//"ptr" will store internally "-4":
// (char*)&s.integer1 - (char*)&s.ptr;
s.ptr = &s.integer1;

//Assign the address of "integer2" to "ptr".
//"ptr" will store internally "4":
// (char*)&s.integer2 - (char*)&s.ptr;
s.ptr = &s.integer2;

29

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

One of the big problems of offset_ptr is the representation of the null pointer. The null pointer can't be safely represented like
an offset, since the absolute address 0 is always outside of the mapped region. Due to the fact that the segment can be mapped in a
different base address in each process the distance between the address 0 and offset_ptr is different for every process.

Some implementations choose the offset 0 (that is, an offset_ptr pointing to itself) as the null pointer pointer representation but
this is not valid for many use cases since many times structures like linked lists or nodes from STL containers point to themselves
(the end node in an empty container, for example) and 0 offset value is needed. An alternative is to store, in addition to the offset, a
boolean to indicate if the pointer is null. However, this increments the size of the pointer and hurts performance.

In consequence, offset_ptr defines offset 1 as the null pointer, meaning that this class can't point to the byte after its own this
pointer:

using namespace boost::interprocess;

offset_ptr<char> ptr;

//Pointing to the next byte of it's own address
//marks the smart pointer as null.
ptr = (char*)&ptr + 1;

//ptr is equal to null
assert(!ptr);

//This is the same as assigning the null value...
ptr = 0;

//ptr is also equal to null
assert(!ptr);

In practice, this limitation is not important, since a user almost never wants to point to this address.

offset_ptr offers all pointer-like operations and random_access_iterator typedefs, so it can be used in STL algorithms requiring
random access iterators and detected via traits. For more information about the members and operations of the class, see offset_ptr
reference.

30

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synchronization mechanisms

Synchronization mechanisms overview
As mentioned before, the ability to shared memory between processes through memory mapped files or shared memory objects is
not very useful if the access to that memory can't be effectively synchronized. This is the same problem that happens with thread-
synchronization mechanisms, where heap memory and global variables are shared between threads, but the access to these resources
needs to be synchronized typically through mutex and condition variables. Boost.Threads implements these synchronization utilities
between threads inside the same process. Boost.Interprocess implements similar mechanisms to synchronize threads from different
processes.

Named And Anonymous Synchronization Mechanisms

Boost.Interprocess presents two types of synchronization objects:

• Named utilities: When two processes want to create an object of such type, both processes must create or open an object using
the same name. This is similar to creating or opening files: a process creates a file with using a fstream with the name filename
and another process opens that file using another fstream with the same filename argument. Each process uses a different object
to access to the resource, but both processes are using the same underlying resource.

• Anonymous utilities: Since these utilities have no name, two processes must share the same object through shared memory or
memory mapped files. This is similar to traditional thread synchronization objects: Both processes share the same object. Unlike
thread synchronization, where global variables and heap memory is shared between threads of the same process, sharing objects
between two threads from different process can be only possible through mapped regions that map the same mappable resource
(for example, shared memory or memory mapped files).

Each type has it's own advantages and disadvantages:

• Named utilities are easier to handle for simple synchronization tasks, since both process don't have to create a shared memory
region and construct the synchronization mechanism there.

• Anonymous utilities can be serialized to disk when using memory mapped objects obtaining automatic persistence of synchroniz-
ation utilities. One could construct a synchronization utility in a memory mapped file, reboot the system, map the file again, and
use the synchronization utility again without any problem. This can't be achieved with named synchronization utilities.

The main interface difference between named and anonymous utilities are the constructors. Usually anonymous utilities have only
one constructor, whereas the named utilities have several constructors whose first argument is a special type that requests creation,
opening or opening or creation of the underlying resource:

using namespace boost::interprocess;

//Create the synchronization utility. If it previously
//exists, throws an error
NamedUtility(create_only, ...)

//Open the synchronization utility. If it does not previously
//exist, it's created.
NamedUtility(open_or_create, ...)

//Open the synchronization utility. If it does not previously
//exist, throws an error.
NamedUtility(open_only, ...)

On the other hand the anonymous synchronization utility can only be created and the processes must synchronize using other
mechanisms who creates the utility:

31

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using namespace boost::interprocess;

//Create the synchronization utility.
AnonymousUtility(...)

Types Of Synchronization Mechanisms

Apart from its named/anonymous nature, Boost.Interprocess presents the following synchronization utilities:

• Mutexes (named and anonymous)

• Condition variables (named and anonymous)

• Semaphores (named and anonymous)

• Upgradable mutexes

• File locks

Mutexes

What's A Mutex?

Mutex stands for mutual exclusion and it's the most basic form of synchronization between processes. Mutexes guarantee that only
one thread can lock a given mutex. If a code section is surrounded by a mutex locking and unlocking, it's guaranteed that only a
thread at a time executes that section of code. When that thread unlocks the mutex, other threads can enter to that code region:

//The mutex has been previously constructed

lock_the_mutex();

//This code will be executed only by one thread
//at a time.

unlock_the_mutex();

A mutex can also be recursive or non-recursive:

• Recursive mutexes can be locked several times by the same thread. To fully unlock the mutex, the thread has to unlock the mutex
the same times it has locked it.

• Non-recursive mutexes can't be locked several times by the same thread. If a mutex is locked twice by a thread, the result is un-
defined, it might throw an error or the thread could be blocked forever.

Mutex Operations

All the mutex types from Boost.Interprocess implement the following operations:

void lock()

Effects: The calling thread tries to obtain ownership of the mutex, and if another thread has ownership of the mutex, it waits until
it can obtain the ownership. If a thread takes ownership of the mutex the mutex must be unlocked by the same thread. If the mutex
supports recursive locking, the mutex must be unlocked the same number of times it is locked.

Throws: interprocess_exception on error.

32

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool try_lock()

Effects: The calling thread tries to obtain ownership of the mutex, and if another thread has ownership of the mutex returns immediately.
If the mutex supports recursive locking, the mutex must be unlocked the same number of times it is locked.

Returns: If the thread acquires ownership of the mutex, returns true, if the another thread has ownership of the mutex, returns false.

Throws: interprocess_exception on error.

bool timed_lock(const boost::posix_time::ptime &abs_time)

Effects: The calling thread will try to obtain exclusive ownership of the mutex if it can do so in until the specified time is reached.
If the mutex supports recursive locking, the mutex must be unlocked the same number of times it is locked.

Returns: If the thread acquires ownership of the mutex, returns true, if the timeout expires returns false.

Throws: interprocess_exception on error.

void unlock()

Precondition: The thread must have exclusive ownership of the mutex.

Effects: The calling thread releases the exclusive ownership of the mutex. If the mutex supports recursive locking, the mutex must
be unlocked the same number of times it is locked.

Throws: An exception derived from interprocess_exception on error.

Important

boost::posix_time::ptime absolute time points used by Boost.Interprocess synchronization mechanisms are
UTC time points, not local time points

Boost.Interprocess Mutex Types And Headers

Boost.Interprocess offers the following mutex types:

#include <boost/interprocess/sync/interprocess_mutex.hpp>

• interprocess_mutex: A non-recursive, anonymous mutex that can be placed in shared memory or memory mapped files.

#include <boost/interprocess/sync/interprocess_recursive_mutex.hpp>

• interprocess_recursive_mutex: A recursive, anonymous mutex that can be placed in shared memory or memory mapped
files.

#include <boost/interprocess/sync/named_mutex.hpp>

• named_mutex: A non-recursive, named mutex.

#include <boost/interprocess/sync/named_recursive_mutex.hpp>

• named_recursive_mutex: A recursive, named mutex.

33

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Scoped lock

It's very important to unlock a mutex after the process has read or written the data. This can be difficult when dealing with exceptions,
so usually mutexes are used with a scoped lock, a class that can guarantee that a mutex will always be unlocked even when an exception
occurs. To use a scoped lock just include:

#include <boost/interprocess/sync/scoped_lock.hpp>

Basically, a scoped lock calls unlock() in its destructor, and a mutex is always unlocked when an exception occurs. Scoped lock has
many constructors to lock, try_lock, timed_lock a mutex or not to lock it at all.

using namespace boost::interprocess;

//Let's create any mutex type:
MutexType mutex;

{
//This will lock the mutex
scoped_lock<MutexType> lock(mutex);

//Some code

//The mutex will be unlocked here
}

{
//This will try_lock the mutex
scoped_lock<MutexType> lock(mutex, try_to_lock);

//Check if the mutex has been successfully locked
if(lock){

//Some code
}

//If the mutex was locked it will be unlocked
}

{
boost::posix_time::ptime abs_time = ...

//This will timed_lock the mutex
scoped_lock<MutexType> lock(mutex, abs_time);

//Check if the mutex has been successfully locked
if(lock){

//Some code
}

//If the mutex was locked it will be unlocked
}

For more information, check the scoped_lock's reference.

Important

boost::posix_time::ptime absolute time points used by Boost.Interprocess synchronization mechanisms are
UTC time points, not local time points

34

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Anonymous mutex example

Imagine that two processes need to write traces to a cyclic buffer built in shared memory. Each process needs to obtain exclusive
access to the cyclic buffer, write the trace and continue.

To protect the cyclic buffer, we can store a process shared mutex in the cyclic buffer. Each process will lock the mutex before writing
the data and will write a flag when ends writing the traces (doc_anonymous_mutex_shared_data.hpp header):

#include <boost/interprocess/sync/interprocess_mutex.hpp>

struct shared_memory_log
{

enum { NumItems = 100 };
enum { LineSize = 100 };

shared_memory_log()
: current_line(0)
, end_a(false)
, end_b(false)

{}

//Mutex to protect access to the queue
boost::interprocess::interprocess_mutex mutex;

//Items to fill
char items[NumItems][LineSize];
int current_line;
bool end_a;
bool end_b;

};

This is the process main process. Creates the shared memory, constructs the cyclic buffer and start writing traces:

35

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/shared_memory_object.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>
#include "doc_anonymous_mutex_shared_data.hpp"
#include <iostream>
#include <cstdio>

using namespace boost::interprocess;

int main ()
{

try{
//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create a shared memory object.
shared_memory_object shm

(create_only //only create
,"MySharedMemory" //name
,read_write //read-write mode
);

//Set size
shm.truncate(sizeof(shared_memory_log));

//Map the whole shared memory in this process
mapped_region region

(shm //What to map
,read_write //Map it as read-write
);

//Get the address of the mapped region
void * addr = region.get_address();

//Construct the shared structure in memory
shared_memory_log * data = new (addr) shared_memory_log;

//Write some logs
for(int i = 0; i < shared_memory_log::NumItems; ++i){

//Lock the mutex
scoped_lock<interprocess_mutex> lock(data->mutex);
std::sprintf(data->items[(data->current_line++) % shared_memory_log::NumItems]

,"%s_%d", "process_a", i);
if(i == (shared_memory_log::NumItems-1))

data->end_a = true;
//Mutex is released here

}

//Wait until the other process ends
while(1){

scoped_lock<interprocess_mutex> lock(data->mutex);
if(data->end_b)

break;
}

}

36

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

catch(interprocess_exception &ex){
std::cout << ex.what() << std::endl;
return 1;

}
return 0;

}

The second process opens the shared memory, obtains access to the cyclic buffer and starts writing traces:

#include <boost/interprocess/shared_memory_object.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>
#include "doc_anonymous_mutex_shared_data.hpp"
#include <iostream>
#include <cstdio>

using namespace boost::interprocess;

int main ()
{

//Remove shared memory on destruction
struct shm_remove
{

~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }
} remover;

//Open the shared memory object.
shared_memory_object shm

(open_only //only create
,"MySharedMemory" //name
,read_write //read-write mode
);

//Map the whole shared memory in this process
mapped_region region

(shm //What to map
,read_write //Map it as read-write
);

//Get the address of the mapped region
void * addr = region.get_address();

//Construct the shared structure in memory
shared_memory_log * data = static_cast<shared_memory_log*>(addr);

//Write some logs
for(int i = 0; i < 100; ++i){

//Lock the mutex
scoped_lock<interprocess_mutex> lock(data->mutex);
std::sprintf(data->items[(data->current_line++) % shared_memory_log::NumItems]

,"%s_%d", "process_a", i);
if(i == (shared_memory_log::NumItems-1))

data->end_b = true;
//Mutex is released here

}

//Wait until the other process ends
while(1){

37

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

scoped_lock<interprocess_mutex> lock(data->mutex);
if(data->end_a)

break;
}
return 0;

}

As we can see, a mutex is useful to protect data but not to notify an event to another process. For this, we need a condition variable,
as we will see in the next section.

Named mutex example

Now imagine that two processes want to write a trace to a file. First they write their name, and after that they write the message.
Since the operating system can interrupt a process in any moment we can mix parts of the messages of both processes, so we need
a way to write the whole message to the file atomically. To achieve this, we can use a named mutex so that each process locks the
mutex before writing:

#include <boost/interprocess/sync/scoped_lock.hpp>
#include <boost/interprocess/sync/named_mutex.hpp>
#include <fstream>
#include <iostream>
#include <cstdio>

int main ()
{

using namespace boost::interprocess;
try{

struct file_remove
{

file_remove() { std::remove("file_name"); }
~file_remove(){ std::remove("file_name"); }

} file_remover;
struct mutex_remove
{

mutex_remove() { named_mutex::remove("fstream_named_mutex"); }
~mutex_remove(){ named_mutex::remove("fstream_named_mutex"); }

} remover;

//Open or create the named mutex
named_mutex mutex(open_or_create, "fstream_named_mutex");

std::ofstream file("file_name");

for(int i = 0; i < 10; ++i){

//Do some operations...

//Write to file atomically
scoped_lock<named_mutex> lock(mutex);
file << "Process name, ";
file << "This is iteration #" << i;
file << std::endl;

}
}
catch(interprocess_exception &ex){

std::cout << ex.what() << std::endl;
return 1;

}
return 0;

}

38

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Conditions

What's A Condition Variable?

In the previous example, a mutex is used to lock but we can't use it to wait efficiently until the condition to continue is met. A con-
dition variable can do two things:

• wait: The thread is blocked until some other thread notifies that it can continue because the condition that lead to waiting has
disappeared.

• notify: The thread sends a signal to one blocked thread or to all blocked threads to tell them that they the condition that provoked
their wait has disappeared.

Waiting in a condition variable is always associated with a mutex. The mutex must be locked prior to waiting on the condition. When
waiting on the condition variable, the thread unlocks the mutex and waits atomically.

When the thread returns from a wait function (because of a signal or a timeout, for example) the mutex object is again locked.

Boost.Interprocess Condition Types And Headers

Boost.Interprocess offers the following condition types:

#include <boost/interprocess/sync/interprocess_condition.hpp>

• interprocess_condition: An anonymous condition variable that can be placed in shared memory or memory mapped files
to be used with boost::interprocess::interprocess_mutex.

#include <boost/interprocess/sync/interprocess_condition_any.hpp>

• interprocess_condition_any: An anonymous condition variable that can be placed in shared memory or memory mapped
files to be used with any lock type.

#include <boost/interprocess/sync/named_condition.hpp>

• named_condition: A named condition variable to be used with named_mutex.

#include <boost/interprocess/sync/named_condition_any.hpp>

• named_condition: A named condition variable to be used with any lock type.

Named conditions are similar to anonymous conditions, but they are used in combination with named mutexes. Several times, we
don't want to store synchronization objects with the synchronized data:

• We want to change the synchronization method (from interprocess to intra-process, or without any synchronization) using the
same data. Storing the process-shared anonymous synchronization with the synchronized data would forbid this.

• We want to send the synchronized data through the network or any other communication method. Sending the process-shared
synchronization objects wouldn't have any sense.

Anonymous condition example

Imagine that a process that writes a trace to a simple shared memory buffer that another process prints one by one. The first process
writes the trace and waits until the other process prints the data. To achieve this, we can use two condition variables: the first one is
used to block the sender until the second process prints the message and the second one to block the receiver until the buffer has a
trace to print.

39

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The shared memory trace buffer (doc_anonymous_condition_shared_data.hpp):

#include <boost/interprocess/sync/interprocess_mutex.hpp>
#include <boost/interprocess/sync/interprocess_condition.hpp>

struct trace_queue
{

enum { LineSize = 100 };

trace_queue()
: message_in(false)

{}

//Mutex to protect access to the queue
boost::interprocess::interprocess_mutex mutex;

//Condition to wait when the queue is empty
boost::interprocess::interprocess_condition cond_empty;

//Condition to wait when the queue is full
boost::interprocess::interprocess_condition cond_full;

//Items to fill
char items[LineSize];

//Is there any message
bool message_in;

};

This is the process main process. Creates the shared memory, places there the buffer and starts writing messages one by one until it
writes "last message" to indicate that there are no more messages to print:

40

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/shared_memory_object.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>
#include <iostream>
#include <cstdio>
#include "doc_anonymous_condition_shared_data.hpp"

using namespace boost::interprocess;

int main ()
{

//Erase previous shared memory and schedule erasure on exit
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create a shared memory object.
shared_memory_object shm

(create_only //only create
,"MySharedMemory" //name
,read_write //read-write mode
);

try{
//Set size
shm.truncate(sizeof(trace_queue));

//Map the whole shared memory in this process
mapped_region region

(shm //What to map
,read_write //Map it as read-write
);

//Get the address of the mapped region
void * addr = region.get_address();

//Construct the shared structure in memory
trace_queue * data = new (addr) trace_queue;

const int NumMsg = 100;

for(int i = 0; i < NumMsg; ++i){
scoped_lock<interprocess_mutex> lock(data->mutex);
if(data->message_in){

data->cond_full.wait(lock);
}
if(i == (NumMsg-1))

std::sprintf(data->items, "%s", "last message");
else

std::sprintf(data->items, "%s_%d", "my_trace", i);

//Notify to the other process that there is a message
data->cond_empty.notify_one();

//Mark message buffer as full
data->message_in = true;

}
}
catch(interprocess_exception &ex){

41

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::cout << ex.what() << std::endl;
return 1;

}

return 0;
}

The second process opens the shared memory and prints each message until the "last message" message is received:

#include <boost/interprocess/shared_memory_object.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>
#include <iostream>
#include <cstring>
#include "doc_anonymous_condition_shared_data.hpp"

using namespace boost::interprocess;

int main ()
{

//Create a shared memory object.
shared_memory_object shm

(open_only //only create
,"MySharedMemory" //name
,read_write //read-write mode
);

try{
//Map the whole shared memory in this process
mapped_region region

(shm //What to map
,read_write //Map it as read-write
);

//Get the address of the mapped region
void * addr = region.get_address();

//Obtain a pointer to the shared structure
trace_queue * data = static_cast<trace_queue*>(addr);

//Print messages until the other process marks the end
bool end_loop = false;
do{

scoped_lock<interprocess_mutex> lock(data->mutex);
if(!data->message_in){

data->cond_empty.wait(lock);
}
if(std::strcmp(data->items, "last message") == 0){

end_loop = true;
}
else{

//Print the message
std::cout << data->items << std::endl;
//Notify the other process that the buffer is empty
data->message_in = false;
data->cond_full.notify_one();

}
}
while(!end_loop);

}
catch(interprocess_exception &ex){

42

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::cout << ex.what() << std::endl;
return 1;

}

return 0;
}

With condition variables, a process can block if it can't continue the work, and when the conditions to continue are met another
process can wake it.

Semaphores

What's A Semaphore?

A semaphore is a synchronization mechanism between processes based in an internal count that offers two basic operations:

• Wait: Tests the value of the semaphore count, and waits if the value is less than or equal than 0. Otherwise, decrements the sem-
aphore count.

• Post: Increments the semaphore count. If any process is blocked, one of those processes is awoken.

If the initial semaphore count is initialized to 1, a Wait operation is equivalent to a mutex locking and Post is equivalent to a mutex
unlocking. This type of semaphore is known as a binary semaphore.

Although semaphores can be used like mutexes, they have a unique feature: unlike mutexes, a Post operation need not be executed
by the same thread/process that executed the Wait operation.

Boost.Interprocess Semaphore Types And Headers

Boost.Interprocess offers the following semaphore types:

#include <boost/interprocess/sync/interprocess_semaphore.hpp>

• interprocess_semaphore: An anonymous semaphore that can be placed in shared memory or memory mapped files.

#include <boost/interprocess/sync/named_semaphore.hpp>

• named_semaphore: A named semaphore.

Anonymous semaphore example

We will implement an integer array in shared memory that will be used to transfer data from one process to another process. The
first process will write some integers to the array and the process will block if the array is full.

The second process will copy the transmitted data to its own buffer, blocking if there is no new data in the buffer.

This is the shared integer array (doc_anonymous_semaphore_shared_data.hpp):

43

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/sync/interprocess_semaphore.hpp>

struct shared_memory_buffer
{

enum { NumItems = 10 };

shared_memory_buffer()
: mutex(1), nempty(NumItems), nstored(0)

{}

//Semaphores to protect and synchronize access
boost::interprocess::interprocess_semaphore

mutex, nempty, nstored;

//Items to fill
int items[NumItems];

};

This is the process main process. Creates the shared memory, places there the integer array and starts integers one by one, blocking
if the array is full:

#include <boost/interprocess/shared_memory_object.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <iostream>
#include "doc_anonymous_semaphore_shared_data.hpp"

using namespace boost::interprocess;

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create a shared memory object.
shared_memory_object shm

(create_only //only create
,"MySharedMemory" //name
,read_write //read-write mode
);

//Set size
shm.truncate(sizeof(shared_memory_buffer));

//Map the whole shared memory in this process
mapped_region region

(shm //What to map
,read_write //Map it as read-write
);

//Get the address of the mapped region
void * addr = region.get_address();

//Construct the shared structure in memory
shared_memory_buffer * data = new (addr) shared_memory_buffer;

const int NumMsg = 100;

//Insert data in the array

44

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

for(int i = 0; i < NumMsg; ++i){
data->nempty.wait();
data->mutex.wait();
data->items[i % shared_memory_buffer::NumItems] = i;
data->mutex.post();
data->nstored.post();

}

return 0;
}

The second process opens the shared memory and copies the received integers to it's own buffer:

#include <boost/interprocess/shared_memory_object.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <iostream>
#include "doc_anonymous_semaphore_shared_data.hpp"

using namespace boost::interprocess;

int main ()
{

//Remove shared memory on destruction
struct shm_remove
{

~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }
} remover;

//Create a shared memory object.
shared_memory_object shm

(open_only //only create
,"MySharedMemory" //name
,read_write //read-write mode
);

//Map the whole shared memory in this process
mapped_region region

(shm //What to map
,read_write //Map it as read-write
);

//Get the address of the mapped region
void * addr = region.get_address();

//Obtain the shared structure
shared_memory_buffer * data = static_cast<shared_memory_buffer*>(addr);

const int NumMsg = 100;

int extracted_data [NumMsg];

//Extract the data
for(int i = 0; i < NumMsg; ++i){

data->nstored.wait();
data->mutex.wait();
extracted_data[i] = data->items[i % shared_memory_buffer::NumItems];
data->mutex.post();
data->nempty.post();

}
return 0;

}

45

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The same interprocess communication can be achieved with a condition variables and mutexes, but for several synchronization patterns,
a semaphore is more efficient than a mutex/condition combination.

Sharable and Upgradable Mutexes

What's a Sharable and an Upgradable Mutex?

Sharable and upgradable mutex are special mutex types that offers more locking possibilities than a normal mutex. Sometimes, we
can distinguish between reading the data and modifying the data. If just some threads need to modify the data, and a plain mutex
is used to protect the data from concurrent access, concurrency is pretty limited: two threads that only read the data will be serialized
instead of being executed concurrently.

If we allow concurrent access to threads that just read the data but we avoid concurrent access between threads that read and modify
or between threads that modify, we can increase performance. This is specially true in applications where data reading is more
common than data modification and the synchronized data reading code needs some time to execute. With a sharable mutex we can
acquire 2 lock types:

• Exclusive lock: Similar to a plain mutex. If a thread acquires an exclusive lock, no other thread can acquire any lock (exclusive
or other) until the exclusive lock is released. If any thread other has any lock other than exclusive, a thread trying to acquire an
exclusive lock will block. This lock will be acquired by threads that will modify the data.

• Sharable lock: If a thread acquires a sharable lock, other threads can't acquire the exclusive lock. If any thread has acquired the
exclusive lock a thread trying to acquire a sharable lock will block. This locking is executed by threads that just need to read the
data.

With an upgradable mutex we can acquire previous locks plus a new upgradable lock:

• Upgradable lock: Acquiring an upgradable lock is similar to acquiring a privileged sharable lock. If a thread acquires an upgradable
lock, other threads can acquire a sharable lock. If any thread has acquired the exclusive or upgradable lock a thread trying to acquire
an upgradable lock will block. A thread that has acquired an upgradable lock, is guaranteed to be able to acquire atomically an
exclusive lock when other threads that have acquired a sharable lock release it. This is used for a thread that maybe needs to
modify the data, but usually just needs to read the data. This thread acquires the upgradable lock and other threads can acquire
the sharable lock. If the upgradable thread reads the data and it has to modify it, the thread can be promoted to acquire the exclusive
lock: when all sharable threads have released the sharable lock, the upgradable lock is atomically promoted to an exclusive lock.
The newly promoted thread can modify the data and it can be sure that no other thread has modified it while doing the transition.
Only 1 thread can acquire the upgradable (privileged reader) lock.

To sum up:

Table 5. Locking Possibilities for a Sharable Mutex

Other threads can acquire...If a thread has acquired the...

many sharable locksSharable lock

no locksExclusive lock

Table 6. Locking Possibilities for an Upgradable Mutex

Other threads can acquire...If a thread has acquired the...

many sharable locks and 1 upgradable lockSharable lock

many sharable locksUpgradable lock

no locksExclusive lock

46

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Lock transitions for Upgradable Mutex

A sharable mutex has no option to change the acquired lock for another lock atomically.

On the other hand, for an upgradable mutex, a thread that has acquired a lock can try to acquire another lock type atomically. All
lock transitions are not guaranteed to succeed. Even if a transition is guaranteed to succeed, some transitions will block the thread
waiting until other threads release the sharable locks. Atomically means that no other thread will acquire an Upgradable or Exclusive
lock in the transition, so data is guaranteed to remain unchanged:

Table 7. Transition Possibilities for an Upgradable Mutex

It can atomically release the previous lock and...If a thread has acquired the...

try to obtain (not guaranteed) immediately the Exclusive lock
if no other thread has exclusive or upgrable lock

Sharable lock

try to obtain (not guaranteed) immediately the Upgradable lock
if no other thread has exclusive or upgrable lock

Sharable lock

obtain the Exclusive lock when all sharable locks are releasedUpgradable lock

obtain the Sharable lock immediatelyUpgradable lock

obtain the Upgradable lock immediatelyExclusive lock

obtain the Sharable lock immediatelyExclusive lock

As we can see, an upgradable mutex is a powerful synchronization utility that can improve the concurrency. However, if most of
the time we have to modify the data, or the synchronized code section is very short, it's more efficient to use a plain mutex, since it
has less overhead. Upgradable lock shines when the synchronized code section is bigger and there are more readers than modifiers.

Upgradable Mutex Operations

All the upgradable mutex types from Boost.Interprocess implement the following operations:

Exclusive Locking (Sharable & Upgradable Mutexes)

void lock()

Effects: The calling thread tries to obtain exclusive ownership of the mutex, and if another thread has any ownership of the mutex
(exclusive or other), it waits until it can obtain the ownership.

Throws: interprocess_exception on error.

bool try_lock()

Effects: The calling thread tries to acquire exclusive ownership of the mutex without waiting. If no other thread has any ownership
of the mutex (exclusive or other) this succeeds.

Returns: If it can acquire exclusive ownership immediately returns true. If it has to wait, returns false.

Throws: interprocess_exception on error.

bool timed_lock(const boost::posix_time::ptime &abs_time)

47

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: The calling thread tries to acquire exclusive ownership of the mutex waiting if necessary until no other thread has any
ownership of the mutex (exclusive or other) or abs_time is reached.

Returns: If acquires exclusive ownership, returns true. Otherwise returns false.

Throws: interprocess_exception on error.

void unlock()

Precondition: The thread must have exclusive ownership of the mutex.

Effects: The calling thread releases the exclusive ownership of the mutex.

Throws: An exception derived from interprocess_exception on error.

Sharable Locking (Sharable & Upgradable Mutexes)

void lock_sharable()

Effects: The calling thread tries to obtain sharable ownership of the mutex, and if another thread has exclusive ownership of the
mutex, waits until it can obtain the ownership.

Throws: interprocess_exception on error.

bool try_lock_sharable()

Effects: The calling thread tries to acquire sharable ownership of the mutex without waiting. If no other thread has exclusive ownership
of the mutex this succeeds.

Returns: If it can acquire sharable ownership immediately returns true. If it has to wait, returns false.

Throws: interprocess_exception on error.

bool timed_lock_sharable(const boost::posix_time::ptime &abs_time)

Effects: The calling thread tries to acquire sharable ownership of the mutex waiting if necessary until no other thread has exclusive
ownership of the mutex or abs_time is reached.

Returns: If acquires sharable ownership, returns true. Otherwise returns false.

Throws: interprocess_exception on error.

void unlock_sharable()

Precondition: The thread must have sharable ownership of the mutex.

Effects: The calling thread releases the sharable ownership of the mutex.

Throws: An exception derived from interprocess_exception on error.

Upgradable Locking (Upgradable Mutex only)

void lock_upgradable()

48

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: The calling thread tries to obtain upgradable ownership of the mutex, and if another thread has exclusive or upgradable
ownership of the mutex, waits until it can obtain the ownership.

Throws: interprocess_exception on error.

bool try_lock_upgradable()

Effects: The calling thread tries to acquire upgradable ownership of the mutex without waiting. If no other thread has exclusive or
upgradable ownership of the mutex this succeeds.

Returns: If it can acquire upgradable ownership immediately returns true. If it has to wait, returns false.

Throws: interprocess_exception on error.

bool timed_lock_upgradable(const boost::posix_time::ptime &abs_time)

Effects: The calling thread tries to acquire upgradable ownership of the mutex waiting if necessary until no other thread has exclusive
ownership of the mutex or abs_time is reached.

Returns: If acquires upgradable ownership, returns true. Otherwise returns false.

Throws: interprocess_exception on error.

void unlock_upgradable()

Precondition: The thread must have upgradable ownership of the mutex.

Effects: The calling thread releases the upgradable ownership of the mutex.

Throws: An exception derived from interprocess_exception on error.

Demotions (Upgradable Mutex only)

void unlock_and_lock_upgradable()

Precondition: The thread must have exclusive ownership of the mutex.

Effects: The thread atomically releases exclusive ownership and acquires upgradable ownership. This operation is non-blocking.

Throws: An exception derived from interprocess_exception on error.

void unlock_and_lock_sharable()

Precondition: The thread must have exclusive ownership of the mutex.

Effects: The thread atomically releases exclusive ownership and acquires sharable ownership. This operation is non-blocking.

Throws: An exception derived from interprocess_exception on error.

void unlock_upgradable_and_lock_sharable()

Precondition: The thread must have upgradable ownership of the mutex.

Effects: The thread atomically releases upgradable ownership and acquires sharable ownership. This operation is non-blocking.

49

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: An exception derived from interprocess_exception on error.

Promotions (Upgradable Mutex only)

void unlock_upgradable_and_lock()

Precondition: The thread must have upgradable ownership of the mutex.

Effects: The thread atomically releases upgradable ownership and acquires exclusive ownership. This operation will block until all
threads with sharable ownership release it.

Throws: An exception derived from interprocess_exception on error.

bool try_unlock_upgradable_and_lock()

Precondition: The thread must have upgradable ownership of the mutex.

Effects: The thread atomically releases upgradable ownership and tries to acquire exclusive ownership. This operation will fail if
there are threads with sharable ownership, but it will maintain upgradable ownership.

Returns: If acquires exclusive ownership, returns true. Otherwise returns false.

Throws: An exception derived from interprocess_exception on error.

bool timed_unlock_upgradable_and_lock(const boost::posix_time::ptime &abs_time)

Precondition: The thread must have upgradable ownership of the mutex.

Effects: The thread atomically releases upgradable ownership and tries to acquire exclusive ownership, waiting if necessary until
abs_time. This operation will fail if there are threads with sharable ownership or timeout reaches, but it will maintain upgradable
ownership.

Returns: If acquires exclusive ownership, returns true. Otherwise returns false.

Throws: An exception derived from interprocess_exception on error.

bool try_unlock_sharable_and_lock()

Precondition: The thread must have sharable ownership of the mutex.

Effects: The thread atomically releases sharable ownership and tries to acquire exclusive ownership. This operation will fail if there
are threads with sharable or upgradable ownership, but it will maintain sharable ownership.

Returns: If acquires exclusive ownership, returns true. Otherwise returns false.

Throws: An exception derived from interprocess_exception on error.

bool try_unlock_sharable_and_lock_upgradable()

Precondition: The thread must have sharable ownership of the mutex.

Effects: The thread atomically releases sharable ownership and tries to acquire upgradable ownership. This operation will fail if
there are threads with sharable or upgradable ownership, but it will maintain sharable ownership.

Returns: If acquires upgradable ownership, returns true. Otherwise returns false.

50

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: An exception derived from interprocess_exception on error.

Important

boost::posix_time::ptime absolute time points used by Boost.Interprocess synchronization mechanisms are
UTC time points, not local time points

Boost.Interprocess Sharable & Upgradable Mutex Types And Headers

Boost.Interprocess offers the following sharable mutex types:

#include <boost/interprocess/sync/interprocess_sharable_mutex.hpp>

• interprocess_sharable_mutex: A non-recursive, anonymous sharable mutex that can be placed in shared memory or memory
mapped files.

#include <boost/interprocess/sync/named_sharable_mutex.hpp>

• named_sharable_mutex: A non-recursive, named sharable mutex.

Boost.Interprocess offers the following upgradable mutex types:

#include <boost/interprocess/sync/interprocess_upgradable_mutex.hpp>

• interprocess_upgradable_mutex: A non-recursive, anonymous upgradable mutex that can be placed in shared memory or
memory mapped files.

#include <boost/interprocess/sync/named_upgradable_mutex.hpp>

• named_upgradable_mutex: A non-recursive, named upgradable mutex.

Sharable Lock And Upgradable Lock

As with plain mutexes, it's important to release the acquired lock even in the presence of exceptions. Boost.Interprocess mutexes
are best used with the scoped_lock utility, and this class only offers exclusive locking.

As we have sharable locking and upgradable locking with upgradable mutexes, we have two new utilities: sharable_lock and
upgradable_lock. Both classes are similar to scoped_lock but sharable_lock acquires the sharable lock in the constructor
and upgradable_lock acquires the upgradable lock in the constructor.

These two utilities can be use with any synchronization object that offers the needed operations. For example, a user defined mutex
type with no upgradable locking features can use sharable_lock if the synchronization object offers lock_sharable() and un-
lock_sharable() operations:

Sharable Lock And Upgradable Lock Headers

#include <boost/interprocess/sync/sharable_lock.hpp>

#include <boost/interprocess/sync/upgradable_lock.hpp>

sharable_lock calls unlock_sharable() in its destructor, and upgradable_lock calls unlock_upgradable() in its destructor,
so the upgradable mutex is always unlocked when an exception occurs.

51

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using namespace boost::interprocess;

SharableOrUpgradableMutex sh_or_up_mutex;

{
//This will call lock_sharable()
sharable_lock<SharableOrUpgradableMutex> lock(sh_or_up_mutex);

//Some code

//The mutex will be unlocked here
}

{
//This won't lock the mutex()
sharable_lock<SharableOrUpgradableMutex> lock(sh_or_up_mutex, defer_lock);

//Lock it on demand. This will call lock_sharable()
lock.lock();

//Some code

//The mutex will be unlocked here
}

{
//This will call try_lock_sharable()
sharable_lock<SharableOrUpgradableMutex> lock(sh_or_up_mutex, try_to_lock);

//Check if the mutex has been successfully locked
if(lock){

//Some code
}
//If the mutex was locked it will be unlocked

}

{
boost::posix_time::ptime abs_time = ...

//This will call timed_lock_sharable()
scoped_lock<SharableOrUpgradableMutex> lock(sh_or_up_mutex, abs_time);

//Check if the mutex has been successfully locked
if(lock){

//Some code
}
//If the mutex was locked it will be unlocked

}

UpgradableMutex up_mutex;

{
//This will call lock_upgradable()
upgradable_lock<UpgradableMutex> lock(up_mutex);

//Some code

//The mutex will be unlocked here
}

{
//This won't lock the mutex()
upgradable_lock<UpgradableMutex> lock(up_mutex, defer_lock);

52

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Lock it on demand. This will call lock_upgradable()
lock.lock();

//Some code

//The mutex will be unlocked here
}

{
//This will call try_lock_upgradable()
upgradable_lock<UpgradableMutex> lock(up_mutex, try_to_lock);

//Check if the mutex has been successfully locked
if(lock){

//Some code
}
//If the mutex was locked it will be unlocked

}

{
boost::posix_time::ptime abs_time = ...

//This will call timed_lock_upgradable()
scoped_lock<UpgradableMutex> lock(up_mutex, abs_time);

//Check if the mutex has been successfully locked
if(lock){

//Some code
}
//If the mutex was locked it will be unlocked

}

upgradable_lock and sharable_lock offer more features and operations, see their reference for more informations

Important

boost::posix_time::ptime absolute time points used by Boost.Interprocess synchronization mechanisms are
UTC time points, not local time points

Lock Transfers Through Move Semantics

Interprocess uses its own move semantics emulation code for compilers that don't support rvalues references. This is
a temporary solution until a Boost move semantics library is accepted.

Scoped locks and similar utilities offer simple resource management possibilities, but with advanced mutex types like upgradable
mutexes, there are operations where an acquired lock type is released and another lock type is acquired atomically. This is implemented
by upgradable mutex operations like unlock_and_lock_sharable().

These operations can be managed more effectively using lock transfer operations. A lock transfer operations explicitly indicates
that a mutex owned by a lock is transferred to another lock executing atomic unlocking plus locking operations.

Simple Lock Transfer

Imagine that a thread modifies some data in the beginning but after that, it has to just read it in a long time. The code can acquire
the exclusive lock, modify the data and atomically release the exclusive lock and acquire the sharable lock. With these sequence we
guarantee that no other thread can modify the data in the transition and that more readers can acquire sharable lock, increasing con-
currency. Without lock transfer operations, this would be coded like this:

53

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using boost::interprocess;
interprocess_upgradable_mutex mutex;

//Acquire exclusive lock
mutex.lock();

//Modify data

//Atomically release exclusive lock and acquire sharable lock.
//More threads can acquire the sharable lock and read the data.
mutex.unlock_and_lock_sharable();

//Read data

//Explicit unlocking
mutex.unlock_sharable();

This can be simple, but in the presence of exceptions, it's complicated to know what type of lock the mutex had when the exception
was thrown and what function we should call to unlock it:

try{
//Mutex operations

}
catch(...){

//What should we call? "unlock()" or "unlock_sharable()"
//Is the mutex locked?

}

We can use lock transfer to simplify all this management:

using boost::interprocess;
interprocess_upgradable_mutex mutex;

//Acquire exclusive lock
scoped_lock s_lock(mutex);

//Modify data

//Atomically release exclusive lock and acquire sharable lock.
//More threads can acquire the sharable lock and read the data.
sharable_lock(move(s_lock));

//Read data

//The lock is automatically unlocked calling the appropriate unlock
//function even in the presence of exceptions.
//If the mutex was not locked, no function is called.

As we can see, even if an exception is thrown at any moment, the mutex will be automatically unlocked calling the appropriate un-
lock() or unlock_sharable() method.

Lock Transfer Summary

There are many lock transfer operations that we can classify according to the operations presented in the upgradable mutex operations:

• Guaranteed to succeed and non-blocking: Any transition from a more restrictive lock to a less restrictive one. Scoped -> Up-
gradable, Scoped -> Sharable, Upgradable -> Sharable.

• Not guaranteed to succeed: The operation might succeed if no one has acquired the upgradable or exclusive lock: Sharable ->
Exclusive. This operation is a try operation.

54

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Guaranteed to succeed if using an infinite waiting: Any transition that will succeed but needs to wait until all Sharable locks
are released: Upgradable -> Scoped. Since this is a blocking operation, we can also choose not to wait infinitely and just try or
wait until a timeout is reached.

Transfers To Scoped Lock

Transfers to scoped_lock are guaranteed to succeed only from an upgradable_lock and only if a blocking operation is requested,
due to the fact that this operation needs to wait until all sharable locks are released. The user can also use "try" or "timed" transfer
to avoid infinite locking, but succeed is not guaranteed.

A conversion from a sharable_lock is never guaranteed and thus, only a try operation is permitted:

//Conversions to scoped_lock
{

upgradable_lock<Mutex> u_lock(mut);
//This calls unlock_upgradable_and_lock()
scoped_lock<Mutex> e_lock(move(u_lock));

}
{

upgradable_lock<Mutex> u_lock(mut);
//This calls try_unlock_upgradable_and_lock()
scoped_lock<Mutex> e_lock(move(u_lock, try_to_lock));

}
{

boost::posix_time::ptime t = test::delay(100);
upgradable_lock<Mutex> u_lock(mut);
//This calls timed_unlock_upgradable_and_lock()
scoped_lock<Mutex> e_lock(move(u_lock));

}
{

sharable_lock<Mutex> s_lock(mut);
//This calls try_unlock_sharable_and_lock()
scoped_lock<Mutex> e_lock(move(s_lock, try_to_lock));

}

Important

boost::posix_time::ptime absolute time points used by Boost.Interprocess synchronization mechanisms are
UTC time points, not local time points

Transfers To Upgradable Lock

A transfer to an upgradable_lock is guaranteed to succeed only from a scoped_lock since scoped locking is a more restrictive
locking than an upgradable locking. This operation is also non-blocking.

A transfer from a sharable_lock is not guaranteed and only a "try" operation is permitted:

//Conversions to upgradable
{

sharable_lock<Mutex> s_lock(mut);
//This calls try_unlock_sharable_and_lock_upgradable()
upgradable_lock<Mutex> u_lock(move(s_lock, try_to_lock));

}
{

scoped_lock<Mutex> e_lock(mut);
//This calls unlock_and_lock_upgradable()
upgradable_lock<Mutex> u_lock(move(e_lock));

}

55

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Transfers To Sharable Lock

All transfers to a sharable_lock are guaranteed to succeed since both upgradable_lock and scoped_lock are more restrictive
than sharable_lock. These operations are also non-blocking:

//Conversions to sharable_lock
{

upgradable_lock<Mutex> u_lock(mut);
//This calls unlock_upgradable_and_lock_sharable()
sharable_lock<Mutex> s_lock(move(u_lock));

}
{

scoped_lock<Mutex> e_lock(mut);
//This calls unlock_and_lock_sharable()
sharable_lock<Mutex> s_lock(move(e_lock));

}

Transferring Unlocked Locks

In the previous examples, the mutex used in the transfer operation was previously locked:

Mutex mut;

//This calls mut.lock()
scoped_lock<Mutex> e_lock(mut);

//This calls unlock_and_lock_sharable()
sharable_lock<Mutex> s_lock(move(e_lock));

}

but it's possible to execute the transfer with an unlocked source, due to explicit unlocking, a try, timed or a defer_lock constructor:

//These operations can leave the mutex unlocked!

{
//Try might fail
scoped_lock<Mutex> e_lock(mut, try_to_lock);
sharable_lock<Mutex> s_lock(move(e_lock));

}
{

//Timed operation might fail
scoped_lock<Mutex> e_lock(mut, time);
sharable_lock<Mutex> s_lock(move(e_lock));

}
{

//Avoid mutex locking
scoped_lock<Mutex> e_lock(mut, defer_lock);
sharable_lock<Mutex> s_lock(move(e_lock));

}
{

//Explicitly call unlock
scoped_lock<Mutex> e_lock(mut);
e_lock.unlock();
//Mutex was explicitly unlocked
sharable_lock<Mutex> s_lock(move(e_lock));

}

If the source mutex was not locked:

• The target lock does not execute the atomic unlock_xxx_and_lock_xxx operation.

56

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• The target lock is also unlocked.

• The source lock is released() and the ownership of the mutex is transferred to the target.

{
scoped_lock<Mutex> e_lock(mut, defer_lock);
sharable_lock<Mutex> s_lock(move(e_lock));

//Assertions
assert(e_lock.mutex() == 0);
assert(s_lock.mutex() != 0);
assert(e_lock.owns() == false);

}

Transfer Failures

When executing a lock transfer, the operation can fail:

• The executed atomic mutex unlock plus lock function might throw.

• The executed atomic function might be a "try" or "timed" function that can fail.

In the first case, the mutex ownership is not transferred and the source lock's destructor will unlock the mutex:

{
scoped_lock<Mutex> e_lock(mut, defer_lock);

//This operations throws because
//"unlock_and_lock_sharable()" throws!!!
sharable_lock<Mutex> s_lock(move(e_lock));

//Some code ...

//e_lock's destructor will call "unlock()"
}

In the second case, if an internal "try" or "timed" operation fails (returns "false") then the mutex ownership is not transferred, the
source lock is unchanged and the target lock's state will the same as a default construction:

{
sharable_lock<Mutex> s_lock(mut);

//Internal "try_unlock_sharable_and_lock_upgradable()" returns false
upgradable_lock<Mutex> u_lock(move(s_lock, try_to_lock));

assert(s_lock.mutex() == &mut);
assert(s_lock.owns() == true);
assert(u_lock.mutex() == 0);
assert(u_lock.owns() == false);

//u_lock's destructor does nothing
//s_lock's destructor calls "unlock()"

}

57

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

File Locks

What's A File Lock?

A file lock is an interprocess synchronization mechanism to protect concurrent writes and reads to files using a mutex embedded in
the file. This embedded mutex has sharable and exclusive locking capabilities. With a file lock, an existing file can be used as a
mutex without the need of creating additional synchronization objects to control concurrent file reads or writes.

Generally speaking, we can have two file locking capabilities:

• Advisory locking: The operating system kernel maintains a list of files that have been locked. But does not prevent writing to
those files even if a process has acquired a sharable lock or does not prevent reading from the file when a process has acquired
the exclusive lock. Any process can ignore an advisory lock. This means that advisory locks are for cooperating processes, processes
that can trust each other. This is similar to a mutex protecting data in a shared memory segment: any process connected to that
memory can overwrite the data but cooperative processes use mutexes to protect the data first acquiring the mutex lock.

• Mandatory locking: The OS kernel checks every read and write request to verify that the operation can be performed according
to the acquired lock. Reads and writes block until the lock is released.

Boost.Interprocess implements advisory blocking because of portability reasons. This means that every process accessing to a file
concurrently, must cooperate using file locks to synchronize the access.

In some systems file locking can be even further refined, leading to record locking, where a user can specify a byte range within
the file where the lock is applied. This allows concurrent write access by several processes if they need to access a different byte
range in the file. Boost.Interprocess does not offer record locking for the moment, but might offer it in the future. To use a file lock
just include:

#include <boost/interprocess/sync/file_lock.hpp>

A file locking is a class that has process lifetime. This means that if a process holding a file lock ends or crashes, the operating
system will automatically unlock it. This feature is very useful in some situations where we want to assure automatic unlocking even
when the process crashes and avoid leaving blocked resources in the system. A file lock is constructed using the name of the file as
an argument:

#include <boost/interprocess/sync/file_lock.hpp>

int main()
{

//This throws if the file does not exist or it can't
//open it with read-write access!
boost::interprocess::file_lock flock("my_file");
return 0;

}

File Locking Operations

File locking has normal mutex operations plus sharable locking capabilities. This means that we can have multiple readers holding
the sharable lock and writers holding the exclusive lock waiting until the readers end their job.

However, file locking does not support upgradable locking or promotion or demotion (lock transfers), so it's more limited than an
upgradable lock. These are the operations:

void lock()

Effects: The calling thread tries to obtain exclusive ownership of the file lock, and if another thread has exclusive or sharable own-
ership of the mutex, it waits until it can obtain the ownership.

58

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: interprocess_exception on error.

bool try_lock()

Effects: The calling thread tries to acquire exclusive ownership of the file lock without waiting. If no other thread has exclusive or
sharable ownership of the file lock, this succeeds.

Returns: If it can acquire exclusive ownership immediately returns true. If it has to wait, returns false.

Throws: interprocess_exception on error.

bool timed_lock(const boost::posix_time::ptime &abs_time)

Effects: The calling thread tries to acquire exclusive ownership of the file lock waiting if necessary until no other thread has exclusive
or sharable ownership of the file lock or abs_time is reached.

Returns: If acquires exclusive ownership, returns true. Otherwise returns false.

Throws: interprocess_exception on error.

void unlock()

Precondition: The thread must have exclusive ownership of the file lock.

Effects: The calling thread releases the exclusive ownership of the file lock.

Throws: An exception derived from interprocess_exception on error.

void lock_sharable()

Effects: The calling thread tries to obtain sharable ownership of the file lock, and if another thread has exclusive ownership of the
file lock, waits until it can obtain the ownership.

Throws: interprocess_exception on error.

bool try_lock_sharable()

Effects: The calling thread tries to acquire sharable ownership of the file lock without waiting. If no other thread has exclusive
ownership of the file lock, this succeeds.

Returns: If it can acquire sharable ownership immediately returns true. If it has to wait, returns false.

Throws: interprocess_exception on error.

bool timed_lock_sharable(const boost::posix_time::ptime &abs_time)

Effects: The calling thread tries to acquire sharable ownership of the file lock waiting if necessary until no other thread has exclusive
ownership of the file lock or abs_time is reached.

Returns: If acquires sharable ownership, returns true. Otherwise returns false.

Throws: interprocess_exception on error.

59

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void unlock_sharable()

Precondition: The thread must have sharable ownership of the file lock.

Effects: The calling thread releases the sharable ownership of the file lock.

Throws: An exception derived from interprocess_exception on error.

For more file locking methods, please file_lock reference.

Important

boost::posix_time::ptime absolute time points used by Boost.Interprocess synchronization mechanisms are
UTC time points, not local time points

Scoped Lock and Sharable Lock With File Locking

scoped_lock and sharable_lock can be used to make file locking easier in the presence of exceptions, just like with mutexes:

#include <boost/interprocess/sync/file_lock.hpp>
#include <boost/interprocess/sync/sharable_lock.hpp>
//...

using namespace boost::interprocess;
//This process reads the file
// ...
//Open the file lock
file_lock f_lock("my_file");

{
//Construct a sharable lock with the filel lock.
//This will call "f_lock.sharable_lock()".
sharable_lock<file_lock> sh_lock(f_lock);

//Now read the file...

//The sharable lock is automatically released by
//sh_lock's destructor

}

60

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/sync/file_lock.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>

//...

using namespace boost::interprocess;
//This process writes the file
// ...
//Open the file lock
file_lock f_lock("my_file");

{
//Construct a sharable lock with the filel lock.
//This will call "f_lock.lock()".
scoped_lock<file_lock> e_lock(f_lock);

//Now write the file...

//The exclusive lock is automatically released by
//e_lock's destructor

}

However, lock transfers are only allowed between same type of locks, that is, from a sharable lock to another sharable lock or from
a scoped lock to another scoped lock. A transfer from a scoped lock to a sharable lock is not allowed, because file_lock has no
lock promotion or demotion functions like unlock_and_lock_sharable(). This will produce a compilation error:

//Open the file lock
file_lock f_lock("my_file");

scoped_lock<file_lock> e_lock(f_lock);

//Compilation error, f_lock has no "unlock_and_lock_sharable()" member!
sharable_lock<file_lock> e_lock(move(f_lock));

Caution: Synchronization limitations

If you plan to use file locks just like named mutexes, be careful, because portable file locks have synchronization limitations, mainly
because different implementations (POSIX, Windows) offer different guarantees. Interprocess file locks have the following limitations:

• It's unspecified if a file_lock synchronizes two threads from the same process.

• It's unspecified if a process can use two file_lock objects pointing to the same file.

The first limitation comes mainly from POSIX, since a file handle is a per-process attribute and not a per-thread attribute. This means
that if a thread uses a file_lock object to lock a file, other threads will see the file as locked. Windows file locking mechanism,
on the other hand, offer thread-synchronization guarantees so a thread trying to lock the already locked file, would block.

The second limitation comes from the fact that file locking synchronization state is tied with a single file descriptor in Windows.
This means that if two file_lock objects are created pointing to the same file, no synchronization is guaranteed. In POSIX, when
two file descriptors are used to lock a file if a descriptor is closed, all file locks set by the calling process are cleared.

To sum up, if you plan to use portable file locking in your processes, use the following restrictions:

• For each file, use a single file_lock object per process.

• Use the same thread to lock and unlock a file.

• If you are using a std::fstream/native file handle to write to the file while using file locks on that file, don't close the file before
releasing all the locks of the file.

61

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Be Careful With Iostream Writing

As we've seen file locking can be useful to synchronize two processes, but make sure data is written to the file before unlocking
the file lock. Take in care that iostream classes do some kind of buffering, so if you want to make sure that other processes can see
the data you've written, you have the following alternatives:

• Use native file functions (read()/write() in Unix systems and ReadFile/WriteFile in Windows systems) instead of iostream.

• Flush data before unlocking the file lock in writers using fflush if you are using standard C functions or the flush() member
function when using C++ iostreams. In windows you can't even use another class to access the same file.

//...

using namespace boost::interprocess;
//This process writes the file
// ...
//Open the file lock
fstream file("my_file")
file_lock f_lock("my_lock_file");

{
scoped_lock<file_lock> e_lock(f_lock);

//Now write the file...

//Flush data before unlocking the exclusive lock
file.flush();

}

Message Queue

What's A Message Queue?

A message queue is similar to a list of messages. Threads can put messages in the queue and they can also remove messages from
the queue. Each message can have also a priority so that higher priority messages are read before lower priority messages. Each
message has some attributes:

• A priority.

• The length of the message.

• The data (if length is bigger than 0).

A thread can send a message to or receive a message from the message queue using 3 methods:

• Blocking: If the message queue is full when sending or the message queue is empty when receiving, the thread is blocked until
there is room for a new message or there is a new message.

• Try: If the message queue is full when sending or the message queue is empty when receiving, the thread returns immediately
with an error.

• Timed: If the message queue is full when sending or the message queue is empty when receiving, the thread retries the operation
until succeeds (returning successful state) or a timeout is reached (returning a failure).

A message queue just copies raw bytes between processes and does not send objects. This means that if we want to send an object
using a message queue the object must be binary serializable. For example, we can send integers between processes but not a
std::string. You should use Boost.Serialization or use advanced Boost.Interprocess mechanisms to send complex data between
processes.

62

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The Boost.Interprocess message queue is a named interprocess communication: the message queue is created with a name and it's
opened with a name, just like a file. When creating a message queue, the user must specify the maximum message size and the
maximum message number that the message queue can store. These parameters will define the resources (for example the size of
the shared memory used to implement the message queue if shared memory is used).

using boost::interprocess;
//Create a message_queue. If the queue
//exists throws an exception
message_queue mq

(create_only //only create
,"message_queue" //name
,100 //max message number
,100 //max message size
);

using boost::interprocess;
//Creates or opens a message_queue. If the queue
//does not exist creates it, otherwise opens it.
//Message number and size are ignored if the queue
//is opened
message_queue mq

(open_or_create //open or create
,"message_queue" //name
,100 //max message number
,100 //max message size
);

using boost::interprocess;
//Opens a message_queue. If the queue
//does not exist throws an exception.
message_queue mq

(open_only //only open
,"message_queue" //name
);

The message queue is explicitly removed calling the static remove function:

using boost::interprocess;
message_queue::remove("message_queue");

The function can fail if the message queue is still being used by any process.

Using a message queue

To use a message queue you must include the following header:

#include <boost/interprocess/ipc/message_queue.hpp>

In the following example, the first process creates the message queue, and writes an array of integers on it. The other process just
reads the array and checks that the sequence number is correct. This is the first process:

63

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/ipc/message_queue.hpp>
#include <iostream>
#include <vector>

using namespace boost::interprocess;

int main ()
{

try{
//Erase previous message queue
message_queue::remove("message_queue");

//Create a message_queue.
message_queue mq

(create_only //only create
,"message_queue" //name
,100 //max message number
,sizeof(int) //max message size
);

//Send 100 numbers
for(int i = 0; i < 100; ++i){

mq.send(&i, sizeof(i), 0);
}

}
catch(interprocess_exception &ex){

std::cout << ex.what() << std::endl;
return 1;

}

return 0;
}

This is the second process:

64

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/ipc/message_queue.hpp>
#include <iostream>
#include <vector>

using namespace boost::interprocess;

int main ()
{

try{
//Open a message queue.
message_queue mq

(open_only //only create
,"message_queue" //name
);

unsigned int priority;
message_queue::size_type recvd_size;

//Receive 100 numbers
for(int i = 0; i < 100; ++i){

int number;
mq.receive(&number, sizeof(number), recvd_size, priority);
if(number != i || recvd_size != sizeof(number))

return 1;
}

}
catch(interprocess_exception &ex){

message_queue::remove("message_queue");
std::cout << ex.what() << std::endl;
return 1;

}
message_queue::remove("message_queue");
return 0;

}

To know more about this class and all its operations, please see the message_queue class reference.

65

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Managed Memory Segments

Making Interprocess Data Communication Easy

Introduction

As we have seen, Boost.Interprocess offers some basic classes to create shared memory objects and file mappings and map those
mappable classes to the process' address space.

However, managing those memory segments is not not easy for non-trivial tasks. A mapped region is a fixed-length memory buffer
and creating and destroying objects of any type dynamically, requires a lot of work, since it would require programming a memory
management algorithm to allocate portions of that segment. Many times, we also want to associate names to objects created in shared
memory, so all the processes can find the object using the name.

Boost.Interprocess offers 4 managed memory segment classes:

• To manage a shared memory mapped region (basic_managed_shared_memory class).

• To manage a memory mapped file (basic_managed_mapped_file).

• To manage a heap allocated (operator new) memory buffer (basic_managed_heap_memory class).

• To manage a user provided fixed size buffer (basic_managed_external_buffer class).

The first two classes manage memory segments that can be shared between processes. The third is useful to create complex data-
bases to be sent though other mechanisms like message queues to other processes. The fourth class can manage any fixed size memory
buffer. The first two classes will be explained in the next two sections. basic_managed_heap_memory and basic_managed_ex-
ternal_buffer will be explained later.

The most important services of a managed memory segment are:

• Dynamic allocation of portions of a memory the segment.

• Construction of C++ objects in the memory segment. These objects can be anonymous or we can associate a name to them.

• Searching capabilities for named objects.

• Customization of many features: memory allocation algorithm, index types or character types.

• Atomic constructions and destructions so that if the segment is shared between two processes it's impossible to create two objects
associated with the same name, simplifying synchronization.

Declaration of managed memory segment classes

All Boost.Interprocess managed memory segment classes are templatized classes that can be customized by the user:

template
<

class CharType,
class MemoryAlgorithm,
template<class IndexConfig> class IndexType

>
class basic_managed_shared_memory / basic_managed_mapped_file /

basic_managed_heap_memory / basic_external_buffer;

These classes can be customized with the following template parameters:

• CharType is the type of the character that will be used to identify the created named objects (for example, char or wchar_t)

66

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• MemoryAlgorithm is the memory algorithm used to allocate portions of the segment (for example, rbtree_best_fit). The internal
typedefs of the memory algorithm also define:

• The synchronization type (MemoryAlgorithm::mutex_family) to be used in all allocation operations. This allows the use
of user-defined mutexes or avoiding internal locking (maybe code will be externally synchronized by the user).

• The Pointer type (MemoryAlgorithm::void_pointer) to be used by the memory allocation algorithm or additional helper
structures (like a map to maintain object/name associations). All STL compatible allocators and containers to be used with this
managed memory segment will use this pointer type. The pointer type will define if the managed memory segment can be
mapped between several processes. For example, if void_pointer is offset_ptr<void> we will be able to map the managed
segment in different base addresses in each process. If void_pointer is void* only fixed address mapping could be used.

• See Writing a new memory allocation algorithm for more details about memory algorithms.

• IndexType is the type of index that will be used to store the name-object association (for example, a map, a hash-map, or an
ordered vector).

This way, we can use char or wchar_t strings to identify created C++ objects in the memory segment, we can plug new shared
memory allocation algorithms, and use the index type that is best suited to our needs.

Managed Shared Memory

Common Managed Shared Memory Classes

As seen, basic_managed_shared_memory offers a great variety of customization. But for the average user, a common, default
shared memory named object creation is needed. Because of this, Boost.Interprocess defines the most common managed shared
memory specializations:

//!Defines a managed shared memory with c-strings as keys for named objects,
//!the default memory algorithm (with process-shared mutexes,
//!and offset_ptr as internal pointers) as memory allocation algorithm
//!and the default index type as the index.
//!This class allows the shared memory to be mapped in different base
//!in different processes
typedef

basic_managed_shared_memory<char
,/*Default memory algorithm defining offset_ptr<void> as void_point↵

er*/
,/*Default index type*/>

managed_shared_memory;

//!Defines a managed shared memory with wide strings as keys for named objects,
//!the default memory algorithm (with process-shared mutexes,
//!and offset_ptr as internal pointers) as memory allocation algorithm
//!and the default index type as the index.
//!This class allows the shared memory to be mapped in different base
//!in different processes
typedef

basic_managed_shared_memory<wchar_t
,/*Default memory algorithm defining offset_ptr<void> as void_point↵

er*/
,/*Default index type*/>

wmanaged_shared_memory;

managed_shared_memory allocates objects in shared memory associated with a c-string and wmanaged_shared_memory allocates
objects in shared memory associated with a wchar_t null terminated string. Both define the pointer type as offset_ptr<void> so
they can be used to map the shared memory at different base addresses in different processes.

If the user wants to map the shared memory in the same address in all processes and want to use raw pointers internally instead of
offset pointers, Boost.Interprocess defines the following types:

67

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//!Defines a managed shared memory with c-strings as keys for named objects,
//!the default memory algorithm (with process-shared mutexes,
//!and offset_ptr as internal pointers) as memory allocation algorithm
//!and the default index type as the index.
//!This class allows the shared memory to be mapped in different base
//!in different processes*/
typedef basic_managed_shared_memory

<char
,/*Default memory algorithm defining void * as void_pointer*/
,/*Default index type*/>

fixed_managed_shared_memory;

//!Defines a managed shared memory with wide strings as keys for named objects,
//!the default memory algorithm (with process-shared mutexes,
//!and offset_ptr as internal pointers) as memory allocation algorithm
//!and the default index type as the index.
//!This class allows the shared memory to be mapped in different base
//!in different processes
typedef basic_managed_shared_memory

<wchar_t
,/*Default memory algorithm defining void * as void_pointer*/
,/*Default index type*/>

wfixed_managed_shared_memory;

Constructing Managed Shared Memory

Managed shared memory is an advanced class that combines a shared memory object and a mapped region that covers all the shared
memory object. That means that when we create a new managed shared memory:

• A new shared memory object is created.

• The whole shared memory object is mapped in the process' address space.

• Some helper objects are constructed (name-object index, internal synchronization objects, internal variables...) in the mapped region
to implement managed memory segment features.

When we open a managed shared memory

• A shared memory object is opened.

• The whole shared memory object is mapped in the process' address space.

To use a managed shared memory, you must include the following header:

#include <boost/interprocess/managed_shared_memory.hpp>

//1. Creates a new shared memory object
// called "MySharedMemory".
//2. Maps the whole object to this
// process' address space.
//3. Constructs some objects in shared memory
// to implement managed features.
//!! If anything fails, throws interprocess_exception
//
managed_shared_memory segment (create_only

, "MySharedMemory" //Shared memory object name
, 65536); //Shared memory object size in bytes

68

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//1. Opens a shared memory object
// called "MySharedMemory".
//2. Maps the whole object to this
// process' address space.
//3. Obtains pointers to constructed internal objects
// to implement managed features.
//!! If anything fails, throws interprocess_exception
//
managed_shared_memory segment (open_only, "MySharedMemory");//Shared memory object name

//1. If the segment was previously created
// equivalent to "open_only" (size is ignored).
//2. Otherwise, equivalent to "create_only"
//!! If anything fails, throws interprocess_exception
//
managed_shared_memory segment (open_or_create

, "MySharedMemory" //Shared memory object name
, 65536); //Shared memory object size in bytes

When the managed_shared_memory object is destroyed, the shared memory object is automatically unmapped, and all the resources
are freed. To remove the shared memory object from the system you must use the shared_memory_object::remove function.
Shared memory object removing might fail if any process still has the shared memory object mapped.

The user can also map the managed shared memory in a fixed address. This option is essential when using using fixed_man-
aged_shared_memory. To do this, just add the mapping address as an extra parameter:

fixed_managed_shared_memory segment (open_only ,"MyFixedAddressSharedMemory" //Shared ↵
memory object name

,(void*)0x30000000 //Mapping address

Using native windows shared memory

Windows users might also want to use native windows shared memory instead of the portable shared_memory_object managed
memory. This is achieved through the basic_managed_windows_shared_memory class. To use it just include:

#include <boost/interprocess/managed_windows_shared_memory.hpp>

This class has the same interface as basic_managed_shared_memory but uses native windows shared memory. Note that this
managed class has the same lifetime issues as the windows shared memory: when the last process attached to the windows shared
memory is detached from the memory (or ends/crashes) the memory is destroyed. So there is no persistence support for windows
shared memory.

To communicate between system services and user applications using managed_windows_shared_memory, please read the ex-
planations given in chapter Native windows shared memory.

Using XSI (system V) shared memory

Unix users might also want to use XSI (system V) instead of the portable shared_memory_object managed memory. This is
achieved through the basic_managed_xsi_shared_memory class. To use it just include:

#include <boost/interprocess/managed_xsi_shared_memory.hpp>

This class has nearly the same interface as basic_managed_shared_memory but uses XSI shared memory as backend.

For more information about managed XSI shared memory capabilities, see basic_managed_xsi_shared_memory class reference.

69

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Managed Mapped File

Common Managed Mapped Files

As seen, basic_managed_mapped_file offers a great variety of customization. But for the average user, a common, default shared
memory named object creation is needed. Because of this, Boost.Interprocess defines the most common managed mapped file
specializations:

//Named object creation managed memory segment
//All objects are constructed in the memory-mapped file
// Names are c-strings,
// Default memory management algorithm(rbtree_best_fit with no mutexes)
// Name-object mappings are stored in the default index type (flat_map)
typedef basic_managed_mapped_file <

char,
rbtree_best_fit<mutex_family, offset_ptr<void> >,
flat_map_index
> managed_mapped_file;

//Named object creation managed memory segment
//All objects are constructed in the memory-mapped file
// Names are wide-strings,
// Default memory management algorithm(rbtree_best_fit with no mutexes)
// Name-object mappings are stored in the default index type (flat_map)
typedef basic_managed_mapped_file<

wchar_t,
rbtree_best_fit<mutex_family, offset_ptr<void> >,
flat_map_index
> wmanaged_mapped_file;

managed_mapped_file allocates objects in a memory mapped files associated with a c-string and wmanaged_mapped_file al-
locates objects in a memory mapped file associated with a wchar_t null terminated string. Both define the pointer type as off-
set_ptr<void> so they can be used to map the file at different base addresses in different processes.

Constructing Managed Mapped Files

Managed mapped file is an advanced class that combines a file and a mapped region that covers all the file. That means that when
we create a new managed mapped file:

• A new file is created.

• The whole file is mapped in the process' address space.

• Some helper objects are constructed (name-object index, internal synchronization objects, internal variables...) in the mapped region
to implement managed memory segment features.

When we open a managed mapped file

• A file is opened.

• The whole file is mapped in the process' address space.

To use a managed mapped file, you must include the following header:

#include <boost/interprocess/managed_mapped_file.hpp>

70

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//1. Creates a new file
// called "MyMappedFile".
//2. Maps the whole file to this
// process' address space.
//3. Constructs some objects in the memory mapped
// file to implement managed features.
//!! If anything fails, throws interprocess_exception
//
managed_mapped_file mfile (create_only, "MyMappedFile", //Mapped file name ↵
65536); //Mapped file size

//1. Opens a file
// called "MyMappedFile".
//2. Maps the whole file to this
// process' address space.
//3. Obtains pointers to constructed internal objects
// to implement managed features.
//!! If anything fails, throws interprocess_exception
//
managed_mapped_file mfile (open_only, "MyMappedFile"); //Mapped file name[c++]

//1. If the file was previously created
// equivalent to "open_only".
//2. Otherwise, equivalent to "open_only" (size is ignored)
//
//!! If anything fails, throws interprocess_exception
//
managed_mapped_file mfile (open_or_create, "MyMappedFile", //Mapped file name ↵
65536); //Mapped file size

When the managed_mapped_file object is destroyed, the file is automatically unmapped, and all the resources are freed. To remove
the file from the filesystem you could use standard C std::remove or Boost.Filesystem's remove() functions, but file removing
might fail if any process still has the file mapped in memory or the file is open by any process.

To obtain a more portable behaviour, use file_mapping::remove(const char *) operation, which will remove the file even
if it's being mapped. However, removal will fail in some OS systems if the file (eg. by C++ file streams) and no delete share permission
was granted to the file. But in most common cases file_mapping::remove is portable enough.

For more information about managed mapped file capabilities, see basic_managed_mapped_file class reference.

Managed Memory Segment Features
The following features are common to all managed memory segment classes, but we will use managed shared memory in our examples.
We can do the same with memory mapped files or other managed memory segment classes.

Allocating fragments of a managed memory segment

If a basic raw-byte allocation is needed from a managed memory segment, (for example, a managed shared memory), to implement
top-level interprocess communications, this class offers allocate and deallocate functions. The allocation function comes with
throwing and no throwing versions. Throwing version throws boost::interprocess::bad_alloc (which derives from std::bad_alloc)
if there is no more memory and the non-throwing version returns 0 pointer.

71

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>

int main()
{

using namespace boost::interprocess;

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Managed memory segment that allocates portions of a shared memory
//segment with the default management algorithm
managed_shared_memory managed_shm(create_only,"MySharedMemory", 65536);

//Allocate 100 bytes of memory from segment, throwing version
void *ptr = managed_shm.allocate(100);

//Deallocate it
managed_shm.deallocate(ptr);

//Non throwing version
ptr = managed_shm.allocate(100, std::nothrow);

//Deallocate it
managed_shm.deallocate(ptr);
return 0;

}

Obtaining handles to identify data

The class also offers conversions between absolute addresses that belong to a managed memory segment and a handle that can be
passed using any interprocess mechanism. That handle can be transformed again to an absolute address using a managed memory
segment that also contains that object. Handles can be used as keys between processes to identify allocated portions of a managed
memory segment or objects constructed in the managed segment.

//Process A obtains the offset of the address
managed_shared_memory::handle handle =

segment.get_handle_from_address(processA_address);

//Process A sends this address using any mechanism to process B

//Process B obtains the handle and transforms it again to an address
managed_shared_memory::handle handle = ...
void * processB_address = segment.get_address_from_handle(handle);

Object construction function family

When constructing objects in a managed memory segment (managed shared memory, managed mapped files...) associated with a
name, the user has a varied object construction family to "construct" or to "construct if not found". Boost.Interprocess can construct
a single object or an array of objects. The array can be constructed with the same parameters for all objects or we can define each
parameter from a list of iterators:

72

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//!Allocates and constructs an object of type MyType (throwing version)
MyType *ptr = managed_memory_segment.construct<MyType>("Name") (par1, par2...);

//!Allocates and constructs an array of objects of type MyType (throwing version)
//!Each object receives the same parameters (par1, par2, ...)
MyType *ptr = managed_memory_segment.construct<MyType>("Name")[count](par1, par2...);

//!Tries to find a previously created object. If not present, allocates
//!and constructs an object of type MyType (throwing version)
MyType *ptr = managed_memory_segment.find_or_construct<MyType>("Name") (par1, par2...);

//!Tries to find a previously created object. If not present, allocates and
//!constructs an array of objects of type MyType (throwing version). Each object
//!receives the same parameters (par1, par2, ...)
MyType *ptr = managed_memory_segment.find_or_construct<MyType>("Name")[count](par1, par2...);

//!Allocates and constructs an array of objects of type MyType (throwing version)
//!Each object receives parameters returned with the expression (*it1++, *it2++,...)
MyType *ptr = managed_memory_segment.construct_it<MyType>("Name")[count](it1, it2...);

//!Tries to find a previously created object. If not present, allocates and constructs
//!an array of objects of type MyType (throwing version). Each object receives
//!parameters returned with the expression (*it1++, *it2++,...)
MyType *ptr = managed_memory_segment.find_or_construct_it<MyType>("Name")[count](it1, it2...);

//!Tries to find a previously created object. Returns a pointer to the object and the
//!count (if it is not an array, returns 1). If not present, the returned pointer is 0
std::pair<MyType *,std::size_t> ret = managed_memory_segment.find<MyType>("Name");

//!Destroys the created object, returns false if not present
bool destroyed = managed_memory_segment.destroy<MyType>("Name");

//!Destroys the created object via pointer
managed_memory_segment.destroy_ptr(ptr);

All these functions have a non-throwing version, that is invoked with an additional parameter std::nothrow. For example, for simple
object construction:

//!Allocates and constructs an object of type MyType (no throwing version)
MyType *ptr = managed_memory_segment.construct<MyType>("Name", std::nothrow) (par1, par2...);

Anonymous instance construction

Sometimes, the user doesn't want to create class objects associated with a name. For this purpose, Boost.Interprocess can create
anonymous objects in a managed memory segment. All named object construction functions are available to construct anonymous
objects. To allocate an anonymous objects, the user must use "boost::interprocess::anonymous_instance" name instead of a normal
name:

MyType *ptr = managed_memory_segment.construct<MyType>(anonymous_instance) (par1, par2...);

//Other construct variants can also be used (including non-throwing ones)
...

//We can only destroy the anonymous object via pointer
managed_memory_segment.destroy_ptr(ptr);

Find functions have no sense here, since anonymous objects have no name. We can only destroy the anonymous object via pointer.

73

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Unique instance construction

Sometimes, the user wants to emulate a singleton in a managed memory segment. Obviously, as the managed memory segment is
constructed at run-time, the user must construct and destroy this object explicitly. But how can the user be sure that the object is the
only object of its type in the managed memory segment? This can be emulated using a named object and checking if it is present
before trying to create one, but all processes must agree in the object's name, that can also conflict with other existing names.

To solve this, Boost.Interprocess offers a "unique object" creation in a managed memory segment. Only one instance of a class can
be created in a managed memory segment using this "unique object" service (you can create more named objects of this class, though)
so it makes easier the emulation of singleton-like objects across processes, for example, to design pooled, shared memory allocators.
The object can be searched using the type of the class as a key.

// Construct
MyType *ptr = managed_memory_segment.construct<MyType>(unique_instance) (par1, par2...);

// Find it
std::pair<MyType *,std::size_t> ret = managed_memory_segment.find<MyType>(unique_instance);

// Destroy it
managed_memory_segment.destroy<MyType>(unique_instance);

// Other construct and find variants can also be used (including non-throwing ones)
//...

// We can also destroy the unique object via pointer
MyType *ptr = managed_memory_segment.construct<MyType>(unique_instance) (par1, par2...);
managed_shared_memory.destroy_ptr(ptr);

The find function obtains a pointer to the only object of type T that can be created using this "unique instance" mechanism.

Synchronization guarantees

One of the features of named/unique allocations/searches/destructions is that they are atomic. Named allocations use the recursive
synchronization scheme defined by the internal mutex_family typedef defined of the memory allocation algorithm template para-
meter (MemoryAlgorithm). That is, the mutex type used to synchronize named/unique allocations is defined by the MemoryAl-
gorithm::mutex_family::recursive_mutex_type type. For shared memory, and memory mapped file based managed segments
this recursive mutex is defined as interprocess_recursive_mutex.

If two processes can call:

MyType *ptr = managed_shared_memory.find_or_construct<MyType>("Name")[count](par1, par2...);

at the same time, but only one process will create the object and the other will obtain a pointer to the created object.

Raw allocation using allocate() can be called also safely while executing named/anonymous/unique allocations, just like when
programming a multithreaded application inserting an object in a mutex-protected map does not block other threads from calling
new[] while the map thread is searching the place where it has to insert the new object. The synchronization does happen once the
map finds the correct place and it has to allocate raw memory to construct the new value.

This means that if we are creating or searching for a lot of named objects, we only block creation/searches from other processes but
we don't block another process if that process is inserting elements in a shared memory vector.

Index types for name/object mappings

As seen, managed memory segments, when creating named objects, store the name/object association in an index. The index is a
map with the name of the object as a key and a pointer to the object as the mapped type. The default specializations, man-
aged_shared_memory and wmanaged_shared_memory, use flat_map_index as the index type.

74

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Each index has its own characteristics, like search-time, insertion time, deletion time, memory use, and memory allocation patterns.
Boost.Interprocess offers 3 index types right now:

• boost::interprocess::flat_map_index flat_map_index: Based on boost::interprocess::flat_map, an ordered vector similar to Loki
library's AssocVector class, offers great search time and minimum memory use. But the vector must be reallocated when is full,
so all data must be copied to the new buffer. Ideal when insertions are mainly in initialization time and in run-time we just need
searches.

• boost::interprocess::map_index map_index: Based on boost::interprocess::map, a managed memory ready version of std::map.
Since it's a node based container, it has no reallocations, the tree must be just rebalanced sometimes. Offers equilibrated inser-
tion/deletion/search times with more overhead per node comparing to boost::interprocess::flat_map_index. Ideal when
searches/insertions/deletions are in random order.

• boost::interprocess::null_index null_index: This index is for people using a managed memory segment just for raw memory
buffer allocations and they don't make use of named/unique allocations. This class is just empty and saves some space and com-
pilation time. If you try to use named object creation with a managed memory segment using this index, you will get a compilation
error.

As an example, if we want to define new managed shared memory class using boost::interprocess::map as the index type we just
must specify [boost::interprocess::map_index map_index] as a template parameter:

//This managed memory segment can allocate objects with:
// -> a wchar_t string as key
// -> boost::interprocess::rbtree_best_fit with process-shared mutexes
// as memory allocation algorithm.
// -> boost::interprocess::map<...> as the index to store name/object mappings
//
typedef boost::interprocess::basic_managed_shared_memory

< wchar_t
, boost::interprocess::rbtree_best_fit<boost::interprocess::mutex_family, off↵

set_ptr<void> >
, boost::interprocess::map_index
> my_managed_shared_memory;

Boost.Interprocess plans to offer an unordered_map based index as soon as this container is included in Boost. If these indexes
are not enough for you, you can define your own index type. To know how to do this, go to Building custom indexes section.

Segment Manager

All Boost.Interprocess managed memory segment classes construct in their respective memory segments (shared memory, memory
mapped files, heap memory...) some structures to implement the memory management algorithm, named allocations, synchronization
objects... All these objects are encapsulated in a single object called segment manager. A managed memory mapped file and a
managed shared memory use the same segment manager to implement all managed memory segment features, due to the fact that
a segment manager is a class that manages a fixed size memory buffer. Since both shared memory or memory mapped files are
accessed though a mapped region, and a mapped region is a fixed size memory buffer, a single segment manager class can manage
several managed memory segment types.

Some Boost.Interprocess classes require a pointer to the segment manager in their constructors, and the segment manager can be
obtained from any managed memory segment using get_segment_manager member:

managed_shared_memory::segment_manager *seg_manager =
managed_shm.get_segment_manager();

Obtaining information about a constructed object

Once an object is constructed using construct<> function family, the programmer can obtain information about the object using
a pointer to the object. The programmer can obtain the following information:

75

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Name of the object: If it's a named instance, the name used in the construction function is returned, otherwise 0 is returned.

• Length of the object: Returns the number of elements of the object (1 if it's a single value, >=1 if it's an array).

• The type of construction: Whether the object was constructed using a named, unique or anonymous construction.

Here is an example showing this functionality:

#include <boost/interprocess/managed_shared_memory.hpp>
#include <cassert>
#include <cstring>

class my_class
{

//...
};

int main()
{

using namespace boost::interprocess;

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

managed_shared_memory managed_shm(create_only, "MySharedMemory", 10000*sizeof(std::size_t));

//Construct objects
my_class *named_object = managed_shm.construct<my_class>("Object name")[1]();
my_class *unique_object = managed_shm.construct<my_class>(unique_instance)[2]();
my_class *anon_object = managed_shm.construct<my_class>(anonymous_instance)[3]();

//Now test "get_instance_name" function.
assert(0 == std::strcmp(managed_shared_memory::get_instance_name(named_object), "Object name"));
assert(0 == managed_shared_memory::get_instance_name(unique_object));
assert(0 == managed_shared_memory::get_instance_name(anon_object));

//Now test "get_instance_type" function.
assert(named_type == managed_shared_memory::get_instance_type(named_object));
assert(unique_type == managed_shared_memory::get_instance_type(unique_object));
assert(anonymous_type == managed_shared_memory::get_instance_type(anon_object));

//Now test "get_instance_length" function.
assert(1 == managed_shared_memory::get_instance_length(named_object));
assert(2 == managed_shared_memory::get_instance_length(unique_object));
assert(3 == managed_shared_memory::get_instance_length(anon_object));

managed_shm.destroy_ptr(named_object);
managed_shm.destroy_ptr(unique_object);
managed_shm.destroy_ptr(anon_object);
return 0;

}

Executing an object function atomically

Sometimes the programmer must execute some code, and needs to execute it with the guarantee that no other process or thread will
create or destroy any named, unique or anonymous object while executing the functor. A user might want to create several named
objects and initialize them, but those objects should be available for the rest of processes at once.

76

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

To achieve this, the programmer can use the atomic_func() function offered by managed classes:

//This object function will create several named objects
create_several_objects_func func(/**/);

//While executing the function, no other process will be
//able to create or destroy objects
managed_memory.atomic_func(func);

Note that atomic_func does not prevent other processes from allocating raw memory or executing member functions for already
constructed objects (e.g.: another process might be pushing elements into a vector placed in the segment). The atomic function only
blocks named, unique and anonymous creation, search and destruction (concurrent calls to construct<>, find<>,
find_or_construct<>, destroy<>...) from other processes.

Managed Memory Segment Advanced Features

Obtaining information about the managed segment

These functions are available to obtain information about the managed memory segments:

Obtain the size of the memory segment:

managed_shm.get_size();

Obtain the number of free bytes of the segment:

managed_shm.get_free_memory();

Clear to zero the free memory:

managed_shm.zero_free_memory();

Know if all memory has been deallocated, false otherwise:

managed_shm.all_memory_deallocated();

Test internal structures of the managed segment. Returns true if no errors are detected:

managed_shm.check_sanity();

Obtain the number of named and unique objects allocated in the segment:

managed_shm.get_num_named_objects();
managed_shm.get_num_unique_objects();

Growing managed segments

Once a managed segment is created the managed segment can't be grown. The limitation is not easily solvable: every process attached
to the managed segment would need to be stopped, notified of the new size, they would need to remap the managed segment and
continue working. Nearly impossible to achieve with a user-level library without the help of the operating system kernel.

On the other hand, Boost.Interprocess offers off-line segment growing. What does this mean? That the segment can be grown if
no process has mapped the managed segment. If the application can find a moment where no process is attached it can grow or shrink
to fit the managed segment.

77

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Here we have an example showing how to grow and shrink to fit managed_shared_memory:

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/managed_mapped_file.hpp>
#include <cassert>

class MyClass
{

//...
};

int main()
{

using namespace boost::interprocess;
//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

{
//Create a managed shared memory
managed_shared_memory shm(create_only, "MySharedMemory", 1000);

//Check size
assert(shm.get_size() == 1000);
//Construct a named object
MyClass *myclass = shm.construct<MyClass>("MyClass")();
//The managed segment is unmapped here

}
{

//Now that the segment is not mapped grow it adding extra 500 bytes
managed_shared_memory::grow("MySharedMemory", 500);

//Map it again
managed_shared_memory shm(open_only, "MySharedMemory");
//Check size
assert(shm.get_size() == 1500);
//Check "MyClass" is still there
MyClass *myclass = shm.find<MyClass>("MyClass").first;
assert(myclass != 0);
//The managed segment is unmapped here

}
{

//Now minimize the size of the segment
managed_shared_memory::shrink_to_fit("MySharedMemory");

//Map it again
managed_shared_memory shm(open_only, "MySharedMemory");
//Check size
assert(shm.get_size() < 1000);
//Check "MyClass" is still there
MyClass *myclass = shm.find<MyClass>("MyClass").first;
assert(myclass != 0);
//The managed segment is unmapped here

}
return 0;

}

managed_mapped_file also offers a similar function to grow or shrink_to_fit the managed file. Please, remember that no process
should be modifying the file/shared memory while the growing/shrinking process is performed. Otherwise, the managed segment
will be corrupted.

78

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Advanced index functions

As mentioned, the managed segment stores the information about named and unique objects in two indexes. Depending on the type
of those indexes, the index must reallocate some auxiliary structures when new named or unique allocations are made. For some
indexes, if the user knows how many named or unique objects are going to be created it's possible to preallocate some structures to
obtain much better performance. (If the index is an ordered vector it can preallocate memory to avoid reallocations. If the index is
a hash structure it can preallocate the bucket array).

The following functions reserve memory to make the subsequent allocation of named or unique objects more efficient. These functions
are only useful for pseudo-intrusive or non-node indexes (like flat_map_index, iunordered_set_index). These functions have
no effect with the default index (iset_index) or other indexes (map_index):

managed_shm.reserve_named_objects(1000);
managed_shm.reserve_unique_objects(1000);

managed_shm.reserve_named_objects(1000);
managed_shm.reserve_unique_objects(1000);

Managed memory segments also offer the possibility to iterate through constructed named and unique objects for debugging purposes.
Caution: this iteration is not thread-safe so the user should make sure that no other thread is manipulating named or unique indexes
(creating, erasing, reserving...) in the segment. Other operations not involving indexes can be concurrently executed (raw memory
allocation/deallocations, for example).

The following functions return constant iterators to the range of named and unique objects stored in the managed segment. Depending
on the index type, iterators might be invalidated after a named or unique creation/erasure/reserve operation:

typedef managed_shared_memory::const_named_iterator const_named_it;
const_named_it named_beg = managed_shm.named_begin();
const_named_it named_end = managed_shm.named_end();

typedef managed_shared_memory::const_unique_iterator const_unique_it;
const_unique_it unique_beg = managed_shm.unique_begin();
const_unique_it unique_end = managed_shm.unique_end();

for(; named_beg != named_end; ++named_beg){
//A pointer to the name of the named object
const managed_shared_memory::char_type *name = named_beg->name();
//The length of the name
std::size_t name_len = named_beg->name_length();
//A constant void pointer to the named object
const void *value = named_beg->value();

}

for(; unique_beg != unique_end; ++unique_beg){
//The typeid(T).name() of the unique object
const char *typeid_name = unique_beg->name();
//The length of the name
std::size_t name_len = unique_beg->name_length();
//A constant void pointer to the unique object
const void *value = unique_beg->value();

}

Allocating aligned memory portions

Sometimes it's interesting to be able to allocate aligned fragments of memory because of some hardware or software restrictions.
Sometimes, having aligned memory is a feature that can be used to improve several memory algorithms.

79

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This allocation is similar to the previously shown raw memory allocation but it takes an additional parameter specifying the alignment.
There is a restriction for the alignment: the alignment must be power of two.

If a user wants to allocate many aligned blocks (for example aligned to 128 bytes), the size that minimizes the memory waste is a
value that's is nearly a multiple of that alignment (for example 2*128 - some bytes). The reason for this is that every memory alloc-
ation usually needs some additional metadata in the first bytes of the allocated buffer. If the user can know the value of "some bytes"
and if the first bytes of a free block of memory are used to fulfill the aligned allocation, the rest of the block can be left also aligned
and ready for the next aligned allocation. Note that requesting a size multiple of the alignment is not optimal because lefts the
next block of memory unaligned due to the needed metadata.

Once the programmer knows the size of the payload of every memory allocation, he can request a size that will be optimal to allocate
aligned chunks of memory maximizing both the size of the request and the possibilities of future aligned allocations. This information
is stored in the PayloadPerAllocation constant of managed memory segments.

Here is a small example showing how aligned allocation is used:

#include <boost/interprocess/managed_shared_memory.hpp>
#include <cassert>

int main()
{

using namespace boost::interprocess;

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Managed memory segment that allocates portions of a shared memory
//segment with the default management algorithm
managed_shared_memory managed_shm(create_only, "MySharedMemory", 65536);

const std::size_t Alignment = 128;

//Allocate 100 bytes aligned to Alignment from segment, throwing version
void *ptr = managed_shm.allocate_aligned(100, Alignment);

//Check alignment
assert((static_cast<char*>(ptr)-static_cast<char*>(0)) % Alignment == 0);

//Deallocate it
managed_shm.deallocate(ptr);

//Non throwing version
ptr = managed_shm.allocate_aligned(100, Alignment, std::nothrow);

//Check alignment
assert((static_cast<char*>(ptr)-static_cast<char*>(0)) % Alignment == 0);

//Deallocate it
managed_shm.deallocate(ptr);

//If we want to efficiently allocate aligned blocks of memory
//use managed_shared_memory::PayloadPerAllocation value
assert(Alignment > managed_shared_memory::PayloadPerAllocation);

//This allocation will maximize the size of the aligned memory
//and will increase the possibility of finding more aligned memory
ptr = managed_shm.allocate_aligned

(3*Alignment - managed_shared_memory::PayloadPerAllocation, Alignment);

80

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Check alignment
assert((static_cast<char*>(ptr)-static_cast<char*>(0)) % Alignment == 0);

//Deallocate it
managed_shm.deallocate(ptr);

return 0;
}

Multiple allocation functions

Caution

This feature is experimental, interface and ABI are unstable

If an application needs to allocate a lot of memory buffers but it needs to deallocate them independently, the application is normally
forced to loop calling allocate(). Managed memory segments offer an alternative function to pack several allocations in a single
call obtaining memory buffers that:

• are packed contiguously in memory (which improves locality)

• can be independently deallocated.

This allocation method is much faster than calling allocate() in a loop. The downside is that the segment must provide a contiguous
memory segment big enough to hold all the allocations. Managed memory segments offer this functionality through allocate_many()
functions. There are 2 types of allocate_many functions:

• Allocation of N buffers of memory with the same size.

• Allocation ot N buffers of memory, each one of different size.

//!Allocates n_elements of elem_bytes bytes.
//!Throws bad_alloc on failure. chain.size() is not increased on failure.
void allocate_many(size_type elem_bytes, size_type n_elements, multiallocation_chain &chain);

//!Allocates n_elements, each one of element_lengths[i]*sizeof_element bytes.
//!Throws bad_alloc on failure. chain.size() is not increased on failure.
void allocate_many(const size_type *element_lengths, size_type n_elements, size_type sizeof_ele↵
ment, multiallocation_chain &chain);

//!Allocates n_elements of elem_bytes bytes.
//!Non-throwing version. chain.size() is not increased on failure.
void allocate_many(std::nothrow_t, size_type elem_bytes, size_type n_elements, multialloca↵
tion_chain &chain);

//!Allocates n_elements, each one of
//!element_lengths[i]*sizeof_element bytes.
//!Non-throwing version. chain.size() is not increased on failure.
void allocate_many(std::nothrow_t, const size_type *elem_sizes, size_type n_ele↵
ments, size_type sizeof_element, multiallocation_chain &chain);

//!Deallocates all elements contained in chain.
//!Never throws.
void deallocate_many(multiallocation_chain &chain);

Here is a small example showing all this functionality:

81

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/detail/move.hpp> //boost::move
#include <cassert>//assert
#include <cstring>//std::memset
#include <new> //std::nothrow
#include <vector> //std::vector

int main()
{

using namespace boost::interprocess;
typedef managed_shared_memory::multiallocation_chain multiallocation_chain;

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

managed_shared_memory managed_shm(create_only,"MySharedMemory", 65536);

//Allocate 16 elements of 100 bytes in a single call. Non-throwing version.
multiallocation_chain chain;
managed_shm.allocate_many(std::nothrow, 100, 16, chain);

//Check if the memory allocation was successful
if(chain.empty()) return 1;

//Allocated buffers
std::vector<void*> allocated_buffers;

//Initialize our data
while(!chain.empty()){

void *buf = chain.pop_front();
allocated_buffers.push_back(buf);
//The iterator must be incremented before overwriting memory
//because otherwise, the iterator is invalidated.
std::memset(buf, 0, 100);

}

//Now deallocate
while(!allocated_buffers.empty()){

managed_shm.deallocate(allocated_buffers.back());
allocated_buffers.pop_back();

}

//Allocate 10 buffers of different sizes in a single call. Throwing version
managed_shared_memory::size_type sizes[10];
for(std::size_t i = 0; i < 10; ++i)

sizes[i] = i*3;

managed_shm.allocate_many(sizes, 10, 1, chain);
managed_shm.deallocate_many(chain);
return 0;

}

Allocating N buffers of the same size improves the performance of pools and node containers (for example STL-like lists): when
inserting a range of forward iterators in a STL-like list, the insertion function can detect the number of needed elements and allocate
in a single call. The nodes still can be deallocated.

Allocating N buffers of different sizes can be used to speed up allocation in cases where several objects must always be allocated at
the same time but deallocated at different times. For example, a class might perform several initial allocations (some header data for

82

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

a network packet, for example) in its constructor but also allocations of buffers that might be reallocated in the future (the data to
be sent through the network). Instead of allocating all the data independently, the constructor might use allocate_many() to speed
up the initialization, but it still can deallocate and expand the memory of the variable size element.

In general, allocate_many is useful with large values of N. Overuse of allocate_many can increase the effective memory usage,
because it can't reuse existing non-contiguous memory fragments that might be available for some of the elements.

Expand in place memory allocation

When programming some data structures such as vectors, memory reallocation becomes an important tool to improve performance.
Managed memory segments offer an advanced reallocation function that offers:

• Forward expansion: An allocated buffer can be expanded so that the end of the buffer is moved further. New data can be written
between the old end and the new end.

• Backwards expansion: An allocated buffer can be expanded so that the beginning of the buffer is moved backwards. New data
can be written between the new beginning and the old beginning.

• Shrinking: An allocated buffer can be shrunk so that the end of the buffer is moved backwards. The memory between the new
end and the old end can be reused for future allocations.

The expansion can be combined with the allocation of a new buffer if the expansion fails obtaining a function with "expand, if fails
allocate a new buffer" semantics.

Apart from this features, the function always returns the real size of the allocated buffer, because many times, due to alignment issues
the allocated buffer a bit bigger than the requested size. Thus, the programmer can maximize the memory use using allocation_com-
mand.

Here is the declaration of the function:

enum boost::interprocess::allocation_type
{

//Bitwise OR (|) combinable values
boost::interprocess::allocate_new = ...,
boost::interprocess::expand_fwd = ...,
boost::interprocess::expand_bwd = ...,
boost::interprocess::shrink_in_place = ...,
boost::interprocess::nothrow_allocation = ...

};

template<class T>
std::pair<T *, bool>

allocation_command(boost::interprocess::allocation_type command
, std::size_t limit_size
, std::size_t preferred_size
, std::size_t &received_size
, T *reuse_ptr = 0);

Preconditions for the function:

• If the parameter command contains the value boost::interprocess::shrink_in_place it can't contain any of these values:
boost::interprocess::expand_fwd, boost::interprocess::expand_bwd.

• If the parameter command contains boost::interprocess::expand_fwd or boost::interprocess::expand_bwd, the
parameter reuse_ptr must be non-null and returned by a previous allocation function.

• If the parameter command contains the value boost::interprocess::shrink_in_place, the parameter limit_size must
be equal or greater than the parameter preferred_size.

83

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• If the parameter command contains any of these values: boost::interprocess::expand_fwd or boost::interprocess::ex-
pand_bwd, the parameter limit_size must be equal or less than the parameter preferred_size.

Which are the effects of this function:

• If the parameter command contains the value boost::interprocess::shrink_in_place, the function will try to reduce the
size of the memory block referenced by pointer reuse_ptr to the value preferred_size moving only the end of the block. If
it's not possible, it will try to reduce the size of the memory block as much as possible as long as this results in size(p) <=

limit_size. Success is reported only if this results in preferred_size <= size(p) and size(p) <= limit_size.

• If the parameter command only contains the value boost::interprocess::expand_fwd (with optional additional
boost::interprocess::nothrow_allocation), the allocator will try to increase the size of the memory block referenced
by pointer reuse moving only the end of the block to the value preferred_size. If it's not possible, it will try to increase the
size of the memory block as much as possible as long as this results in size(p) >= limit_size. Success is reported only if
this results in limit_size <= size(p).

• If the parameter command only contains the value boost::interprocess::expand_bwd (with optional additional
boost::interprocess::nothrow_allocation), the allocator will try to increase the size of the memory block referenced
by pointer reuse_ptr only moving the start of the block to a returned new position new_ptr. If it's not possible, it will try to
move the start of the block as much as possible as long as this results in size(new_ptr) >= limit_size. Success is reported
only if this results in limit_size <= size(new_ptr).

• If the parameter command only contains the value boost::interprocess::allocate_new (with optional additional
boost::interprocess::nothrow_allocation), the allocator will try to allocate memory for preferred_size objects. If
it's not possible it will try to allocate memory for at least limit_size objects.

• If the parameter command only contains a combination of boost::interprocess::expand_fwd and boost::interpro-
cess::allocate_new, (with optional additional boost::interprocess::nothrow_allocation) the allocator will try first
the forward expansion. If this fails, it would try a new allocation.

• If the parameter command only contains a combination of boost::interprocess::expand_bwd and boost::interpro-
cess::allocate_new (with optional additional boost::interprocess::nothrow_allocation), the allocator will try first
to obtain preferred_size objects using both methods if necessary. If this fails, it will try to obtain limit_size objects using
both methods if necessary.

• If the parameter command only contains a combination of boost::interprocess::expand_fwd and boost::interpro-
cess::expand_bwd (with optional additional boost::interprocess::nothrow_allocation), the allocator will try first
forward expansion. If this fails it will try to obtain preferred_size objects using backwards expansion or a combination of forward
and backwards expansion. If this fails, it will try to obtain limit_size objects using both methods if necessary.

• If the parameter command only contains a combination of allocation_new, boost::interprocess::expand_fwd and
boost::interprocess::expand_bwd, (with optional additional boost::interprocess::nothrow_allocation) the al-
locator will try first forward expansion. If this fails it will try to obtain preferred_size objects using new allocation, backwards
expansion or a combination of forward and backwards expansion. If this fails, it will try to obtain limit_size objects using the
same methods.

• The allocator always writes the size or the expanded/allocated/shrunk memory block in received_size. On failure the allocator
writes in received_size a possibly successful limit_size parameter for a new call.

Throws an exception if two conditions are met:

• The allocator is unable to allocate/expand/shrink the memory or there is an error in preconditions

• The parameter command does not contain boost::interprocess::nothrow_allocation.

This function returns:

• The address of the allocated memory or the new address of the expanded memory as the first member of the pair. If the parameter
command contains boost::interprocess::nothrow_allocation the first member will be 0 if the allocation/expansion
fails or there is an error in preconditions.

84

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• The second member of the pair will be false if the memory has been allocated, true if the memory has been expanded. If the first
member is 0, the second member has an undefined value.

Notes:

• If the user chooses char as template argument the returned buffer will be suitably aligned to hold any type.

• If the user chooses char as template argument and a backwards expansion is performed, although properly aligned, the returned
buffer might not be suitable because the distance between the new beginning and the old beginning might not multiple of the type
the user wants to construct, since due to internal restrictions the expansion can be slightly bigger than the requested bytes. When
performing backwards expansion, if you have already constructed objects in the old buffer, make sure to specify correctly
the type.

Here is a small example that shows the use of allocation_command:

#include <boost/interprocess/managed_shared_memory.hpp>
#include <cassert>

int main()
{

using namespace boost::interprocess;

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Managed memory segment that allocates portions of a shared memory
//segment with the default management algorithm
managed_shared_memory managed_shm(create_only, "MySharedMemory", 10000*sizeof(std::size_t));

//Allocate at least 100 bytes, 1000 bytes if possible
managed_shared_memory::size_type min_size = 100, preferred_size = 1000;
managed_shared_memory::size_type received_size;
std::size_t *ptr = managed_shm.allocation_command<std::size_t>

(boost::interprocess::allocate_new, min_size, preferred_size, received_size).first;

//Received size must be bigger than min_size
assert(received_size >= min_size);

//Get free memory
managed_shared_memory::size_type free_memory_after_allocation = managed_shm.get_free_memory();

//Now write the data
for(std::size_t i = 0; i < received_size; ++i) ptr[i] = i;

//Now try to triplicate the buffer. We won't admit an expansion
//lower to the double of the original buffer.
//This "should" be successful since no other class is allocating
//memory from the segment
managed_shared_memory::size_type expanded_size;
std::pair<std::size_t *, bool> ret = managed_shm.allocation_command

(boost::interprocess::expand_fwd, received_size*2, received_size*3, expanded_size, ptr);

//Check invariants
assert(ret.second == true);
assert(ret.first == ptr);
assert(expanded_size >= received_size*2);

//Get free memory and compare

85

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

managed_shared_memory::size_type free_memory_after_expansion = managed_shm.get_free_memory();
assert(free_memory_after_expansion < free_memory_after_allocation);

//Write new values
for(std::size_t i = received_size; i < expanded_size; ++i) ptr[i] = i;

//Try to shrink approximately to min_size, but the new size
//should be smaller than min_size*2.
//This "should" be successful since no other class is allocating
//memory from the segment
managed_shared_memory::size_type shrunk_size;
ret = managed_shm.allocation_command

(boost::interprocess::shrink_in_place, min_size*2, min_size, shrunk_size, ptr);

//Check invariants
assert(ret.second == true);
assert(ret.first == ptr);
assert(shrunk_size <= min_size*2);
assert(shrunk_size >= min_size);

//Get free memory and compare
managed_shared_memory::size_type free_memory_after_shrinking = managed_shm.get_free_memory();
assert(free_memory_after_shrinking > free_memory_after_expansion);

//Deallocate the buffer
managed_shm.deallocate(ptr);
return 0;

}

allocation_command is a very powerful function that can lead to important performance gains. It's specially useful when program-
ming vector-like data structures where the programmer can minimize both the number of allocation requests and the memory waste.

Opening managed shared memory and mapped files with Copy On Write or
Read Only modes

When mapping a memory segment based on shared memory or files, there is an option to open them using open_copy_on_write
option. This option is similar to open_only but every change the programmer does with this managed segment is kept private to
this process and is not translated to the underlying device (shared memory or file).

The underlying shared memory or file is opened as read-only so several processes can share an initial managed segment and make
private changes to it. If many processes open a managed segment in copy on write mode and not modified pages from the managed
segment will be shared between all those processes, with considerable memory savings.

Opening managed shared memory and mapped files with open_read_only maps the underlying device in memory with read-only
attributes. This means that any attempt to write that memory, either creating objects or locking any mutex might result in an page-
fault error (and thus, program termination) from the OS. Read-only mode opens the underlying device (shared memory, file...) in
read-only mode and can result in considerable memory savings if several processes just want to process a managed memory segment
without modifying it. Read-only mode operations are limited:

• Read-only mode must be used only from managed classes. If the programmer obtains the segment manager and tries to use it
directly it might result in an access violation. The reason for this is that the segment manager is placed in the underlying device
and does not nothing about the mode it's been mapped in memory.

• Only const member functions from managed segments should be used.

• Additionally, the find<> member function avoids using internal locks and can be used to look for named and unique objects.

Here is an example that shows the use of these two open modes:

86

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_mapped_file.hpp>
#include <fstream> //std::fstream
#include <iterator>//std::distance

int main()
{

using namespace boost::interprocess;

//Define file names
const char *ManagedFile = "MyManagedFile";
const char *ManagedFile2 = "MyManagedFile2";

//Try to erase any previous managed segment with the same name
file_mapping::remove(ManagedFile);
file_mapping::remove(ManagedFile2);
remove_file_on_destroy destroyer1(ManagedFile);
remove_file_on_destroy destroyer2(ManagedFile2);

{
//Create an named integer in a managed mapped file
managed_mapped_file managed_file(create_only, ManagedFile, 65536);
managed_file.construct<int>("MyInt")(0u);

//Now create a copy on write version
managed_mapped_file managed_file_cow(open_copy_on_write, ManagedFile);

//Erase the int and create a new one
if(!managed_file_cow.destroy<int>("MyInt"))

throw int(0);
managed_file_cow.construct<int>("MyInt2");

//Check changes
if(managed_file_cow.find<int>("MyInt").first && !managed_file_cow.find<int>("MyInt2").first)

throw int(0);

//Check the original is intact
if(!managed_file.find<int>("MyInt").first && managed_file.find<int>("MyInt2").first)

throw int(0);

{ //Dump the modified copy on write segment to a file
std::fstream file(ManagedFile2, std::ios_base::out | std::ios_base::binary);
if(!file)

throw int(0);
file.write(static_cast<const char *>(managed_file_cow.get_address()), (std::streamsize)man↵

aged_file_cow.get_size());
}

//Now open the modified file and test changes
managed_mapped_file managed_file_cow2(open_only, ManagedFile2);
if(managed_file_cow2.find<int>("MyInt").first && !managed_file_cow2.find<int>("My↵

Int2").first)
throw int(0);

}
{

//Now create a read-only version
managed_mapped_file managed_file_ro(open_read_only, ManagedFile);

//Check the original is intact
if(!managed_file_ro.find<int>("MyInt").first && managed_file_ro.find<int>("MyInt2").first)

throw int(0);

//Check the number of named objects using the iterators

87

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

if(std::distance(managed_file_ro.named_begin(), managed_file_ro.named_end()) != 1 &&
std::distance(managed_file_ro.unique_begin(), managed_file_ro.unique_end()) != 0)
throw int(0);

}
return 0;

}

Managed Heap Memory And Managed External Buffer
Boost.Interprocess offers managed shared memory between processes using managed_shared_memory or managed_mapped_file.
Two processes just map the same the memory mappable resource and read from and write to that object.

Many times, we don't want to use that shared memory approach and we prefer to send serialized data through network, local socket
or message queues. Serialization can be done through Boost.Serialization or similar library. However, if two processes share the
same ABI (application binary interface), we could use the same object and container construction capabilities of man-
aged_shared_memory or managed_heap_memory to build all the information in a single buffer that will be sent, for example,
though message queues. The receiver would just copy the data to a local buffer, and it could read or modify it directly without
deserializing the data . This approach can be much more efficient that a complex serialization mechanism.

Applications for Boost.Interprocess services using non-shared memory buffers:

• Create and use STL compatible containers and allocators, in systems where dynamic memory is not recommendable.

• Build complex, easily serializable databases in a single buffer:

• To share data between threads

• To save and load information from/to files.

• Duplicate information (containers, allocators, etc...) just copying the contents of one buffer to another one.

• Send complex information and objects/databases using serial/inter-process/network communications.

To help with this management, Boost.Interprocess provides two useful classes, basic_managed_heap_memory and basic_man-
aged_external_buffer:

Managed External Buffer: Constructing all Boost.Interprocess objects in a
user provided buffer

Sometimes, the user wants to create simple objects, STL compatible containers, STL compatible strings and more, all in a single
buffer. This buffer could be a big static buffer, a memory-mapped auxiliary device or any other user buffer.

This would allow an easy serialization and we-ll just need to copy the buffer to duplicate all the objects created in the original buffer,
including complex objects like maps, lists.... Boost.Interprocess offers managed memory segment classes to handle user provided
buffers that allow the same functionality as shared memory classes:

88

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Named object creation managed memory segment
//All objects are constructed in a user provided buffer
template <

class CharType,
class MemoryAlgorithm,
template<class IndexConfig> class IndexType

>
class basic_managed_external_buffer;

//Named object creation managed memory segment
//All objects are constructed in a user provided buffer
// Names are c-strings,
// Default memory management algorithm
// (rbtree_best_fit with no mutexes and relative pointers)
// Name-object mappings are stored in the default index type (flat_map)
typedef basic_managed_external_buffer <

char,
rbtree_best_fit<null_mutex_family, offset_ptr<void> >,
flat_map_index
> managed_external_buffer;

//Named object creation managed memory segment
//All objects are constructed in a user provided buffer
// Names are wide-strings,
// Default memory management algorithm
// (rbtree_best_fit with no mutexes and relative pointers)
// Name-object mappings are stored in the default index type (flat_map)
typedef basic_managed_external_buffer<

wchar_t,
rbtree_best_fit<null_mutex_family, offset_ptr<void> >,
flat_map_index
> wmanaged_external_buffer;

To use a managed external buffer, you must include the following header:

#include <boost/interprocess/managed_external_buffer.hpp>

Let's see an example of the use of managed_external_buffer:

89

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_external_buffer.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <boost/interprocess/containers/list.hpp>
#include <cstring>
#include <boost/aligned_storage.hpp>

int main()
{

using namespace boost::interprocess;

//Create the static memory who will store all objects
const int memsize = 65536;

static boost::aligned_storage<memsize>::type static_buffer;

//This managed memory will construct objects associated with
//a wide string in the static buffer
wmanaged_external_buffer objects_in_static_memory

(create_only, &static_buffer, memsize);

//We optimize resources to create 100 named objects in the static buffer
objects_in_static_memory.reserve_named_objects(100);

//Alias an integer node allocator type
//This allocator will allocate memory inside the static buffer
typedef allocator<int, wmanaged_external_buffer::segment_manager>

allocator_t;

//Alias a STL compatible list to be constructed in the static buffer
typedef list<int, allocator_t> MyBufferList;

//The list must be initialized with the allocator
//All objects created with objects_in_static_memory will
//be stored in the static_buffer!
MyBufferList *list = objects_in_static_memory.construct<MyBufferList>(L"MyList")

(objects_in_static_memory.get_segment_manager());
//Since the allocation algorithm from wmanaged_external_buffer uses relative
//pointers and all the pointers constructed int the static memory point
//to objects in the same segment, we can create another static buffer
//from the first one and duplicate all the data.
static boost::aligned_storage<memsize>::type static_buffer2;
std::memcpy(&static_buffer2, &static_buffer, memsize);

//Now open the duplicated managed memory passing the memory as argument
wmanaged_external_buffer objects_in_static_memory2

(open_only, &static_buffer2, memsize);

//Check that "MyList" has been duplicated in the second buffer
if(!objects_in_static_memory2.find<MyBufferList>(L"MyList").first)

return 1;

//Destroy the lists from the static buffers
objects_in_static_memory.destroy<MyBufferList>(L"MyList");
objects_in_static_memory2.destroy<MyBufferList>(L"MyList");
return 0;

}

Boost.Interprocess STL compatible allocators can also be used to place STL compatible containers in the user segment.

basic_managed_external_buffer can be also useful to build small databases for embedded systems limiting the size of the
used memory to a predefined memory chunk, instead of letting the database fragment the heap memory.

90

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Managed Heap Memory: Boost.Interprocess machinery in heap memory

The use of heap memory (new/delete) to obtain a buffer where the user wants to store all his data is very common, so Boost.Inter-
process provides some specialized classes that work exclusively with heap memory.

These are the classes:

//Named object creation managed memory segment
//All objects are constructed in a single buffer allocated via new[]
template <

class CharType,
class MemoryAlgorithm,
template<class IndexConfig> class IndexType

>
class basic_managed_heap_memory;

//Named object creation managed memory segment
//All objects are constructed in a single buffer allocated via new[]
// Names are c-strings,
// Default memory management algorithm
// (rbtree_best_fit with no mutexes and relative pointers)
// Name-object mappings are stored in the default index type (flat_map)
typedef basic_managed_heap_memory <

char,
rbtree_best_fit<null_mutex_family>,
flat_map_index
> managed_heap_memory;

//Named object creation managed memory segment
//All objects are constructed in a single buffer allocated via new[]
// Names are wide-strings,
// Default memory management algorithm
// (rbtree_best_fit with no mutexes and relative pointers)
// Name-object mappings are stored in the default index type (flat_map)
typedef basic_managed_heap_memory<

wchar_t,
rbtree_best_fit<null_mutex_family>,
flat_map_index
> wmanaged_heap_memory;

To use a managed heap memory, you must include the following header:

#include <boost/interprocess/managed_heap_memory.hpp>

The use is exactly the same as basic_managed_external_buffer, except that memory is created by the managed memory segment
itself using dynamic (new/delete) memory.

basic_managed_heap_memory also offers a grow(std::size_t extra_bytes) function that tries to resize internal heap
memory so that we have room for more objects. But be careful, if memory is reallocated, the old buffer will be copied into the new
one so all the objects will be binary-copied to the new buffer. To be able to use this function, all pointers constructed in the heap
buffer that point to objects in the heap buffer must be relative pointers (for example offset_ptr). Otherwise, the result is undefined.
Here is an example:

91

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/containers/list.hpp>
#include <boost/interprocess/managed_heap_memory.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <cstddef>

using namespace boost::interprocess;
typedef list<int, allocator<int, managed_heap_memory::segment_manager> >

MyList;

int main ()
{

//We will create a buffer of 1000 bytes to store a list
managed_heap_memory heap_memory(1000);

MyList * mylist = heap_memory.construct<MyList>("MyList")
(heap_memory.get_segment_manager());

//Obtain handle, that identifies the list in the buffer
managed_heap_memory::handle_t list_handle = heap_memory.get_handle_from_address(mylist);

//Fill list until there is no more memory in the buffer
try{

while(1) {
mylist->insert(mylist->begin(), 0);

}
}
catch(const bad_alloc &){

//memory is full
}
//Let's obtain the size of the list
MyList::size_type old_size = mylist->size();

//To make the list bigger, let's increase the heap buffer
//in 1000 bytes more.
heap_memory.grow(1000);

//If memory has been reallocated, the old pointer is invalid, so
//use previously obtained handle to find the new pointer.
mylist = static_cast<MyList *>

(heap_memory.get_address_from_handle(list_handle));

//Fill list until there is no more memory in the buffer
try{

while(1) {
mylist->insert(mylist->begin(), 0);

}
}
catch(const bad_alloc &){

//memory is full
}

//Let's obtain the new size of the list
MyList::size_type new_size = mylist->size();

assert(new_size > old_size);

//Destroy list
heap_memory.destroy_ptr(mylist);

return 0;
}

92

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Differences between managed memory segments

All managed memory segments have similar capabilities (memory allocation inside the memory segment, named object construction...),
but there are some remarkable differences between managed_shared_memory, managed_mapped_file and managed_heap_memory,
managed_external_file.

• Default specializations of managed shared memory and mapped file use process-shared mutexes. Heap memory and external
buffer have no internal synchronization by default. The cause is that the first two are thought to be shared between processes (al-
though memory mapped files could be used just to obtain a persistent object data-base for a process) whereas the last two are
thought to be used inside one process to construct a serialized named object data-base that can be sent though serial interprocess
communications (like message queues, localhost network...).

• The first two create a system-global object (a shared memory object or a file) shared by several processes, whereas the last two
are objects that don't create system-wide resources.

Example: Serializing a database through the message queue

To see the utility of managed heap memory and managed external buffer classes, the following example shows how a message queue
can be used to serialize a whole database constructed in a memory buffer using Boost.Interprocess, send the database through a
message queue and duplicated in another buffer:

//This test creates a in memory data-base using Interprocess machinery and
//serializes it through a message queue. Then rebuilds the data-base in
//another buffer and checks it against the original data-base
bool test_serialize_db()
{

//Typedef data to create a Interprocess map
typedef std::pair<const std::size_t, std::size_t> MyPair;
typedef std::less<std::size_t> MyLess;
typedef node_allocator<MyPair, managed_external_buffer::segment_manager>

node_allocator_t;
typedef map<std::size_t,

std::size_t,
std::less<std::size_t>,
node_allocator_t>
MyMap;

//Some constants
const std::size_t BufferSize = 65536;
const std::size_t MaxMsgSize = 100;

//Allocate a memory buffer to hold the destiny database using vector<char>
std::vector<char> buffer_destiny(BufferSize, 0);

message_queue::remove(test::get_process_id_name());
{

//Create the message-queues
message_queue mq1(create_only, test::get_process_id_name(), 1, MaxMsgSize);

//Open previously created message-queue simulating other process
message_queue mq2(open_only, test::get_process_id_name());

//A managed heap memory to create the origin database
managed_heap_memory db_origin(buffer_destiny.size());

//Construct the map in the first buffer
MyMap *map1 = db_origin.construct<MyMap>("MyMap")

(MyLess(),
db_origin.get_segment_manager());

if(!map1)
return false;

93

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Fill map1 until is full
try{

std::size_t i = 0;
while(1){

(*map1)[i] = i;
++i;

}
}
catch(boost::interprocess::bad_alloc &){}

//Data control data sending through the message queue
std::size_t sent = 0;
message_queue::size_type recvd = 0;
message_queue::size_type total_recvd = 0;
unsigned int priority;

//Send whole first buffer through the mq1, read it
//through mq2 to the second buffer
while(1){

//Send a fragment of buffer1 through mq1
std::size_t bytes_to_send = MaxMsgSize < (db_origin.get_size() - sent) ?

MaxMsgSize : (db_origin.get_size() - sent);
mq1.send(&static_cast<char*>(db_origin.get_address())[sent]

, bytes_to_send
, 0);

sent += bytes_to_send;
//Receive the fragment through mq2 to buffer_destiny

mq2.receive(&buffer_destiny[total_recvd]
, BufferSize - recvd

, recvd
, priority);

total_recvd += recvd;

//Check if we have received all the buffer
if(total_recvd == BufferSize){

break;
}

}

//The buffer will contain a copy of the original database
//so let's interpret the buffer with managed_external_buffer
managed_external_buffer db_destiny(open_only, &buffer_destiny[0], BufferSize);

//Let's find the map
std::pair<MyMap *, managed_external_buffer::size_type> ret = db_destiny.find<MyMap>("MyMap");
MyMap *map2 = ret.first;

//Check if we have found it
if(!map2){

return false;
}

//Check if it is a single variable (not an array)
if(ret.second != 1){

return false;
}

//Now let's compare size
if(map1->size() != map2->size()){

return false;
}

94

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Now let's compare all db values
MyMap::size_type num_elements = map1->size();
for(std::size_t i = 0; i < num_elements; ++i){

if((*map1)[i] != (*map2)[i]){
return false;

}
}

//Destroy maps from db-s
db_origin.destroy_ptr(map1);
db_destiny.destroy_ptr(map2);

}
message_queue::remove(test::get_process_id_name());
return true;

}

95

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Allocators, containers and memory allocation al-
gorithms

Introduction to Interprocess allocators
As seen, Boost.Interprocess offers raw memory allocation and object construction using managed memory segments (managed
shared memory, managed mapped files...) and one of the first user requests is the use of containers in managed shared memories.
To achieve this, Boost.Interprocess makes use of managed memory segment's memory allocation algorithms to build several memory
allocation schemes, including general purpose and node allocators.

Boost.Interprocess STL compatible allocators are configurable via template parameters. Allocators define their pointer typedef
based on the void_pointer typedef of the segment manager passed as template argument. When this segment_man-
ager::void_pointer is a relative pointer, (for example, offset_ptr<void>) the user can place these allocators in memory
mapped in different base addresses in several processes.

Properties of Boost.Interprocess allocators

Container allocators are normally default-constructible because the are stateless. std::allocator and Boost.Pool's
boost::pool_allocator/boost::fast_pool_allocator are examples of default-constructible allocators.

On the other hand, Boost.Interprocess allocators need to allocate memory from a concrete memory segment and not from a system-
wide memory source (like the heap). Boost.Interprocess allocators are stateful, which means that they must be configured to tell
them where the shared memory or the memory mapped file is.

This information is transmitted at compile-time and run-time: The allocators receive a template parameter defining the type of the
segment manager and their constructor receive a pointer to the segment manager of the managed memory segment where the user
wants to allocate the values.

Boost.Interprocess allocators have no default-constructors and containers must be explicitly initialized with a configured allocator:

//The allocators must be templatized with the segment manager type
typedef any_interprocess_allocator

<int, managed_shared_memory::segment_manager, ...> Allocator;

//The allocator must be constructed with a pointer to the segment manager
Allocator alloc_instance (segment.get_segment_manager(), ...);

//Containers must be initialized with a configured allocator
typedef my_list<int, Allocator> MyIntList;
MyIntList mylist(alloc_inst);

//This would lead to a compilation error, because
//the allocator has no default constructor
//MyIntList mylist;

Boost.Interprocess allocators also have a get_segment_manager() function that returns the underlying segment manager that
they have received in the constructor:

Allocator::segment_manager s = alloc_instance.get_segment_manager();
AnotherType *a = s->construct<AnotherType>(anonymous_instance)(/*Parameters*/);

Swapping Boost.Interprocess allocators

When swapping STL containers, there is an active discussion on what to do with the allocators. Some STL implementations, for
example Dinkumware from Visual .NET 2003, perform a deep swap of the whole container through a temporary when allocators
are not equal. The proposed resolution to container swapping is that allocators should be swapped in a non-throwing way.

96

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2004/n1599.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Unfortunately, this approach is not valid with shared memory. Using heap allocators, if Group1 of node allocators share a common
segregated storage, and Group2 share another common segregated storage, a simple pointer swapping is needed to swap an allocator
of Group1 and another allocator of Group2. But when the user wants to swap two shared memory allocators, each one placed in a
different shared memory segment, this is not possible. As generally shared memory is mapped in different addresses in each process,
a pointer placed in one segment can't point to any object placed in other shared memory segment, since in each process, the distance
between the segments is different. However, if both shared memory allocators are in the same segment, a non-throwing swap is
possible, just like heap allocators.

Until a final resolution is achieved. Boost.Interprocess allocators implement a non-throwing swap function that swaps internal
pointers. If an allocator placed in a shared memory segment is swapped with other placed in a different shared memory segment,
the result is undefined. But a crash is quite sure.

allocator: A general purpose allocator for managed memory segments

The allocator class defines an allocator class that uses the managed memory segment's algorithm to allocate and deallocate
memory. This is achieved through the segment manager of the managed memory segment. This allocator is the equivalent for
managed memory segments of the standard std::allocator. allocator is templatized with the allocated type, and the segment
manager.

Equality: Two allocator instances constructed with the same segment manager compare equal. If an instance is created using
copy constructor, that instance compares equal with the original one.

Allocation thread-safety: Allocation and deallocation are implemented as calls to the segment manager's allocation function so the
allocator offers the same thread-safety as the segment manager.

To use allocator you must include the following header:

#include <boost/interprocess/allocators/allocator.hpp>

allocator has the following declaration:

namespace boost {
namespace interprocess {

template<class T, class SegmentManager>
class allocator;

} //namespace interprocess {
} //namespace boost {

The allocator just provides the needed typedefs and forwards all allocation and deallocation requests to the segment manager passed
in the constructor, just like std::allocator forwards the requests to operator new[].

Using allocator is straightforward:

97

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <cassert>

using namespace boost::interprocess;

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create shared memory
managed_shared_memory segment(create_only,

"MySharedMemory", //segment name
65536);

//Create an allocator that allocates ints from the managed segment
allocator<int, managed_shared_memory::segment_manager>

allocator_instance(segment.get_segment_manager());

//Copy constructed allocator is equal
allocator<int, managed_shared_memory::segment_manager>

allocator_instance2(allocator_instance);
assert(allocator_instance2 == allocator_instance);

//Allocate and deallocate memory for 100 ints
allocator_instance2.deallocate(allocator_instance.allocate(100), 100);

return 0;
}

Segregated storage node allocators
Variable size memory algorithms waste some space in management information for each allocation. Sometimes, usually for small
objects, this is not acceptable. Memory algorithms can also fragment the managed memory segment under some allocation and
deallocation schemes, reducing their performance. When allocating many objects of the same type, a simple segregated storage becomes
a fast and space-friendly allocator, as explained in the Boost.Pool library.

Segregate storage node allocators allocate large memory chunks from a general purpose memory allocator and divide that chunk
into several nodes. No bookkeeping information is stored in the nodes to achieve minimal memory waste: free nodes are linked using
a pointer constructed in the memory of the node.

Boost.Interprocess offers 3 allocators based on this segregated storage algorithm: node_allocator, private_node_allocator
and cached_node_allocator.

To know the details of the implementation of of the segregated storage pools see the Implementation of Boost.Interprocess segregated
storage pools section.

Additional parameters and functions of segregated storage node allocators

node_allocator, private_node_allocator and cached_node_allocator implement the standard allocator interface and
the functions explained in the Properties of Boost.Interprocess allocators.

All these allocators are templatized by 3 parameters:

• class T: The type to be allocated.

98

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/pool/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• class SegmentManager: The type of the segment manager that will be passed in the constructor.

• std::size_t NodesPerChunk: The number of nodes that a memory chunk will contain. This value will define the size of the
memory the pool will request to the segment manager when the pool runs out of nodes. This parameter has a default value.

These allocators also offer the deallocate_free_chunks() function. This function will traverse all the memory chunks of the
pool and will return to the managed memory segment the free chunks of memory. If this function is not used, deallocating the free
chunks does not happen until the pool is destroyed so the only way to return memory allocated by the pool to the segment before
destructing the pool is calling manually this function. This function is quite time-consuming because it has quadratic complexity
(O(N^2)).

node_allocator: A process-shared segregated storage

For heap-memory node allocators (like Boost.Pool's boost::fast_pool_allocator usually a global, thread-shared singleton
pool is used for each node size. This is not possible if you try to share a node allocator between processes. To achieve this sharing
node_allocator uses the segment manager's unique type allocation service (see Unique instance construction section).

In the initialization, a node_allocator object searches this unique object in the segment. If it is not preset, it builds one. This way,
all node_allocator objects built inside a memory segment share a unique memory pool.

The common segregated storage is not only shared between node_allocators of the same type, but it is also shared between all node
allocators that allocate objects of the same size, for example, node_allocator<uint32> and node_allocator<float32>. This saves a
lot of memory but also imposes an synchronization overhead for each node allocation.

The dynamically created common segregated storage integrates a reference count so that a node_allocator can know if any other
node_allocator is attached to the same common segregated storage. When the last allocator attached to the pool is destroyed, the
pool is destroyed.

Equality: Two node_allocator instances constructed with the same segment manager compare equal. If an instance is created
using copy constructor, that instance compares equal with the original one.

Allocation thread-safety: Allocation and deallocation are implemented as calls to the shared pool. The shared pool offers the same
synchronization guarantees as the segment manager.

To use node_allocator, you must include the following header:

#include <boost/interprocess/allocators/node_allocator.hpp>

node_allocator has the following declaration:

namespace boost {
namespace interprocess {

template<class T, class SegmentManager, std::size_t NodesPerChunk = ...>
class node_allocator;

} //namespace interprocess {
} //namespace boost {

An example using node_allocator:

99

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/allocators/node_allocator.hpp>
#include <cassert>

using namespace boost::interprocess;

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create shared memory
managed_shared_memory segment(create_only,

"MySharedMemory", //segment name
65536);

//Create a node_allocator that allocates ints from the managed segment
//The number of chunks per segment is the default value
typedef node_allocator<int, managed_shared_memory::segment_manager>

node_allocator_t;
node_allocator_t allocator_instance(segment.get_segment_manager());

//Create another node_allocator. Since the segment manager address
//is the same, this node_allocator will be
//attached to the same pool so "allocator_instance2" can deallocate
//nodes allocated by "allocator_instance"
node_allocator_t allocator_instance2(segment.get_segment_manager());

//Create another node_allocator using copy-constructor. This
//node_allocator will also be attached to the same pool
node_allocator_t allocator_instance3(allocator_instance2);

//All allocators are equal
assert(allocator_instance == allocator_instance2);
assert(allocator_instance2 == allocator_instance3);

//So memory allocated with one can be deallocated with another
allocator_instance2.deallocate(allocator_instance.allocate(1), 1);
allocator_instance3.deallocate(allocator_instance2.allocate(1), 1);

//The common pool will be destroyed here, since no allocator is
//attached to the pool
return 0;

}

private_node_allocator: a private segregated storage

As said, the node_allocator shares a common segregated storage between node_allocators that allocate objects of the same size and
this optimizes memory usage. However, it needs a unique/named object construction feature so that this sharing can be possible.
Also imposes a synchronization overhead per node allocation because of this share. Sometimes, the unique object service is not
available (for example, when building index types to implement the named allocation service itself) or the synchronization overhead
is not acceptable. Many times the programmer wants to make sure that the pool is destroyed when the allocator is destroyed, to free
the memory as soon as possible.

So private_node_allocator uses the same segregated storage as node_allocator, but each private_node_allocator has its own
segregated storage pool. No synchronization is used when allocating nodes, so there is far less overhead for an operation that usually
involves just a few pointer operations when allocating and deallocating a node.

100

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Equality: Two private_node_allocator instances never compare equal. Memory allocated with one allocator can't be deallocated
with another one.

Allocation thread-safety: Allocation and deallocation are not thread-safe.

To use private_node_allocator, you must include the following header:

#include <boost/interprocess/allocators/private_node_allocator.hpp>

private_node_allocator has the following declaration:

namespace boost {
namespace interprocess {

template<class T, class SegmentManager, std::size_t NodesPerChunk = ...>
class private_node_allocator;

} //namespace interprocess {
} //namespace boost {

An example using private_node_allocator:

101

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/allocators/private_node_allocator.hpp>
#include <cassert>

using namespace boost::interprocess;

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create shared memory
managed_shared_memory segment(create_only,

"MySharedMemory", //segment name
65536);

//Create a private_node_allocator that allocates ints from the managed segment
//The number of chunks per segment is the default value
typedef private_node_allocator<int, managed_shared_memory::segment_manager>

private_node_allocator_t;
private_node_allocator_t allocator_instance(segment.get_segment_manager());

//Create another private_node_allocator.
private_node_allocator_t allocator_instance2(segment.get_segment_manager());

//Although the segment manager address
//is the same, this private_node_allocator will have its own pool so
//"allocator_instance2" CAN'T deallocate nodes allocated by "allocator_instance".
//"allocator_instance2" is NOT equal to "allocator_instance"
assert(allocator_instance != allocator_instance2);

//Create another node_allocator using copy-constructor.
private_node_allocator_t allocator_instance3(allocator_instance2);

//This allocator is also unequal to allocator_instance2
assert(allocator_instance2 != allocator_instance3);

//Pools are destroyed with the allocators
return 0;

}

cached_node_allocator: caching nodes to avoid overhead

The total node sharing of node_allocator can impose a high overhead for some applications and the minimal synchronization
overhead of private_node_allocator can impose a unacceptable memory waste for other applications.

To solve this, Boost.Interprocess offers an allocator, cached_node_allocator, that allocates nodes from the common pool but
caches some of them privately so that following allocations have no synchronization overhead. When the cache is full, the allocator
returns some cached nodes to the common pool, and those will be available to other allocators.

Equality: Two cached_node_allocator instances constructed with the same segment manager compare equal. If an instance is
created using copy constructor, that instance compares equal with the original one.

Allocation thread-safety: Allocation and deallocation are not thread-safe.

To use cached_node_allocator, you must include the following header:

102

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/allocators/cached_node_allocator.hpp>

cached_node_allocator has the following declaration:

namespace boost {
namespace interprocess {

template<class T, class SegmentManager, std::size_t NodesPerChunk = ...>
class cached_node_allocator;

} //namespace interprocess {
} //namespace boost {

A cached_node_allocator instance and a node_allocator instance share the same pool if both instances receive the same
template parameters. This means that nodes returned to the shared pool by one of them can be reused by the other. Please note that
this does not mean that both allocators compare equal, this is just information for programmers that want to maximize the use of the
pool.

cached_node_allocator, offers additional functions to control the cache (the cache can be controlled per instance):

• void set_max_cached_nodes(std::size_t n): Sets the maximum cached nodes limit. If cached nodes reach the limit,
some are returned to the shared pool.

• std::size_t get_max_cached_nodes() const: Returns the maximum cached nodes limit.

• void deallocate_cache(): Returns the cached nodes to the shared pool.

An example using cached_node_allocator:

103

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/allocators/cached_node_allocator.hpp>
#include <cassert>

using namespace boost::interprocess;

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create shared memory
managed_shared_memory segment(create_only,

"MySharedMemory", //segment name
65536);

//Create a cached_node_allocator that allocates ints from the managed segment
//The number of chunks per segment is the default value
typedef cached_node_allocator<int, managed_shared_memory::segment_manager>

cached_node_allocator_t;
cached_node_allocator_t allocator_instance(segment.get_segment_manager());

//The max cached nodes are configurable per instance
allocator_instance.set_max_cached_nodes(3);

//Create another cached_node_allocator. Since the segment manager address
//is the same, this cached_node_allocator will be
//attached to the same pool so "allocator_instance2" can deallocate
//nodes allocated by "allocator_instance"
cached_node_allocator_t allocator_instance2(segment.get_segment_manager());

//The max cached nodes are configurable per instance
allocator_instance2.set_max_cached_nodes(5);

//Create another cached_node_allocator using copy-constructor. This
//cached_node_allocator will also be attached to the same pool
cached_node_allocator_t allocator_instance3(allocator_instance2);

//We can clear the cache
allocator_instance3.deallocate_cache();

//All allocators are equal
assert(allocator_instance == allocator_instance2);
assert(allocator_instance2 == allocator_instance3);

//So memory allocated with one can be deallocated with another
allocator_instance2.deallocate(allocator_instance.allocate(1), 1);
allocator_instance3.deallocate(allocator_instance2.allocate(1), 1);

//The common pool will be destroyed here, since no allocator is
//attached to the pool
return 0;

}

Adaptive pool node allocators
Node allocators based on simple segregated storage algorithm are both space-efficient and fast but they have a problem: they only
can grow. Every allocated node avoids any payload to store additional data and that leads to the following limitation: when a node

104

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

is deallocated, it's stored in a free list of nodes but memory is not returned to the segment manager so a deallocated node can be only
reused by other containers using the same node pool.

This behaviour can be problematic if several containers use boost::interprocess::node_allocator to temporarily allocate
a lot of objects but they end storing a few of them: the node pool will be full of nodes that won't be reused wasting memory from
the segment.

Adaptive pool based allocators trade some space (the overhead can be as low as 1%) and performance (acceptable for many applic-
ations) with the ability to return free chunks of nodes to the memory segment, so that they can be used by any other container or
managed object construction. To know the details of the implementation of of "adaptive pools" see the Implementation of
Boost.Intrusive adaptive pools section.

Like with segregated storage based node allocators, Boost.Interprocess offers 3 new allocators: adaptive_pool, private_adapt-
ive_pool, cached_adaptive_pool.

Additional parameters and functions of adaptive pool node allocators

adaptive_pool, private_adaptive_pool and cached_adaptive_pool implement the standard allocator interface and the
functions explained in the Properties of Boost.Interprocess allocators.

All these allocators are templatized by 4 parameters:

• class T: The type to be allocated.

• class SegmentManager: The type of the segment manager that will be passed in the constructor.

• std::size_t NodesPerChunk: The number of nodes that a memory chunk will contain. This value will define the size of the
memory the pool will request to the segment manager when the pool runs out of nodes. This parameter has a default value.

• std::size_t MaxFreeChunks: The maximum number of free chunks that the pool will hold. If this limit is reached the pool
returns the chunks to the segment manager. This parameter has a default value.

These allocators also offer the deallocate_free_chunks() function. This function will traverse all the memory chunks of the
pool and will return to the managed memory segment the free chunks of memory. This function is much faster than for segregated
storage allocators, because the adaptive pool algorithm offers constant-time access to free chunks.

adaptive_pool: a process-shared adaptive pool

Just like node_allocator a global, process-thread pool is used for each node size. In the initialization, adaptive_pool searches
the pool in the segment. If it is not preset, it builds one. The adaptive pool, is created using a unique name. The adaptive pool it is
also shared between all node_allocators that allocate objects of the same size, for example, adaptive_pool<uint32> and adapt-
ive_pool<float32>.

The common adaptive pool is destroyed when all the allocators attached to the pool are destroyed.

Equality: Two adaptive_pool instances constructed with the same segment manager compare equal. If an instance is created
using copy constructor, that instance compares equal with the original one.

Allocation thread-safety: Allocation and deallocation are implemented as calls to the shared pool. The shared pool offers the same
synchronization guarantees as the segment manager.

To use adaptive_pool, you must include the following header:

#include <boost/interprocess/allocators/adaptive_pool.hpp>

adaptive_pool has the following declaration:

105

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
namespace interprocess {

template<class T, class SegmentManager, std::size_t NodesPerChunk = ..., std::size_t Max↵
FreeChunks = ...>
class adaptive_pool;

} //namespace interprocess {
} //namespace boost {

An example using adaptive_pool:

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/allocators/adaptive_pool.hpp>
#include <cassert>

using namespace boost::interprocess;

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create shared memory
managed_shared_memory segment(create_only,

"MySharedMemory", //segment name
65536);

//Create a adaptive_pool that allocates ints from the managed segment
//The number of chunks per segment is the default value
typedef adaptive_pool<int, managed_shared_memory::segment_manager>

adaptive_pool_t;
adaptive_pool_t allocator_instance(segment.get_segment_manager());

//Create another adaptive_pool. Since the segment manager address
//is the same, this adaptive_pool will be
//attached to the same pool so "allocator_instance2" can deallocate
//nodes allocated by "allocator_instance"
adaptive_pool_t allocator_instance2(segment.get_segment_manager());

//Create another adaptive_pool using copy-constructor. This
//adaptive_pool will also be attached to the same pool
adaptive_pool_t allocator_instance3(allocator_instance2);

//All allocators are equal
assert(allocator_instance == allocator_instance2);
assert(allocator_instance2 == allocator_instance3);

//So memory allocated with one can be deallocated with another
allocator_instance2.deallocate(allocator_instance.allocate(1), 1);
allocator_instance3.deallocate(allocator_instance2.allocate(1), 1);

//The common pool will be destroyed here, since no allocator is
//attached to the pool
return 0;

}

106

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

private_adaptive_pool: a private adaptive pool

Just like private_node_allocator owns a private segregated storage pool, private_adaptive_pool owns its own adaptive
pool. If the user wants to avoid the excessive node allocation synchronization overhead in a container private_adaptive_pool
is a good choice.

Equality: Two private_adaptive_pool instances never compare equal. Memory allocated with one allocator can't be deallocated
with another one.

Allocation thread-safety: Allocation and deallocation are not thread-safe.

To use private_adaptive_pool, you must include the following header:

#include <boost/interprocess/allocators/private_adaptive_pool.hpp>

private_adaptive_pool has the following declaration:

namespace boost {
namespace interprocess {

template<class T, class SegmentManager, std::size_t NodesPerChunk = ..., std::size_t Max↵
FreeChunks = ...>
class private_adaptive_pool;

} //namespace interprocess {
} //namespace boost {

An example using private_adaptive_pool:

107

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/allocators/private_adaptive_pool.hpp>
#include <cassert>

using namespace boost::interprocess;

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create shared memory
managed_shared_memory segment(create_only,

"MySharedMemory", //segment name
65536);

//Create a private_adaptive_pool that allocates ints from the managed segment
//The number of chunks per segment is the default value
typedef private_adaptive_pool<int, managed_shared_memory::segment_manager>

private_adaptive_pool_t;
private_adaptive_pool_t allocator_instance(segment.get_segment_manager());

//Create another private_adaptive_pool.
private_adaptive_pool_t allocator_instance2(segment.get_segment_manager());

//Although the segment manager address
//is the same, this private_adaptive_pool will have its own pool so
//"allocator_instance2" CAN'T deallocate nodes allocated by "allocator_instance".
//"allocator_instance2" is NOT equal to "allocator_instance"
assert(allocator_instance != allocator_instance2);

//Create another adaptive_pool using copy-constructor.
private_adaptive_pool_t allocator_instance3(allocator_instance2);

//This allocator is also unequal to allocator_instance2
assert(allocator_instance2 != allocator_instance3);

//Pools are destroyed with the allocators
return 0;

}

cached_adaptive_pool: Avoiding synchronization overhead

Adaptive pools have also a cached version. In this allocator the allocator caches some nodes to avoid the synchronization and
bookkeeping overhead of the shared adaptive pool. cached_adaptive_pool allocates nodes from the common adaptive pool but
caches some of them privately so that following allocations have no synchronization overhead. When the cache is full, the allocator
returns some cached nodes to the common pool, and those will be available to other cached_adaptive_pools or adaptive_pools
of the same managed segment.

Equality: Two cached_adaptive_pool instances constructed with the same segment manager compare equal. If an instance is
created using copy constructor, that instance compares equal with the original one.

Allocation thread-safety: Allocation and deallocation are not thread-safe.

To use cached_adaptive_pool, you must include the following header:

#include <boost/interprocess/allocators/cached_adaptive_pool.hpp>

108

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

cached_adaptive_pool has the following declaration:

namespace boost {
namespace interprocess {

template<class T, class SegmentManager, std::size_t NodesPerChunk = ..., std::size_t MaxFreeN↵
odes = ...>
class cached_adaptive_pool;

} //namespace interprocess {
} //namespace boost {

A cached_adaptive_pool instance and an adaptive_pool instance share the same pool if both instances receive the same
template parameters. This means that nodes returned to the shared pool by one of them can be reused by the other. Please note that
this does not mean that both allocators compare equal, this is just information for programmers that want to maximize the use of the
pool.

cached_adaptive_pool, offers additional functions to control the cache (the cache can be controlled per instance):

• void set_max_cached_nodes(std::size_t n): Sets the maximum cached nodes limit. If cached nodes reach the limit,
some are returned to the shared pool.

• std::size_t get_max_cached_nodes() const: Returns the maximum cached nodes limit.

• void deallocate_cache(): Returns the cached nodes to the shared pool.

An example using cached_adaptive_pool:

109

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/allocators/cached_adaptive_pool.hpp>
#include <cassert>

using namespace boost::interprocess;

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create shared memory
managed_shared_memory segment(create_only,

"MySharedMemory", //segment name
65536);

//Create a cached_adaptive_pool that allocates ints from the managed segment
//The number of chunks per segment is the default value
typedef cached_adaptive_pool<int, managed_shared_memory::segment_manager>

cached_adaptive_pool_t;
cached_adaptive_pool_t allocator_instance(segment.get_segment_manager());

//The max cached nodes are configurable per instance
allocator_instance.set_max_cached_nodes(3);

//Create another cached_adaptive_pool. Since the segment manager address
//is the same, this cached_adaptive_pool will be
//attached to the same pool so "allocator_instance2" can deallocate
//nodes allocated by "allocator_instance"
cached_adaptive_pool_t allocator_instance2(segment.get_segment_manager());

//The max cached nodes are configurable per instance
allocator_instance2.set_max_cached_nodes(5);

//Create another cached_adaptive_pool using copy-constructor. This
//cached_adaptive_pool will also be attached to the same pool
cached_adaptive_pool_t allocator_instance3(allocator_instance2);

//We can clear the cache
allocator_instance3.deallocate_cache();

//All allocators are equal
assert(allocator_instance == allocator_instance2);
assert(allocator_instance2 == allocator_instance3);

//So memory allocated with one can be deallocated with another
allocator_instance2.deallocate(allocator_instance.allocate(1), 1);
allocator_instance3.deallocate(allocator_instance2.allocate(1), 1);

//The common pool will be destroyed here, since no allocator is
//attached to the pool
return 0;

}

110

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Interprocess and containers in managed memory segments

Container requirements for Boost.Interprocess allocators

Boost.Interprocess STL compatible allocators offer a STL compatible allocator interface and if they define their internal pointer
typedef as a relative pointer, they can sbe used to place STL containers in shared memory, memory mapped files or in a user defined
memory segment.

However, as Scott Meyers mentions in his Effective STL book, Item 10, "Be aware of allocator conventions and restrictions":

• "the Standard explicitly allows library implementers to assume that every allocator's pointer typedef is a synonym for T*"

• "the Standard says that an implementation of the STL is permitted to assume that all allocator objects of the same type are equi-
valent and always compare equal"

Obviously, if any STL implementation ignores pointer typedefs, no smart pointer can be used as allocator::pointer. If STL imple-
mentations assume all allocator objects of the same type compare equal, it will assume that two allocators, each one allocating from
a different memory pool are equal, which is a complete disaster.

STL containers that we want to place in shared memory or memory mapped files with Boost.Interprocess can't make any of these
assumptions, so:

• STL containers may not assume that memory allocated with an allocator can be deallocated with other allocators of the same type.
All allocators objects must compare equal only if memory allocated with one object can be deallocated with the other one, and
this can only tested with operator==() at run-time.

• Containers' internal pointers should be of the type allocator::pointer and containers may not assume allocator::pointer is a raw
pointer.

• All objects must be constructed-destroyed via allocator::construct and allocator::destroy functions.

STL containers in managed memory segments

Unfortunately, many STL implementations use raw pointers for internal data and ignore allocator pointer typedefs and others suppose
at some point that the allocator::typedef is T*. This is because in practice, there wasn't need of allocators with a pointer typedef dif-
ferent from T* for pooled/node memory allocators.

Until STL implementations handle allocator::pointer typedefs in a generic way, Boost.Interprocess offers the following classes:

• boost:interprocess::vector is the implementation of std::vector ready to be used in managed memory segments like shared
memory. To use it include:

#include <boost/interprocess/containers/vector.hpp>

• boost:interprocess::deque is the implementation of std::deque ready to be used in managed memory segments like shared
memory. To use it include:

#include <boost/interprocess/containers/deque.hpp>

• list is the implementation of std::list ready to be used in managed memory segments like shared memory. To use it include:

#include <boost/interprocess/containers/list.hpp>

• slist is the implementation of SGI's slist container (singly linked list) ready to be used in managed memory segments like
shared memory. To use it include:

111

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/containers/slist.hpp>

• set/ multiset/ map/ multimap family is the implementation of std::set/multiset/map/multimap family ready to be used in
managed memory segments like shared memory. To use them include:

#include <boost/interprocess/containers/set.hpp>
#include <boost/interprocess/containers/map.hpp>

• flat_set/ flat_multiset/ flat_map/ flat_multimap classes are the adaptation and extension of Andrei Alexandrescu's
famous AssocVector class from Loki library, ready for the shared memory. These classes offer the same functionality as
std::set/multiset/map/multimap implemented with an ordered vector, which has faster lookups than the standard ordered
associative containers based on red-black trees, but slower insertions. To use it include:

#include <boost/interprocess/containers/flat_set.hpp>
#include <boost/interprocess/containers/flat_map.hpp>

• basic_string is the implementation of std::basic_string ready to be used in managed memory segments like shared
memory. It's implemented using a vector-like contiguous storage, so it has fast c string conversion and can be used with the vec-
torstream iostream formatting classes. To use it include:

#include <boost/interprocess/containers/string.hpp>

All these containers have the same default arguments as standard containers and they can be used with other, non Boost.Interprocess
allocators (std::allocator, or boost::pool_allocator, for example).

To place any of these containers in managed memory segments, we must define the allocator template parameter with a Boost.Inter-
process allocator so that the container allocates the values in the managed memory segment. To place the container itself in shared
memory, we construct it in the managed memory segment just like any other object with Boost.Interprocess:

112

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/containers/vector.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <boost/interprocess/managed_shared_memory.hpp>

int main ()
{

using namespace boost::interprocess;
//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//A managed shared memory where we can construct objects
//associated with a c-string
managed_shared_memory segment(create_only,

"MySharedMemory", //segment name
65536);

//Alias an STL-like allocator of ints that allocates ints from the segment
typedef allocator<int, managed_shared_memory::segment_manager>

ShmemAllocator;

//Alias a vector that uses the previous STL-like allocator
typedef vector<int, ShmemAllocator> MyVector;

int initVal[] = {0, 1, 2, 3, 4, 5, 6 };
const int *begVal = initVal;
const int *endVal = initVal + sizeof(initVal)/sizeof(initVal[0]);

//Initialize the STL-like allocator
const ShmemAllocator alloc_inst (segment.get_segment_manager());

//Construct the vector in the shared memory segment with the STL-like allocator
//from a range of iterators
MyVector *myvector =

segment.construct<MyVector>
("MyVector")/*object name*/
(begVal /*first ctor parameter*/,
endVal /*second ctor parameter*/,
alloc_inst /*third ctor parameter*/);

//Use vector as your want
std::sort(myvector->rbegin(), myvector->rend());
// . . .
//When done, destroy and delete vector from the segment
segment.destroy<MyVector>("MyVector");
return 0;

}

These containers also show how easy is to create/modify an existing container making possible to place it in shared memory.

Where is this being allocated?

Boost.Interprocess containers are placed in shared memory/memory mapped files, etc... using two mechanisms at the same time:

• Boost.Interprocess construct<>, find_or_construct<>... functions. These functions place a C++ object in the shared
memory/memory mapped file. But this places only the object, but not the memory that this object may allocate dynamically.

• Shared memory allocators. These allow allocating shared memory/memory mapped file portions so that containers can allocate
dynamically fragments of memory to store newly inserted elements.

113

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This means that to place any Boost.Interprocess container (including Boost.Interprocess strings) in shared memory or memory
mapped files, containers must:

• Define their template allocator parameter to a Boost.Interprocess allocator.

• Every container constructor must take the Boost.Interprocess allocator as parameter.

• You must use construct<>/find_or_construct<>... functions to place the container in the managed memory.

If you do the first two points but you don't use construct<> or find_or_construct<> you are creating a container placed only
in your process but that allocates memory for contained types from shared memory/memory mapped file.

Let's see an example:

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/containers/vector.hpp>
#include <boost/interprocess/containers/string.hpp>
#include <boost/interprocess/allocators/allocator.hpp>

int main ()
{

using namespace boost::interprocess;
//Typedefs
typedef allocator<char, managed_shared_memory::segment_manager>

CharAllocator;
typedef basic_string<char, std::char_traits<char>, CharAllocator>

MyShmString;
typedef allocator<MyShmString, managed_shared_memory::segment_manager>

StringAllocator;
typedef vector<MyShmString, StringAllocator>

MyShmStringVector;

//Open shared memory
//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

managed_shared_memory shm(create_only, "MySharedMemory", 10000);

//Create allocators
CharAllocator charallocator (shm.get_segment_manager());
StringAllocator stringallocator(shm.get_segment_manager());

//This string is in only in this process (the pointer pointing to the
//buffer that will hold the text is not in shared memory).
//But the buffer that will hold "this is my text" is allocated from
//shared memory
MyShmString mystring(charallocator);
mystring = "this is my text";

//This vector is only in this process (the pointer pointing to the
//buffer that will hold the MyShmString-s is not in shared memory).
//But the buffer that will hold 10 MyShmString-s is allocated from
//shared memory using StringAllocator. Since strings use a shared
//memory allocator (CharAllocator) the 10 buffers that hold
//"this is my text" text are also in shared memory.
MyShmStringVector myvector(stringallocator);
myvector.insert(myvector.begin(), 10, mystring);

//This vector is fully constructed in shared memory. All pointers

114

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//buffers are constructed in the same shared memory segment
//This vector can be safely accessed from other processes.
MyShmStringVector *myshmvector =

shm.construct<MyShmStringVector>("myshmvector")(stringallocator);
myshmvector->insert(myshmvector->begin(), 10, mystring);

//Destroy vector. This will free all strings that the vector contains
shm.destroy_ptr(myshmvector);
return 0;

}

Move semantics in Interprocess containers

Boost.Interprocess containers support move semantics, which means that the contents of a container can be moved from a container
two another one, without any copying. The contents of the source container are transferred to the target container and the source
container is left in default-constructed state.

When using containers of containers, we can also use move-semantics to insert objects in the container, avoiding unnecessary copies.

To transfer the contents of a container to another one, use boost::move() function, as shown in the example. For more details
about functions supporting move-semantics, see the reference section of Boost.Interprocess containers:

115

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/containers/vector.hpp>
#include <boost/interprocess/containers/string.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <cassert>

int main ()
{

using namespace boost::interprocess;

//Typedefs
typedef managed_shared_memory::segment_manager SegmentManager;
typedef allocator<char, SegmentManager> CharAllocator;
typedef basic_string<char, std::char_traits<char>

,CharAllocator> MyShmString;
typedef allocator<MyShmString, SegmentManager> StringAllocator;
typedef vector<MyShmString, StringAllocator> MyShmStringVector;

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

managed_shared_memory shm(create_only, "MySharedMemory", 10000);

//Create allocators
CharAllocator charallocator (shm.get_segment_manager());
StringAllocator stringallocator(shm.get_segment_manager());

//Create a vector of strings in shared memory.
MyShmStringVector *myshmvector =

shm.construct<MyShmStringVector>("myshmvector")(stringallocator);

//Insert 50 strings in shared memory. The strings will be allocated
//only once and no string copy-constructor will be called when inserting
//strings, leading to a great performance.
MyShmString string_to_compare(charallocator);
string_to_compare = "this is a long, long, long, long, long, long, string...";

myshmvector->reserve(50);
for(int i = 0; i < 50; ++i){

MyShmString move_me(string_to_compare);
//In the following line, no string copy-constructor will be called.
//"move_me"'s contents will be transferred to the string created in
//the vector
myshmvector->push_back(boost::move(move_me));

//The source string is in default constructed state
assert(move_me.empty());

//The newly created string will be equal to the "move_me"'s old contents
assert(myshmvector->back() == string_to_compare);

}

//Now erase a string...
myshmvector->pop_back();

//...And insert one in the first position.
//No string copy-constructor or assignments will be called, but
//move constructors and move-assignments. No memory allocation
//function will be called in this operations!!

116

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

myshmvector->insert(myshmvector->begin(), boost::move(string_to_compare));

//Destroy vector. This will free all strings that the vector contains
shm.destroy_ptr(myshmvector);
return 0;

}

Containers of containers

When creating containers of containers, each container needs an allocator. To avoid using several allocators with complex type
definitions, we can take advantage of the type erasure provided by void allocators and the ability to implicitly convert void allocators
in allocators that allocate other types.

Here we have an example that builds a map in shared memory. Key is a string and the mapped type is a class that stores several
containers:

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <boost/interprocess/containers/map.hpp>
#include <boost/interprocess/containers/vector.hpp>
#include <boost/interprocess/containers/string.hpp>

using namespace boost::interprocess;

//Typedefs of allocators and containers
typedef managed_shared_memory::segment_manager segment_manager_t;
typedef allocator<void, segment_manager_t> void_allocator;
typedef allocator<int, segment_manager_t> int_allocator;
typedef vector<int, int_allocator> int_vector;
typedef allocator<int_vector, segment_manager_t> int_vector_allocator;
typedef vector<int_vector, int_vector_allocator> int_vector_vector;
typedef allocator<char, segment_manager_t> char_allocator;
typedef basic_string<char, std::char_traits<char>, char_allocator> char_string;

class complex_data
{

int id_;
char_string char_string_;
int_vector_vector int_vector_vector_;

public:
//Since void_allocator is convertible to any other allocator<T>, we can simplify
//the initialization taking just one allocator for all inner containers.
complex_data(int id, const char *name, const void_allocator &void_alloc)

: id_(id), char_string_(name, void_alloc), int_vector_vector_(void_alloc)
{}
//Other members...

};

//Definition of the map holding a string as key and complex_data as mapped type
typedef std::pair<const char_string, complex_data> map_value_type;
typedef std::pair<char_string, complex_data> movable_to_map_value_type;
typedef allocator<map_value_type, segment_manager_t> map_value_type_allocator;
typedef map< char_string, complex_data

, std::less<char_string>, map_value_type_allocator> complex_map_type;

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

117

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create shared memory
managed_shared_memory segment(create_only,"MySharedMemory", 65536);

//An allocator convertible to any allocator<T, segment_manager_t> type
void_allocator alloc_inst (segment.get_segment_manager());

//Construct the shared memory map and fill it
complex_map_type *mymap = segment.construct<complex_map_type>

//(object name), (first ctor parameter, second ctor parameter)
("MyMap")(std::less<char_string>(), alloc_inst);

for(int i = 0; i < 100; ++i){
//Both key(string) and value(complex_data) need an allocator in their constructors
char_string key_object(alloc_inst);
complex_data mapped_object(i, "default_name", alloc_inst);
map_value_type value(key_object, mapped_object);
//Modify values and insert them in the map
mymap->insert(value);

}
return 0;

}

Boost containers compatible with Boost.Interprocess
As mentioned, container developers might need to change their implementation to make them compatible with Boost.Interprocess,
because implementation usually ignore allocators with smart pointers. Hopefully several Boost containers are compatible with Inter-
process.

Boost unordered containers

Boost.Unordered containers are compatible with Interprocess, so programmers can store hash containers in shared memory and
memory mapped files. Here is a small example storing unordered_map in shared memory:

118

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/allocators/allocator.hpp>

#include <boost/unordered_map.hpp> //boost::unordered_map

#include <functional> //std::equal_to
#include <boost/functional/hash.hpp> //boost::hash

int main ()
{

using namespace boost::interprocess;
//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create shared memory
managed_shared_memory segment(create_only, "MySharedMemory", 65536);

//Note that unordered_map<Key, MappedType>'s value_type is std::pair<const Key, MappedType>,
//so the allocator must allocate that pair.
typedef int KeyType;
typedef float MappedType;
typedef std::pair<const int, float> ValueType;

//Typedef the allocator
typedef allocator<ValueType, managed_shared_memory::segment_manager> ShmemAllocator;

//Alias an unordered_map of ints that uses the previous STL-like allocator.
typedef boost::unordered_map

< KeyType , MappedType
, boost::hash<KeyType> ,std::equal_to<KeyType>
, ShmemAllocator>

MyHashMap;

//Construct a shared memory hash map.
//Note that the first parameter is the initial bucket count and
//after that, the hash function, the equality function and the allocator
MyHashMap *myhashmap = segment.construct<MyHashMap>("MyHashMap") //object name

(3, boost::hash<int>(), std::equal_to<int>() //
, segment.get_allocator<ValueType>()); //allocator instance

//Insert data in the hash map
for(int i = 0; i < 100; ++i){

myhashmap->insert(ValueType(i, (float)i));
}
return 0;

}

Boost.MultiIndex containers

The widely used Boost.MultiIndex library is compatible with Boost.Interprocess so we can construct pretty good databases in
shared memory. Constructing databases in shared memory is a bit tougher than in normal memory, usually because those databases
contain strings and those strings need to be placed in shared memory. Shared memory strings require an allocator in their constructors
so this usually makes object insertion a bit more complicated.

Here is an example that shows how to put a multi index container in shared memory:

119

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <boost/interprocess/containers/string.hpp>

#include <boost/multi_index_container.hpp>
#include <boost/multi_index/member.hpp>
#include <boost/multi_index/ordered_index.hpp>

using namespace boost::interprocess;
namespace bmi = boost::multi_index;

typedef managed_shared_memory::allocator<char>::type char_allocator;
typedef basic_string<char, std::char_traits<char>, char_allocator>shm_string;

//Data to insert in shared memory
struct employee
{

int id;
int age;
shm_string name;
employee(int id_

, int age_
, const char *name_
, const char_allocator &a)

: id(id_), age(age_), name(name_, a)
{}

};

//Tags
struct id{};
struct age{};
struct name{};

// Define a multi_index_container of employees with following indices:
// - a unique index sorted by employee::int,
// - a non-unique index sorted by employee::name,
// - a non-unique index sorted by employee::age.
typedef bmi::multi_index_container<
employee,
bmi::indexed_by<
bmi::ordered_unique
<bmi::tag<id>, BOOST_MULTI_INDEX_MEMBER(employee,int,id)>,

bmi::ordered_non_unique<
bmi::tag<name>,BOOST_MULTI_INDEX_MEMBER(employee,shm_string,name)>,

bmi::ordered_non_unique
<bmi::tag<age>, BOOST_MULTI_INDEX_MEMBER(employee,int,age)> >,

managed_shared_memory::allocator<employee>::type
> employee_set;

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create shared memory
managed_shared_memory segment(create_only,"MySharedMemory", 65536);

120

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Construct the multi_index in shared memory
employee_set *es = segment.construct<employee_set>

("My MultiIndex Container") //Container's name in shared memory
(employee_set::ctor_args_list()
, segment.get_allocator<employee>()); //Ctor parameters

//Now insert elements
char_allocator ca(segment.get_allocator<char>());
es->insert(employee(0,31, "Joe", ca));
es->insert(employee(1,27, "Robert", ca));
es->insert(employee(2,40, "John", ca));
return 0;

}

Programmers can place Boost.CircularBuffer containers in sharecd memory provided they disable debugging facilities with defines
BOOST_CB_DISABLE_DEBUG or the more general NDEBUG. The reason is that those debugging facilities are only compatible with
raw pointers.

121

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Memory allocation algorithms

simple_seq_fit: A simple shared memory management algorithm
The algorithm is a variation of sequential fit using singly linked list of free memory buffers. The algorithm is based on the article
about shared memory titled "Taming Shared Memory" . The algorithm is as follows:

The shared memory is divided in blocks of free shared memory, each one with some control data and several bytes of memory ready
to be used. The control data contains a pointer (in our case offset_ptr) to the next free block and the size of the block. The allocator
consists of a singly linked list of free blocks, ordered by address. The last block, points always to the first block:

simple_seq_fit memory layout:

main extra allocated free_block_1 allocated free_block_2 allocated ↵
 free_block_3

header header block ctrl usr block ctrl usr block ctrl ↵
 usr

_________ _____ _________ _______________ _________ _______________ _________ ↵

| || || || | || || | || || ↵

 | |
|free|ctrl||extra|| ||next|size| mem || ||next|size| mem || ↵

 ||next|size| mem |
 ↵
 |_________||_____||_________||_________|_____||_________||_________|_____||_________||_________|_____|

| | | | | | |
|_>_>_>_>_>_>_>_>_>_>_>_>_| |_>_>_>_>_>_>_>_>_>_>_>_>_| |_>_>_>_>_>_>_>_>_>_>_>_| |

| |
|_<_<_<_<_<_<_<_<_<_<_<_<_<_<_<_<_<_<_<_<_<_<_<_<_<_<_<__|

When a user requests N bytes of memory, the allocator traverses the free block list looking for a block large enough. If the "mem"
part of the block has the same size as the requested memory, we erase the block from the list and return a pointer to the "mem" part
of the block. If the "mem" part size is bigger than needed, we split the block in two blocks, one of the requested size and the other
with remaining size. Now, we take the block with the exact size, erase it from list and give it to the user.

When the user deallocates a block, we traverse the list (remember that the list is ordered), and search its place depending on the
block address. Once found, we try to merge the block with adjacent blocks if possible.

To ease implementation, the size of the free memory block is measured in multiples of "basic_size" bytes. The basic size will be the
size of the control block aligned to machine most restrictive alignment.

This algorithm is a low size overhead algorithm suitable for simple allocation schemes. This algorithm should only be used when
size is a major concern, because the performance of this algorithm suffers when the memory is fragmented. This algorithm has linear
allocation and deallocation time, so when the number of allocations is high, the user should use a more performance-friendly algorithm.

In most 32 systems, with 8 byte alignment, "basic_size" is 8 bytes. This means that an allocation request of 1 byte leads to the creation
of a 16 byte block, where 8 bytes are available to the user. The allocation of 8 bytes leads also to the same 16 byte block.

rbtree_best_fit: Best-fit logarithmic-time complexity allocation
This algorithm is an advanced algorithm using red-black trees to sort the free portions of the memory segment by size. This allows
logarithmic complexity allocation. Apart from this, a doubly-linked list of all portions of memory (free and allocated) is maintained
to allow constant-time access to previous and next blocks when doing merging operations.

The data used to create the red-black tree of free nodes is overwritten by the user since it's no longer used once the memory is allocated.
This maintains the memory size overhead down to the doubly linked list overhead, which is pretty small (two pointers). Basically
this is the scheme:

122

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://home.earthlink.net/~joshwalker1/writing/SharedMemory.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rbtree_best_fit memory layout:

main allocated block free block allocated block free block
header

_______________ _______________ _________________________________ _______________ ↵

| || | || | | || | || ↵
 | | |
| main header ||next|prev| mem ||next|prev|left|right|par↵
ent| mem ||next|prev| mem ||next|prev|left|right|parent| mem |
|_______________||_________|_____||_________|_________________|_____||_________|_____||_________|_________________|_____|

This allocation algorithm is pretty fast and scales well with big shared memory segments and big number of allocations. To form a
block a minimum memory size is needed: the sum of the doubly linked list and the red-black tree control data. The size of a block
is measured in multiples of the most restrictive alignment value.

In most 32 systems with 8 byte alignment the minimum size of a block is 24 byte. When a block is allocated the control data related
to the red black tree is overwritten by the user (because it's only needed for free blocks).

In those systems a 1 byte allocation request means that:

• 24 bytes of memory from the segment are used to form a block.

• 16 bytes of them are usable for the user.

For really small allocations (<= 8 bytes), this algorithm wastes more memory than the simple sequential fit algorithm (8 bytes more).
For allocations bigger than 8 bytes the memory overhead is exactly the same. This is the default allocation algorithm in Boost.Inter-
process managed memory segments.

123

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Direct iostream formatting: vectorstream and buffer-
stream
Shared memory, memory-mapped files and all Boost.Interprocess mechanisms are focused on efficiency. The reason why shared
memory is used is that it's the fastest IPC mechanism available. When passing text-oriented messages through shared memory, there
is need to format the message. Obviously C++ offers the iostream framework for that work.

Some programmers appreciate the iostream safety and design for memory formatting but feel that the stringstream family is far from
efficient not when formatting, but when obtaining formatted data to a string, or when setting the string from which the stream will
extract data. An example:

//Some formatting elements
std::string my_text = "...";
int number;

//Data reader
std::istringstream input_processor;

//This makes a copy of the string. If not using a
//reference counted string, this is a serious overhead.
input_processor.str(my_text);

//Extract data
while(/*...*/){

input_processor >> number;
}

//Data writer
std::ostringstream output_processor;

//Write data
while(/*...*/){

output_processor << number;
}

//This returns a temporary string. Even with return-value
//optimization this is expensive.
my_text = input_processor.str();

The problem is even worse if the string is a shared-memory string, because to extract data, we must copy the data first from shared-
memory to a std::string and then to a std::stringstream. To encode data in a shared memory string we should copy data
from a std::stringstream to a std::string and then to the shared-memory string.

Because of this overhead, Boost.Interprocess offers a way to format memory-strings (in shared memory, memory mapped files or
any other memory segment) that can avoid all unneeded string copy and memory allocation/deallocations, while using all iostream
facilities. Boost.Interprocess vectorstream and bufferstream implement vector-based and fixed-size buffer based storage support
for iostreams and all the formatting/locale hard work is done by standard std::basic_streambuf<> and std::basic_iostream<>
classes.

Formatting directly in your character vector: vectorstream
The vectorstream class family (basic_vectorbuf, basic_ivectorstream ,basic_ovectorstream and basic_vectorstream) is an efficient
way to obtain formatted reading/writing directly in a character vector. This way, if a shared-memory vector is used, data is extrac-
ted/written from/to the shared-memory vector, without additional copy/allocation. We can see the declaration of basic_vectorstream
here:

124

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//!A basic_iostream class that holds a character vector specified by CharVector
//!template parameter as its formatting buffer. The vector must have
//!contiguous storage, like std::vector, boost::interprocess::vector or
//!boost::interprocess::basic_string
template <class CharVector, class CharTraits =

std::char_traits<typename CharVector::value_type> >
class basic_vectorstream
: public std::basic_iostream<typename CharVector::value_type, CharTraits>

{
public:
typedef CharVector vector_type;
typedef typename std::basic_ios

<typename CharVector::value_type, CharTraits>::char_type char_type;
typedef typename std::basic_ios<char_type, CharTraits>::int_type int_type;
typedef typename std::basic_ios<char_type, CharTraits>::pos_type pos_type;
typedef typename std::basic_ios<char_type, CharTraits>::off_type off_type;
typedef typename std::basic_ios<char_type, CharTraits>::traits_type traits_type;

//!Constructor. Throws if vector_type default constructor throws.
basic_vectorstream(std::ios_base::openmode mode

= std::ios_base::in | std::ios_base::out);

//!Constructor. Throws if vector_type(const Parameter ¶m) throws.
template<class Parameter>
basic_vectorstream(const Parameter ¶m, std::ios_base::openmode mode

= std::ios_base::in | std::ios_base::out);

~basic_vectorstream(){}

//!Returns the address of the stored stream buffer.
basic_vectorbuf<CharVector, CharTraits>* rdbuf() const;

//!Swaps the underlying vector with the passed vector.
//!This function resets the position in the stream.
//!Does not throw.
void swap_vector(vector_type &vect);

//!Returns a const reference to the internal vector.
//!Does not throw.
const vector_type &vector() const;

//!Preallocates memory from the internal vector.
//!Resets the stream to the first position.
//!Throws if the internals vector's memory allocation throws.
void reserve(typename vector_type::size_type size);

};

The vector type is templatized, so that we can use any type of vector: std::vector, boost::interprocess::vector... But the
storage must be contiguous, we can't use a deque. We can even use boost::interprocess::basic_string, since it has a vector interface
and it has contiguous storage. We can't use std::string, because although some std::string implementation are vector-based, others
can have optimizations and reference-counted implementations.

The user can obtain a const reference to the internal vector using vector_type vector() const function and he also can swap
the internal vector with an external one calling void swap_vector(vector_type &vect). The swap function resets the stream
position. This functions allow efficient methods to obtain the formatted data avoiding all allocations and data copies.

Let's see an example to see how to use vectorstream:

125

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/containers/vector.hpp>
#include <boost/interprocess/containers/string.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/streams/vectorstream.hpp>
#include <iterator>

using namespace boost::interprocess;

typedef allocator<int, managed_shared_memory::segment_manager>
IntAllocator;

typedef allocator<char, managed_shared_memory::segment_manager>
CharAllocator;

typedef vector<int, IntAllocator> MyVector;
typedef basic_string

<char, std::char_traits<char>, CharAllocator> MyString;
typedef basic_vectorstream<MyString> MyVectorStream;

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

managed_shared_memory segment(
create_only,
"MySharedMemory", //segment name
65536); //segment size in bytes

//Construct shared memory vector
MyVector *myvector =

segment.construct<MyVector>("MyVector")
(IntAllocator(segment.get_segment_manager()));

//Fill vector
myvector->reserve(100);
for(int i = 0; i < 100; ++i){

myvector->push_back(i);
}

//Create the vectorstream. To create the internal shared memory
//basic_string we need to pass the shared memory allocator as
//a constructor argument
MyVectorStream myvectorstream(CharAllocator(segment.get_segment_manager()));

//Reserve the internal string
myvectorstream.reserve(100*5);

//Write all vector elements as text in the internal string
//Data will be directly written in shared memory, because
//internal string's allocator is a shared memory allocator
for(std::size_t i = 0, max = myvector->size(); i < max; ++i){

myvectorstream << (*myvector)[i] << std::endl;
}

//Auxiliary vector to compare original data
MyVector *myvector2 =

segment.construct<MyVector>("MyVector2")
(IntAllocator(segment.get_segment_manager()));

126

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Avoid reallocations
myvector2->reserve(100);

//Extract all values from the internal
//string directly to a shared memory vector.
std::istream_iterator<int> it(myvectorstream), itend;
std::copy(it, itend, std::back_inserter(*myvector2));

//Compare vectors
assert(std::equal(myvector->begin(), myvector->end(), myvector2->begin()));

//Create a copy of the internal string
MyString stringcopy (myvectorstream.vector());

//Now we create a new empty shared memory string...
MyString *mystring =

segment.construct<MyString>("MyString")
(CharAllocator(segment.get_segment_manager()));

//...and we swap vectorstream's internal string
//with the new one: after this statement mystring
//will be the owner of the formatted data.
//No reallocations, no data copies
myvectorstream.swap_vector(*mystring);

//Let's compare both strings
assert(stringcopy == *mystring);

//Done, destroy and delete vectors and string from the segment
segment.destroy_ptr(myvector2);
segment.destroy_ptr(myvector);
segment.destroy_ptr(mystring);
return 0;

}

Formatting directly in your character buffer: bufferstream
As seen, vectorstream offers an easy and secure way for efficient iostream formatting, but many times, we have to read or write
formatted data from/to a fixed size character buffer (a static buffer, a c-string, or any other). Because of the overhead of stringstream,
many developers (specially in embedded systems) choose sprintf family. The bufferstream classes offer iostream interface with
direct formatting in a fixed size memory buffer with protection against buffer overflows. This is the interface:

127

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//!A basic_iostream class that uses a fixed size character buffer
//!as its formatting buffer.
template <class CharT, class CharTraits = std::char_traits<CharT> >
class basic_bufferstream

: public std::basic_iostream<CharT, CharTraits>

{
public: // Typedefs
typedef typename std::basic_ios

<CharT, CharTraits>::char_type char_type;
typedef typename std::basic_ios<char_type, CharTraits>::int_type int_type;
typedef typename std::basic_ios<char_type, CharTraits>::pos_type pos_type;
typedef typename std::basic_ios<char_type, CharTraits>::off_type off_type;
typedef typename std::basic_ios<char_type, CharTraits>::traits_type traits_type;

//!Constructor. Does not throw.
basic_bufferstream(std::ios_base::openmode mode

= std::ios_base::in | std::ios_base::out);

//!Constructor. Assigns formatting buffer. Does not throw.
basic_bufferstream(CharT *buffer, std::size_t length,

std::ios_base::openmode mode
= std::ios_base::in | std::ios_base::out);

//!Returns the address of the stored stream buffer.
basic_bufferbuf<CharT, CharTraits>* rdbuf() const;

//!Returns the pointer and size of the internal buffer.
//!Does not throw.
std::pair<CharT *, std::size_t> buffer() const;

//!Sets the underlying buffer to a new value. Resets
//!stream position. Does not throw.
void buffer(CharT *buffer, std::size_t length);

};

//Some typedefs to simplify usage
typedef basic_bufferstream<char> bufferstream;
typedef basic_bufferstream<wchar_t> wbufferstream;
// ...

While reading from a fixed size buffer, bufferstream activates endbit flag if we try to read an address beyond the end of the buffer.
While writing to a fixed size buffer, bufferstream will active the badbit flag if a buffer overflow is going to happen and disallows
writing. This way, the fixed size buffer formatting through bufferstream is secure and efficient, and offers a good alternative to
sprintf/sscanf functions. Let's see an example:

128

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/streams/bufferstream.hpp>
#include <vector>
#include <iterator>
#include <cstddef>

using namespace boost::interprocess;

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create shared memory
managed_shared_memory segment(create_only,

"MySharedMemory", //segment name
65536);

//Fill data
std::vector<int> data;
data.reserve(100);
for(int i = 0; i < 100; ++i){

data.push_back(i);
}
const std::size_t BufferSize = 100*5;

//Allocate a buffer in shared memory to write data
char *my_cstring =

segment.construct<char>("MyCString")[BufferSize](0);
bufferstream mybufstream(my_cstring, BufferSize);

//Now write data to the buffer
for(int i = 0; i < 100; ++i){

mybufstream << data[i] << std::endl;
}

//Check there was no overflow attempt
assert(mybufstream.good());

//Extract all values from the shared memory string
//directly to a vector.
std::vector<int> data2;
std::istream_iterator<int> it(mybufstream), itend;
std::copy(it, itend, std::back_inserter(data2));

//This extraction should have ended will fail error since
//the numbers formatted in the buffer end before the end
//of the buffer. (Otherwise it would trigger eofbit)
assert(mybufstream.fail());

//Compare data
assert(std::equal(data.begin(), data.end(), data2.begin()));

//Clear errors and rewind
mybufstream.clear();
mybufstream.seekp(0, std::ios::beg);

//Now write again the data trying to do a buffer overflow
for(int i = 0, m = data.size()*5; i < m; ++i){

129

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

mybufstream << data[i%5] << std::endl;
}

//Now make sure badbit is active
//which means overflow attempt.
assert(!mybufstream.good());
assert(mybufstream.bad());
segment.destroy_ptr(my_cstring);
return 0;

}

As seen, bufferstream offers an efficient way to format data without any allocation and extra copies. This is very helpful in embedded
systems, or formatting inside time-critical loops, where stringstream extra copies would be too expensive. Unlike sprintf/sscanf, it
has protection against buffer overflows. As we know, according to the Technical Report on C++ Performance, it's possible to
design efficient iostreams for embedded platforms, so this bufferstream class comes handy to format data to stack, static or shared
memory buffers.

130

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Ownership smart pointers
C++ users know the importance of ownership smart pointers when dealing with resources. Boost offers a wide range of such type
of pointers: intrusive_ptr<>, scoped_ptr<>, shared_ptr<>...

When building complex shared memory/memory mapped files structures, programmers would like to use also the advantages of
these smart pointers. The problem is that Boost and C++ TR1 smart pointers are not ready to be used for shared memory. The cause
is that those smart pointers contain raw pointers and they use virtual functions, something that is not possible if you want to place
your data in shared memory. The virtual function limitation makes even impossible to achieve the same level of functionality of
Boost and TR1 with Boost.Interprocess smart pointers.

Interprocess ownership smart pointers are mainly "smart pointers containing smart pointers", so we can specify the pointer type they
contain.

Intrusive pointer
boost::interprocess::intrusive_ptr is the generalization of boost::intrusive_ptr<> to allow non-raw pointers as
intrusive pointer members. As the well-known boost::intrusive_ptr we must specify the pointee type but we also must also
specify the pointer type to be stored in the intrusive_ptr:

//!The intrusive_ptr class template stores a pointer to an object
//!with an embedded reference count. intrusive_ptr is parameterized on
//!T (the type of the object pointed to) and VoidPointer(a void pointer type
//!that defines the type of pointer that intrusive_ptr will store).
//!intrusive_ptr<T, void *> defines a class with a T* member whereas
//!intrusive_ptr<T, offset_ptr<void> > defines a class with a offset_ptr<T> member.
//!Relies on unqualified calls to:
//!
//!void intrusive_ptr_add_ref(T * p);
//!void intrusive_ptr_release(T * p);
//!
//!with (p != 0)
//!
//!The object is responsible for destroying itself.
template<class T, class VoidPointer>
class intrusive_ptr;

So boost::interprocess::intrusive_ptr<MyClass, void*> is equivalent to boost::intrusive_ptr<MyClass>. But
if we want to place the intrusive_ptr in shared memory we must specify a relative pointer type like boost::interprocess::in-
trusive_ptr<MyClass, boost::interprocess::offset_ptr<void> >

131

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/smart_ptr/intrusive_ptr.hpp>

using namespace boost::interprocess;

namespace N {

//A class that has an internal reference count
class reference_counted_class
{

private:
//Non-copyable
reference_counted_class(const reference_counted_class &);
//Non-assignable
reference_counted_class & operator=(const reference_counted_class &);
//A typedef to save typing
typedef managed_shared_memory::segment_manager segment_manager;
//This is the reference count
unsigned int m_use_count;
//The segment manager allows deletion from shared memory segment
offset_ptr<segment_manager> mp_segment_manager;

public:
//Constructor
reference_counted_class(segment_manager *s_mngr)
: m_use_count(0), mp_segment_manager(s_mngr){}
//Destructor
~reference_counted_class(){}

public:
//Returns the reference count
unsigned int use_count() const
{ return m_use_count; }

//Adds a reference
inline friend void intrusive_ptr_add_ref(reference_counted_class * p)
{ ++p->m_use_count; }

//Releases a reference
inline friend void intrusive_ptr_release(reference_counted_class * p)
{ if(--p->m_use_count == 0) p->mp_segment_manager->destroy_ptr(p); }

};

} //namespace N {

//A class that has an intrusive pointer to reference_counted_class
class intrusive_ptr_owner
{

typedef intrusive_ptr<N::reference_counted_class,
offset_ptr<void> > intrusive_ptr_t;

intrusive_ptr_t m_intrusive_ptr;

public:
//Takes a pointer to the reference counted class
intrusive_ptr_owner(N::reference_counted_class *ptr)

: m_intrusive_ptr(ptr){}
};

int main()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

132

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

//Create shared memory
managed_shared_memory shmem(create_only, "MySharedMemory", 10000);

//Create the unique reference counted object in shared memory
N::reference_counted_class *ref_counted =

shmem.construct<N::reference_counted_class>
("ref_counted")(shmem.get_segment_manager());

//Create an array of ten intrusive pointer owners in shared memory
intrusive_ptr_owner *intrusive_owner_array =

shmem.construct<intrusive_ptr_owner>
(anonymous_instance)[10](ref_counted);

//Now test that reference count is ten
if(ref_counted->use_count() != 10)

return 1;

//Now destroy the array of intrusive pointer owners
//This should destroy every intrusive_ptr and because of
//that reference_counted_class will be destroyed
shmem.destroy_ptr(intrusive_owner_array);

//Now the reference counted object should have been destroyed
if(shmem.find<intrusive_ptr_owner>("ref_counted").first)

return 1;
//Success!
return 0;

}

Scoped pointer
boost::interprocess::scoped_ptr<> is the big brother of boost::scoped_ptr<>, which adds a custom deleter to specify
how the pointer passed to the scoped_ptr must be destroyed. Also, the pointer typedef of the deleter will specify the pointer type
stored by scoped_ptr.

//!scoped_ptr stores a pointer to a dynamically allocated object.
//!The object pointed to is guaranteed to be deleted, either on destruction
//!of the scoped_ptr, or via an explicit reset. The user can avoid this
//!deletion using release().
//!scoped_ptr is parameterized on T (the type of the object pointed to) and
//!Deleter (the functor to be executed to delete the internal pointer).
//!The internal pointer will be of the same pointer type as typename
//!Deleter::pointer type (that is, if typename Deleter::pointer is
//!offset_ptr<void>, the internal pointer will be offset_ptr<T>).
template<class T, class Deleter>
class scoped_ptr;

scoped_ptr<> comes handy to implement rollbacks with exceptions: if an exception is thrown or we call return in the scope of
scoped_ptr<> the deleter is automatically called so that the deleter can be considered as a rollback function. If all goes well,
we call release() member function to avoid rollback when the scoped_ptr goes out of scope.

133

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/smart_ptr/scoped_ptr.hpp>

using namespace boost::interprocess;

class my_class
{};

class my_exception
{};

//A functor that destroys the shared memory object
template<class T>
class my_deleter
{

private:
//A typedef to save typing
typedef managed_shared_memory::segment_manager segment_manager;
//This my_deleter is created in the stack, not in shared memory,
//so we can use raw pointers
segment_manager *mp_segment_manager;

public:
//This typedef will specify the pointer type that
//scoped_ptr will store
typedef T *pointer;
//Constructor
my_deleter(segment_manager *s_mngr)
: mp_segment_manager(s_mngr){}

void operator()(pointer object_to_delete)
{ mp_segment_manager->destroy_ptr(object_to_delete); }

};

int main ()
{

//Create shared memory
//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

managed_shared_memory shmem(create_only, "MySharedMemory", 10000);

//In the first try, there will be no exceptions
//in the second try we will throw an exception
for(int i = 0; i < 2; ++i){

//Create an object in shared memory
my_class * my_object = shmem.construct<my_class>("my_object")();
my_class * my_object2 = shmem.construct<my_class>(anonymous_instance)();
shmem.destroy_ptr(my_object2);

//Since the next shared memory allocation can throw
//assign it to a scoped_ptr so that if an exception occurs
//we destroy the object automatically
my_deleter<my_class> d(shmem.get_segment_manager());

try{
scoped_ptr<my_class, my_deleter<my_class> > s_ptr(my_object, d);
//Let's emulate a exception capable operation
//In the second try, throw an exception

134

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

if(i == 1){
throw(my_exception());

}
//If we have passed the dangerous zone
//we can release the scoped pointer
//to avoid destruction
s_ptr.release();

}
catch(const my_exception &){}
//Here, scoped_ptr is destroyed
//so it we haven't thrown an exception
//the object should be there, otherwise, destroyed
if(i == 0){

//Make sure the object is alive
if(!shmem.find<my_class>("my_object").first){

return 1;
}
//Now we can use it and delete it manually
shmem.destroy<my_class>("my_object");

}
else{

//Make sure the object has been deleted
if(shmem.find<my_class>("my_object").first){

return 1;
}

}
}
return 0;

}

Shared pointer and weak pointer
Boost.Interprocess also offers the possibility of creating non-intrusive reference-counted objects in managed shared memory or
mapped files.

Unlike boost::shared_ptr, due to limitations of mapped segments boost::interprocess::shared_ptr cannot take advantage
of virtual functions to maintain the same shared pointer type while providing user-defined allocators and deleters. The allocator and
the deleter are template parameters of the shared pointer.

Since the reference count and other auxiliary data needed by shared_ptr must be created also in the managed segment, and the
deleter has to delete the object from the segment, the user must specify an allocator object and a deleter object when constructing a
non-empty instance of shared_ptr, just like Boost.Interprocess containers need to pass allocators in their constructors.

Here is the declaration of shared_ptr:

template<class T, class VoidAllocator, class Deleter>
class shared_ptr;

• T is the type of the pointed type.

• VoidAllocator is the allocator to be used to allocate auxiliary elements such as the reference count, the deleter... The internal
pointer typedef of the allocator will determine the type of pointer that shared_ptr will internally use, so allocators defining
pointer as offset_ptr<void> will make all internal pointers used by shared_ptr to be also relative pointers. See
boost::interprocess::allocator for a working allocator.

• Deleter is the function object that will be used to destroy the pointed object when the last reference to the object is destroyed. The
deleter functor will take a pointer to T of the same category as the void pointer defined by VoidAllocator::pointer. See
boost::interprocess::deleter for a generic deleter that erases a object from a managed segment.

135

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/smart_ptr/shared_ptr.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

With correctly specified parameters, Boost.Interprocess users can create objects in shared memory that hold shared pointers pointing
to other objects also in shared memory, obtaining the benefits of reference counting. Let's see how to create a shared pointer in a
managed shared memory:

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/smart_ptr/shared_ptr.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <boost/interprocess/smart_ptr/deleter.hpp>
#include <cassert>

using namespace boost::interprocess;

//This is type of the object we want to share
class MyType
{};

typedef managed_shared_memory::segment_manager segment_manager_type;
typedef allocator<void, segment_manager_type> void_allocator_type;
typedef deleter<MyType, segment_manager_type> deleter_type;
typedef shared_ptr<MyType, void_allocator_type, deleter_type> my_shared_ptr;

int main ()
{

//Remove shared memory on construction and destruction
struct shm_remove
{

shm_remove() { shared_memory_object::remove("MySharedMemory"); }
~shm_remove(){ shared_memory_object::remove("MySharedMemory"); }

} remover;

managed_shared_memory segment(create_only, "MySharedMemory", 4096);

//Create a shared pointer in shared memory
//pointing to a newly created object in the segment
my_shared_ptr &shared_ptr_instance =

*segment.construct<my_shared_ptr>("shared ptr")
//Arguments to construct the shared pointer
(segment.construct<MyType>("object to share")() //object to own
, void_allocator_type(segment.get_segment_manager()) //allocator
, deleter_type(segment.get_segment_manager()) //deleter
);

assert(shared_ptr_instance.use_count() == 1);

//Destroy "shared ptr". "object to share" will be automatically destroyed
segment.destroy_ptr(&shared_ptr_instance);

return 0;
}

boost::interprocess::shared_ptr is very flexible and configurable (we can specify the allocator and the deleter, for example),
but as shown the creation of a shared pointer in managed segments need too much typing.

To simplify this usage, boost::interprocess::shared_ptr header offers a shared pointer definition helper class (man-
aged_shared_ptr) and a function (make_managed_shared_ptr) to easily construct a shared pointer from a type allocated in a
managed segment with an allocator that will allocate the reference count also in the managed segment and a deleter that will erase
the object from the segment.

These utilities will use a Boost.Interprocess allocator (boost::interprocess::allocator) and deleter (boost::interpro-
cess::deleter) to do their job. The definition of the previous shared pointer could be simplified to the following:

typedef managed_shared_ptr<MyType, managed_shared_memory>::type my_shared_ptr;

136

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

And the creation of a shared pointer can be simplified to this:

my_shared_ptr sh_ptr = make_managed_shared_ptr
(segment.construct<MyType>("object to share")(), segment);

Boost.Interprocess also offers a weak pointer named weak_ptr (with its corresponding managed_weak_ptr and make_man-
aged_weak_ptr utilities) to implement non-owning observers of an object owned by shared_ptr.

Now let's see a detailed example of the use of shared_ptr: and weak_ptr

#include <boost/interprocess/managed_mapped_file.hpp>
#include <boost/interprocess/smart_ptr/shared_ptr.hpp>
#include <boost/interprocess/smart_ptr/weak_ptr.hpp>
#include <cassert>

using namespace boost::interprocess;

//This is type of the object we want to share
struct type_to_share
{};

//This is the type of a shared pointer to the previous type
//that will be built in the mapped file
typedef managed_shared_ptr<type_to_share, managed_mapped_file>::type shared_ptr_type;
typedef managed_weak_ptr<type_to_share, managed_mapped_file>::type weak_ptr_type;

//This is a type holding a shared pointer
struct shared_ptr_owner
{

shared_ptr_owner(const shared_ptr_type &other_shared_ptr)
: shared_ptr_(other_shared_ptr)

{}

shared_ptr_owner(const shared_ptr_owner &other_owner)
: shared_ptr_(other_owner.shared_ptr_)

{}

shared_ptr_type shared_ptr_;
//...

};

int main ()
{

//Define file names
const char *MappedFile = "MyMappedFile";

//Destroy any previous file with the name to be used.
struct file_remove
{

file_remove(const char *MappedFile)
: MappedFile_(MappedFile) { file_mapping::remove(MappedFile_); }

~file_remove(){ file_mapping::remove(MappedFile_); }
const char *MappedFile_;

} remover(MappedFile);
{

managed_mapped_file file(create_only, MappedFile, 65536);

//Construct the shared type in the file and
//pass ownership to this local shared pointer
shared_ptr_type local_shared_ptr = make_managed_shared_ptr

(file.construct<type_to_share>("object to share")(), file);
assert(local_shared_ptr.use_count() == 1);

137

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Share ownership of the object between local_shared_ptr and a new "owner1"
shared_ptr_owner *owner1 =

file.construct<shared_ptr_owner>("owner1")(local_shared_ptr);
assert(local_shared_ptr.use_count() == 2);

//local_shared_ptr releases object ownership
local_shared_ptr.reset();
assert(local_shared_ptr.use_count() == 0);
assert(owner1->shared_ptr_.use_count() == 1);

//Share ownership of the object between "owner1" and a new "owner2"
shared_ptr_owner *owner2 =

file.construct<shared_ptr_owner>("owner2")(*owner1);
assert(owner1->shared_ptr_.use_count() == 2);
assert(owner2->shared_ptr_.use_count() == 2);
assert(owner1->shared_ptr_.get() == owner2->shared_ptr_.get());

//The mapped file is unmapped here. Objects have been flushed to disk
}
{

//Reopen the mapped file and find again all owners
managed_mapped_file file(open_only, MappedFile);

shared_ptr_owner *owner1 = file.find<shared_ptr_owner>("owner1").first;
shared_ptr_owner *owner2 = file.find<shared_ptr_owner>("owner2").first;
assert(owner1 && owner2);

//Check everything is as expected
assert(file.find<type_to_share>("object to share").first != 0);
assert(owner1->shared_ptr_.use_count() == 2);
assert(owner2->shared_ptr_.use_count() == 2);
assert(owner1->shared_ptr_.get() == owner2->shared_ptr_.get());

//Now destroy one of the owners, the reference count drops.
file.destroy_ptr(owner1);
assert(owner2->shared_ptr_.use_count() == 1);

//Create a weak pointer
weak_ptr_type local_observer1(owner2->shared_ptr_);
assert(local_observer1.use_count() == owner2->shared_ptr_.use_count());

{ //Create a local shared pointer from the weak pointer
shared_ptr_type local_shared_ptr = local_observer1.lock();
assert(local_observer1.use_count() == owner2->shared_ptr_.use_count());
assert(local_observer1.use_count() == 2);
}

//Now destroy the remaining owner. "object to share" will be destroyed
file.destroy_ptr(owner2);
assert(file.find<type_to_share>("object to share").first == 0);

//Test observer
assert(local_observer1.expired());
assert(local_observer1.use_count() == 0);

//The reference count will be deallocated when all weak pointers
//disappear. After that, the file is unmapped.

}
return 0;

}

138

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

In general, using Boost.Interprocess' shared_ptr and weak_ptr is very similar to their counterparts boost::shared_ptr and
boost::weak_ptr, but they need more template parameters and more run-time parameters in their constructors.

Just like boost::shared_ptr can be stored in a STL container, shared_ptr can also be stored in Boost.Interprocess containers.

If a programmer just uses shared_ptr to be able to insert objects dynamically constructed in the managed segment in a container,
but does not need to share the ownership of that object with other objects unique_ptr is a much faster and easier to use alternative.

Unique pointer
Unique ownership smart pointers are really useful to free programmers from manual resource liberation of non-shared objects.
Boost.Interprocess' unique_ptr is much like scoped_ptr but it's moveable and can be easily inserted in Boost.Interprocess
containers. Here is the declaration of the unique pointer class:

template <class T, class D>
class unique_ptr;

• T is the type of the object pointed by unique_ptr.

• D is the deleter that will erase the object type of the object pointed by unique_ptr when the unique pointer is destroyed (and if
still owns ownership of the object). If the deleter defines an internal pointer typedef, unique_ptr will use an internal pointer
of the same type. So if D::pointer is offset_ptr<T> the unique pointer will store a relative pointer instead of a raw one. This
allows placing unique_ptr in shared memory and memory-mapped files.

unique_ptr can release the ownership of the stored pointer so it's useful also to be used as a rollback function. One of the main
properties of the class is that is not copyable, but only moveable. When a unique pointer is moved to another one, the ownership
of the pointer is transferred from the source unique pointer to the target unique pointer. If the target unique pointer owned an object,
that object is first deleted before taking ownership of the new object.

unique_ptr also offers auxiliary types to easily define and construct unique pointers that can be placed in managed segments and
will correctly delete the owned object from the segment: managed_unique_ptr and make_managed_unique_ptr utilities.

Here we see an example of the use unique_ptr including creating containers of such objects:

139

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/libs/smart_ptr/weak_ptr.htm
http://www.boost.org/libs/smart_ptr/shared_ptr.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/interprocess/managed_mapped_file.hpp>
#include <boost/interprocess/smart_ptr/unique_ptr.hpp>
#include <boost/interprocess/containers/vector.hpp>
#include <boost/interprocess/containers/list.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <cassert>

using namespace boost::interprocess;

//This is type of the object we'll allocate dynamically
struct MyType
{

MyType(int number = 0)
: number_(number)

{}
int number_;

};

//This is the type of a unique pointer to the previous type
//that will be built in the mapped file
typedef managed_unique_ptr<MyType, managed_mapped_file>::type unique_ptr_type;

//Define containers of unique pointer. Unique pointer simplifies object management
typedef vector

< unique_ptr_type
, allocator<unique_ptr_type, managed_mapped_file::segment_manager>
> unique_ptr_vector_t;

typedef list
< unique_ptr_type
, allocator<unique_ptr_type, managed_mapped_file::segment_manager>
> unique_ptr_list_t;

int main ()
{

//Define file names
const char *MappedFile = "MyMappedFile";

//Destroy any previous file with the name to be used.
struct file_remove
{

file_remove(const char *MappedFile)
: MappedFile_(MappedFile) { file_mapping::remove(MappedFile_); }

~file_remove(){ file_mapping::remove(MappedFile_); }
const char *MappedFile_;

} remover(MappedFile);
{

managed_mapped_file file(create_only, MappedFile, 65536);

//Construct an object in the file and
//pass ownership to this local unique pointer
unique_ptr_type local_unique_ptr (make_managed_unique_ptr

(file.construct<MyType>("unique object")(), file));
assert(local_unique_ptr.get() != 0);

//Reset the unique pointer. The object is automatically destroyed
local_unique_ptr.reset();
assert(file.find<MyType>("unique object").first == 0);

//Now create a vector of unique pointers
unique_ptr_vector_t *unique_vector =

file.construct<unique_ptr_vector_t>("unique vector")(file.get_segment_manager());

140

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//Speed optimization
unique_vector->reserve(100);

//Now insert all values
for(int i = 0; i < 100; ++i){

unique_ptr_type p(make_managed_unique_ptr(file.construct<MyType>(anonymous_in↵
stance)(i), file));

unique_vector->push_back(boost::move(p));
assert(unique_vector->back()->number_ == i);

}

//Now create a list of unique pointers
unique_ptr_list_t *unique_list =

file.construct<unique_ptr_list_t>("unique list")(file.get_segment_manager());

//Pass ownership of all values to the list
for(int i = 99; !unique_vector->empty(); --i){

unique_list->push_front(boost::move(unique_vector->back()));
//The unique ptr of the vector is now empty...
assert(unique_vector->back() == 0);
unique_vector->pop_back();
//...and the list has taken ownership of the value
assert(unique_list->front() != 0);
assert(unique_list->front()->number_ == i);

}
assert(unique_list->size() == 100);

//Now destroy the empty vector.
file.destroy_ptr(unique_vector);
//The mapped file is unmapped here. Objects have been flushed to disk

}
{

//Reopen the mapped file and find again the list
managed_mapped_file file(open_only, MappedFile);

unique_ptr_list_t *unique_list =
file.find<unique_ptr_list_t>("unique list").first;

assert(unique_list);
assert(unique_list->size() == 100);

unique_ptr_list_t::const_iterator list_it = unique_list->begin();
for(int i = 0; i < 100; ++i, ++list_it){

assert((*list_it)->number_ == i);
}

//Now destroy the list. All elements will be automatically deallocated.
file.destroy_ptr(unique_list);

}
return 0;

}

141

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Architecture and internals

Basic guidelines
When building Boost.Interprocess architecture, I took some basic guidelines that can be summarized by these points:

• Boost.Interprocess should be portable at least in UNIX and Windows systems. That means unifying not only interfaces but also
behaviour. This is why Boost.Interprocess has chosen kernel or filesystem persistence for shared memory and named synchron-
ization mechanisms. Process persistence for shared memory is also desirable but it's difficult to achieve in UNIX systems.

• Boost.Interprocess inter-process synchronization primitives should be equal to thread synchronization primitives. Boost.Inter-
process aims to have an interface compatible with the C++ standard thread API.

• Boost.Interprocess architecture should be modular, customizable but efficient. That's why Boost.Interprocess is based on templates
and memory algorithms, index types, mutex types and other classes are templatizable.

• Boost.Interprocess architecture should allow the same concurrency as thread based programming. Different mutual exclusion
levels are defined so that a process can concurrently allocate raw memory when expanding a shared memory vector while another
process can be safely searching a named object.

• Boost.Interprocess containers know nothing about Boost.Interprocess. All specific behaviour is contained in the STL-like alloc-
ators. That allows STL vendors to slightly modify (or better said, generalize) their standard container implementations and obtain
a fully std::allocator and boost::interprocess::allocator compatible container. This also make Boost.Interprocess containers
compatible with standard algorithms.

Boost.Interprocess is built above 3 basic classes: a memory algorithm, a segment manager and a managed memory segment:

From the memory algorithm to the managed segment

The memory algorithm

The memory algorithm is an object that is placed in the first bytes of a shared memory/memory mapped file segment. The memory
algorithm can return portions of that segment to users marking them as used and the user can return those portions to the memory
algorithm so that the memory algorithm mark them as free again. There is an exception though: some bytes beyond the end of the
memory algorithm object, are reserved and can't be used for this dynamic allocation. This "reserved" zone will be used to place
other additional objects in a well-known place.

To sum up, a memory algorithm has the same mission as malloc/free of standard C library, but it just can return portions of the
segment where it is placed. The layout of a memory segment would be:

Layout of the memory segment:
____________ __________ __
memory	reserved	The memory algorithm will return portions
algorithm		of the rest of the segment.
____________	__________	__

The memory algorithm takes care of memory synchronizations, just like malloc/free guarantees that two threads can call malloc/free
at the same time. This is usually achieved placing a process-shared mutex as a member of the memory algorithm. Take in care that
the memory algorithm knows nothing about the segment (if it is shared memory, a shared memory file, etc.). For the memory algorithm
the segment is just a fixed size memory buffer.

The memory algorithm is also a configuration point for the rest of the Boost.Interprocess framework since it defines two basic
types as member typedefs:

142

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef /*implementation dependent*/ void_pointer;
typedef /*implementation dependent*/ mutex_family;

The void_pointer typedef defines the pointer type that will be used in the Boost.Interprocess framework (segment manager, al-
locators, containers). If the memory algorithm is ready to be placed in a shared memory/mapped file mapped in different base addresses,
this pointer type will be defined as offset_ptr<void> or a similar relative pointer. If the memory algorithm will be used just
with fixed address mapping, void_pointer can be defined as void*.

The rest of the interface of a Boost.Interprocess memory algorithm is described in Writing a new shared memory allocation algorithm
section. As memory algorithm examples, you can see the implementations simple_seq_fit or rbtree_best_fit classes.

The segment manager

The segment manager, is an object also placed in the first bytes of the managed memory segment (shared memory, memory mapped
file), that offers more sophisticated services built above the memory algorithm. How can both the segment manager and memory
algorithm be placed in the beginning of the segment? That's because the segment manager owns the memory algorithm: The truth
is that the memory algorithm is embedded in the segment manager:

The layout of managed memory segment:
_______ _________________
| | | |
| some | memory | other |<- The memory algorithm considers
|members|algorithm|members| "other members" as reserved memory, so
|_______|_________|_______| it does not use it for dynamic allocation.
|_________________________|__
segment manager	The memory algorithm will return portions
	of the rest of the segment.
_________________________	__

The segment manager initializes the memory algorithm and tells the memory manager that it should not use the memory where the
rest of the segment manager's member are placed for dynamic allocations. The other members of the segment manager are a re-
cursive mutex (defined by the memory algorithm's mutex_family::recursive_mutex typedef member), and two indexes (maps):
one to implement named allocations, and another one to implement "unique instance" allocations.

• The first index is a map with a pointer to a c-string (the name of the named object) as a key and a structure with information of
the dynamically allocated object (the most important being the address and the size of the object).

• The second index is used to implement "unique instances" and is basically the same as the first index, but the name of the object
comes from a typeid(T).name() operation.

The memory needed to store [name pointer, object information] pairs in the index is allocated also via the memory algorithm, so
we can tell that internal indexes are just like ordinary user objects built in the segment. The rest of the memory to store the name of
the object, the object itself, and meta-data for destruction/deallocation is allocated using the memory algorithm in a single alloc-
ate() call.

As seen, the segment manager knows nothing about shared memory/memory mapped files. The segment manager itself does not
allocate portions of the segment, it just asks the memory algorithm to allocate the needed memory from the rest of the segment.
The segment manager is a class built above the memory algorithm that offers named object construction, unique instance constructions,
and many other services.

The segment manager is implemented in Boost.Interprocess by the segment_manager class.

template<class CharType
,class MemoryAlgorithm
,template<class IndexConfig> class IndexType>

class segment_manager;

143

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

As seen, the segment manager is quite generic: we can specify the character type to be used to identify named objects, we can specify
the memory algorithm that will control dynamically the portions of the memory segment, and we can specify also the index type
that will store the [name pointer, object information] mapping. We can construct our own index types as explained in Building custom
indexes section.

Boost.Interprocess managed memory segments

The Boost.Interprocess managed memory segments that construct the shared memory/memory mapped file, place there the segment
manager and forward the user requests to the segment manager. For example, basic_managed_shared_memory is a Boost.Inter-
process managed memory segment that works with shared memory. basic_managed_mapped_file works with memory mapped
files, etc...

Basically, the interface of a Boost.Interprocess managed memory segment is the same as the segment manager but it also offers
functions to "open", "create", or "open or create" shared memory/memory-mapped files segments and initialize all needed resources.
Managed memory segment classes are not built in shared memory or memory mapped files, they are normal C++ classes that store
a pointer to the segment manager (which is built in shared memory or memory mapped files).

Apart from this, managed memory segments offer specific functions: managed_mapped_file offers functions to flush memory
contents to the file, managed_heap_memory offers functions to expand the memory, etc...

Most of the functions of Boost.Interprocess managed memory segments can be shared between all managed memory segments,
since many times they just forward the functions to the segment manager. Because of this, in Boost.Interprocess all managed
memory segments derive from a common class that implements memory-independent (shared memory, memory mapped files)
functions: boost::interprocess::ipcdetail::basic_managed_memory_impl

Deriving from this class, Boost.Interprocess implements several managed memory classes, for different memory backends:

• basic_managed_shared_memory (for shared memory).

• basic_managed_mapped_file (for memory mapped files).

• basic_managed_heap_memory (for heap allocated memory).

• basic_managed_external_buffer (for user provided external buffer).

Allocators and containers

Boost.Interprocess allocators

The Boost.Interprocess STL-like allocators are fairly simple and follow the usual C++ allocator approach. Normally, allocators for
STL containers are based above new/delete operators and above those, they implement pools, arenas and other allocation tricks.

In Boost.Interprocess allocators, the approach is similar, but all allocators are based on the segment manager. The segment manager
is the only one that provides from simple memory allocation to named object creations. Boost.Interprocess allocators always store
a pointer to the segment manager, so that they can obtain memory from the segment or share a common pool between allocators.

As you can imagine, the member pointers of the allocator are not a raw pointers, but pointer types defined by the segment_man-
ager::void_pointer type. Apart from this, the pointer typedef of Boost.Interprocess allocators is also of the same type of
segment_manager::void_pointer.

This means that if our allocation algorithm defines void_pointer as offset_ptr<void>, boost::interprocess::allocat-
or<T> will store an offset_ptr<segment_manager> to point to the segment manager and the boost::interprocess::al-
locator<T>::pointer type will be offset_ptr<T>. This way, Boost.Interprocess allocators can be placed in the memory
segment managed by the segment manager, that is, shared memory, memory mapped files, etc...

Implementation of Boost.Interprocess segregated storage pools

Segregated storage pools are simple and follow the classic segregated storage algorithm.

144

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/interprocess/detail/managed_memory_impl.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• The pool allocates chunks of memory using the segment manager's raw memory allocation functions.

• The chunk contains a pointer to form a singly linked list of chunks. The pool will contain a pointer to the first chunk.

• The rest of the memory of the chunk is divided in nodes of the requested size and no memory is used as payload for each node.
Since the memory of a free node is not used that memory is used to place a pointer to form a singly linked list of free nodes. The
pool has a pointer to the first free node.

• Allocating a node is just taking the first free node from the list. If the list is empty, a new chunk is allocated, linked in the list of
chunks and the new free nodes are linked in the free node list.

• Deallocation returns the node to the free node list.

• When the pool is destroyed, the list of chunks is traversed and memory is returned to the segment manager.

The pool is implemented by the private_node_pool and shared_node_pool classes.

Implementation of Boost.Interprocess adaptive pools

Adaptive pools are a variation of segregated lists but they have a more complicated approach:

• Instead of using raw allocation, the pool allocates aligned chunks of memory using the segment manager. This is an essential
feature since a node can reach its chunk information applying a simple mask to its address.

• The chunks contains pointers to form a doubly linked list of chunks and an additional pointer to create a singly linked list of free
nodes placed on that chunk. So unlike the segregated storage algorithm, the free list of nodes is implemented per chunk.

• The pool maintains the chunks in increasing order of free nodes. This improves locality and minimizes the dispersion of node al-
locations across the chunks facilitating the creation of totally free chunks.

• The pool has a pointer to the chunk with the minimum (but not zero) free nodes. This chunk is called the "active" chunk.

• Allocating a node is just returning the first free node of the "active" chunk. The list of chunks is reordered according to the free
nodes count. The pointer to the "active" pool is updated if necessary.

• If the pool runs out of nodes, a new chunk is allocated, and pushed back in the list of chunks. The pointer to the "active" pool is
updated if necessary.

• Deallocation returns the node to the free node list of its chunk and updates the "active" pool accordingly.

• If the number of totally free chunks exceeds the limit, chunks are returned to the segment manager.

• When the pool is destroyed, the list of chunks is traversed and memory is returned to the segment manager.

The adaptive pool is implemented by the private_adaptive_node_pool and adaptive_node_pool classes.

Boost.Interprocess containers

Boost.Interprocess containers are standard conforming counterparts of STL containers in boost::interprocess namespace,
but with these little details:

• Boost.Interprocess STL containers don't assume that memory allocated with an allocator can be deallocated with other allocator
of the same type. They always compare allocators with operator==() to know if this is possible.

• The pointers of the internal structures of the Boost.Interprocess containers are of the same type the pointer type defined by the
allocator of the container. This allows placing containers in managed memory segments mapped in different base addresses.

145

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/interprocess/allocators/detail/node_pool.hpp
http://www.boost.org/doc/libs/release/doc/html/../../boost/interprocess/allocators/detail/adaptive_node_pool.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Performance of Boost.Interprocess
This section tries to explain the performance characteristics of Boost.Interprocess, so that you can optimize Boost.Interprocess
usage if you need more performance.

Performance of raw memory allocations

You can have two types of raw memory allocations with Boost.Interprocess classes:

• Explicit: The user calls allocate() and deallocate() functions of managed_shared_memory/managed_mapped_file...
managed memory segments. This call is translated to a MemoryAlgorithm::allocate() function, which means that you will
need just the time that the memory algorithm associated with the managed memory segment needs to allocate data.

• Implicit: For example, you are using boost::interprocess::allocator<...> with Boost.Interprocess containers. This
allocator calls the same MemoryAlgorithm::allocate() function than the explicit method, every time a vector/string has to
reallocate its buffer or every time you insert an object in a node container.

If you see that memory allocation is a bottleneck in your application, you have these alternatives:

• If you use map/set associative containers, try using flat_map family instead of the map family if you mainly do searches and
the insertion/removal is mainly done in an initialization phase. The overhead is now when the ordered vector has to reallocate its
storage and move data. You can also call the reserve() method of these containers when you know beforehand how much data
you will insert. However in these containers iterators are invalidated in insertions so this substitution is only effective in some
applications.

• Use a Boost.Interprocess pooled allocator for node containers, because pooled allocators call allocate() only when the pool
runs out of nodes. This is pretty efficient (much more than the current default general-purpose algorithm) and this can save a lot
of memory. See Segregated storage node allocators and Adaptive node allocators for more information.

• Write your own memory algorithm. If you have experience with memory allocation algorithms and you think another algorithm
is better suited than the default one for your application, you can specify it in all Boost.Interprocess managed memory segments.
See the section Writing a new shared memory allocation algorithm to know how to do this. If you think its better than the default
one for general-purpose applications, be polite and donate it to Boost.Interprocess to make it default!

Performance of named allocations

Boost.Interprocess allows the same parallelism as two threads writing to a common structure, except when the user creates/searches
named/unique objects. The steps when creating a named object are these:

• Lock a recursive mutex (so that you can make named allocations inside the constructor of the object to be created).

• Try to insert the [name pointer, object information] in the name/object index. This lookup has to assure that the name has not been
used before. This is achieved calling insert() function in the index. So the time this requires is dependent on the index type
(ordered vector, tree, hash...). This can require a call to the memory algorithm allocation function if the index has to be reallocated,
it's a node allocator, uses pooled allocations...

• Allocate a single buffer to hold the name of the object, the object itself, and meta-data for destruction (number of objects, etc...).

• Call the constructors of the object being created. If it's an array, one construtor per array element.

• Unlock the recursive mutex.

The steps when destroying a named object using the name of the object (destroy<T>(name)) are these:

• Lock a recursive mutex .

• Search in the index the entry associated to that name. Copy that information and erase the index entry. This is done using
find(const key_type &) and erase(iterator) members of the index. This can require element reordering if the index is
a balanced tree, an ordered vector...

146

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Call the destructor of the object (many if it's an array).

• Deallocate the memory buffer containing the name, metadata and the object itself using the allocation algorithm.

• Unlock the recursive mutex.

The steps when destroying a named object using the pointer of the object (destroy_ptr(T *ptr)) are these:

• Lock a recursive mutex .

• Depending on the index type, this can be different:

• If the index is a node index, (marked with boost::interprocess::is_node_index specialization): Take the iterator stored
near the object and call erase(iterator). This can require element reordering if the index is a balanced tree, an ordered
vector...

• If it's not an node index: Take the name stored near the object and erase the index entry calling `erase(const key &). This can
require element reordering if the index is a balanced tree, an ordered vector...

• Call the destructor of the object (many if it's an array).

• Deallocate the memory buffer containing the name, metadata and the object itself using the allocation algorithm.

• Unlock the recursive mutex.

If you see that the performance is not good enough you have these alternatives:

• Maybe the problem is that the lock time is too big and it hurts parallelism. Try to reduce the number of named objects in the
global index and if your application serves several clients try to build a new managed memory segment for each one instead of
using a common one.

• Use another Boost.Interprocess index type if you feel the default one is not fast enough. If you are not still satisfied, write your
own index type. See Building custom indexes for this.

• Destruction via pointer is at least as fast as using the name of the object and can be faster (in node containers, for example). So if
your problem is that you make at lot of named destructions, try to use the pointer. If the index is a node index you can save some
time.

147

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Customizing Boost.Interprocess

Writing a new shared memory allocation algorithm
If the default algorithm does not satisfy user requirements, it's easy to provide different algorithms like bitmapping or more advanced
segregated lists to meet requirements. The class implementing the algorithm must be compatible with shared memory, so it shouldn't
have any virtual function or virtual inheritance or any indirect base class with virtual function or inheritance.

This is the interface to be implemented:

class my_algorithm
{

public:

//!The mutex type to be used by the rest of Interprocess framework
typedef implementation_defined mutex_family;

//!The pointer type to be used by the rest of Interprocess framework
typedef implementation_defined void_pointer;

//!Constructor. "size" is the total size of the managed memory segment,
//!"extra_hdr_bytes" indicates the extra bytes after the sizeof(my_algorithm)
//!that the allocator should not use at all.
my_algorithm (std::size_t size, std::size_t extra_hdr_bytes);

//!Obtains the minimum size needed by the algorithm
static std::size_t get_min_size (std::size_t extra_hdr_bytes);

//!Allocates bytes, returns 0 if there is not more memory
void* allocate (std::size_t nbytes);

//!Deallocates previously allocated bytes
void deallocate (void *adr);

//!Returns the size of the memory segment
std::size_t get_size() const;

//!Increases managed memory in extra_size bytes more
void grow(std::size_t extra_size);
/*...*/

};

Let's see the public typedefs to define:

typedef /* . . . */ void_pointer;
typedef /* . . . */ mutex_family;

The void_pointer typedef specifies the pointer type to be used in the Boost.Interprocess framework that uses the algorithm. For
example, if we define

typedef void * void_pointer;

all Boost.Interprocess framework using this algorithm will use raw pointers as members. But if we define:

typedef offset_ptr<void> void_pointer;

then all Boost.Interprocess framework will use relative pointers.

148

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The mutex_family is a structure containing typedefs for different interprocess_mutex types to be used in the Boost.Interprocess
framework. For example the defined

struct mutex_family
{

typedef boost::interprocess::interprocess_mutex mutex_type;
typedef boost::interprocess::interprocess_recursive_mutex recursive_mutex_type;

};

defines all interprocess_mutex types using boost::interprocess interprocess_mutex types. The user can specify the desired mutex
family.

typedef mutex_family mutex_family;

The new algorithm (let's call it my_algorithm) must implement all the functions that boost::interprocess::rbtree_best_fit class offers:

• my_algorithm's constructor must take 2 arguments:

• size indicates the total size of the managed memory segment, and my_algorithm object will be always constructed a at offset
0 of the memory segment.

• The extra_hdr_bytes parameter indicates the number of bytes after the offset sizeof(my_algorithm) that my_algorithm
can't use at all. This extra bytes will be used to store additional data that should not be overwritten. So, my_algorithm will be
placed at address XXX of the memory segment, and will manage the [XXX + sizeof(my_algorithm) + extra_hdr_bytes, XXX
+ size) range of the segment.

• The get_min_size() function should return the minimum space the algorithm needs to be valid with the passed extra_hdr_bytes
parameter. This function will be used to check if the memory segment is big enough to place the algorithm there.

• The allocate() function must return 0 if there is no more available memory. The memory returned by my_algorithm must be
aligned to the most restrictive memory alignment of the system, for example, to the value returned by ipcdetail::align-
ment_of<boost::detail::max_align>::value. This function should be executed with the synchronization capabilities offered by
typename mutex_family::mutex_type interprocess_mutex. That means, that if we define typedef mutex_family mu-

tex_family; then this function should offer the same synchronization as if it was surrounded by an interprocess_mutex
lock/unlock. Normally, this is implemented using a member of type mutex_family::mutex_type, but it could be done using
atomic instructions or lock free algorithms.

• The deallocate() function must make the returned buffer available for new allocations. This function should offer the same syn-
chronization as allocate().

• The size() function will return the passed size parameter in the constructor. So, my_algorithm should store the size internally.

• The grow() function will expand the managed memory by my_algorithm in extra_size bytes. So size() function should return
the updated size, and the new managed memory range will be (if the address where the algorithm is constructed is XXX): [XXX
+ sizeof(my_algorithm) + extra_hdr_bytes, XXX + old_size + extra_size). This function should offer the same synchronization
as allocate().

That's it. Now we can create new managed shared memory that uses our new algorithm:

//Managed memory segment to allocate named (c-string) objects
//using a user-defined memory allocation algorithm
basic_managed_shared_memory<char,

,my_algorithm
,flat_map_index>

my_managed_shared_memory;

149

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Building custom STL compatible allocators for Boost.Interprocess
If provided STL-like allocators don't satisfy user needs, the user can implement another STL compatible allocator using raw memory
allocation and named object construction functions. The user can this way implement more suitable allocation schemes on top of
basic shared memory allocation schemes, just like more complex allocators are built on top of new/delete functions.

When using a managed memory segment, get_segment_manager() function returns a pointer to the segment manager. With this
pointer, the raw memory allocation and named object construction functions can be called directly:

//Create the managed shared memory and initialize resources
managed_shared_memory segment

(create_only
,"/MySharedMemory" //segment name
,65536); //segment size in bytes

//Obtain the segment manager
managed_shared_memory::segment_manager *segment_mngr

= segment.get_segment_manager();

//With the segment manager, now we have access to all allocation functions
segment_mngr->deallocate(segment_mngr->allocate(32));
segment_mngr->construct<int>("My_Int")[32](0);
segment_mngr->destroy<int>("My_Int");

//Initialize the custom, managed memory segment compatible
//allocator with the segment manager.
//
//MySTLAllocator uses segment_mngr->xxx functions to
//implement its allocation scheme
MySTLAllocator<int> stl_alloc(segment_mngr);

//Alias a new vector type that uses the custom STL compatible allocator
typedef std::vector<int, MySTLAllocator<int> > MyVect;

//Construct the vector in shared memory with the allocator as constructor parameter
segment.construct<MyVect>("MyVect_instance")(stl_alloc);

The user can create new STL compatible allocators that use the segment manager to access to all memory management/object con-
struction functions. All Boost.Interprocess' STL compatible allocators are based on this approach. Remember that to be compatible
with managed memory segments, allocators should define their pointer typedef as the same pointer family as segment_man-
ager::void_pointer typedef. This means that if segment_manager::void_pointer is offset_ptr<void>, MySTLAlloc-
ator<int> should define pointer as offset_ptr<int>. The reason for this is that allocators are members of containers, and if
we want to put the container in a managed memory segment, the allocator should be ready for that.

Building custom indexes
The managed memory segment uses a name/object index to speed up object searching and creation. Default specializations of managed
memory segments (managed_shared_memory for example), use boost::interprocess::flat_map as index.

However, the index type can be chosen via template parameter, so that the user can define its own index type if he needs that. To
construct a new index type, the user must create a class with the following guidelines:

• The interface of the index must follow the common public interface of std::map and std::tr1::unordered_map including public ty-
pedefs. The value_type typedef can be of type:

std::pair<key_type, mapped_type>

or

150

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::pair<const key_type, mapped_type>

so that ordered arrays or deques can be used as index types. Some known classes following this basic interface are boost::un-
ordered_map, boost::interprocess::flat_map and boost::interprocess::map.

• The class must be a class template taking only a traits struct of this type:

struct index_traits
{

typedef /*...*/ key_type;
typedef /*...*/ mapped_type;
typedef /*...*/ segment_manager;

};

template <class IndexTraits>
class my_index_type;

The key_type typedef of the passed index_traits will be a specialization of the following class:

//!The key of the named allocation information index. Stores a to
//!a null string and the length of the string to speed up sorting
template<...>
struct index_key
{

typedef /*...*/ char_type;
typedef /*...*/ const_char_ptr_t;

//Pointer to the object's name (null terminated)
const_char_ptr_t mp_str;

//Length of the name buffer (null NOT included)
std::size_t m_len;

//!Constructor of the key
index_key (const CharT *name, std::size_t length);

//!Less than function for index ordering
bool operator < (const index_key & right) const;

//!Equal to function for index ordering
bool operator == (const index_key & right) const;

};

The mapped_type is not directly modified by the customized index but it is needed to define the index type. The segment_manager
will be the type of the segment manager that will manage the index. segment_manager will define interesting internal types like
void_pointer or mutex_family.

• The constructor of the customized index type must take a pointer to segment_manager as constructor argument:

constructor(segment_manager *segment_mngr);

• The index must provide a memory reservation function, that optimizes the index if the user knows the number of elements to be
inserted in the index:

void reserve(std::size_t n);

For example, the index type flat_map_index based in boost::interprocess::flat_map is just defined as:

151

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost { namespace interprocess {

//!Helper class to define typedefs from IndexTraits
template <class MapConfig>
struct flat_map_index_aux
{

typedef typename MapConfig::key_type key_type;
typedef typename MapConfig::mapped_type mapped_type;
typedef typename MapConfig::

segment_manager_base segment_manager_base;
typedef std::less<key_type> key_less;
typedef std::pair<key_type, mapped_type> value_type;
typedef allocator<value_type

,segment_manager_base> allocator_type;
typedef flat_map<key_type, mapped_type,

key_less, allocator_type> index_t;
};

//!Index type based in flat_map. Just derives from flat_map and
//!defines the interface needed by managed memory segments.
template <class MapConfig>
class flat_map_index

//Derive class from flat_map specialization
: public flat_map_index_aux<MapConfig>::index_t

{
/// @cond
typedef flat_map_index_aux<MapConfig> index_aux;
typedef typename index_aux::index_t base_type;
typedef typename index_aux::

segment_manager_base segment_manager_base;
/// @endcond

public:
//!Constructor. Takes a pointer to the segment manager. Can throw
flat_map_index(segment_manager_base *segment_mngr)

: base_type(typename index_aux::key_less(),
typename index_aux::allocator_type(segment_mngr))

{}

//!This reserves memory to optimize the insertion of n elements in the index
void reserve(typename segment_manager_base::size_type n)
{ base_type::reserve(n); }

//!This frees all unnecessary memory
void shrink_to_fit()
{ base_type::shrink_to_fit(); }

};

}} //namespace boost { namespace interprocess

If the user is defining a node container based index (a container whose iterators are not invalidated when inserting or erasing other
elements), Boost.Interprocess can optimize named object destruction when destructing via pointer. Boost.Interprocess can store
an iterator next to the object and instead of using the name of the object to erase the index entry, it uses the iterator, which is a faster
operation. So if you are creating a new node container based index (for example, a tree), you should define an specialization of
boost::interprocess::is_node_index<...> defined in <boost/interprocess/detail/utilities.hpp>:

152

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

//!Trait classes to detect if an index is a node
//!index. This allows more efficient operations
//!when deallocating named objects.
template<class MapConfig>
struct is_node_index

<my_index<MapConfig> >
{

static const bool value = true;
};

Interprocess also defines other index types:

• boost::map_index uses boost::interprocess::map as index type.

• boost::null_index that uses an dummy index type if the user just needs anonymous allocations and wants to save some space and
class instantations.

Defining a new managed memory segment that uses the new index is easy. For example, a new managed shared memory that uses
the new index:

//!Defines a managed shared memory with a c-strings as
//!a keys, the red-black tree best fit algorithm (with process-shared mutexes
//!and offset_ptr pointers) as raw shared memory management algorithm
//!and a custom index
typedef

basic_managed_shared_memory <
char,
rbtree_best_fit<mutex_family>,
my_index_type
>

my_managed_shared_memory;

153

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Acknowledgements, notes and links

Notes

Notes for Windows users

COM Initialization

Boost.Interprocess uses the Windows COM library to implement some features and initializes it with concurrency model COIN-
IT_APARTMENTTHREADED. If the COM library was already initialized by the calling thread for another concurrency model,
Boost.Interprocess handles this gracefully and uses COM calls for the already initialized model. If for some reason, you want
Boost.Interprocess to initialize the COM library with another model, define the macro BOOST_INTERPROCESS_WINDOWS_COIN-
IT_MODEL before including Boost.Interprocess to one of these values:

• COINIT_APARTMENTTHREADED_BIPC

• COINIT_MULTITHREADED_BIPC

• COINIT_DISABLE_OLE1DDE_BIPC

• COINIT_SPEED_OVER_MEMORY_BIPC

Shared memory emulation folder

Shared memory (shared_memory_object) is implemented in windows using memory mapped files, placed in a directory in the
shared documents folder (SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Common AppData).
This directory name is the last bootup time (obtained via COM calls), so that each bootup shared memory is created in a new folder
obtaining kernel persistence shared memory.

Unfortunately, due to COM implementation related errors, in Boost 1.48 & Boost 1.49 the bootup-time folder was dumped and files
were directly created in shared documents folder, reverting to filesystem persistence shared memory. Boost 1.50 fixed those issues
and recovered bootup time directory and kernel persistence. If you need to reproduce Boost 1.48 & Boost 1.49 behaviour to commu-
nicate with applications compiled with that version, comment #define BOOST_INTERPROCESS_HAS_KERNEL_BOOTTIME directive
in the Windows configuration part of boost/interprocess/detail/workaround.hpp.

Notes for Linux users

Overcommit

The committed address space is the total amount of virtual memory (swap or physical memory/RAM) that the kernel might have to
supply if all applications decide to access all of the memory they've requested from the kernel. By default, Linux allows processes
to commit more virtual memory than available in the system. If that memory is not accessed, no physical memory + swap is actually
used.

The reason for this behaviour is that Linux tries to optimize memory usage on forked processes; fork() creates a full copy of the
process space, but with overcommitted memory, in this new forked instance only pages which have been written to actually need to
be allocated by the kernel. If applications access more memory than available, then the kernel must free memory in the hard way:
the OOM (Out Of Memory)-killer picks some processes to kill in order to recover memory.

Boost.Interprocess has no way to change this behaviour and users might suffer the OOM-killer when accessing shared memory.
According to the Kernel documentation, the Linux kernel supports several overcommit modes. If you need non-kill guarantees in
your application, you should change this overcommit behaviour.

154

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.kernel.org/doc/Documentation/vm/overcommit-accounting
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thanks to...

People

Many people have contributed with ideas and revisions, so this is the place to thank them:

• Thanks to all people who have shown interest in the library and have downloaded and tested the snapshots.

• Thanks to Francis Andre and Anders Hybertz for their ideas and suggestions. Many of them are not implemented yet but I hope
to include them when library gets some stability.

• Thanks to Matt Doyle, Steve LoBasso, Glenn Schrader, Hiang Swee Chiang, Phil Endecott, Rene Rivera, Harold Pirtle,
Paul Ryan, Shumin Wu, Michal Wozniak, Peter Johnson, Alex Ott, Shane Guillory, Steven Wooding and Kim Barrett for
their bug fixes and library testing.

• Thanks to Martin Adrian who suggested the use of Interprocess framework for user defined buffers.

• Thanks to Synge Todo for his boostbook-doxygen patch to improve Interprocess documentation.

• Thanks to Olaf Krzikalla for his Intrusive library. I have taken some ideas to improve red black tree implementation from his
library.

• Thanks to Daniel James for his unordered_map/set family and his help with allocators. His great unordered implementation has
been a reference to design exception safe containers.

• Thanks to Howard Hinnant for his amazing help, specially explaining allocator swapping, move semantics and for developing
upgradable mutex and lock transfer features.

• Thanks to Pavel Vozenilek for his continuous review process, suggestions, code and help. He is the major supporter of Interprocess
library. The library has grown with his many and great advices.

• And finally, thank you to all Boosters. Long live to C++!

Release Notes

Boost 1.53 Release

• Fixed GCC -Wshadow warnings.

• Experimental multiple allocation interface improved and changed again. Still unstable.

• Replaced deprecated BOOST_NO_XXXX with newer BOOST_NO_CXX11_XXX macros.

• ABI breaking: changed node pool allocators internals for improved efficiency.

• Fixed bug #7795.

Boost 1.52 Release

• Added shrink_by and advise functions in mapped_region.

• ABI breaking: Reimplemented message_queue with a circular buffer index (the old behavior used an ordered array, leading to
excessive copies). This should greatly increase performance but breaks ABI. Old behaviour/ABI can be used undefining macro
BOOST_INTERPROCESS_MSG_QUEUE_CIRCULAR_INDEX in boost/interprocess/detail/workaround.hpp

• Improved message_queue insertion time avoiding priority search for common cases (both array and circular buffer configurations).

• Implemented interproces_sharable_mutex and interproces_condition_any.

155

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/7795
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Improved offset_ptr performance.

• Added integer overflow checks.

Boost 1.51 Release

• Synchronous and asynchronous flushing for mapped_region::flush.

• Source & ABI breaking: Removed get_offset method from mapped_region as it has no practical utility and m_offset
member was not for anything else.

• Source & ABI breaking: Removed flush from managed_shared_memory. as it is unspecified according to POSIX: "The effect
of msync() on a shared memory object or a typed memory object is unspecified" .

• Fixed bug #7152,

Boost 1.50 Release

• Fixed bugs #3750, #6727, #6648,

• Shared memory in windows has again kernel persistence: kernel bootstamp and WMI has received some fixes and optimizations.
This causes incompatibility with Boost 1.48 and 1.49 but the user can comment #define BOOST_INTERPROCESS_HAS_KER-

NEL_BOOTTIME in the windows configuration part to get Boost 1.48 & Boost 1.49 behaviour.

Boost 1.49 Release

• Fixed bugs #6531, #6412, #6398, #6340, #6319, #6287, #6265, #6233, #6147, #6134, #6058, #6054, #5772, #5738, #5622, #5552,
#5518, #4655, #4452, #4383, #4297.

• Fixed timed functions in mutex implementations to fulfill POSIX requirements: Under no circumstance shall the function fail
with a timeout if the mutex can be locked immediately. The validity of the abs_timeout parameter need not be checked if the mutex
can be locked immediately.

Boost 1.48 Release

• Fixed bugs #2796, #4031, #4251, #4452, #4895, #5077, #5120, #5123, #5230, #5197, #5287, #5294, #5306, #5308, #5392, #5409,

• Added support to customize offset_ptr and allow creating custom managed segments that might be shared between 32 and 64 bit
processes.

• Shared memory in windows has again filesystem lifetime: kernel bootstamp and WMI use to get a reliable timestamp was causing
a lot of trouble.

Boost 1.46 Release

• Fixed bugs #4979, #4907, #4895

Boost 1.45 Release

• Fixed bugs #1080, #3284, #3439, #3448, #3582, #3682, #3829, #3846, #3914, #3947, #3950, #3951, #3985, #4010, #4417, #4019,
#4039, #4218, #4230, #4250, #4297, #4350, #4352, #4426, #4516, #4524, #4557, #4606, #4685, #4694.

• Added support for standard rvalue reference move semantics (tested on GCC 4.5 and VC10).

• Permissions can be detailed for interprocess named resources.

• mapped_region::flush initiates disk flushing but does not guarantee it's completed when returns, since it is not portable.

• FreeBSD and MacOS now use posix semaphores to implement named semaphores and mutex.

156

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://pubs.opengroup.org/onlinepubs/009695399/functions/msync.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/msync.html
https://svn.boost.org/trac/boost/ticket/7152
https://svn.boost.org/trac/boost/ticket/3750
https://svn.boost.org/trac/boost/ticket/6727
https://svn.boost.org/trac/boost/ticket/6648
https://svn.boost.org/trac/boost/ticket/6531
https://svn.boost.org/trac/boost/ticket/6412
https://svn.boost.org/trac/boost/ticket/6398
https://svn.boost.org/trac/boost/ticket/6340
https://svn.boost.org/trac/boost/ticket/6319
https://svn.boost.org/trac/boost/ticket/6287
https://svn.boost.org/trac/boost/ticket/6265
https://svn.boost.org/trac/boost/ticket/6233
https://svn.boost.org/trac/boost/ticket/6147
https://svn.boost.org/trac/boost/ticket/6134
https://svn.boost.org/trac/boost/ticket/6058
https://svn.boost.org/trac/boost/ticket/6054
https://svn.boost.org/trac/boost/ticket/5772
https://svn.boost.org/trac/boost/ticket/5738
https://svn.boost.org/trac/boost/ticket/5622
https://svn.boost.org/trac/boost/ticket/5552
https://svn.boost.org/trac/boost/ticket/5518
https://svn.boost.org/trac/boost/ticket/4655
https://svn.boost.org/trac/boost/ticket/4452
https://svn.boost.org/trac/boost/ticket/4383
https://svn.boost.org/trac/boost/ticket/4297
https://svn.boost.org/trac/boost/ticket/2796
https://svn.boost.org/trac/boost/ticket/4031
https://svn.boost.org/trac/boost/ticket/4251
https://svn.boost.org/trac/boost/ticket/4452
https://svn.boost.org/trac/boost/ticket/4895
https://svn.boost.org/trac/boost/ticket/5077
https://svn.boost.org/trac/boost/ticket/5120
https://svn.boost.org/trac/boost/ticket/5123
https://svn.boost.org/trac/boost/ticket/5230
https://svn.boost.org/trac/boost/ticket/5197
https://svn.boost.org/trac/boost/ticket/5287
https://svn.boost.org/trac/boost/ticket/5294
https://svn.boost.org/trac/boost/ticket/5306
https://svn.boost.org/trac/boost/ticket/5308
https://svn.boost.org/trac/boost/ticket/5392
https://svn.boost.org/trac/boost/ticket/5409
https://svn.boost.org/trac/boost/ticket/4979
https://svn.boost.org/trac/boost/ticket/4907
https://svn.boost.org/trac/boost/ticket/4895
https://svn.boost.org/trac/boost/ticket/1080
https://svn.boost.org/trac/boost/ticket/3284
https://svn.boost.org/trac/boost/ticket/3439
https://svn.boost.org/trac/boost/ticket/3448
https://svn.boost.org/trac/boost/ticket/3582
https://svn.boost.org/trac/boost/ticket/3682
https://svn.boost.org/trac/boost/ticket/3829
https://svn.boost.org/trac/boost/ticket/3846
https://svn.boost.org/trac/boost/ticket/3914
https://svn.boost.org/trac/boost/ticket/3947
https://svn.boost.org/trac/boost/ticket/3950
https://svn.boost.org/trac/boost/ticket/3951
https://svn.boost.org/trac/boost/ticket/3985
https://svn.boost.org/trac/boost/ticket/4010
https://svn.boost.org/trac/boost/ticket/4417
https://svn.boost.org/trac/boost/ticket/4019
https://svn.boost.org/trac/boost/ticket/4039
https://svn.boost.org/trac/boost/ticket/4218
https://svn.boost.org/trac/boost/ticket/4230
https://svn.boost.org/trac/boost/ticket/4250
https://svn.boost.org/trac/boost/ticket/4297
https://svn.boost.org/trac/boost/ticket/4350
https://svn.boost.org/trac/boost/ticket/4352
https://svn.boost.org/trac/boost/ticket/4426
https://svn.boost.org/trac/boost/ticket/4516
https://svn.boost.org/trac/boost/ticket/4524
https://svn.boost.org/trac/boost/ticket/4557
https://svn.boost.org/trac/boost/ticket/4606
https://svn.boost.org/trac/boost/ticket/4685
https://svn.boost.org/trac/boost/ticket/4694
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost 1.41 Release

• Support for POSIX shared memory in Mac OS.

• ABI breaking: Generic semaphore and named_semaphore now implemented more efficiently with atomic operations.

• More robust file opening in Windows platforms with active Anti-virus software.

Boost 1.40 Release

• Windows shared memory is created in Shared Documents folder so that it can be shared between services and processes

• Fixed bugs #2967, #2973, #2992, #3138, #3166, #3205.

Boost 1.39 Release

• Added experimental stable_vector container.

• shared_memory_object::remove has now POSIX unlink semantics and file_mapping::remove was added to obtain
POSIX unlink semantics with mapped files.

• Shared memory in windows has now kernel lifetime instead of filesystem lifetime: shared memory will disappear when the system
reboots.

• Updated move semantics.

• Fixed bugs #2722, #2729, #2766, #1390, #2589,

Boost 1.38 Release

• Updated documentation to show rvalue-references funcions instead of emulation functions.

• More non-copyable classes are now movable.

• Move-constructor and assignments now leave moved object in default-constructed state instead of just swapping contents.

• Several bugfixes (#2391, #2431, #1390, #2570, #2528.

Boost 1.37 Release

• Containers can be used now in recursive types.

• Added BOOST_INTERPROCESS_FORCE_GENERIC_EMULATION macro option to force the use of generic emulation code for process-
shared synchronization primitives instead of native POSIX functions.

• Added placement insertion members to containers

• boost::posix_time::pos_inf value is now handled portably for timed functions.

• Update some function parameters from iterator to const_iterator in containers to keep up with the draft of the next
standard.

• Documentation fixes.

Boost 1.36 Release

• Added anonymous shared memory for UNIX systems.

• Fixed erroneous void return types from flat_map::erase() functions.

157

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/2967
https://svn.boost.org/trac/boost/ticket/2973
https://svn.boost.org/trac/boost/ticket/2992
https://svn.boost.org/trac/boost/ticket/3138
https://svn.boost.org/trac/boost/ticket/3166
https://svn.boost.org/trac/boost/ticket/3205
https://svn.boost.org/trac/boost/ticket/2722
https://svn.boost.org/trac/boost/ticket/2729
https://svn.boost.org/trac/boost/ticket/2766
https://svn.boost.org/trac/boost/ticket/1390
https://svn.boost.org/trac/boost/ticket/2589
https://svn.boost.org/trac/boost/ticket/2391
https://svn.boost.org/trac/boost/ticket/2431
https://svn.boost.org/trac/boost/ticket/1390
https://svn.boost.org/trac/boost/ticket/2570
https://svn.boost.org/trac/boost/ticket/2528
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Fixed missing move semantics on managed memory classes.

• Added copy_on_write and open_read_only options for shared memory and mapped file managed classes.

• ABI breaking: Added to mapped_region the mode used to create it.

• Corrected instantiation errors in void allocators.

• shared_ptr is movable and supports aliasing.

Boost 1.35 Release

• Added auxiliary utilities to ease the definition and construction of shared_ptr, weak_ptr and unique_ptr. Added explanations
and examples of these smart pointers in the documentation.

• Optimized vector:

• 1) Now works with raw pointers as much as possible when using allocators defining pointer as an smart pointer. This increases
performance and improves compilation times.

• 2) A bit of metaprogramming to avoid using move_iterator when the type has trivial copy constructor or assignment and improve
performance.

• 3) Changed custom algorithms with standard ones to take advantage of optimized standard algorithms.

• 4) Removed unused code.

• ABI breaking: Containers don't derive from allocators, to avoid problems with allocators that might define virtual functions with
the same names as container member functions. That would convert container functions in virtual functions and might disallow
some of them if the returned type does not lead to a covariant return. Allocators are now stored as base classes of internal structs.

• Implemented named_mutex and named_semaphore with POSIX named semaphores in systems supporting that option.
named_condition has been accordingly changed to support interoperability with named_mutex.

• Reduced template bloat for node and adaptive allocators extracting node implementation to a class that only depends on the
memory algorithm, instead of the segment manager + node size + node number...

• Fixed bug in mapped_region in UNIX when mapping address was provided but the region was mapped in another address.

• Added aligned_allocate and allocate_many functions to managed memory segments.

• Improved documentation about managed memory segments.

• Boost.Interprocess containers are now documented in the Reference section.

• Correction of typos and documentation errors.

• Added get_instance_name, get_instance_length and get_instance_type functions to managed memory segments.

• Corrected suboptimal buffer expansion bug in rbtree_best_fit.

• Added iteration of named and unique objects in a segment manager.

• Fixed leak in vector.

• Added support for Solaris.

• Optimized segment_manager to avoid code bloat associated with templated instantiations.

• Fixed bug for UNIX: No slash ('/') was being added as the first character for shared memory names, leading to errors in some
UNIX systems.

158

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Fixed bug in VC-8.0: Broken function inlining in core offset_ptr functions.

• Code examples changed to use new BoostBook code import features.

• Added aligned memory allocation function to memory algorithms.

• Fixed bug in deque::clear() and deque::erase(), they were declared private.

• Fixed bug in deque::erase(). Thanks to Steve LoBasso.

• Fixed bug in atomic_dec32(). Thanks to Glenn Schrader.

• Improved (multi)map/(multi)set constructors taking iterators. Now those have linear time if the iterator range is already sorted.

• ABI breaking: (multi)map/(multi)set now reduce their node size. The color bit is embedded in the parent pointer. Now, the size
of a node is the size of 3 pointers in most systems. This optimization is activated for raw and offset_ptr pointers.

• (multi)map/(multi)set now reuse memory from old nodes in the assignment operator.

• ABI breaking: Implemented node-containers based on intrusive containers. This saves code size, since many instantiations share
the same algorithms.

• Corrected code to be compilable with Visual C++ 8.0.

• Added function to zero free memory in memory algorithms and the segment manager. This function is useful for security reasons
and to improve compression ratios for files created with managed_mapped_file.

• Added support for intrusive index types in managed memory segments. Intrusive indexes save extra memory allocations to allocate
the index since with just one allocation, we allocate room for the value, the name and the hook to insert the object in the index.

• Created new index type: iset_index. It's an index based on an intrusive set (rb-tree).

• Created new index type: iunordered_set_index. It's an index based on a pseudo-intrusive unordered set (hash table).

• ABI breaking: The intrusive index iset_index is now the default index type.

• Optimized vector to take advantage of boost::has_trivial_destructor. This optimization avoids calling destructors of
elements that have a trivial destructor.

• Optimized vector to take advantage of has_trivial_destructor_after_move trait. This optimization avoids calling destructors
of elements that have a trivial destructor if the element has been moved (which is the case of many movable types). This trick was
provided by Howard Hinnant.

• Added security check to avoid integer overflow bug in allocators and named construction functions.

• Added alignment checks to forward and backwards expansion functions.

• Fixed bug in atomic functions for PPC.

• Fixed race-condition error when creating and opening a managed segment.

• Added adaptive pools.

• Source breaking: Changed node allocators' template parameter order to make them easier to use.

• Added support for native windows shared memory.

• Added more tests.

• Corrected the presence of private functions in the reference section.

• Added function (deallocate_free_chunks()) to manually deallocate completely free chunks from node allocators.

159

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Implemented N1780 proposal to LWG issue 233: Insertion hints in associative containers in interprocess multiset and multimap
classes.

• Source breaking: A shared memory object is now used including shared_memory_object.hpp header instead of shared
memory.hpp.

• ABI breaking: Changed global mutex when initializing managed shared memory and memory mapped files. This change tries
to minimize deadlocks.

• Source breaking: Changed shared memory, memory mapped files and mapped region's open mode to a single mode_t type.

• Added extra WIN32_LEAN_AND_MEAN before including DateTime headers to avoid socket redefinition errors when using
Interprocess and Asio in windows.

• ABI breaking: mapped_region constructor no longer requires classes derived from memory_mappable, but classes must fulfill
the MemoryMappable concept.

• Added in-place reallocation capabilities to basic_string.

• ABI breaking: Reimplemented and optimized small string optimization. The narrow string class has zero byte overhead with an
internal 11 byte buffer in 32 systems!

• Added move semantics to containers. Improves performance when using containers of containers.

• ABI breaking: End nodes of node containers (list, slist, map/set) are now embedded in the containers instead of allocated using
the allocator. This allows no-throw move-constructors and improves performance.

• ABI breaking: slist and list containers now have constant-time size() function. The size of the container is added as a member.

Books and interesting links
Some useful references about the C++ programming language, C++ internals, shared memory, allocators and containers used to
design Boost.Interprocess.

Books

• Great book about multithreading, and POSIX: "Programming with Posix Threads", David R. Butenhof

• The UNIX inter-process bible: "UNIX Network Programming, Volume 2: Interprocess Communications", W. Richard
Stevens

• Current STL allocator issues: "Effective STL", Scott Meyers

• My C++ bible: "Thinking in C++, Volume 1 & 2", Bruce Eckel and Chuck Allison

• The book every C++ programmer should read: "Inside the C++ Object Model", Stanley B. Lippman

• A must-read: "ISO/IEC TR 18015: Technical Report on C++ Performance", ISO WG21-SC22 members.

Links

• A framework to put the STL in shared memory: "A C++ Standard Allocator for the Standard Template Library" .

• Instantiating C++ objects in shared memory: "Using objects in shared memory for C++ application" .

• A shared memory allocator and relative pointer: "Taming Shared Memory" .

160

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://allocator.sourceforge.net/
http://www.cs.ubc.ca/local/reading/proceedings/cascon94/htm/english/abs/hon.htm
http://home.earthlink.net/~joshwalker1/writing/SharedMemory.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Future improvements...
There are some Interprocess features that I would like to implement and some Boost.Interprocess code that can be much better.
Let's see some ideas:

Win32 synchronization is too basic

Win32 version of shared mutexes and shared conditions are based on "spin and wait" atomic instructions. This leads to poor perform-
ance and does not manage any issues like priority inversions. We would need very serious help from threading experts on this. And
I'm not sure that this can be achieved in user-level software. Posix based implementations use PTHREAD_PROCESS_SHARED
attribute to place mutexes in shared memory, so there are no such problems. I'm not aware of any implementation that simulates
PTHREAD_PROCESS_SHARED attribute for Win32. We should be able to construct these primitives in memory mapped files,
so that we can get filesystem persistence just like with POSIX primitives.

Use of wide character names on Boost.Interprocess basic resources

Currently Interprocess only allows char based names for basic named objects. However, several operating systems use wchar_t
names for resources (mapped files, for example). In the future Interprocess should try to present a portable narrow/wide char interface.
To do this, it would be useful to have a boost wstring <-> string conversion utilities to translate resource names (escaping needed
characters that can conflict with OS names) in a portable way. It would be interesting also the use of boost::filesystem paths to avoid
operating system specific issues.

Security attributes

Boost.Interprocess does not define security attributes for shared memory and synchronization objects. Standard C++ also ignores
security attributes with files so adding security attributes would require some serious work.

Future inter-process communications

Boost.Interprocess offers a process-shared message queue based on Boost.Interprocess primitives like mutexes and conditions. I
would want to develop more mechanisms, like stream-oriented named fifo so that we can use it with a iostream-interface wrapper
(we can imitate Unix pipes).

C++ needs more complex mechanisms and it would be nice to have a stream and datagram oriented PF_UNIX-like mechanism in
C++. And for very fast inter-process remote calls Solaris doors is an interesting alternative to implement for C++. But the work to
implement PF_UNIX-like sockets and doors would be huge (and it might be difficult in a user-level library). Any network expert
volunteer?

161

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Indexes

Class Index

A
accept_ownership_type

Struct accept_ownership_type, 417
adaptive_pool

Class template adaptive_pool, 309, 310
adaptive_pool: a process-shared adaptive pool

assert, 105
advise

Class mapped_region, 369, 370
allocate

Class template adaptive_pool, 309, 310
Class template allocator, 294, 295
Class template cached_adaptive_pool, 317, 319
Class template cached_node_allocator, 305, 306
Class template node_allocator, 297, 298
Class template private_adaptive_pool, 313, 314
Class template private_node_allocator, 301, 302
Class template rbtree_best_fit, 326, 326
Class template segment_manager_base, 376, 377, 377
Multiple allocation functions, 81, 81
Performance of raw memory allocations, 146, 146
Synchronization guarantees, 74
The segment manager, 143
Writing a new shared memory allocation algorithm, 148, 149, 149, 149

allocate_aligned
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 377, 377

allocate_individual
Class template adaptive_pool, 309, 311
Class template allocator, 294, 296
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 307
Class template node_allocator, 297, 299
Class template private_adaptive_pool, 313, 316
Class template private_node_allocator, 301, 304

allocate_many
Class template adaptive_pool, 309, 311, 311
Class template allocator, 294, 295, 295
Class template cached_adaptive_pool, 317, 319, 319
Class template cached_node_allocator, 305, 307, 307
Class template node_allocator, 297, 299, 299
Class template private_adaptive_pool, 313, 315, 315
Class template private_node_allocator, 301, 303, 303
Multiple allocation functions, 81, 81, 81

allocate_one
Class template adaptive_pool, 309, 311, 312
Class template allocator, 294, 296, 296
Class template cached_adaptive_pool, 317, 320, 320
Class template cached_node_allocator, 305, 307, 308
Class template node_allocator, 297, 299, 299
Class template private_adaptive_pool, 313, 316, 316
Class template private_node_allocator, 301, 303, 304

162

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Allocating aligned memory portions
assert, 79

allocator
Class template allocator, 294

allocator_holder
Class template iunordered_set_index, 330

allocator_type
Building custom indexes, 150
Struct template flat_map_index_aux, 280

all_memory_deallocated
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378

Anonymous condition example
buffer, 39
lock, 39, 39

Anonymous mutex example
lock, 35, 35
while, 35, 35

assert
adaptive_pool: a process-shared adaptive pool, 105
Allocating aligned memory portions, 79
cached_adaptive_pool: Avoiding synchronization overhead, 108
cached_node_allocator: caching nodes to avoid overhead, 102
Expand in place memory allocation, 83
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124
Growing managed segments, 77
Mapping Address Independent Pointer: offset_ptr, 29
Move semantics in Interprocess containers, 115
node_allocator: A process-shared segregated storage, 99
private_adaptive_pool: a private adaptive pool, 107
private_node_allocator: a private segregated storage, 100
Shared pointer and weak pointer, 135
Transferring Unlocked Locks, 56
Unique pointer, 139

atomic_func
Class template segment_manager, 334, 336
Executing an object function atomically, 76

B
bad_alloc

Class bad_alloc, 277, 277
base_type

Building custom indexes, 150
basic_bufferbuf

Class template basic_bufferbuf, 349
basic_bufferstream

Class template basic_bufferstream, 352
Formatting directly in your character buffer: bufferstream, 127

basic_ibufferstream
Class template basic_ibufferstream, 350

basic_managed_external_buffer
Class template basic_managed_external_buffer, 338, 338

basic_managed_heap_memory
Class template basic_managed_heap_memory, 346, 346

basic_managed_mapped_file
Class template basic_managed_mapped_file, 347

163

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_managed_shared_memory
Class template basic_managed_shared_memory, 340, 340

basic_managed_windows_shared_memory
Class template basic_managed_windows_shared_memory, 342, 342

basic_managed_xsi_shared_memory
Class template basic_managed_xsi_shared_memory, 344, 344

basic_obufferstream
Class template basic_obufferstream, 351

basic_vectorbuf
Class template basic_vectorbuf, 353

basic_vectorstream
Class template basic_vectorstream, 355
Formatting directly in your character vector: vectorstream, 124

Be Careful With Iostream Writing
flush, 62

begin
Class template null_index, 332, 332, 332

Boost unordered containers
name, 118

BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR
Header < boost/interprocess/offset_ptr.hpp >, 371
Macro BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR, 374, 374, 374

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF
Header < boost/interprocess/offset_ptr.hpp >, 371
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF, 374, 374, 374

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER
Header < boost/interprocess/offset_ptr.hpp >, 371
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER, 374, 374, 374

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR
Header < boost/interprocess/offset_ptr.hpp >, 371
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR, 373, 373, 373

buffer
Anonymous condition example, 39
Building custom indexes, 150
Class template basic_bufferbuf, 349, 349, 350
Class template basic_bufferstream, 352, 352, 353
Class template basic_ibufferstream, 350, 350, 351
Class template basic_obufferstream, 351, 351, 352
Formatting directly in your character buffer: bufferstream, 127, 127
Header < boost/interprocess/allocators/allocator.hpp >, 263
Introduction, 66, 66

bufferbuf
Header < boost/interprocess/streams/bufferstream.hpp >, 397

bufferstream
Formatting directly in your character buffer: bufferstream, 127
Header < boost/interprocess/streams/bufferstream.hpp >, 397

Building custom indexes
allocator_type, 150
base_type, 150
buffer, 150
char_type, 150
flat_map_index_aux, 150
index_aux, 150
index_t, 150
key_less, 150
key_type, 150, 150
mapped_type, 150, 150
name, 150

164

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

reserve, 150, 150
segment_manager, 150
segment_manager_base, 150, 150
shrink_to_fit, 150
value_type, 150

C
cached_adaptive_pool

Class template cached_adaptive_pool, 317, 318
cached_adaptive_pool: Avoiding synchronization overhead

assert, 108
set_max_cached_nodes, 109

cached_node_allocator
Class template cached_node_allocator, 305, 306

cached_node_allocator: caching nodes to avoid overhead
assert, 102
set_max_cached_nodes, 103

char_type
Building custom indexes, 150
Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

check_sanity
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378

Class bad_alloc
bad_alloc, 277, 277
interprocess_exception, 277
wait, 277

Class file_lock
file_lock, 401
lock, 401, 402
lock_sharable, 401, 403
swap, 401, 402
timed_lock, 401, 402
timed_lock_sharable, 401, 403
try_lock, 401, 402
try_lock_sharable, 401, 403
unlock, 401, 402
unlock_sharable, 401, 403

Class file_mapping
file_mapping, 278, 278
remove, 278, 279
swap, 278, 279

Class interprocess_condition
interprocess_condition, 404, 404
notify_all, 404, 404
notify_one, 404, 404
pred, 405
timed_wait, 404, 405, 405
wait, 404, 404, 404

Class interprocess_condition_any
interprocess_condition_any, 405, 405
notify_all, 405, 406
notify_one, 405, 406
pred, 406
timed_wait, 405, 406, 406

165

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

wait, 405, 406, 406
Class interprocess_exception

interprocess_exception, 276, 276
Class interprocess_mutex

interprocess_mutex, 407, 407
lock, 407, 407
timed_lock, 407, 408
try_lock, 407, 408
unlock, 407, 408

Class interprocess_recursive_mutex
interprocess_recursive_mutex, 408, 408
lock, 408, 409
timed_lock, 408, 409
try_lock, 408, 409
unlock, 408, 409

Class interprocess_semaphore
interprocess_semaphore, 410, 410
post, 410, 410
timed_wait, 410, 410
try_wait, 410, 410
wait, 410, 410

Class interprocess_sharable_mutex
interprocess_sharable_mutex, 411, 411
lock, 411, 412
lock_sharable, 411, 412
timed_lock, 411, 412
timed_lock_sharable, 411, 412
try_lock, 411, 412
try_lock_sharable, 411, 412
unlock, 411, 412
unlock_sharable, 411, 412

Class interprocess_upgradable_mutex
interprocess_upgradable_mutex, 413, 413
lock, 413, 414
lock_sharable, 413, 414
lock_upgradable, 413, 415
timed_lock, 413, 414
timed_lock_sharable, 413, 415
timed_lock_upgradable, 413, 415
timed_unlock_upgradable_and_lock, 413, 416
try_lock, 413, 414
try_lock_sharable, 413, 414
try_lock_upgradable, 413, 415
try_unlock_sharable_and_lock, 413, 416
try_unlock_sharable_and_lock_upgradable, 413, 416
try_unlock_upgradable_and_lock, 413, 416
unlock, 413, 414
unlock_and_lock_sharable, 413, 415
unlock_and_lock_upgradable, 413, 415
unlock_sharable, 413, 415
unlock_upgradable, 413, 415
unlock_upgradable_and_lock, 413, 416
unlock_upgradable_and_lock_sharable, 413, 415

Class lock_exception
interprocess_exception, 277
lock_exception, 277, 277

Class mapped_region
advise, 369, 370

166

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

flush, 369, 370
get_page_size, 369, 371
mapped_region, 369, 369, 369
shrink_by, 369, 370
swap, 369, 370

Class named_condition
named_condition, 420, 420, 420
notify_all, 420, 421
notify_one, 420, 421
pred, 421
remove, 420, 420, 421
timed_wait, 420, 421, 421
wait, 420, 421, 421

Class named_condition_any
named_condition_any, 422, 422, 422
notify_all, 422, 423
notify_one, 422, 423
pred, 423
remove, 422, 422, 423
timed_wait, 422, 423, 423
wait, 422, 423, 423

Class named_mutex
lock, 424, 425
named_mutex, 424, 424, 424
remove, 424, 424, 425
timed_lock, 424, 425
try_lock, 424, 425
unlock, 424, 425

Class named_recursive_mutex
lock, 426, 427
named_recursive_mutex, 426, 426, 426
remove, 426, 426, 427
timed_lock, 426, 427
try_lock, 426, 427
unlock, 426, 427

Class named_semaphore
named_semaphore, 428, 428, 428
post, 428, 429
remove, 428, 428, 429
timed_wait, 428, 429
try_wait, 428, 429
wait, 428, 429

Class named_sharable_mutex
lock, 430, 431
lock_sharable, 430, 431
named_sharable_mutex, 430, 430, 430
remove, 430, 430, 432
timed_lock, 430, 431
timed_lock_sharable, 430, 431
try_lock, 430, 431
try_lock_sharable, 430, 431
unlock, 430, 431
unlock_sharable, 430, 431

Class named_upgradable_mutex
lock, 433, 434
lock_sharable, 433, 434
lock_upgradable, 433, 435
named_upgradable_mutex, 433, 433, 433

167

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

remove, 433, 434, 436
timed_lock, 433, 434
timed_lock_sharable, 433, 434
timed_lock_upgradable, 433, 435
timed_unlock_upgradable_and_lock, 433, 436
try_lock, 433, 434
try_lock_sharable, 433, 434
try_lock_upgradable, 433, 435
try_unlock_sharable_and_lock, 433, 436
try_unlock_sharable_and_lock_upgradable, 433, 436
try_unlock_upgradable_and_lock, 433, 436
unlock, 433, 434
unlock_and_lock_sharable, 433, 435
unlock_and_lock_upgradable, 433, 435
unlock_sharable, 433, 435
unlock_upgradable, 433, 435
unlock_upgradable_and_lock, 433, 435
unlock_upgradable_and_lock_sharable, 433, 435

Class null_mutex
lock, 437, 437, 437
lock_sharable, 437, 438, 438
lock_upgradable, 437, 438, 438
null_mutex, 437, 437
timed_lock, 437, 438, 438
timed_lock_sharable, 437, 438, 438
timed_lock_upgradable, 437, 438, 438
timed_unlock_upgradable_and_lock, 437, 439, 439
try_lock, 437, 437, 437
try_lock_sharable, 437, 438, 438
try_lock_upgradable, 437, 438, 438
try_unlock_sharable_and_lock, 437, 439, 439
try_unlock_sharable_and_lock_upgradable, 437, 439, 439
try_unlock_upgradable_and_lock, 437, 439, 439
unlock, 437, 438, 438
unlock_and_lock_sharable, 437, 438, 438
unlock_and_lock_upgradable, 437, 438, 438
unlock_sharable, 437, 438, 438
unlock_upgradable, 437, 438, 438
unlock_upgradable_and_lock, 437, 439, 439
unlock_upgradable_and_lock_sharable, 437, 438, 438

Class permissions
permissions, 375
set_default, 375, 375
set_permissions, 375, 375
set_unrestricted, 375, 375

Class remove_file_on_destroy
remove_file_on_destroy, 280

Class remove_shared_memory_on_destroy
remove_shared_memory_on_destroy, 381

Class shared_memory_object
remove, 379, 380, 381
shared_memory_object, 379
swap, 379, 380
truncate, 379, 380

Class template adaptive_pool
adaptive_pool, 309, 310
allocate, 309, 310
allocate_individual, 309, 311

168

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

allocate_many, 309, 311, 311
allocate_one, 309, 311, 312
deallocate, 309, 310, 311, 311
deallocate_free_blocks, 309, 311
deallocate_individual, 309, 312
deallocate_many, 309, 311
deallocate_one, 309, 311, 311, 312, 312
swap, 309, 312

Class template allocator
allocate, 294, 295
allocate_individual, 294, 296
allocate_many, 294, 295, 295
allocate_one, 294, 296, 296
allocator, 294
construct, 294, 296
deallocate, 294, 295, 295, 295
deallocate_individual, 294, 296
deallocate_many, 294, 295
deallocate_one, 294, 296, 296, 296, 296
destroy, 294, 296
swap, 294, 296

Class template basic_bufferbuf
basic_bufferbuf, 349
buffer, 349, 349, 350

Class template basic_bufferstream
basic_bufferstream, 352
buffer, 352, 352, 353

Class template basic_ibufferstream
basic_ibufferstream, 350
buffer, 350, 350, 351

Class template basic_managed_external_buffer
basic_managed_external_buffer, 338, 338
grow, 338, 339
swap, 338, 339

Class template basic_managed_heap_memory
basic_managed_heap_memory, 346, 346
grow, 346, 346
swap, 346, 347

Class template basic_managed_mapped_file
basic_managed_mapped_file, 347
flush, 347, 348
grow, 347, 348
remove, 348
shrink_to_fit, 347, 349
swap, 347, 348

Class template basic_managed_shared_memory
basic_managed_shared_memory, 340, 340
grow, 340, 341
remove, 341
shrink_to_fit, 340, 341
swap, 340, 341

Class template basic_managed_windows_shared_memory
basic_managed_windows_shared_memory, 342, 342
swap, 342, 343

Class template basic_managed_xsi_shared_memory
basic_managed_xsi_shared_memory, 344, 344
remove, 344, 345, 345
swap, 344, 345

169

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template basic_obufferstream
basic_obufferstream, 351
buffer, 351, 351, 352

Class template basic_vectorbuf
basic_vectorbuf, 353
clear, 353, 354, 354
reserve, 353, 354
swap_vector, 353, 354

Class template basic_vectorstream
basic_vectorstream, 355
clear, 355, 356, 356
reserve, 355, 356, 356
swap_vector, 355, 355

Class template cached_adaptive_pool
allocate, 317, 319
allocate_individual, 317, 320
allocate_many, 317, 319, 319
allocate_one, 317, 320, 320
cached_adaptive_pool, 317, 318
construct, 317, 319
deallocate, 317, 319, 319, 320
deallocate_free_blocks, 317, 319
deallocate_individual, 317, 320
deallocate_many, 317, 320
deallocate_one, 317, 320, 320, 320, 320
destroy, 317, 319
set_max_cached_nodes, 317, 320
swap, 317, 320

Class template cached_node_allocator
allocate, 305, 306
allocate_individual, 305, 307
allocate_many, 305, 307, 307
allocate_one, 305, 307, 308
cached_node_allocator, 305, 306
construct, 305, 307
deallocate, 305, 306, 307, 307
deallocate_free_blocks, 305, 306
deallocate_individual, 305, 308
deallocate_many, 305, 307
deallocate_one, 305, 307, 307, 308, 308
destroy, 305, 307
set_max_cached_nodes, 305, 308
swap, 305, 308

Class template deleter
deleter, 382
pointer, 382

Class template enable_shared_from_this
enable_shared_from_this, 383

Class template flat_map_index
reserve, 328, 328
shrink_to_fit, 328, 328

Class template intrusive_ptr
get, 358, 359, 359, 359, 359, 359
intrusive_ptr, 358
intrusive_ptr_add_ref, 358, 358, 358, 359
intrusive_ptr_release, 358, 359
swap, 358, 360

Class template iset_index

170

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

find, 329, 329, 329
iset_index_aux, 329
reserve, 329, 329
shrink_to_fit, 329, 329

Class template iunordered_set_index
allocator_holder, 330
find, 330, 330, 330
insert_commit, 330, 331
iunordered_set_index_aux, 330
reserve, 330, 330
shrink_to_fit, 330, 330

Class template map_index
reserve, 331, 331
shrink_to_fit, 331, 331

Class template message_queue_t
get_num_msg, 365, 367
message_queue_t, 365
receive, 365, 366
remove, 365, 366, 367
send, 365, 366
timed_receive, 365, 367
timed_send, 365, 366
try_receive, 365, 366
try_send, 365, 366

Class template node_allocator
allocate, 297, 298
allocate_individual, 297, 299
allocate_many, 297, 299, 299
allocate_one, 297, 299, 299
construct, 297, 299
deallocate, 297, 298, 299, 299
deallocate_free_blocks, 297, 298
deallocate_individual, 297, 300
deallocate_many, 297, 299
deallocate_one, 297, 299, 299, 299, 300
destroy, 297, 299
node_allocator, 297, 298
swap, 297, 300

Class template null_index
begin, 332, 332, 332
end, 332, 332, 332, 332, 332, 332, 332
null_index, 332, 332

Class template offset_ptr
get, 321, 323
offset_ptr, 321, 321, 322, 322, 322, 322, 322, 322
pointer_to, 321, 324

Class template private_adaptive_pool
allocate, 313, 314
allocate_individual, 313, 316
allocate_many, 313, 315, 315
allocate_one, 313, 316, 316
construct, 313, 315
deallocate, 313, 315, 315, 315
deallocate_free_blocks, 313, 315
deallocate_individual, 313, 316
deallocate_many, 313, 315
deallocate_one, 313, 316, 316, 316, 316
destroy, 313, 315

171

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

private_adaptive_pool, 313, 314
swap, 313, 316

Class template private_node_allocator
allocate, 301, 302
allocate_individual, 301, 304
allocate_many, 301, 303, 303
allocate_one, 301, 303, 304
construct, 301, 303
deallocate, 301, 302, 303, 303
deallocate_free_blocks, 301, 302
deallocate_individual, 301, 304
deallocate_many, 301, 303
deallocate_one, 301, 303, 304, 304, 304
destroy, 301, 303
private_node_allocator, 301, 302
swap, 301, 304

Class template rbtree_best_fit
allocate, 326, 326
allocate_aligned, 326, 327
all_memory_deallocated, 326, 327
check_sanity, 326, 327
deallocate, 326, 327
get_min_size, 326, 328
grow, 326, 327
rbtree_best_fit, 326, 326
shrink_to_fit, 326, 327
zero_free_memory, 326, 327

Class template scoped_lock
lock, 284, 286, 286
lock_exception, 286, 286, 287, 287
release, 284, 287
scoped_lock, 284
swap, 284, 287
timed_lock, 284, 287, 287
timed_unlock_upgradable_and_lock, 286
try_lock, 284, 286, 286
try_unlock_sharable_and_lock, 286
try_unlock_upgradable_and_lock, 286
unlock, 284, 286, 287, 287
unlock_upgradable_and_lock, 285

Class template scoped_ptr
get, 356, 357, 357
release, 356, 356, 357
reset, 356, 357, 357
scoped_ptr, 356, 356, 356
swap, 356, 357

Class template segment_manager
atomic_func, 334, 336
construct, 334, 335, 336
construct_it, 334, 336, 336
destroy, 334, 336, 336
destroy_ptr, 334, 337
find, 334, 335, 335
find_or_construct, 334, 335, 336
find_or_construct_it, 334, 336, 336
get_allocator, 334, 337
get_deleter, 334, 337
get_instance_length, 334, 338

172

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

get_instance_name, 334, 338
get_instance_type, 334, 338
get_min_size, 334, 338
get_num_named_objects, 334, 337
get_num_unique_objects, 334, 337
reserve_named_objects, 334, 337
reserve_unique_objects, 334, 337
segment_manager, 334, 334, 335
segment_manager_base, 334
shrink_to_fit_indexes, 334, 337
try_atomic_func, 334, 336

Class template segment_manager_base
allocate, 376, 377, 377
allocate_aligned, 376, 377, 377
all_memory_deallocated, 376, 378
check_sanity, 376, 378
deallocate, 376, 378
get_min_size, 376, 378
grow, 376, 378
memory_algorithm, 376
mutex_family, 376
segment_manager_base, 376
segment_manager_base_type, 376
shrink_to_fit, 376, 378
void_pointer, 376
zero_free_memory, 376, 378

Class template sharable_lock
lock, 288, 290
lock_exception, 290, 290, 290, 290
lock_sharable, 290
release, 288, 290
sharable_lock, 288, 288, 288, 289, 289
swap, 288, 290
timed_lock, 288, 290
timed_lock_sharable, 290
try_lock, 288, 290
try_lock_sharable, 290
unlock, 288, 290
unlock_and_lock_sharable, 289
unlock_sharable, 289, 290
unlock_upgradable_and_lock_sharable, 289

Class template shared_ptr
get, 360, 361, 362
reset, 360, 362, 362, 362
shared_ptr, 360
swap, 360, 363

Class template simple_seq_fit
simple_seq_fit, 325

Class template std
char_type, 399
clear, 399, 400, 400
int_type, 399
off_type, 399
pos_type, 399
reserve, 399, 400, 400, 401, 401
swap_vector, 399, 400, 400
traits_type, 399
vector_type, 399

173

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template unique_ptr
deleter_type, 392
element_type, 392
get, 392, 393, 394, 395, 395, 395
get_deleter, 392, 393, 394, 395, 395, 395
pointer, 392
release, 392, 395
reset, 392, 395
swap, 392, 395
unique_ptr, 392, 392, 393, 393

Class template unordered_map_index
reserve, 333, 333
shrink_to_fit, 333, 333
unordered_map_index_aux, 333

Class template upgradable_lock
lock, 291, 293
lock_exception, 293, 293, 293, 293
lock_upgradable, 293
release, 291, 293
swap, 291, 294
timed_lock, 291, 293
timed_lock_upgradable, 293
try_lock, 291, 293
try_lock_upgradable, 293
try_unlock_sharable_and_lock_upgradable, 292
unlock, 291, 293
unlock_upgradable, 292, 293
upgradable_lock, 291, 291, 291, 292, 292

Class template weak_ptr
lock, 363, 364
reset, 363, 364
swap, 363, 365
weak_ptr, 363

Class windows_shared_memory
swap, 440, 441
windows_shared_memory, 440

Class xsi_key
xsi_key, 442

Class xsi_shared_memory
remove, 443, 444, 444
swap, 443, 444
xsi_shared_memory, 443

clear
Class template basic_vectorbuf, 353, 354, 354
Class template basic_vectorstream, 355, 356, 356
Class template std, 399, 400, 400

Common Managed Mapped Files
managed_mapped_file, 70
wmanaged_mapped_file, 70

Common Managed Shared Memory Classes
fixed_managed_shared_memory, 67
managed_shared_memory, 67
wfixed_managed_shared_memory, 67
wmanaged_shared_memory, 67

construct
Class template allocator, 294, 296
Class template cached_adaptive_pool, 317, 319
Class template cached_node_allocator, 305, 307

174

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template node_allocator, 297, 299
Class template private_adaptive_pool, 313, 315
Class template private_node_allocator, 301, 303
Class template segment_manager, 334, 335, 336

Constructing Managed Mapped Files
remove, 70

construct_it
Class template segment_manager, 334, 336, 336

Containers of containers
void_allocator, 117

create_only_t
Struct create_only_t, 272

Creating maps in shared memory
name, 8

Creating named shared memory objects
if, 4

Creating vectors in shared memory
if, 6

D
data

What's A Message Queue?, 62
deallocate

Class template adaptive_pool, 309, 310, 311, 311
Class template allocator, 294, 295, 295, 295
Class template cached_adaptive_pool, 317, 319, 319, 320
Class template cached_node_allocator, 305, 306, 307, 307
Class template node_allocator, 297, 298, 299, 299
Class template private_adaptive_pool, 313, 315, 315, 315
Class template private_node_allocator, 301, 302, 303, 303
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378
Performance of raw memory allocations, 146
Writing a new shared memory allocation algorithm, 148, 149

deallocate_free_blocks
Class template adaptive_pool, 309, 311
Class template cached_adaptive_pool, 317, 319
Class template cached_node_allocator, 305, 306
Class template node_allocator, 297, 298
Class template private_adaptive_pool, 313, 315
Class template private_node_allocator, 301, 302

deallocate_individual
Class template adaptive_pool, 309, 312
Class template allocator, 294, 296
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 308
Class template node_allocator, 297, 300
Class template private_adaptive_pool, 313, 316
Class template private_node_allocator, 301, 304

deallocate_many
Class template adaptive_pool, 309, 311
Class template allocator, 294, 295
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 307
Class template node_allocator, 297, 299
Class template private_adaptive_pool, 313, 315
Class template private_node_allocator, 301, 303

175

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Multiple allocation functions, 81
deallocate_one

Class template adaptive_pool, 309, 311, 311, 312, 312
Class template allocator, 294, 296, 296, 296, 296
Class template cached_adaptive_pool, 317, 320, 320, 320, 320
Class template cached_node_allocator, 305, 307, 307, 308, 308
Class template node_allocator, 297, 299, 299, 299, 300
Class template private_adaptive_pool, 313, 316, 316, 316, 316
Class template private_node_allocator, 301, 303, 304, 304, 304

defer_lock_type
Struct defer_lock_type, 417

deleter
Class template deleter, 382
Struct template managed_shared_ptr, 389

deleter_type
Class template unique_ptr, 392
Shared pointer and weak pointer, 135

Demotions (Upgradable Mutex only)
unlock_and_lock_sharable, 49
unlock_and_lock_upgradable, 49
unlock_upgradable_and_lock_sharable, 49

destroy
Class template allocator, 294, 296
Class template cached_adaptive_pool, 317, 319
Class template cached_node_allocator, 305, 307
Class template node_allocator, 297, 299
Class template private_adaptive_pool, 313, 315
Class template private_node_allocator, 301, 303
Class template segment_manager, 334, 336, 336

destroy_ptr
Class template segment_manager, 334, 337

Direct iostream formatting: vectorstream and bufferstream
while, 124

E
element_type

Class template unique_ptr, 392
enable_shared_from_this

Class template enable_shared_from_this, 383
end

Class template null_index, 332, 332, 332, 332, 332, 332, 332
Example: Serializing a database through the message queue

if, 93
while, 93

Exclusive Locking (Sharable & Upgradable Mutexes)
lock, 47
timed_lock, 47
try_lock, 47
unlock, 47

Executing an object function atomically
atomic_func, 76

Expand in place memory allocation
assert, 83

F
File Locking Operations

lock, 58

176

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

lock_sharable, 58
timed_lock, 58
timed_lock_sharable, 58
try_lock, 58
try_lock_sharable, 58
unlock, 58
unlock_sharable, 58

file_lock
Class file_lock, 401

file_mapping
Class file_mapping, 278, 278

find
Class template iset_index, 329, 329, 329
Class template iunordered_set_index, 330, 330, 330
Class template segment_manager, 334, 335, 335
Performance of named allocations, 146

find_or_construct
Class template segment_manager, 334, 335, 336

find_or_construct_it
Class template segment_manager, 334, 336, 336

fixed_managed_shared_memory
Common Managed Shared Memory Classes, 67
Header < boost/interprocess/interprocess_fwd.hpp >, 282

flat_map_index_aux
Building custom indexes, 150
Struct template flat_map_index_aux, 280

flush
Be Careful With Iostream Writing, 62
Class mapped_region, 369, 370
Class template basic_managed_mapped_file, 347, 348

for
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

Formatting directly in your character buffer: bufferstream
assert, 127
basic_bufferstream, 127
buffer, 127, 127
bufferstream, 127
char_type, 127
for, 127
int_type, 127
off_type, 127
pos_type, 127
traits_type, 127
wbufferstream, 127

Formatting directly in your character vector: vectorstream
assert, 124
basic_vectorstream, 124
char_type, 124
for, 124
int_type, 124
off_type, 124
pos_type, 124
reserve, 124
swap_vector, 124, 124
traits_type, 124
vector_type, 124

Function template make_managed_shared_ptr

177

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

make_managed_shared_ptr, 390, 390
Function template make_managed_unique_ptr

make_managed_unique_ptr, 396
Function template make_managed_weak_ptr

make_managed_weak_ptr, 397
Function template swap

swap, 387, 387
Function template to_raw_pointer

to_raw_pointer, 387, 388

G
get

Class template intrusive_ptr, 358, 359, 359, 359, 359, 359
Class template offset_ptr, 321, 323
Class template scoped_ptr, 356, 357, 357
Class template shared_ptr, 360, 361, 362
Class template unique_ptr, 392, 393, 394, 395, 395, 395

get_allocator
Class template segment_manager, 334, 337

get_deleter
Class template segment_manager, 334, 337
Class template unique_ptr, 392, 393, 394, 395, 395, 395

get_instance_length
Class template segment_manager, 334, 338

get_instance_name
Class template segment_manager, 334, 338

get_instance_type
Class template segment_manager, 334, 338

get_min_size
Class template rbtree_best_fit, 326, 328
Class template segment_manager, 334, 338
Class template segment_manager_base, 376, 378
Writing a new shared memory allocation algorithm, 148, 149

get_num_msg
Class template message_queue_t, 365, 367

get_num_named_objects
Class template segment_manager, 334, 337

get_num_unique_objects
Class template segment_manager, 334, 337

get_page_size
Class mapped_region, 369, 371

Global try_to_lock
try_lock, 418

grow
Class template basic_managed_external_buffer, 338, 339
Class template basic_managed_heap_memory, 346, 346
Class template basic_managed_mapped_file, 347, 348
Class template basic_managed_shared_memory, 340, 341
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378
Managed Heap Memory: Boost.Interprocess machinery in heap memory, 91
Writing a new shared memory allocation algorithm, 148, 149

Growing managed segments
assert, 77

H
Header < boost/interprocess/allocators/allocator.hpp >

178

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffer, 263
Header < boost/interprocess/errors.hpp >

native_error_t, 275
Header < boost/interprocess/interprocess_fwd.hpp >

fixed_managed_shared_memory, 282
managed_external_buffer, 282
managed_heap_memory, 282
managed_mapped_file, 282
managed_shared_memory, 282
managed_windows_shared_memory, 282
managed_xsi_shared_memory, 282
message_queue, 282
wfixed_managed_shared_memory, 282
wmanaged_external_buffer, 282
wmanaged_heap_memory, 282
wmanaged_mapped_file, 282
wmanaged_shared_memory, 282
wmanaged_windows_shared_memory, 282
wmanaged_xsi_shared_memory, 282

Header < boost/interprocess/offset_ptr.hpp >
BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR, 371
BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF, 371
BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER, 371
BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR, 371

Header < boost/interprocess/smart_ptr/intrusive_ptr.hpp >
swap, 383
to_raw_pointer, 383

Header < boost/interprocess/smart_ptr/scoped_ptr.hpp >
swap, 387
to_raw_pointer, 387

Header < boost/interprocess/smart_ptr/shared_ptr.hpp >
make_managed_shared_ptr, 388
swap, 388
to_raw_pointer, 388

Header < boost/interprocess/smart_ptr/unique_ptr.hpp >
make_managed_unique_ptr, 390
swap, 390

Header < boost/interprocess/smart_ptr/weak_ptr.hpp >
make_managed_weak_ptr, 396
swap, 396

Header < boost/interprocess/streams/bufferstream.hpp >
bufferbuf, 397
bufferstream, 397
ibufferstream, 397
obufferstream, 397
wbufferbuf, 397
wbufferstream, 397
wibufferstream, 397
wobufferstream, 397

I
ibufferstream

Header < boost/interprocess/streams/bufferstream.hpp >, 397
if

Creating named shared memory objects, 4
Creating vectors in shared memory, 6
Example: Serializing a database through the message queue, 93

179

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Intrusive pointer, 131
Managed External Buffer: Constructing all Boost.Interprocess objects in a user provided buffer, 88
Multiple allocation functions, 81
Opening managed shared memory and mapped files with Copy On Write or Read Only modes, 86
Scoped lock, 34
Scoped pointer, 133
Sharable Lock And Upgradable Lock, 51
Using shared memory as a pool of unnamed memory blocks, 3

index_aux
Building custom indexes, 150

index_t
Building custom indexes, 150
Struct template flat_map_index_aux, 280

insert_commit
Class template iunordered_set_index, 330, 331

interprocess_condition
Class interprocess_condition, 404, 404

interprocess_condition_any
Class interprocess_condition_any, 405, 405

interprocess_exception
Class bad_alloc, 277
Class interprocess_exception, 276, 276
Class lock_exception, 277

interprocess_mutex
Class interprocess_mutex, 407, 407

interprocess_recursive_mutex
Class interprocess_recursive_mutex, 408, 408

interprocess_semaphore
Class interprocess_semaphore, 410, 410

interprocess_sharable_mutex
Class interprocess_sharable_mutex, 411, 411

interprocess_upgradable_mutex
Class interprocess_upgradable_mutex, 413, 413

Introduction
buffer, 66, 66

Intrusive pointer
if, 131
intrusive_ptr_add_ref, 131, 131
intrusive_ptr_release, 131, 131
segment_manager, 131, 131

intrusive_ptr
Class template intrusive_ptr, 358

intrusive_ptr_add_ref
Class template intrusive_ptr, 358, 358, 358, 359
Intrusive pointer, 131, 131

intrusive_ptr_release
Class template intrusive_ptr, 358, 359
Intrusive pointer, 131, 131

int_type
Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

iset_index_aux
Class template iset_index, 329

iunordered_set_index_aux
Class template iunordered_set_index, 330

180

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

K
key_less

Building custom indexes, 150
Struct template flat_map_index_aux, 280

key_type
Building custom indexes, 150, 150
Struct template flat_map_index_aux, 280

L
lock

Anonymous condition example, 39, 39
Anonymous mutex example, 35, 35
Class file_lock, 401, 402
Class interprocess_mutex, 407, 407
Class interprocess_recursive_mutex, 408, 409
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_mutex, 424, 425
Class named_recursive_mutex, 426, 427
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 437, 437
Class template scoped_lock, 284, 286, 286
Class template sharable_lock, 288, 290
Class template upgradable_lock, 291, 293
Class template weak_ptr, 363, 364
Exclusive Locking (Sharable & Upgradable Mutexes), 47
File Locking Operations, 58
Mutex Operations, 32
Named mutex example, 38
Scoped lock, 34
Sharable Lock And Upgradable Lock, 51
What's a Sharable and an Upgradable Mutex?, 46

Lock Transfers Through Move Semantics
unlock_and_lock_sharable, 53

lock_exception
Class lock_exception, 277, 277
Class template scoped_lock, 286, 286, 287, 287
Class template sharable_lock, 290, 290, 290, 290
Class template upgradable_lock, 293, 293, 293, 293

lock_sharable
Class file_lock, 401, 403
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template sharable_lock, 290
File Locking Operations, 58
Sharable Lock And Upgradable Lock, 51, 51
Sharable Locking (Sharable & Upgradable Mutexes), 48

lock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template upgradable_lock, 293
Sharable Lock And Upgradable Lock, 51

181

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Upgradable Locking (Upgradable Mutex only), 48

M
Macro BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR

BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR, 374, 374, 374
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF, 374, 374, 374
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER, 374, 374, 374
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR, 373, 373, 373
make_managed_shared_ptr

Function template make_managed_shared_ptr, 390, 390
Header < boost/interprocess/smart_ptr/shared_ptr.hpp >, 388

make_managed_unique_ptr
Function template make_managed_unique_ptr, 396
Header < boost/interprocess/smart_ptr/unique_ptr.hpp >, 390

make_managed_weak_ptr
Function template make_managed_weak_ptr, 397
Header < boost/interprocess/smart_ptr/weak_ptr.hpp >, 396

Managed External Buffer: Constructing all Boost.Interprocess objects in a user provided buffer
if, 88
managed_external_buffer, 88
wmanaged_external_buffer, 88

Managed Heap Memory: Boost.Interprocess machinery in heap memory
grow, 91
managed_heap_memory, 91
wmanaged_heap_memory, 91

managed_external_buffer
Header < boost/interprocess/interprocess_fwd.hpp >, 282
Managed External Buffer: Constructing all Boost.Interprocess objects in a user provided buffer, 88

managed_heap_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282
Managed Heap Memory: Boost.Interprocess machinery in heap memory, 91

managed_mapped_file
Common Managed Mapped Files, 70
Header < boost/interprocess/interprocess_fwd.hpp >, 282

managed_shared_memory
Common Managed Shared Memory Classes, 67
Header < boost/interprocess/interprocess_fwd.hpp >, 282

managed_shared_ptr
Struct template managed_shared_ptr, 389

managed_unique_ptr
Struct template managed_unique_ptr, 396

managed_weak_ptr
Struct template managed_weak_ptr, 397

managed_windows_shared_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282

managed_xsi_shared_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282

mapped_region
Class mapped_region, 369, 369, 369

mapped_type
Building custom indexes, 150, 150
Struct template flat_map_index_aux, 280

Mapping Address Independent Pointer: offset_ptr
assert, 29

182

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

memory_algorithm
Class template segment_manager_base, 376

message_queue
Header < boost/interprocess/interprocess_fwd.hpp >, 282

message_queue_t
Class template message_queue_t, 365

Move semantics in Interprocess containers
assert, 115

multiallocation_chain
Multiple allocation functions, 81

Multiple allocation functions
allocate, 81, 81
allocate_many, 81, 81, 81
deallocate_many, 81
if, 81
multiallocation_chain, 81
while, 81

Mutex Operations
lock, 32
timed_lock, 32
try_lock, 32
unlock, 32

mutex_family
Class template segment_manager_base, 376
Struct mutex_family, 418
The memory algorithm, 142
Writing a new shared memory allocation algorithm, 148, 148, 148, 148, 149

mutex_type
Struct mutex_family, 418
Struct null_mutex_family, 419
Writing a new shared memory allocation algorithm, 148

N
name

Boost unordered containers, 118
Building custom indexes, 150
Creating maps in shared memory, 8

Named mutex example
lock, 38

named_condition
Class named_condition, 420, 420, 420

named_condition_any
Class named_condition_any, 422, 422, 422

named_mutex
Class named_mutex, 424, 424, 424

named_recursive_mutex
Class named_recursive_mutex, 426, 426, 426

named_semaphore
Class named_semaphore, 428, 428, 428

named_sharable_mutex
Class named_sharable_mutex, 430, 430, 430

named_upgradable_mutex
Class named_upgradable_mutex, 433, 433, 433

native_error_t
Header < boost/interprocess/errors.hpp >, 275

node_allocator
Class template node_allocator, 297, 298

183

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

node_allocator: A process-shared segregated storage
assert, 99

notify_all
Class interprocess_condition, 404, 404
Class interprocess_condition_any, 405, 406
Class named_condition, 420, 421
Class named_condition_any, 422, 423

notify_one
Class interprocess_condition, 404, 404
Class interprocess_condition_any, 405, 406
Class named_condition, 420, 421
Class named_condition_any, 422, 423

null_index
Class template null_index, 332, 332

null_mutex
Class null_mutex, 437, 437

null_mutex_family
Struct null_mutex_family, 419

O
obufferstream

Header < boost/interprocess/streams/bufferstream.hpp >, 397
offset_ptr

Class template offset_ptr, 321, 321, 322, 322, 322, 322, 322, 322
off_type

Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

Opening managed shared memory and mapped files with Copy On Write or Read Only modes
if, 86

open_copy_on_write_t
Struct open_copy_on_write_t, 273

open_only_t
Struct open_only_t, 272

open_or_create_t
Struct open_or_create_t, 273

open_read_only_t
Struct open_read_only_t, 272

open_read_private_t
Struct open_read_private_t, 273

P
Performance of named allocations

find, 146
Performance of raw memory allocations

allocate, 146, 146
deallocate, 146
reserve, 146

permissions
Class permissions, 375

pointer
Class template deleter, 382
Class template unique_ptr, 392
Scoped pointer, 133

pointer_to
Class template offset_ptr, 321, 324

post

184

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class interprocess_semaphore, 410, 410
Class named_semaphore, 428, 429

pos_type
Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

pred
Class interprocess_condition, 405
Class interprocess_condition_any, 406
Class named_condition, 421
Class named_condition_any, 423

private_adaptive_pool
Class template private_adaptive_pool, 313, 314

private_adaptive_pool: a private adaptive pool
assert, 107

private_node_allocator
Class template private_node_allocator, 301, 302

private_node_allocator: a private segregated storage
assert, 100

Promotions (Upgradable Mutex only)
timed_unlock_upgradable_and_lock, 50
try_unlock_sharable_and_lock, 50
try_unlock_sharable_and_lock_upgradable, 50
try_unlock_upgradable_and_lock, 50
unlock_upgradable_and_lock, 50

R
rbtree_best_fit

Class template rbtree_best_fit, 326, 326
receive

Class template message_queue_t, 365, 366
recursive_mutex_type

Struct mutex_family, 418
Struct null_mutex_family, 419
Writing a new shared memory allocation algorithm, 148

release
Class template scoped_lock, 284, 287
Class template scoped_ptr, 356, 356, 357
Class template sharable_lock, 288, 290
Class template unique_ptr, 392, 395
Class template upgradable_lock, 291, 293
Scoped pointer, 133, 133

remove
Class file_mapping, 278, 279
Class named_condition, 420, 420, 421
Class named_condition_any, 422, 422, 423
Class named_mutex, 424, 424, 425
Class named_recursive_mutex, 426, 426, 427
Class named_semaphore, 428, 428, 429
Class named_sharable_mutex, 430, 430, 432
Class named_upgradable_mutex, 433, 434, 436
Class shared_memory_object, 379, 380, 381
Class template basic_managed_mapped_file, 348
Class template basic_managed_shared_memory, 341
Class template basic_managed_xsi_shared_memory, 344, 345, 345
Class template message_queue_t, 365, 366, 367
Class xsi_shared_memory, 443, 444, 444

185

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Constructing Managed Mapped Files, 70
Removing shared memory, 17

remove_file_on_destroy
Class remove_file_on_destroy, 280

remove_shared_memory_on_destroy
Class remove_shared_memory_on_destroy, 381

Removing shared memory
remove, 17

reserve
Building custom indexes, 150, 150
Class template basic_vectorbuf, 353, 354
Class template basic_vectorstream, 355, 356, 356
Class template flat_map_index, 328, 328
Class template iset_index, 329, 329
Class template iunordered_set_index, 330, 330
Class template map_index, 331, 331
Class template std, 399, 400, 400, 401, 401
Class template unordered_map_index, 333, 333
Formatting directly in your character vector: vectorstream, 124
Performance of raw memory allocations, 146

reserve_named_objects
Class template segment_manager, 334, 337

reserve_unique_objects
Class template segment_manager, 334, 337

reset
Class template scoped_ptr, 356, 357, 357
Class template shared_ptr, 360, 362, 362, 362
Class template unique_ptr, 392, 395
Class template weak_ptr, 363, 364

S
Scoped lock

if, 34
lock, 34
unlock, 34

Scoped Lock and Sharable Lock With File Locking
unlock_and_lock_sharable, 60

Scoped pointer
if, 133
pointer, 133
release, 133, 133
segment_manager, 133, 133

scoped_lock
Class template scoped_lock, 284

scoped_ptr
Class template scoped_ptr, 356, 356, 356

segment_manager
Building custom indexes, 150
Class template segment_manager, 334, 334, 335
Intrusive pointer, 131, 131
Scoped pointer, 133, 133

segment_manager_base
Building custom indexes, 150, 150
Class template segment_manager, 334
Class template segment_manager_base, 376
Struct template flat_map_index_aux, 280

segment_manager_base_type

186

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template segment_manager_base, 376
send

Class template message_queue_t, 365, 366
set_default

Class permissions, 375, 375
set_max_cached_nodes

cached_adaptive_pool: Avoiding synchronization overhead, 109
cached_node_allocator: caching nodes to avoid overhead, 103
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 308

set_permissions
Class permissions, 375, 375

set_unrestricted
Class permissions, 375, 375

Sharable Lock And Upgradable Lock
if, 51
lock, 51
lock_sharable, 51, 51
lock_upgradable, 51
timed_lock_sharable, 51
timed_lock_upgradable, 51
try_lock_sharable, 51
try_lock_upgradable, 51
unlock_sharable, 51, 51
unlock_upgradable, 51

Sharable Locking (Sharable & Upgradable Mutexes)
lock_sharable, 48
timed_lock_sharable, 48
try_lock_sharable, 48
unlock_sharable, 48

sharable_lock
Class template sharable_lock, 288, 288, 288, 289, 289

Shared pointer and weak pointer
assert, 135
deleter_type, 135

shared_memory_object
Class shared_memory_object, 379

shared_ptr
Class template shared_ptr, 360

shrink_by
Class mapped_region, 369, 370

shrink_to_fit
Building custom indexes, 150
Class template basic_managed_mapped_file, 347, 349
Class template basic_managed_shared_memory, 340, 341
Class template flat_map_index, 328, 328
Class template iset_index, 329, 329
Class template iunordered_set_index, 330, 330
Class template map_index, 331, 331
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378
Class template unordered_map_index, 333, 333

shrink_to_fit_indexes
Class template segment_manager, 334, 337

Simple Lock Transfer
unlock, 53
unlock_sharable, 53

simple_seq_fit

187

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template simple_seq_fit, 325
Struct accept_ownership_type

accept_ownership_type, 417
Struct create_only_t

create_only_t, 272
Struct defer_lock_type

defer_lock_type, 417
Struct mutex_family

mutex_family, 418
mutex_type, 418
recursive_mutex_type, 418

Struct null_mutex_family
mutex_type, 419
null_mutex_family, 419
recursive_mutex_type, 419

Struct open_copy_on_write_t
open_copy_on_write_t, 273

Struct open_only_t
open_only_t, 272

Struct open_or_create_t
open_or_create_t, 273

Struct open_read_only_t
open_read_only_t, 272

Struct open_read_private_t
open_read_private_t, 273

Struct template flat_map_index_aux
allocator_type, 280
flat_map_index_aux, 280
index_t, 280
key_less, 280
key_type, 280
mapped_type, 280
segment_manager_base, 280
value_type, 280

Struct template managed_shared_ptr
deleter, 389
managed_shared_ptr, 389
type, 389
void_allocator, 389

Struct template managed_unique_ptr
managed_unique_ptr, 396
type, 396

Struct template managed_weak_ptr
managed_weak_ptr, 397
type, 397

Struct try_to_lock_type
try_to_lock_type, 417

swap
Class file_lock, 401, 402
Class file_mapping, 278, 279
Class mapped_region, 369, 370
Class shared_memory_object, 379, 380
Class template adaptive_pool, 309, 312
Class template allocator, 294, 296
Class template basic_managed_external_buffer, 338, 339
Class template basic_managed_heap_memory, 346, 347
Class template basic_managed_mapped_file, 347, 348
Class template basic_managed_shared_memory, 340, 341

188

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template basic_managed_windows_shared_memory, 342, 343
Class template basic_managed_xsi_shared_memory, 344, 345
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 308
Class template intrusive_ptr, 358, 360
Class template node_allocator, 297, 300
Class template private_adaptive_pool, 313, 316
Class template private_node_allocator, 301, 304
Class template scoped_lock, 284, 287
Class template scoped_ptr, 356, 357
Class template sharable_lock, 288, 290
Class template shared_ptr, 360, 363
Class template unique_ptr, 392, 395
Class template upgradable_lock, 291, 294
Class template weak_ptr, 363, 365
Class windows_shared_memory, 440, 441
Class xsi_shared_memory, 443, 444
Function template swap, 387, 387
Header < boost/interprocess/smart_ptr/intrusive_ptr.hpp >, 383
Header < boost/interprocess/smart_ptr/scoped_ptr.hpp >, 387
Header < boost/interprocess/smart_ptr/shared_ptr.hpp >, 388
Header < boost/interprocess/smart_ptr/unique_ptr.hpp >, 390
Header < boost/interprocess/smart_ptr/weak_ptr.hpp >, 396

swap_vector
Class template basic_vectorbuf, 353, 354
Class template basic_vectorstream, 355, 355
Class template std, 399, 400, 400
Formatting directly in your character vector: vectorstream, 124, 124

Synchronization guarantees
allocate, 74

T
The memory algorithm

mutex_family, 142
void_pointer, 142

The segment manager
allocate, 143

timed_lock
Class file_lock, 401, 402
Class interprocess_mutex, 407, 408
Class interprocess_recursive_mutex, 408, 409
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_mutex, 424, 425
Class named_recursive_mutex, 426, 427
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template scoped_lock, 284, 287, 287
Class template sharable_lock, 288, 290
Class template upgradable_lock, 291, 293
Exclusive Locking (Sharable & Upgradable Mutexes), 47
File Locking Operations, 58
Mutex Operations, 32

timed_lock_sharable
Class file_lock, 401, 403
Class interprocess_sharable_mutex, 411, 412

189

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class interprocess_upgradable_mutex, 413, 415
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template sharable_lock, 290
File Locking Operations, 58
Sharable Lock And Upgradable Lock, 51
Sharable Locking (Sharable & Upgradable Mutexes), 48

timed_lock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template upgradable_lock, 293
Sharable Lock And Upgradable Lock, 51
Upgradable Locking (Upgradable Mutex only), 48

timed_receive
Class template message_queue_t, 365, 367

timed_send
Class template message_queue_t, 365, 366

timed_unlock_upgradable_and_lock
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 436
Class null_mutex, 437, 439, 439
Class template scoped_lock, 286
Promotions (Upgradable Mutex only), 50
Transfers To Scoped Lock, 55

timed_wait
Class interprocess_condition, 404, 405, 405
Class interprocess_condition_any, 405, 406, 406
Class interprocess_semaphore, 410, 410
Class named_condition, 420, 421, 421
Class named_condition_any, 422, 423, 423
Class named_semaphore, 428, 429

to_raw_pointer
Function template to_raw_pointer, 387, 388
Header < boost/interprocess/smart_ptr/intrusive_ptr.hpp >, 383
Header < boost/interprocess/smart_ptr/scoped_ptr.hpp >, 387
Header < boost/interprocess/smart_ptr/shared_ptr.hpp >, 388

traits_type
Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

Transferring Unlocked Locks
assert, 56
unlock_and_lock_sharable, 56

Transfers To Scoped Lock
timed_unlock_upgradable_and_lock, 55
try_unlock_sharable_and_lock, 55
try_unlock_upgradable_and_lock, 55
unlock_upgradable_and_lock, 55

Transfers To Sharable Lock
unlock_and_lock_sharable, 56
unlock_upgradable_and_lock_sharable, 56

Transfers To Upgradable Lock
try_unlock_sharable_and_lock_upgradable, 55
unlock_and_lock_upgradable, 55

truncate
Class shared_memory_object, 379, 380

190

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

try_atomic_func
Class template segment_manager, 334, 336

try_lock
Class file_lock, 401, 402
Class interprocess_mutex, 407, 408
Class interprocess_recursive_mutex, 408, 409
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_mutex, 424, 425
Class named_recursive_mutex, 426, 427
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 437, 437
Class template scoped_lock, 284, 286, 286
Class template sharable_lock, 288, 290
Class template upgradable_lock, 291, 293
Exclusive Locking (Sharable & Upgradable Mutexes), 47
File Locking Operations, 58
Global try_to_lock, 418
Mutex Operations, 32

try_lock_sharable
Class file_lock, 401, 403
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template sharable_lock, 290
File Locking Operations, 58
Sharable Lock And Upgradable Lock, 51
Sharable Locking (Sharable & Upgradable Mutexes), 48

try_lock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template upgradable_lock, 293
Sharable Lock And Upgradable Lock, 51
Upgradable Locking (Upgradable Mutex only), 48

try_receive
Class template message_queue_t, 365, 366

try_send
Class template message_queue_t, 365, 366

try_to_lock_type
Struct try_to_lock_type, 417

try_unlock_sharable_and_lock
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 436
Class null_mutex, 437, 439, 439
Class template scoped_lock, 286
Promotions (Upgradable Mutex only), 50
Transfers To Scoped Lock, 55

try_unlock_sharable_and_lock_upgradable
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 436
Class null_mutex, 437, 439, 439
Class template upgradable_lock, 292
Promotions (Upgradable Mutex only), 50
Transfers To Upgradable Lock, 55

191

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

try_unlock_upgradable_and_lock
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 436
Class null_mutex, 437, 439, 439
Class template scoped_lock, 286
Promotions (Upgradable Mutex only), 50
Transfers To Scoped Lock, 55

try_wait
Class interprocess_semaphore, 410, 410
Class named_semaphore, 428, 429

type
Struct template managed_shared_ptr, 389
Struct template managed_unique_ptr, 396
Struct template managed_weak_ptr, 397

U
Unique pointer

assert, 139
unique_ptr

Class template unique_ptr, 392, 392, 393, 393
unlock

Class file_lock, 401, 402
Class interprocess_mutex, 407, 408
Class interprocess_recursive_mutex, 408, 409
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_mutex, 424, 425
Class named_recursive_mutex, 426, 427
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template scoped_lock, 284, 286, 287, 287
Class template sharable_lock, 288, 290
Class template upgradable_lock, 291, 293
Exclusive Locking (Sharable & Upgradable Mutexes), 47
File Locking Operations, 58
Mutex Operations, 32
Scoped lock, 34
Simple Lock Transfer, 53

unlock_and_lock_sharable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template sharable_lock, 289
Demotions (Upgradable Mutex only), 49
Lock Transfers Through Move Semantics, 53
Scoped Lock and Sharable Lock With File Locking, 60
Transferring Unlocked Locks, 56
Transfers To Sharable Lock, 56

unlock_and_lock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Demotions (Upgradable Mutex only), 49
Transfers To Upgradable Lock, 55

unlock_sharable
Class file_lock, 401, 403

192

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 415
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template sharable_lock, 289, 290
File Locking Operations, 58
Sharable Lock And Upgradable Lock, 51, 51
Sharable Locking (Sharable & Upgradable Mutexes), 48
Simple Lock Transfer, 53

unlock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template upgradable_lock, 292, 293
Sharable Lock And Upgradable Lock, 51
Upgradable Locking (Upgradable Mutex only), 48

unlock_upgradable_and_lock
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 439, 439
Class template scoped_lock, 285
Promotions (Upgradable Mutex only), 50
Transfers To Scoped Lock, 55

unlock_upgradable_and_lock_sharable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template sharable_lock, 289
Demotions (Upgradable Mutex only), 49
Transfers To Sharable Lock, 56

unordered_map_index_aux
Class template unordered_map_index, 333

Upgradable Locking (Upgradable Mutex only)
lock_upgradable, 48
timed_lock_upgradable, 48
try_lock_upgradable, 48
unlock_upgradable, 48

upgradable_lock
Class template upgradable_lock, 291, 291, 291, 292, 292

Using shared memory as a pool of unnamed memory blocks
if, 3

V
value_type

Building custom indexes, 150
Struct template flat_map_index_aux, 280

vector_type
Class template std, 399
Formatting directly in your character vector: vectorstream, 124

void_allocator
Containers of containers, 117
Struct template managed_shared_ptr, 389

void_pointer
Class template segment_manager_base, 376
The memory algorithm, 142
Writing a new shared memory allocation algorithm, 148, 148, 148, 148

193

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

W
wait

Class bad_alloc, 277
Class interprocess_condition, 404, 404, 404
Class interprocess_condition_any, 405, 406, 406
Class interprocess_semaphore, 410, 410
Class named_condition, 420, 421, 421
Class named_condition_any, 422, 423, 423
Class named_semaphore, 428, 429

wbufferbuf
Header < boost/interprocess/streams/bufferstream.hpp >, 397

wbufferstream
Formatting directly in your character buffer: bufferstream, 127
Header < boost/interprocess/streams/bufferstream.hpp >, 397

weak_ptr
Class template weak_ptr, 363

wfixed_managed_shared_memory
Common Managed Shared Memory Classes, 67
Header < boost/interprocess/interprocess_fwd.hpp >, 282

What's A Message Queue?
data, 62

What's a Sharable and an Upgradable Mutex?
lock, 46

while
Anonymous mutex example, 35, 35
Direct iostream formatting: vectorstream and bufferstream, 124
Example: Serializing a database through the message queue, 93
Multiple allocation functions, 81

wibufferstream
Header < boost/interprocess/streams/bufferstream.hpp >, 397

windows_shared_memory
Class windows_shared_memory, 440

wmanaged_external_buffer
Header < boost/interprocess/interprocess_fwd.hpp >, 282
Managed External Buffer: Constructing all Boost.Interprocess objects in a user provided buffer, 88

wmanaged_heap_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282
Managed Heap Memory: Boost.Interprocess machinery in heap memory, 91

wmanaged_mapped_file
Common Managed Mapped Files, 70
Header < boost/interprocess/interprocess_fwd.hpp >, 282

wmanaged_shared_memory
Common Managed Shared Memory Classes, 67
Header < boost/interprocess/interprocess_fwd.hpp >, 282

wmanaged_windows_shared_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282

wmanaged_xsi_shared_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282

wobufferstream
Header < boost/interprocess/streams/bufferstream.hpp >, 397

Writing a new shared memory allocation algorithm
allocate, 148, 149, 149, 149
deallocate, 148, 149
get_min_size, 148, 149
grow, 148, 149
mutex_family, 148, 148, 148, 148, 149
mutex_type, 148

194

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

recursive_mutex_type, 148
void_pointer, 148, 148, 148, 148

X
xsi_key

Class xsi_key, 442
xsi_shared_memory

Class xsi_shared_memory, 443

Z
zero_free_memory

Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378

Typedef Index

A
accept_ownership_type

Struct accept_ownership_type, 417
adaptive_pool

Class template adaptive_pool, 309, 310
adaptive_pool: a process-shared adaptive pool

assert, 105
advise

Class mapped_region, 369, 370
allocate

Class template adaptive_pool, 309, 310
Class template allocator, 294, 295
Class template cached_adaptive_pool, 317, 319
Class template cached_node_allocator, 305, 306
Class template node_allocator, 297, 298
Class template private_adaptive_pool, 313, 314
Class template private_node_allocator, 301, 302
Class template rbtree_best_fit, 326, 326
Class template segment_manager_base, 376, 377, 377
Multiple allocation functions, 81, 81
Performance of raw memory allocations, 146, 146
Synchronization guarantees, 74
The segment manager, 143
Writing a new shared memory allocation algorithm, 148, 149, 149, 149

allocate_aligned
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 377, 377

allocate_individual
Class template adaptive_pool, 309, 311
Class template allocator, 294, 296
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 307
Class template node_allocator, 297, 299
Class template private_adaptive_pool, 313, 316
Class template private_node_allocator, 301, 304

allocate_many
Class template adaptive_pool, 309, 311, 311
Class template allocator, 294, 295, 295
Class template cached_adaptive_pool, 317, 319, 319
Class template cached_node_allocator, 305, 307, 307

195

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template node_allocator, 297, 299, 299
Class template private_adaptive_pool, 313, 315, 315
Class template private_node_allocator, 301, 303, 303
Multiple allocation functions, 81, 81, 81

allocate_one
Class template adaptive_pool, 309, 311, 312
Class template allocator, 294, 296, 296
Class template cached_adaptive_pool, 317, 320, 320
Class template cached_node_allocator, 305, 307, 308
Class template node_allocator, 297, 299, 299
Class template private_adaptive_pool, 313, 316, 316
Class template private_node_allocator, 301, 303, 304

Allocating aligned memory portions
assert, 79

allocator
Class template allocator, 294

allocator_holder
Class template iunordered_set_index, 330

allocator_type
Building custom indexes, 150
Struct template flat_map_index_aux, 280

all_memory_deallocated
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378

Anonymous condition example
buffer, 39
lock, 39, 39

Anonymous mutex example
lock, 35, 35
while, 35, 35

assert
adaptive_pool: a process-shared adaptive pool, 105
Allocating aligned memory portions, 79
cached_adaptive_pool: Avoiding synchronization overhead, 108
cached_node_allocator: caching nodes to avoid overhead, 102
Expand in place memory allocation, 83
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124
Growing managed segments, 77
Mapping Address Independent Pointer: offset_ptr, 29
Move semantics in Interprocess containers, 115
node_allocator: A process-shared segregated storage, 99
private_adaptive_pool: a private adaptive pool, 107
private_node_allocator: a private segregated storage, 100
Shared pointer and weak pointer, 135
Transferring Unlocked Locks, 56
Unique pointer, 139

atomic_func
Class template segment_manager, 334, 336
Executing an object function atomically, 76

B
bad_alloc

Class bad_alloc, 277, 277
base_type

Building custom indexes, 150
basic_bufferbuf

196

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template basic_bufferbuf, 349
basic_bufferstream

Class template basic_bufferstream, 352
Formatting directly in your character buffer: bufferstream, 127

basic_ibufferstream
Class template basic_ibufferstream, 350

basic_managed_external_buffer
Class template basic_managed_external_buffer, 338, 338

basic_managed_heap_memory
Class template basic_managed_heap_memory, 346, 346

basic_managed_mapped_file
Class template basic_managed_mapped_file, 347

basic_managed_shared_memory
Class template basic_managed_shared_memory, 340, 340

basic_managed_windows_shared_memory
Class template basic_managed_windows_shared_memory, 342, 342

basic_managed_xsi_shared_memory
Class template basic_managed_xsi_shared_memory, 344, 344

basic_obufferstream
Class template basic_obufferstream, 351

basic_vectorbuf
Class template basic_vectorbuf, 353

basic_vectorstream
Class template basic_vectorstream, 355
Formatting directly in your character vector: vectorstream, 124

Be Careful With Iostream Writing
flush, 62

begin
Class template null_index, 332, 332, 332

Boost unordered containers
name, 118

BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR
Header < boost/interprocess/offset_ptr.hpp >, 371
Macro BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR, 374, 374, 374

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF
Header < boost/interprocess/offset_ptr.hpp >, 371
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF, 374, 374, 374

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER
Header < boost/interprocess/offset_ptr.hpp >, 371
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER, 374, 374, 374

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR
Header < boost/interprocess/offset_ptr.hpp >, 371
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR, 373, 373, 373

buffer
Anonymous condition example, 39
Building custom indexes, 150
Class template basic_bufferbuf, 349, 349, 350
Class template basic_bufferstream, 352, 352, 353
Class template basic_ibufferstream, 350, 350, 351
Class template basic_obufferstream, 351, 351, 352
Formatting directly in your character buffer: bufferstream, 127, 127
Header < boost/interprocess/allocators/allocator.hpp >, 263
Introduction, 66, 66

bufferbuf
Header < boost/interprocess/streams/bufferstream.hpp >, 397

bufferstream
Formatting directly in your character buffer: bufferstream, 127
Header < boost/interprocess/streams/bufferstream.hpp >, 397

197

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Building custom indexes
allocator_type, 150
base_type, 150
buffer, 150
char_type, 150
flat_map_index_aux, 150
index_aux, 150
index_t, 150
key_less, 150
key_type, 150, 150
mapped_type, 150, 150
name, 150
reserve, 150, 150
segment_manager, 150
segment_manager_base, 150, 150
shrink_to_fit, 150
value_type, 150

C
cached_adaptive_pool

Class template cached_adaptive_pool, 317, 318
cached_adaptive_pool: Avoiding synchronization overhead

assert, 108
set_max_cached_nodes, 109

cached_node_allocator
Class template cached_node_allocator, 305, 306

cached_node_allocator: caching nodes to avoid overhead
assert, 102
set_max_cached_nodes, 103

char_type
Building custom indexes, 150
Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

check_sanity
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378

Class bad_alloc
bad_alloc, 277, 277
interprocess_exception, 277
wait, 277

Class file_lock
file_lock, 401
lock, 401, 402
lock_sharable, 401, 403
swap, 401, 402
timed_lock, 401, 402
timed_lock_sharable, 401, 403
try_lock, 401, 402
try_lock_sharable, 401, 403
unlock, 401, 402
unlock_sharable, 401, 403

Class file_mapping
file_mapping, 278, 278
remove, 278, 279
swap, 278, 279

Class interprocess_condition

198

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

interprocess_condition, 404, 404
notify_all, 404, 404
notify_one, 404, 404
pred, 405
timed_wait, 404, 405, 405
wait, 404, 404, 404

Class interprocess_condition_any
interprocess_condition_any, 405, 405
notify_all, 405, 406
notify_one, 405, 406
pred, 406
timed_wait, 405, 406, 406
wait, 405, 406, 406

Class interprocess_exception
interprocess_exception, 276, 276

Class interprocess_mutex
interprocess_mutex, 407, 407
lock, 407, 407
timed_lock, 407, 408
try_lock, 407, 408
unlock, 407, 408

Class interprocess_recursive_mutex
interprocess_recursive_mutex, 408, 408
lock, 408, 409
timed_lock, 408, 409
try_lock, 408, 409
unlock, 408, 409

Class interprocess_semaphore
interprocess_semaphore, 410, 410
post, 410, 410
timed_wait, 410, 410
try_wait, 410, 410
wait, 410, 410

Class interprocess_sharable_mutex
interprocess_sharable_mutex, 411, 411
lock, 411, 412
lock_sharable, 411, 412
timed_lock, 411, 412
timed_lock_sharable, 411, 412
try_lock, 411, 412
try_lock_sharable, 411, 412
unlock, 411, 412
unlock_sharable, 411, 412

Class interprocess_upgradable_mutex
interprocess_upgradable_mutex, 413, 413
lock, 413, 414
lock_sharable, 413, 414
lock_upgradable, 413, 415
timed_lock, 413, 414
timed_lock_sharable, 413, 415
timed_lock_upgradable, 413, 415
timed_unlock_upgradable_and_lock, 413, 416
try_lock, 413, 414
try_lock_sharable, 413, 414
try_lock_upgradable, 413, 415
try_unlock_sharable_and_lock, 413, 416
try_unlock_sharable_and_lock_upgradable, 413, 416
try_unlock_upgradable_and_lock, 413, 416

199

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unlock, 413, 414
unlock_and_lock_sharable, 413, 415
unlock_and_lock_upgradable, 413, 415
unlock_sharable, 413, 415
unlock_upgradable, 413, 415
unlock_upgradable_and_lock, 413, 416
unlock_upgradable_and_lock_sharable, 413, 415

Class lock_exception
interprocess_exception, 277
lock_exception, 277, 277

Class mapped_region
advise, 369, 370
flush, 369, 370
get_page_size, 369, 371
mapped_region, 369, 369, 369
shrink_by, 369, 370
swap, 369, 370

Class named_condition
named_condition, 420, 420, 420
notify_all, 420, 421
notify_one, 420, 421
pred, 421
remove, 420, 420, 421
timed_wait, 420, 421, 421
wait, 420, 421, 421

Class named_condition_any
named_condition_any, 422, 422, 422
notify_all, 422, 423
notify_one, 422, 423
pred, 423
remove, 422, 422, 423
timed_wait, 422, 423, 423
wait, 422, 423, 423

Class named_mutex
lock, 424, 425
named_mutex, 424, 424, 424
remove, 424, 424, 425
timed_lock, 424, 425
try_lock, 424, 425
unlock, 424, 425

Class named_recursive_mutex
lock, 426, 427
named_recursive_mutex, 426, 426, 426
remove, 426, 426, 427
timed_lock, 426, 427
try_lock, 426, 427
unlock, 426, 427

Class named_semaphore
named_semaphore, 428, 428, 428
post, 428, 429
remove, 428, 428, 429
timed_wait, 428, 429
try_wait, 428, 429
wait, 428, 429

Class named_sharable_mutex
lock, 430, 431
lock_sharable, 430, 431
named_sharable_mutex, 430, 430, 430

200

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

remove, 430, 430, 432
timed_lock, 430, 431
timed_lock_sharable, 430, 431
try_lock, 430, 431
try_lock_sharable, 430, 431
unlock, 430, 431
unlock_sharable, 430, 431

Class named_upgradable_mutex
lock, 433, 434
lock_sharable, 433, 434
lock_upgradable, 433, 435
named_upgradable_mutex, 433, 433, 433
remove, 433, 434, 436
timed_lock, 433, 434
timed_lock_sharable, 433, 434
timed_lock_upgradable, 433, 435
timed_unlock_upgradable_and_lock, 433, 436
try_lock, 433, 434
try_lock_sharable, 433, 434
try_lock_upgradable, 433, 435
try_unlock_sharable_and_lock, 433, 436
try_unlock_sharable_and_lock_upgradable, 433, 436
try_unlock_upgradable_and_lock, 433, 436
unlock, 433, 434
unlock_and_lock_sharable, 433, 435
unlock_and_lock_upgradable, 433, 435
unlock_sharable, 433, 435
unlock_upgradable, 433, 435
unlock_upgradable_and_lock, 433, 435
unlock_upgradable_and_lock_sharable, 433, 435

Class null_mutex
lock, 437, 437, 437
lock_sharable, 437, 438, 438
lock_upgradable, 437, 438, 438
null_mutex, 437, 437
timed_lock, 437, 438, 438
timed_lock_sharable, 437, 438, 438
timed_lock_upgradable, 437, 438, 438
timed_unlock_upgradable_and_lock, 437, 439, 439
try_lock, 437, 437, 437
try_lock_sharable, 437, 438, 438
try_lock_upgradable, 437, 438, 438
try_unlock_sharable_and_lock, 437, 439, 439
try_unlock_sharable_and_lock_upgradable, 437, 439, 439
try_unlock_upgradable_and_lock, 437, 439, 439
unlock, 437, 438, 438
unlock_and_lock_sharable, 437, 438, 438
unlock_and_lock_upgradable, 437, 438, 438
unlock_sharable, 437, 438, 438
unlock_upgradable, 437, 438, 438
unlock_upgradable_and_lock, 437, 439, 439
unlock_upgradable_and_lock_sharable, 437, 438, 438

Class permissions
permissions, 375
set_default, 375, 375
set_permissions, 375, 375
set_unrestricted, 375, 375

Class remove_file_on_destroy

201

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

remove_file_on_destroy, 280
Class remove_shared_memory_on_destroy

remove_shared_memory_on_destroy, 381
Class shared_memory_object

remove, 379, 380, 381
shared_memory_object, 379
swap, 379, 380
truncate, 379, 380

Class template adaptive_pool
adaptive_pool, 309, 310
allocate, 309, 310
allocate_individual, 309, 311
allocate_many, 309, 311, 311
allocate_one, 309, 311, 312
deallocate, 309, 310, 311, 311
deallocate_free_blocks, 309, 311
deallocate_individual, 309, 312
deallocate_many, 309, 311
deallocate_one, 309, 311, 311, 312, 312
swap, 309, 312

Class template allocator
allocate, 294, 295
allocate_individual, 294, 296
allocate_many, 294, 295, 295
allocate_one, 294, 296, 296
allocator, 294
construct, 294, 296
deallocate, 294, 295, 295, 295
deallocate_individual, 294, 296
deallocate_many, 294, 295
deallocate_one, 294, 296, 296, 296, 296
destroy, 294, 296
swap, 294, 296

Class template basic_bufferbuf
basic_bufferbuf, 349
buffer, 349, 349, 350

Class template basic_bufferstream
basic_bufferstream, 352
buffer, 352, 352, 353

Class template basic_ibufferstream
basic_ibufferstream, 350
buffer, 350, 350, 351

Class template basic_managed_external_buffer
basic_managed_external_buffer, 338, 338
grow, 338, 339
swap, 338, 339

Class template basic_managed_heap_memory
basic_managed_heap_memory, 346, 346
grow, 346, 346
swap, 346, 347

Class template basic_managed_mapped_file
basic_managed_mapped_file, 347
flush, 347, 348
grow, 347, 348
remove, 348
shrink_to_fit, 347, 349
swap, 347, 348

Class template basic_managed_shared_memory

202

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_managed_shared_memory, 340, 340
grow, 340, 341
remove, 341
shrink_to_fit, 340, 341
swap, 340, 341

Class template basic_managed_windows_shared_memory
basic_managed_windows_shared_memory, 342, 342
swap, 342, 343

Class template basic_managed_xsi_shared_memory
basic_managed_xsi_shared_memory, 344, 344
remove, 344, 345, 345
swap, 344, 345

Class template basic_obufferstream
basic_obufferstream, 351
buffer, 351, 351, 352

Class template basic_vectorbuf
basic_vectorbuf, 353
clear, 353, 354, 354
reserve, 353, 354
swap_vector, 353, 354

Class template basic_vectorstream
basic_vectorstream, 355
clear, 355, 356, 356
reserve, 355, 356, 356
swap_vector, 355, 355

Class template cached_adaptive_pool
allocate, 317, 319
allocate_individual, 317, 320
allocate_many, 317, 319, 319
allocate_one, 317, 320, 320
cached_adaptive_pool, 317, 318
construct, 317, 319
deallocate, 317, 319, 319, 320
deallocate_free_blocks, 317, 319
deallocate_individual, 317, 320
deallocate_many, 317, 320
deallocate_one, 317, 320, 320, 320, 320
destroy, 317, 319
set_max_cached_nodes, 317, 320
swap, 317, 320

Class template cached_node_allocator
allocate, 305, 306
allocate_individual, 305, 307
allocate_many, 305, 307, 307
allocate_one, 305, 307, 308
cached_node_allocator, 305, 306
construct, 305, 307
deallocate, 305, 306, 307, 307
deallocate_free_blocks, 305, 306
deallocate_individual, 305, 308
deallocate_many, 305, 307
deallocate_one, 305, 307, 307, 308, 308
destroy, 305, 307
set_max_cached_nodes, 305, 308
swap, 305, 308

Class template deleter
deleter, 382
pointer, 382

203

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template enable_shared_from_this
enable_shared_from_this, 383

Class template flat_map_index
reserve, 328, 328
shrink_to_fit, 328, 328

Class template intrusive_ptr
get, 358, 359, 359, 359, 359, 359
intrusive_ptr, 358
intrusive_ptr_add_ref, 358, 358, 358, 359
intrusive_ptr_release, 358, 359
swap, 358, 360

Class template iset_index
find, 329, 329, 329
iset_index_aux, 329
reserve, 329, 329
shrink_to_fit, 329, 329

Class template iunordered_set_index
allocator_holder, 330
find, 330, 330, 330
insert_commit, 330, 331
iunordered_set_index_aux, 330
reserve, 330, 330
shrink_to_fit, 330, 330

Class template map_index
reserve, 331, 331
shrink_to_fit, 331, 331

Class template message_queue_t
get_num_msg, 365, 367
message_queue_t, 365
receive, 365, 366
remove, 365, 366, 367
send, 365, 366
timed_receive, 365, 367
timed_send, 365, 366
try_receive, 365, 366
try_send, 365, 366

Class template node_allocator
allocate, 297, 298
allocate_individual, 297, 299
allocate_many, 297, 299, 299
allocate_one, 297, 299, 299
construct, 297, 299
deallocate, 297, 298, 299, 299
deallocate_free_blocks, 297, 298
deallocate_individual, 297, 300
deallocate_many, 297, 299
deallocate_one, 297, 299, 299, 299, 300
destroy, 297, 299
node_allocator, 297, 298
swap, 297, 300

Class template null_index
begin, 332, 332, 332
end, 332, 332, 332, 332, 332, 332, 332
null_index, 332, 332

Class template offset_ptr
get, 321, 323
offset_ptr, 321, 321, 322, 322, 322, 322, 322, 322
pointer_to, 321, 324

204

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template private_adaptive_pool
allocate, 313, 314
allocate_individual, 313, 316
allocate_many, 313, 315, 315
allocate_one, 313, 316, 316
construct, 313, 315
deallocate, 313, 315, 315, 315
deallocate_free_blocks, 313, 315
deallocate_individual, 313, 316
deallocate_many, 313, 315
deallocate_one, 313, 316, 316, 316, 316
destroy, 313, 315
private_adaptive_pool, 313, 314
swap, 313, 316

Class template private_node_allocator
allocate, 301, 302
allocate_individual, 301, 304
allocate_many, 301, 303, 303
allocate_one, 301, 303, 304
construct, 301, 303
deallocate, 301, 302, 303, 303
deallocate_free_blocks, 301, 302
deallocate_individual, 301, 304
deallocate_many, 301, 303
deallocate_one, 301, 303, 304, 304, 304
destroy, 301, 303
private_node_allocator, 301, 302
swap, 301, 304

Class template rbtree_best_fit
allocate, 326, 326
allocate_aligned, 326, 327
all_memory_deallocated, 326, 327
check_sanity, 326, 327
deallocate, 326, 327
get_min_size, 326, 328
grow, 326, 327
rbtree_best_fit, 326, 326
shrink_to_fit, 326, 327
zero_free_memory, 326, 327

Class template scoped_lock
lock, 284, 286, 286
lock_exception, 286, 286, 287, 287
release, 284, 287
scoped_lock, 284
swap, 284, 287
timed_lock, 284, 287, 287
timed_unlock_upgradable_and_lock, 286
try_lock, 284, 286, 286
try_unlock_sharable_and_lock, 286
try_unlock_upgradable_and_lock, 286
unlock, 284, 286, 287, 287
unlock_upgradable_and_lock, 285

Class template scoped_ptr
get, 356, 357, 357
release, 356, 356, 357
reset, 356, 357, 357
scoped_ptr, 356, 356, 356
swap, 356, 357

205

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template segment_manager
atomic_func, 334, 336
construct, 334, 335, 336
construct_it, 334, 336, 336
destroy, 334, 336, 336
destroy_ptr, 334, 337
find, 334, 335, 335
find_or_construct, 334, 335, 336
find_or_construct_it, 334, 336, 336
get_allocator, 334, 337
get_deleter, 334, 337
get_instance_length, 334, 338
get_instance_name, 334, 338
get_instance_type, 334, 338
get_min_size, 334, 338
get_num_named_objects, 334, 337
get_num_unique_objects, 334, 337
reserve_named_objects, 334, 337
reserve_unique_objects, 334, 337
segment_manager, 334, 334, 335
segment_manager_base, 334
shrink_to_fit_indexes, 334, 337
try_atomic_func, 334, 336

Class template segment_manager_base
allocate, 376, 377, 377
allocate_aligned, 376, 377, 377
all_memory_deallocated, 376, 378
check_sanity, 376, 378
deallocate, 376, 378
get_min_size, 376, 378
grow, 376, 378
memory_algorithm, 376
mutex_family, 376
segment_manager_base, 376
segment_manager_base_type, 376
shrink_to_fit, 376, 378
void_pointer, 376
zero_free_memory, 376, 378

Class template sharable_lock
lock, 288, 290
lock_exception, 290, 290, 290, 290
lock_sharable, 290
release, 288, 290
sharable_lock, 288, 288, 288, 289, 289
swap, 288, 290
timed_lock, 288, 290
timed_lock_sharable, 290
try_lock, 288, 290
try_lock_sharable, 290
unlock, 288, 290
unlock_and_lock_sharable, 289
unlock_sharable, 289, 290
unlock_upgradable_and_lock_sharable, 289

Class template shared_ptr
get, 360, 361, 362
reset, 360, 362, 362, 362
shared_ptr, 360
swap, 360, 363

206

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template simple_seq_fit
simple_seq_fit, 325

Class template std
char_type, 399
clear, 399, 400, 400
int_type, 399
off_type, 399
pos_type, 399
reserve, 399, 400, 400, 401, 401
swap_vector, 399, 400, 400
traits_type, 399
vector_type, 399

Class template unique_ptr
deleter_type, 392
element_type, 392
get, 392, 393, 394, 395, 395, 395
get_deleter, 392, 393, 394, 395, 395, 395
pointer, 392
release, 392, 395
reset, 392, 395
swap, 392, 395
unique_ptr, 392, 392, 393, 393

Class template unordered_map_index
reserve, 333, 333
shrink_to_fit, 333, 333
unordered_map_index_aux, 333

Class template upgradable_lock
lock, 291, 293
lock_exception, 293, 293, 293, 293
lock_upgradable, 293
release, 291, 293
swap, 291, 294
timed_lock, 291, 293
timed_lock_upgradable, 293
try_lock, 291, 293
try_lock_upgradable, 293
try_unlock_sharable_and_lock_upgradable, 292
unlock, 291, 293
unlock_upgradable, 292, 293
upgradable_lock, 291, 291, 291, 292, 292

Class template weak_ptr
lock, 363, 364
reset, 363, 364
swap, 363, 365
weak_ptr, 363

Class windows_shared_memory
swap, 440, 441
windows_shared_memory, 440

Class xsi_key
xsi_key, 442

Class xsi_shared_memory
remove, 443, 444, 444
swap, 443, 444
xsi_shared_memory, 443

clear
Class template basic_vectorbuf, 353, 354, 354
Class template basic_vectorstream, 355, 356, 356
Class template std, 399, 400, 400

207

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Common Managed Mapped Files
managed_mapped_file, 70
wmanaged_mapped_file, 70

Common Managed Shared Memory Classes
fixed_managed_shared_memory, 67
managed_shared_memory, 67
wfixed_managed_shared_memory, 67
wmanaged_shared_memory, 67

construct
Class template allocator, 294, 296
Class template cached_adaptive_pool, 317, 319
Class template cached_node_allocator, 305, 307
Class template node_allocator, 297, 299
Class template private_adaptive_pool, 313, 315
Class template private_node_allocator, 301, 303
Class template segment_manager, 334, 335, 336

Constructing Managed Mapped Files
remove, 70

construct_it
Class template segment_manager, 334, 336, 336

Containers of containers
void_allocator, 117

create_only_t
Struct create_only_t, 272

Creating maps in shared memory
name, 8

Creating named shared memory objects
if, 4

Creating vectors in shared memory
if, 6

D
data

What's A Message Queue?, 62
deallocate

Class template adaptive_pool, 309, 310, 311, 311
Class template allocator, 294, 295, 295, 295
Class template cached_adaptive_pool, 317, 319, 319, 320
Class template cached_node_allocator, 305, 306, 307, 307
Class template node_allocator, 297, 298, 299, 299
Class template private_adaptive_pool, 313, 315, 315, 315
Class template private_node_allocator, 301, 302, 303, 303
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378
Performance of raw memory allocations, 146
Writing a new shared memory allocation algorithm, 148, 149

deallocate_free_blocks
Class template adaptive_pool, 309, 311
Class template cached_adaptive_pool, 317, 319
Class template cached_node_allocator, 305, 306
Class template node_allocator, 297, 298
Class template private_adaptive_pool, 313, 315
Class template private_node_allocator, 301, 302

deallocate_individual
Class template adaptive_pool, 309, 312
Class template allocator, 294, 296
Class template cached_adaptive_pool, 317, 320

208

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template cached_node_allocator, 305, 308
Class template node_allocator, 297, 300
Class template private_adaptive_pool, 313, 316
Class template private_node_allocator, 301, 304

deallocate_many
Class template adaptive_pool, 309, 311
Class template allocator, 294, 295
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 307
Class template node_allocator, 297, 299
Class template private_adaptive_pool, 313, 315
Class template private_node_allocator, 301, 303
Multiple allocation functions, 81

deallocate_one
Class template adaptive_pool, 309, 311, 311, 312, 312
Class template allocator, 294, 296, 296, 296, 296
Class template cached_adaptive_pool, 317, 320, 320, 320, 320
Class template cached_node_allocator, 305, 307, 307, 308, 308
Class template node_allocator, 297, 299, 299, 299, 300
Class template private_adaptive_pool, 313, 316, 316, 316, 316
Class template private_node_allocator, 301, 303, 304, 304, 304

defer_lock_type
Struct defer_lock_type, 417

deleter
Class template deleter, 382
Struct template managed_shared_ptr, 389

deleter_type
Class template unique_ptr, 392
Shared pointer and weak pointer, 135

Demotions (Upgradable Mutex only)
unlock_and_lock_sharable, 49
unlock_and_lock_upgradable, 49
unlock_upgradable_and_lock_sharable, 49

destroy
Class template allocator, 294, 296
Class template cached_adaptive_pool, 317, 319
Class template cached_node_allocator, 305, 307
Class template node_allocator, 297, 299
Class template private_adaptive_pool, 313, 315
Class template private_node_allocator, 301, 303
Class template segment_manager, 334, 336, 336

destroy_ptr
Class template segment_manager, 334, 337

Direct iostream formatting: vectorstream and bufferstream
while, 124

E
element_type

Class template unique_ptr, 392
enable_shared_from_this

Class template enable_shared_from_this, 383
end

Class template null_index, 332, 332, 332, 332, 332, 332, 332
Example: Serializing a database through the message queue

if, 93
while, 93

Exclusive Locking (Sharable & Upgradable Mutexes)

209

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

lock, 47
timed_lock, 47
try_lock, 47
unlock, 47

Executing an object function atomically
atomic_func, 76

Expand in place memory allocation
assert, 83

F
File Locking Operations

lock, 58
lock_sharable, 58
timed_lock, 58
timed_lock_sharable, 58
try_lock, 58
try_lock_sharable, 58
unlock, 58
unlock_sharable, 58

file_lock
Class file_lock, 401

file_mapping
Class file_mapping, 278, 278

find
Class template iset_index, 329, 329, 329
Class template iunordered_set_index, 330, 330, 330
Class template segment_manager, 334, 335, 335
Performance of named allocations, 146

find_or_construct
Class template segment_manager, 334, 335, 336

find_or_construct_it
Class template segment_manager, 334, 336, 336

fixed_managed_shared_memory
Common Managed Shared Memory Classes, 67
Header < boost/interprocess/interprocess_fwd.hpp >, 282

flat_map_index_aux
Building custom indexes, 150
Struct template flat_map_index_aux, 280

flush
Be Careful With Iostream Writing, 62
Class mapped_region, 369, 370
Class template basic_managed_mapped_file, 347, 348

for
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

Formatting directly in your character buffer: bufferstream
assert, 127
basic_bufferstream, 127
buffer, 127, 127
bufferstream, 127
char_type, 127
for, 127
int_type, 127
off_type, 127
pos_type, 127
traits_type, 127
wbufferstream, 127

210

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Formatting directly in your character vector: vectorstream
assert, 124
basic_vectorstream, 124
char_type, 124
for, 124
int_type, 124
off_type, 124
pos_type, 124
reserve, 124
swap_vector, 124, 124
traits_type, 124
vector_type, 124

Function template make_managed_shared_ptr
make_managed_shared_ptr, 390, 390

Function template make_managed_unique_ptr
make_managed_unique_ptr, 396

Function template make_managed_weak_ptr
make_managed_weak_ptr, 397

Function template swap
swap, 387, 387

Function template to_raw_pointer
to_raw_pointer, 387, 388

G
get

Class template intrusive_ptr, 358, 359, 359, 359, 359, 359
Class template offset_ptr, 321, 323
Class template scoped_ptr, 356, 357, 357
Class template shared_ptr, 360, 361, 362
Class template unique_ptr, 392, 393, 394, 395, 395, 395

get_allocator
Class template segment_manager, 334, 337

get_deleter
Class template segment_manager, 334, 337
Class template unique_ptr, 392, 393, 394, 395, 395, 395

get_instance_length
Class template segment_manager, 334, 338

get_instance_name
Class template segment_manager, 334, 338

get_instance_type
Class template segment_manager, 334, 338

get_min_size
Class template rbtree_best_fit, 326, 328
Class template segment_manager, 334, 338
Class template segment_manager_base, 376, 378
Writing a new shared memory allocation algorithm, 148, 149

get_num_msg
Class template message_queue_t, 365, 367

get_num_named_objects
Class template segment_manager, 334, 337

get_num_unique_objects
Class template segment_manager, 334, 337

get_page_size
Class mapped_region, 369, 371

Global try_to_lock
try_lock, 418

grow

211

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template basic_managed_external_buffer, 338, 339
Class template basic_managed_heap_memory, 346, 346
Class template basic_managed_mapped_file, 347, 348
Class template basic_managed_shared_memory, 340, 341
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378
Managed Heap Memory: Boost.Interprocess machinery in heap memory, 91
Writing a new shared memory allocation algorithm, 148, 149

Growing managed segments
assert, 77

H
Header < boost/interprocess/allocators/allocator.hpp >

buffer, 263
Header < boost/interprocess/errors.hpp >

native_error_t, 275
Header < boost/interprocess/interprocess_fwd.hpp >

fixed_managed_shared_memory, 282
managed_external_buffer, 282
managed_heap_memory, 282
managed_mapped_file, 282
managed_shared_memory, 282
managed_windows_shared_memory, 282
managed_xsi_shared_memory, 282
message_queue, 282
wfixed_managed_shared_memory, 282
wmanaged_external_buffer, 282
wmanaged_heap_memory, 282
wmanaged_mapped_file, 282
wmanaged_shared_memory, 282
wmanaged_windows_shared_memory, 282
wmanaged_xsi_shared_memory, 282

Header < boost/interprocess/offset_ptr.hpp >
BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR, 371
BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF, 371
BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER, 371
BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR, 371

Header < boost/interprocess/smart_ptr/intrusive_ptr.hpp >
swap, 383
to_raw_pointer, 383

Header < boost/interprocess/smart_ptr/scoped_ptr.hpp >
swap, 387
to_raw_pointer, 387

Header < boost/interprocess/smart_ptr/shared_ptr.hpp >
make_managed_shared_ptr, 388
swap, 388
to_raw_pointer, 388

Header < boost/interprocess/smart_ptr/unique_ptr.hpp >
make_managed_unique_ptr, 390
swap, 390

Header < boost/interprocess/smart_ptr/weak_ptr.hpp >
make_managed_weak_ptr, 396
swap, 396

Header < boost/interprocess/streams/bufferstream.hpp >
bufferbuf, 397
bufferstream, 397
ibufferstream, 397

212

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

obufferstream, 397
wbufferbuf, 397
wbufferstream, 397
wibufferstream, 397
wobufferstream, 397

I
ibufferstream

Header < boost/interprocess/streams/bufferstream.hpp >, 397
if

Creating named shared memory objects, 4
Creating vectors in shared memory, 6
Example: Serializing a database through the message queue, 93
Intrusive pointer, 131
Managed External Buffer: Constructing all Boost.Interprocess objects in a user provided buffer, 88
Multiple allocation functions, 81
Opening managed shared memory and mapped files with Copy On Write or Read Only modes, 86
Scoped lock, 34
Scoped pointer, 133
Sharable Lock And Upgradable Lock, 51
Using shared memory as a pool of unnamed memory blocks, 3

index_aux
Building custom indexes, 150

index_t
Building custom indexes, 150
Struct template flat_map_index_aux, 280

insert_commit
Class template iunordered_set_index, 330, 331

interprocess_condition
Class interprocess_condition, 404, 404

interprocess_condition_any
Class interprocess_condition_any, 405, 405

interprocess_exception
Class bad_alloc, 277
Class interprocess_exception, 276, 276
Class lock_exception, 277

interprocess_mutex
Class interprocess_mutex, 407, 407

interprocess_recursive_mutex
Class interprocess_recursive_mutex, 408, 408

interprocess_semaphore
Class interprocess_semaphore, 410, 410

interprocess_sharable_mutex
Class interprocess_sharable_mutex, 411, 411

interprocess_upgradable_mutex
Class interprocess_upgradable_mutex, 413, 413

Introduction
buffer, 66, 66

Intrusive pointer
if, 131
intrusive_ptr_add_ref, 131, 131
intrusive_ptr_release, 131, 131
segment_manager, 131, 131

intrusive_ptr
Class template intrusive_ptr, 358

intrusive_ptr_add_ref
Class template intrusive_ptr, 358, 358, 358, 359

213

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Intrusive pointer, 131, 131
intrusive_ptr_release

Class template intrusive_ptr, 358, 359
Intrusive pointer, 131, 131

int_type
Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

iset_index_aux
Class template iset_index, 329

iunordered_set_index_aux
Class template iunordered_set_index, 330

K
key_less

Building custom indexes, 150
Struct template flat_map_index_aux, 280

key_type
Building custom indexes, 150, 150
Struct template flat_map_index_aux, 280

L
lock

Anonymous condition example, 39, 39
Anonymous mutex example, 35, 35
Class file_lock, 401, 402
Class interprocess_mutex, 407, 407
Class interprocess_recursive_mutex, 408, 409
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_mutex, 424, 425
Class named_recursive_mutex, 426, 427
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 437, 437
Class template scoped_lock, 284, 286, 286
Class template sharable_lock, 288, 290
Class template upgradable_lock, 291, 293
Class template weak_ptr, 363, 364
Exclusive Locking (Sharable & Upgradable Mutexes), 47
File Locking Operations, 58
Mutex Operations, 32
Named mutex example, 38
Scoped lock, 34
Sharable Lock And Upgradable Lock, 51
What's a Sharable and an Upgradable Mutex?, 46

Lock Transfers Through Move Semantics
unlock_and_lock_sharable, 53

lock_exception
Class lock_exception, 277, 277
Class template scoped_lock, 286, 286, 287, 287
Class template sharable_lock, 290, 290, 290, 290
Class template upgradable_lock, 293, 293, 293, 293

lock_sharable
Class file_lock, 401, 403
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414

214

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template sharable_lock, 290
File Locking Operations, 58
Sharable Lock And Upgradable Lock, 51, 51
Sharable Locking (Sharable & Upgradable Mutexes), 48

lock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template upgradable_lock, 293
Sharable Lock And Upgradable Lock, 51
Upgradable Locking (Upgradable Mutex only), 48

M
Macro BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR

BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR, 374, 374, 374
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF, 374, 374, 374
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER, 374, 374, 374
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR, 373, 373, 373
make_managed_shared_ptr

Function template make_managed_shared_ptr, 390, 390
Header < boost/interprocess/smart_ptr/shared_ptr.hpp >, 388

make_managed_unique_ptr
Function template make_managed_unique_ptr, 396
Header < boost/interprocess/smart_ptr/unique_ptr.hpp >, 390

make_managed_weak_ptr
Function template make_managed_weak_ptr, 397
Header < boost/interprocess/smart_ptr/weak_ptr.hpp >, 396

Managed External Buffer: Constructing all Boost.Interprocess objects in a user provided buffer
if, 88
managed_external_buffer, 88
wmanaged_external_buffer, 88

Managed Heap Memory: Boost.Interprocess machinery in heap memory
grow, 91
managed_heap_memory, 91
wmanaged_heap_memory, 91

managed_external_buffer
Header < boost/interprocess/interprocess_fwd.hpp >, 282
Managed External Buffer: Constructing all Boost.Interprocess objects in a user provided buffer, 88

managed_heap_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282
Managed Heap Memory: Boost.Interprocess machinery in heap memory, 91

managed_mapped_file
Common Managed Mapped Files, 70
Header < boost/interprocess/interprocess_fwd.hpp >, 282

managed_shared_memory
Common Managed Shared Memory Classes, 67
Header < boost/interprocess/interprocess_fwd.hpp >, 282

managed_shared_ptr
Struct template managed_shared_ptr, 389

managed_unique_ptr
Struct template managed_unique_ptr, 396

215

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

managed_weak_ptr
Struct template managed_weak_ptr, 397

managed_windows_shared_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282

managed_xsi_shared_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282

mapped_region
Class mapped_region, 369, 369, 369

mapped_type
Building custom indexes, 150, 150
Struct template flat_map_index_aux, 280

Mapping Address Independent Pointer: offset_ptr
assert, 29

memory_algorithm
Class template segment_manager_base, 376

message_queue
Header < boost/interprocess/interprocess_fwd.hpp >, 282

message_queue_t
Class template message_queue_t, 365

Move semantics in Interprocess containers
assert, 115

multiallocation_chain
Multiple allocation functions, 81

Multiple allocation functions
allocate, 81, 81
allocate_many, 81, 81, 81
deallocate_many, 81
if, 81
multiallocation_chain, 81
while, 81

Mutex Operations
lock, 32
timed_lock, 32
try_lock, 32
unlock, 32

mutex_family
Class template segment_manager_base, 376
Struct mutex_family, 418
The memory algorithm, 142
Writing a new shared memory allocation algorithm, 148, 148, 148, 148, 149

mutex_type
Struct mutex_family, 418
Struct null_mutex_family, 419
Writing a new shared memory allocation algorithm, 148

N
name

Boost unordered containers, 118
Building custom indexes, 150
Creating maps in shared memory, 8

Named mutex example
lock, 38

named_condition
Class named_condition, 420, 420, 420

named_condition_any
Class named_condition_any, 422, 422, 422

named_mutex

216

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class named_mutex, 424, 424, 424
named_recursive_mutex

Class named_recursive_mutex, 426, 426, 426
named_semaphore

Class named_semaphore, 428, 428, 428
named_sharable_mutex

Class named_sharable_mutex, 430, 430, 430
named_upgradable_mutex

Class named_upgradable_mutex, 433, 433, 433
native_error_t

Header < boost/interprocess/errors.hpp >, 275
node_allocator

Class template node_allocator, 297, 298
node_allocator: A process-shared segregated storage

assert, 99
notify_all

Class interprocess_condition, 404, 404
Class interprocess_condition_any, 405, 406
Class named_condition, 420, 421
Class named_condition_any, 422, 423

notify_one
Class interprocess_condition, 404, 404
Class interprocess_condition_any, 405, 406
Class named_condition, 420, 421
Class named_condition_any, 422, 423

null_index
Class template null_index, 332, 332

null_mutex
Class null_mutex, 437, 437

null_mutex_family
Struct null_mutex_family, 419

O
obufferstream

Header < boost/interprocess/streams/bufferstream.hpp >, 397
offset_ptr

Class template offset_ptr, 321, 321, 322, 322, 322, 322, 322, 322
off_type

Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

Opening managed shared memory and mapped files with Copy On Write or Read Only modes
if, 86

open_copy_on_write_t
Struct open_copy_on_write_t, 273

open_only_t
Struct open_only_t, 272

open_or_create_t
Struct open_or_create_t, 273

open_read_only_t
Struct open_read_only_t, 272

open_read_private_t
Struct open_read_private_t, 273

P
Performance of named allocations

find, 146

217

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Performance of raw memory allocations
allocate, 146, 146
deallocate, 146
reserve, 146

permissions
Class permissions, 375

pointer
Class template deleter, 382
Class template unique_ptr, 392
Scoped pointer, 133

pointer_to
Class template offset_ptr, 321, 324

post
Class interprocess_semaphore, 410, 410
Class named_semaphore, 428, 429

pos_type
Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

pred
Class interprocess_condition, 405
Class interprocess_condition_any, 406
Class named_condition, 421
Class named_condition_any, 423

private_adaptive_pool
Class template private_adaptive_pool, 313, 314

private_adaptive_pool: a private adaptive pool
assert, 107

private_node_allocator
Class template private_node_allocator, 301, 302

private_node_allocator: a private segregated storage
assert, 100

Promotions (Upgradable Mutex only)
timed_unlock_upgradable_and_lock, 50
try_unlock_sharable_and_lock, 50
try_unlock_sharable_and_lock_upgradable, 50
try_unlock_upgradable_and_lock, 50
unlock_upgradable_and_lock, 50

R
rbtree_best_fit

Class template rbtree_best_fit, 326, 326
receive

Class template message_queue_t, 365, 366
recursive_mutex_type

Struct mutex_family, 418
Struct null_mutex_family, 419
Writing a new shared memory allocation algorithm, 148

release
Class template scoped_lock, 284, 287
Class template scoped_ptr, 356, 356, 357
Class template sharable_lock, 288, 290
Class template unique_ptr, 392, 395
Class template upgradable_lock, 291, 293
Scoped pointer, 133, 133

remove
Class file_mapping, 278, 279

218

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class named_condition, 420, 420, 421
Class named_condition_any, 422, 422, 423
Class named_mutex, 424, 424, 425
Class named_recursive_mutex, 426, 426, 427
Class named_semaphore, 428, 428, 429
Class named_sharable_mutex, 430, 430, 432
Class named_upgradable_mutex, 433, 434, 436
Class shared_memory_object, 379, 380, 381
Class template basic_managed_mapped_file, 348
Class template basic_managed_shared_memory, 341
Class template basic_managed_xsi_shared_memory, 344, 345, 345
Class template message_queue_t, 365, 366, 367
Class xsi_shared_memory, 443, 444, 444
Constructing Managed Mapped Files, 70
Removing shared memory, 17

remove_file_on_destroy
Class remove_file_on_destroy, 280

remove_shared_memory_on_destroy
Class remove_shared_memory_on_destroy, 381

Removing shared memory
remove, 17

reserve
Building custom indexes, 150, 150
Class template basic_vectorbuf, 353, 354
Class template basic_vectorstream, 355, 356, 356
Class template flat_map_index, 328, 328
Class template iset_index, 329, 329
Class template iunordered_set_index, 330, 330
Class template map_index, 331, 331
Class template std, 399, 400, 400, 401, 401
Class template unordered_map_index, 333, 333
Formatting directly in your character vector: vectorstream, 124
Performance of raw memory allocations, 146

reserve_named_objects
Class template segment_manager, 334, 337

reserve_unique_objects
Class template segment_manager, 334, 337

reset
Class template scoped_ptr, 356, 357, 357
Class template shared_ptr, 360, 362, 362, 362
Class template unique_ptr, 392, 395
Class template weak_ptr, 363, 364

S
Scoped lock

if, 34
lock, 34
unlock, 34

Scoped Lock and Sharable Lock With File Locking
unlock_and_lock_sharable, 60

Scoped pointer
if, 133
pointer, 133
release, 133, 133
segment_manager, 133, 133

scoped_lock
Class template scoped_lock, 284

219

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

scoped_ptr
Class template scoped_ptr, 356, 356, 356

segment_manager
Building custom indexes, 150
Class template segment_manager, 334, 334, 335
Intrusive pointer, 131, 131
Scoped pointer, 133, 133

segment_manager_base
Building custom indexes, 150, 150
Class template segment_manager, 334
Class template segment_manager_base, 376
Struct template flat_map_index_aux, 280

segment_manager_base_type
Class template segment_manager_base, 376

send
Class template message_queue_t, 365, 366

set_default
Class permissions, 375, 375

set_max_cached_nodes
cached_adaptive_pool: Avoiding synchronization overhead, 109
cached_node_allocator: caching nodes to avoid overhead, 103
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 308

set_permissions
Class permissions, 375, 375

set_unrestricted
Class permissions, 375, 375

Sharable Lock And Upgradable Lock
if, 51
lock, 51
lock_sharable, 51, 51
lock_upgradable, 51
timed_lock_sharable, 51
timed_lock_upgradable, 51
try_lock_sharable, 51
try_lock_upgradable, 51
unlock_sharable, 51, 51
unlock_upgradable, 51

Sharable Locking (Sharable & Upgradable Mutexes)
lock_sharable, 48
timed_lock_sharable, 48
try_lock_sharable, 48
unlock_sharable, 48

sharable_lock
Class template sharable_lock, 288, 288, 288, 289, 289

Shared pointer and weak pointer
assert, 135
deleter_type, 135

shared_memory_object
Class shared_memory_object, 379

shared_ptr
Class template shared_ptr, 360

shrink_by
Class mapped_region, 369, 370

shrink_to_fit
Building custom indexes, 150
Class template basic_managed_mapped_file, 347, 349
Class template basic_managed_shared_memory, 340, 341

220

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template flat_map_index, 328, 328
Class template iset_index, 329, 329
Class template iunordered_set_index, 330, 330
Class template map_index, 331, 331
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378
Class template unordered_map_index, 333, 333

shrink_to_fit_indexes
Class template segment_manager, 334, 337

Simple Lock Transfer
unlock, 53
unlock_sharable, 53

simple_seq_fit
Class template simple_seq_fit, 325

Struct accept_ownership_type
accept_ownership_type, 417

Struct create_only_t
create_only_t, 272

Struct defer_lock_type
defer_lock_type, 417

Struct mutex_family
mutex_family, 418
mutex_type, 418
recursive_mutex_type, 418

Struct null_mutex_family
mutex_type, 419
null_mutex_family, 419
recursive_mutex_type, 419

Struct open_copy_on_write_t
open_copy_on_write_t, 273

Struct open_only_t
open_only_t, 272

Struct open_or_create_t
open_or_create_t, 273

Struct open_read_only_t
open_read_only_t, 272

Struct open_read_private_t
open_read_private_t, 273

Struct template flat_map_index_aux
allocator_type, 280
flat_map_index_aux, 280
index_t, 280
key_less, 280
key_type, 280
mapped_type, 280
segment_manager_base, 280
value_type, 280

Struct template managed_shared_ptr
deleter, 389
managed_shared_ptr, 389
type, 389
void_allocator, 389

Struct template managed_unique_ptr
managed_unique_ptr, 396
type, 396

Struct template managed_weak_ptr
managed_weak_ptr, 397
type, 397

221

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Struct try_to_lock_type
try_to_lock_type, 417

swap
Class file_lock, 401, 402
Class file_mapping, 278, 279
Class mapped_region, 369, 370
Class shared_memory_object, 379, 380
Class template adaptive_pool, 309, 312
Class template allocator, 294, 296
Class template basic_managed_external_buffer, 338, 339
Class template basic_managed_heap_memory, 346, 347
Class template basic_managed_mapped_file, 347, 348
Class template basic_managed_shared_memory, 340, 341
Class template basic_managed_windows_shared_memory, 342, 343
Class template basic_managed_xsi_shared_memory, 344, 345
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 308
Class template intrusive_ptr, 358, 360
Class template node_allocator, 297, 300
Class template private_adaptive_pool, 313, 316
Class template private_node_allocator, 301, 304
Class template scoped_lock, 284, 287
Class template scoped_ptr, 356, 357
Class template sharable_lock, 288, 290
Class template shared_ptr, 360, 363
Class template unique_ptr, 392, 395
Class template upgradable_lock, 291, 294
Class template weak_ptr, 363, 365
Class windows_shared_memory, 440, 441
Class xsi_shared_memory, 443, 444
Function template swap, 387, 387
Header < boost/interprocess/smart_ptr/intrusive_ptr.hpp >, 383
Header < boost/interprocess/smart_ptr/scoped_ptr.hpp >, 387
Header < boost/interprocess/smart_ptr/shared_ptr.hpp >, 388
Header < boost/interprocess/smart_ptr/unique_ptr.hpp >, 390
Header < boost/interprocess/smart_ptr/weak_ptr.hpp >, 396

swap_vector
Class template basic_vectorbuf, 353, 354
Class template basic_vectorstream, 355, 355
Class template std, 399, 400, 400
Formatting directly in your character vector: vectorstream, 124, 124

Synchronization guarantees
allocate, 74

T
The memory algorithm

mutex_family, 142
void_pointer, 142

The segment manager
allocate, 143

timed_lock
Class file_lock, 401, 402
Class interprocess_mutex, 407, 408
Class interprocess_recursive_mutex, 408, 409
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_mutex, 424, 425

222

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class named_recursive_mutex, 426, 427
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template scoped_lock, 284, 287, 287
Class template sharable_lock, 288, 290
Class template upgradable_lock, 291, 293
Exclusive Locking (Sharable & Upgradable Mutexes), 47
File Locking Operations, 58
Mutex Operations, 32

timed_lock_sharable
Class file_lock, 401, 403
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 415
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template sharable_lock, 290
File Locking Operations, 58
Sharable Lock And Upgradable Lock, 51
Sharable Locking (Sharable & Upgradable Mutexes), 48

timed_lock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template upgradable_lock, 293
Sharable Lock And Upgradable Lock, 51
Upgradable Locking (Upgradable Mutex only), 48

timed_receive
Class template message_queue_t, 365, 367

timed_send
Class template message_queue_t, 365, 366

timed_unlock_upgradable_and_lock
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 436
Class null_mutex, 437, 439, 439
Class template scoped_lock, 286
Promotions (Upgradable Mutex only), 50
Transfers To Scoped Lock, 55

timed_wait
Class interprocess_condition, 404, 405, 405
Class interprocess_condition_any, 405, 406, 406
Class interprocess_semaphore, 410, 410
Class named_condition, 420, 421, 421
Class named_condition_any, 422, 423, 423
Class named_semaphore, 428, 429

to_raw_pointer
Function template to_raw_pointer, 387, 388
Header < boost/interprocess/smart_ptr/intrusive_ptr.hpp >, 383
Header < boost/interprocess/smart_ptr/scoped_ptr.hpp >, 387
Header < boost/interprocess/smart_ptr/shared_ptr.hpp >, 388

traits_type
Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

Transferring Unlocked Locks
assert, 56
unlock_and_lock_sharable, 56

223

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Transfers To Scoped Lock
timed_unlock_upgradable_and_lock, 55
try_unlock_sharable_and_lock, 55
try_unlock_upgradable_and_lock, 55
unlock_upgradable_and_lock, 55

Transfers To Sharable Lock
unlock_and_lock_sharable, 56
unlock_upgradable_and_lock_sharable, 56

Transfers To Upgradable Lock
try_unlock_sharable_and_lock_upgradable, 55
unlock_and_lock_upgradable, 55

truncate
Class shared_memory_object, 379, 380

try_atomic_func
Class template segment_manager, 334, 336

try_lock
Class file_lock, 401, 402
Class interprocess_mutex, 407, 408
Class interprocess_recursive_mutex, 408, 409
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_mutex, 424, 425
Class named_recursive_mutex, 426, 427
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 437, 437
Class template scoped_lock, 284, 286, 286
Class template sharable_lock, 288, 290
Class template upgradable_lock, 291, 293
Exclusive Locking (Sharable & Upgradable Mutexes), 47
File Locking Operations, 58
Global try_to_lock, 418
Mutex Operations, 32

try_lock_sharable
Class file_lock, 401, 403
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template sharable_lock, 290
File Locking Operations, 58
Sharable Lock And Upgradable Lock, 51
Sharable Locking (Sharable & Upgradable Mutexes), 48

try_lock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template upgradable_lock, 293
Sharable Lock And Upgradable Lock, 51
Upgradable Locking (Upgradable Mutex only), 48

try_receive
Class template message_queue_t, 365, 366

try_send
Class template message_queue_t, 365, 366

try_to_lock_type
Struct try_to_lock_type, 417

try_unlock_sharable_and_lock

224

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 436
Class null_mutex, 437, 439, 439
Class template scoped_lock, 286
Promotions (Upgradable Mutex only), 50
Transfers To Scoped Lock, 55

try_unlock_sharable_and_lock_upgradable
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 436
Class null_mutex, 437, 439, 439
Class template upgradable_lock, 292
Promotions (Upgradable Mutex only), 50
Transfers To Upgradable Lock, 55

try_unlock_upgradable_and_lock
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 436
Class null_mutex, 437, 439, 439
Class template scoped_lock, 286
Promotions (Upgradable Mutex only), 50
Transfers To Scoped Lock, 55

try_wait
Class interprocess_semaphore, 410, 410
Class named_semaphore, 428, 429

type
Struct template managed_shared_ptr, 389
Struct template managed_unique_ptr, 396
Struct template managed_weak_ptr, 397

U
Unique pointer

assert, 139
unique_ptr

Class template unique_ptr, 392, 392, 393, 393
unlock

Class file_lock, 401, 402
Class interprocess_mutex, 407, 408
Class interprocess_recursive_mutex, 408, 409
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_mutex, 424, 425
Class named_recursive_mutex, 426, 427
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template scoped_lock, 284, 286, 287, 287
Class template sharable_lock, 288, 290
Class template upgradable_lock, 291, 293
Exclusive Locking (Sharable & Upgradable Mutexes), 47
File Locking Operations, 58
Mutex Operations, 32
Scoped lock, 34
Simple Lock Transfer, 53

unlock_and_lock_sharable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template sharable_lock, 289

225

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Demotions (Upgradable Mutex only), 49
Lock Transfers Through Move Semantics, 53
Scoped Lock and Sharable Lock With File Locking, 60
Transferring Unlocked Locks, 56
Transfers To Sharable Lock, 56

unlock_and_lock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Demotions (Upgradable Mutex only), 49
Transfers To Upgradable Lock, 55

unlock_sharable
Class file_lock, 401, 403
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 415
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template sharable_lock, 289, 290
File Locking Operations, 58
Sharable Lock And Upgradable Lock, 51, 51
Sharable Locking (Sharable & Upgradable Mutexes), 48
Simple Lock Transfer, 53

unlock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template upgradable_lock, 292, 293
Sharable Lock And Upgradable Lock, 51
Upgradable Locking (Upgradable Mutex only), 48

unlock_upgradable_and_lock
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 439, 439
Class template scoped_lock, 285
Promotions (Upgradable Mutex only), 50
Transfers To Scoped Lock, 55

unlock_upgradable_and_lock_sharable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template sharable_lock, 289
Demotions (Upgradable Mutex only), 49
Transfers To Sharable Lock, 56

unordered_map_index_aux
Class template unordered_map_index, 333

Upgradable Locking (Upgradable Mutex only)
lock_upgradable, 48
timed_lock_upgradable, 48
try_lock_upgradable, 48
unlock_upgradable, 48

upgradable_lock
Class template upgradable_lock, 291, 291, 291, 292, 292

Using shared memory as a pool of unnamed memory blocks
if, 3

226

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

V
value_type

Building custom indexes, 150
Struct template flat_map_index_aux, 280

vector_type
Class template std, 399
Formatting directly in your character vector: vectorstream, 124

void_allocator
Containers of containers, 117
Struct template managed_shared_ptr, 389

void_pointer
Class template segment_manager_base, 376
The memory algorithm, 142
Writing a new shared memory allocation algorithm, 148, 148, 148, 148

W
wait

Class bad_alloc, 277
Class interprocess_condition, 404, 404, 404
Class interprocess_condition_any, 405, 406, 406
Class interprocess_semaphore, 410, 410
Class named_condition, 420, 421, 421
Class named_condition_any, 422, 423, 423
Class named_semaphore, 428, 429

wbufferbuf
Header < boost/interprocess/streams/bufferstream.hpp >, 397

wbufferstream
Formatting directly in your character buffer: bufferstream, 127
Header < boost/interprocess/streams/bufferstream.hpp >, 397

weak_ptr
Class template weak_ptr, 363

wfixed_managed_shared_memory
Common Managed Shared Memory Classes, 67
Header < boost/interprocess/interprocess_fwd.hpp >, 282

What's A Message Queue?
data, 62

What's a Sharable and an Upgradable Mutex?
lock, 46

while
Anonymous mutex example, 35, 35
Direct iostream formatting: vectorstream and bufferstream, 124
Example: Serializing a database through the message queue, 93
Multiple allocation functions, 81

wibufferstream
Header < boost/interprocess/streams/bufferstream.hpp >, 397

windows_shared_memory
Class windows_shared_memory, 440

wmanaged_external_buffer
Header < boost/interprocess/interprocess_fwd.hpp >, 282
Managed External Buffer: Constructing all Boost.Interprocess objects in a user provided buffer, 88

wmanaged_heap_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282
Managed Heap Memory: Boost.Interprocess machinery in heap memory, 91

wmanaged_mapped_file
Common Managed Mapped Files, 70
Header < boost/interprocess/interprocess_fwd.hpp >, 282

wmanaged_shared_memory

227

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Common Managed Shared Memory Classes, 67
Header < boost/interprocess/interprocess_fwd.hpp >, 282

wmanaged_windows_shared_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282

wmanaged_xsi_shared_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282

wobufferstream
Header < boost/interprocess/streams/bufferstream.hpp >, 397

Writing a new shared memory allocation algorithm
allocate, 148, 149, 149, 149
deallocate, 148, 149
get_min_size, 148, 149
grow, 148, 149
mutex_family, 148, 148, 148, 148, 149
mutex_type, 148
recursive_mutex_type, 148
void_pointer, 148, 148, 148, 148

X
xsi_key

Class xsi_key, 442
xsi_shared_memory

Class xsi_shared_memory, 443

Z
zero_free_memory

Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378

Function Index

A
accept_ownership_type

Struct accept_ownership_type, 417
adaptive_pool

Class template adaptive_pool, 309, 310
adaptive_pool: a process-shared adaptive pool

assert, 105
advise

Class mapped_region, 369, 370
allocate

Class template adaptive_pool, 309, 310
Class template allocator, 294, 295
Class template cached_adaptive_pool, 317, 319
Class template cached_node_allocator, 305, 306
Class template node_allocator, 297, 298
Class template private_adaptive_pool, 313, 314
Class template private_node_allocator, 301, 302
Class template rbtree_best_fit, 326, 326
Class template segment_manager_base, 376, 377, 377
Multiple allocation functions, 81, 81
Performance of raw memory allocations, 146, 146
Synchronization guarantees, 74
The segment manager, 143
Writing a new shared memory allocation algorithm, 148, 149, 149, 149

allocate_aligned

228

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 377, 377

allocate_individual
Class template adaptive_pool, 309, 311
Class template allocator, 294, 296
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 307
Class template node_allocator, 297, 299
Class template private_adaptive_pool, 313, 316
Class template private_node_allocator, 301, 304

allocate_many
Class template adaptive_pool, 309, 311, 311
Class template allocator, 294, 295, 295
Class template cached_adaptive_pool, 317, 319, 319
Class template cached_node_allocator, 305, 307, 307
Class template node_allocator, 297, 299, 299
Class template private_adaptive_pool, 313, 315, 315
Class template private_node_allocator, 301, 303, 303
Multiple allocation functions, 81, 81, 81

allocate_one
Class template adaptive_pool, 309, 311, 312
Class template allocator, 294, 296, 296
Class template cached_adaptive_pool, 317, 320, 320
Class template cached_node_allocator, 305, 307, 308
Class template node_allocator, 297, 299, 299
Class template private_adaptive_pool, 313, 316, 316
Class template private_node_allocator, 301, 303, 304

Allocating aligned memory portions
assert, 79

allocator
Class template allocator, 294

allocator_holder
Class template iunordered_set_index, 330

allocator_type
Building custom indexes, 150
Struct template flat_map_index_aux, 280

all_memory_deallocated
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378

Anonymous condition example
buffer, 39
lock, 39, 39

Anonymous mutex example
lock, 35, 35
while, 35, 35

assert
adaptive_pool: a process-shared adaptive pool, 105
Allocating aligned memory portions, 79
cached_adaptive_pool: Avoiding synchronization overhead, 108
cached_node_allocator: caching nodes to avoid overhead, 102
Expand in place memory allocation, 83
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124
Growing managed segments, 77
Mapping Address Independent Pointer: offset_ptr, 29
Move semantics in Interprocess containers, 115
node_allocator: A process-shared segregated storage, 99
private_adaptive_pool: a private adaptive pool, 107

229

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

private_node_allocator: a private segregated storage, 100
Shared pointer and weak pointer, 135
Transferring Unlocked Locks, 56
Unique pointer, 139

atomic_func
Class template segment_manager, 334, 336
Executing an object function atomically, 76

B
bad_alloc

Class bad_alloc, 277, 277
base_type

Building custom indexes, 150
basic_bufferbuf

Class template basic_bufferbuf, 349
basic_bufferstream

Class template basic_bufferstream, 352
Formatting directly in your character buffer: bufferstream, 127

basic_ibufferstream
Class template basic_ibufferstream, 350

basic_managed_external_buffer
Class template basic_managed_external_buffer, 338, 338

basic_managed_heap_memory
Class template basic_managed_heap_memory, 346, 346

basic_managed_mapped_file
Class template basic_managed_mapped_file, 347

basic_managed_shared_memory
Class template basic_managed_shared_memory, 340, 340

basic_managed_windows_shared_memory
Class template basic_managed_windows_shared_memory, 342, 342

basic_managed_xsi_shared_memory
Class template basic_managed_xsi_shared_memory, 344, 344

basic_obufferstream
Class template basic_obufferstream, 351

basic_vectorbuf
Class template basic_vectorbuf, 353

basic_vectorstream
Class template basic_vectorstream, 355
Formatting directly in your character vector: vectorstream, 124

Be Careful With Iostream Writing
flush, 62

begin
Class template null_index, 332, 332, 332

Boost unordered containers
name, 118

BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR
Header < boost/interprocess/offset_ptr.hpp >, 371
Macro BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR, 374, 374, 374

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF
Header < boost/interprocess/offset_ptr.hpp >, 371
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF, 374, 374, 374

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER
Header < boost/interprocess/offset_ptr.hpp >, 371
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER, 374, 374, 374

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR
Header < boost/interprocess/offset_ptr.hpp >, 371
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR, 373, 373, 373

230

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffer
Anonymous condition example, 39
Building custom indexes, 150
Class template basic_bufferbuf, 349, 349, 350
Class template basic_bufferstream, 352, 352, 353
Class template basic_ibufferstream, 350, 350, 351
Class template basic_obufferstream, 351, 351, 352
Formatting directly in your character buffer: bufferstream, 127, 127
Header < boost/interprocess/allocators/allocator.hpp >, 263
Introduction, 66, 66

bufferbuf
Header < boost/interprocess/streams/bufferstream.hpp >, 397

bufferstream
Formatting directly in your character buffer: bufferstream, 127
Header < boost/interprocess/streams/bufferstream.hpp >, 397

Building custom indexes
allocator_type, 150
base_type, 150
buffer, 150
char_type, 150
flat_map_index_aux, 150
index_aux, 150
index_t, 150
key_less, 150
key_type, 150, 150
mapped_type, 150, 150
name, 150
reserve, 150, 150
segment_manager, 150
segment_manager_base, 150, 150
shrink_to_fit, 150
value_type, 150

C
cached_adaptive_pool

Class template cached_adaptive_pool, 317, 318
cached_adaptive_pool: Avoiding synchronization overhead

assert, 108
set_max_cached_nodes, 109

cached_node_allocator
Class template cached_node_allocator, 305, 306

cached_node_allocator: caching nodes to avoid overhead
assert, 102
set_max_cached_nodes, 103

char_type
Building custom indexes, 150
Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

check_sanity
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378

Class bad_alloc
bad_alloc, 277, 277
interprocess_exception, 277
wait, 277

Class file_lock

231

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

file_lock, 401
lock, 401, 402
lock_sharable, 401, 403
swap, 401, 402
timed_lock, 401, 402
timed_lock_sharable, 401, 403
try_lock, 401, 402
try_lock_sharable, 401, 403
unlock, 401, 402
unlock_sharable, 401, 403

Class file_mapping
file_mapping, 278, 278
remove, 278, 279
swap, 278, 279

Class interprocess_condition
interprocess_condition, 404, 404
notify_all, 404, 404
notify_one, 404, 404
pred, 405
timed_wait, 404, 405, 405
wait, 404, 404, 404

Class interprocess_condition_any
interprocess_condition_any, 405, 405
notify_all, 405, 406
notify_one, 405, 406
pred, 406
timed_wait, 405, 406, 406
wait, 405, 406, 406

Class interprocess_exception
interprocess_exception, 276, 276

Class interprocess_mutex
interprocess_mutex, 407, 407
lock, 407, 407
timed_lock, 407, 408
try_lock, 407, 408
unlock, 407, 408

Class interprocess_recursive_mutex
interprocess_recursive_mutex, 408, 408
lock, 408, 409
timed_lock, 408, 409
try_lock, 408, 409
unlock, 408, 409

Class interprocess_semaphore
interprocess_semaphore, 410, 410
post, 410, 410
timed_wait, 410, 410
try_wait, 410, 410
wait, 410, 410

Class interprocess_sharable_mutex
interprocess_sharable_mutex, 411, 411
lock, 411, 412
lock_sharable, 411, 412
timed_lock, 411, 412
timed_lock_sharable, 411, 412
try_lock, 411, 412
try_lock_sharable, 411, 412
unlock, 411, 412
unlock_sharable, 411, 412

232

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class interprocess_upgradable_mutex
interprocess_upgradable_mutex, 413, 413
lock, 413, 414
lock_sharable, 413, 414
lock_upgradable, 413, 415
timed_lock, 413, 414
timed_lock_sharable, 413, 415
timed_lock_upgradable, 413, 415
timed_unlock_upgradable_and_lock, 413, 416
try_lock, 413, 414
try_lock_sharable, 413, 414
try_lock_upgradable, 413, 415
try_unlock_sharable_and_lock, 413, 416
try_unlock_sharable_and_lock_upgradable, 413, 416
try_unlock_upgradable_and_lock, 413, 416
unlock, 413, 414
unlock_and_lock_sharable, 413, 415
unlock_and_lock_upgradable, 413, 415
unlock_sharable, 413, 415
unlock_upgradable, 413, 415
unlock_upgradable_and_lock, 413, 416
unlock_upgradable_and_lock_sharable, 413, 415

Class lock_exception
interprocess_exception, 277
lock_exception, 277, 277

Class mapped_region
advise, 369, 370
flush, 369, 370
get_page_size, 369, 371
mapped_region, 369, 369, 369
shrink_by, 369, 370
swap, 369, 370

Class named_condition
named_condition, 420, 420, 420
notify_all, 420, 421
notify_one, 420, 421
pred, 421
remove, 420, 420, 421
timed_wait, 420, 421, 421
wait, 420, 421, 421

Class named_condition_any
named_condition_any, 422, 422, 422
notify_all, 422, 423
notify_one, 422, 423
pred, 423
remove, 422, 422, 423
timed_wait, 422, 423, 423
wait, 422, 423, 423

Class named_mutex
lock, 424, 425
named_mutex, 424, 424, 424
remove, 424, 424, 425
timed_lock, 424, 425
try_lock, 424, 425
unlock, 424, 425

Class named_recursive_mutex
lock, 426, 427
named_recursive_mutex, 426, 426, 426

233

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

remove, 426, 426, 427
timed_lock, 426, 427
try_lock, 426, 427
unlock, 426, 427

Class named_semaphore
named_semaphore, 428, 428, 428
post, 428, 429
remove, 428, 428, 429
timed_wait, 428, 429
try_wait, 428, 429
wait, 428, 429

Class named_sharable_mutex
lock, 430, 431
lock_sharable, 430, 431
named_sharable_mutex, 430, 430, 430
remove, 430, 430, 432
timed_lock, 430, 431
timed_lock_sharable, 430, 431
try_lock, 430, 431
try_lock_sharable, 430, 431
unlock, 430, 431
unlock_sharable, 430, 431

Class named_upgradable_mutex
lock, 433, 434
lock_sharable, 433, 434
lock_upgradable, 433, 435
named_upgradable_mutex, 433, 433, 433
remove, 433, 434, 436
timed_lock, 433, 434
timed_lock_sharable, 433, 434
timed_lock_upgradable, 433, 435
timed_unlock_upgradable_and_lock, 433, 436
try_lock, 433, 434
try_lock_sharable, 433, 434
try_lock_upgradable, 433, 435
try_unlock_sharable_and_lock, 433, 436
try_unlock_sharable_and_lock_upgradable, 433, 436
try_unlock_upgradable_and_lock, 433, 436
unlock, 433, 434
unlock_and_lock_sharable, 433, 435
unlock_and_lock_upgradable, 433, 435
unlock_sharable, 433, 435
unlock_upgradable, 433, 435
unlock_upgradable_and_lock, 433, 435
unlock_upgradable_and_lock_sharable, 433, 435

Class null_mutex
lock, 437, 437, 437
lock_sharable, 437, 438, 438
lock_upgradable, 437, 438, 438
null_mutex, 437, 437
timed_lock, 437, 438, 438
timed_lock_sharable, 437, 438, 438
timed_lock_upgradable, 437, 438, 438
timed_unlock_upgradable_and_lock, 437, 439, 439
try_lock, 437, 437, 437
try_lock_sharable, 437, 438, 438
try_lock_upgradable, 437, 438, 438
try_unlock_sharable_and_lock, 437, 439, 439

234

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

try_unlock_sharable_and_lock_upgradable, 437, 439, 439
try_unlock_upgradable_and_lock, 437, 439, 439
unlock, 437, 438, 438
unlock_and_lock_sharable, 437, 438, 438
unlock_and_lock_upgradable, 437, 438, 438
unlock_sharable, 437, 438, 438
unlock_upgradable, 437, 438, 438
unlock_upgradable_and_lock, 437, 439, 439
unlock_upgradable_and_lock_sharable, 437, 438, 438

Class permissions
permissions, 375
set_default, 375, 375
set_permissions, 375, 375
set_unrestricted, 375, 375

Class remove_file_on_destroy
remove_file_on_destroy, 280

Class remove_shared_memory_on_destroy
remove_shared_memory_on_destroy, 381

Class shared_memory_object
remove, 379, 380, 381
shared_memory_object, 379
swap, 379, 380
truncate, 379, 380

Class template adaptive_pool
adaptive_pool, 309, 310
allocate, 309, 310
allocate_individual, 309, 311
allocate_many, 309, 311, 311
allocate_one, 309, 311, 312
deallocate, 309, 310, 311, 311
deallocate_free_blocks, 309, 311
deallocate_individual, 309, 312
deallocate_many, 309, 311
deallocate_one, 309, 311, 311, 312, 312
swap, 309, 312

Class template allocator
allocate, 294, 295
allocate_individual, 294, 296
allocate_many, 294, 295, 295
allocate_one, 294, 296, 296
allocator, 294
construct, 294, 296
deallocate, 294, 295, 295, 295
deallocate_individual, 294, 296
deallocate_many, 294, 295
deallocate_one, 294, 296, 296, 296, 296
destroy, 294, 296
swap, 294, 296

Class template basic_bufferbuf
basic_bufferbuf, 349
buffer, 349, 349, 350

Class template basic_bufferstream
basic_bufferstream, 352
buffer, 352, 352, 353

Class template basic_ibufferstream
basic_ibufferstream, 350
buffer, 350, 350, 351

Class template basic_managed_external_buffer

235

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_managed_external_buffer, 338, 338
grow, 338, 339
swap, 338, 339

Class template basic_managed_heap_memory
basic_managed_heap_memory, 346, 346
grow, 346, 346
swap, 346, 347

Class template basic_managed_mapped_file
basic_managed_mapped_file, 347
flush, 347, 348
grow, 347, 348
remove, 348
shrink_to_fit, 347, 349
swap, 347, 348

Class template basic_managed_shared_memory
basic_managed_shared_memory, 340, 340
grow, 340, 341
remove, 341
shrink_to_fit, 340, 341
swap, 340, 341

Class template basic_managed_windows_shared_memory
basic_managed_windows_shared_memory, 342, 342
swap, 342, 343

Class template basic_managed_xsi_shared_memory
basic_managed_xsi_shared_memory, 344, 344
remove, 344, 345, 345
swap, 344, 345

Class template basic_obufferstream
basic_obufferstream, 351
buffer, 351, 351, 352

Class template basic_vectorbuf
basic_vectorbuf, 353
clear, 353, 354, 354
reserve, 353, 354
swap_vector, 353, 354

Class template basic_vectorstream
basic_vectorstream, 355
clear, 355, 356, 356
reserve, 355, 356, 356
swap_vector, 355, 355

Class template cached_adaptive_pool
allocate, 317, 319
allocate_individual, 317, 320
allocate_many, 317, 319, 319
allocate_one, 317, 320, 320
cached_adaptive_pool, 317, 318
construct, 317, 319
deallocate, 317, 319, 319, 320
deallocate_free_blocks, 317, 319
deallocate_individual, 317, 320
deallocate_many, 317, 320
deallocate_one, 317, 320, 320, 320, 320
destroy, 317, 319
set_max_cached_nodes, 317, 320
swap, 317, 320

Class template cached_node_allocator
allocate, 305, 306
allocate_individual, 305, 307

236

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

allocate_many, 305, 307, 307
allocate_one, 305, 307, 308
cached_node_allocator, 305, 306
construct, 305, 307
deallocate, 305, 306, 307, 307
deallocate_free_blocks, 305, 306
deallocate_individual, 305, 308
deallocate_many, 305, 307
deallocate_one, 305, 307, 307, 308, 308
destroy, 305, 307
set_max_cached_nodes, 305, 308
swap, 305, 308

Class template deleter
deleter, 382
pointer, 382

Class template enable_shared_from_this
enable_shared_from_this, 383

Class template flat_map_index
reserve, 328, 328
shrink_to_fit, 328, 328

Class template intrusive_ptr
get, 358, 359, 359, 359, 359, 359
intrusive_ptr, 358
intrusive_ptr_add_ref, 358, 358, 358, 359
intrusive_ptr_release, 358, 359
swap, 358, 360

Class template iset_index
find, 329, 329, 329
iset_index_aux, 329
reserve, 329, 329
shrink_to_fit, 329, 329

Class template iunordered_set_index
allocator_holder, 330
find, 330, 330, 330
insert_commit, 330, 331
iunordered_set_index_aux, 330
reserve, 330, 330
shrink_to_fit, 330, 330

Class template map_index
reserve, 331, 331
shrink_to_fit, 331, 331

Class template message_queue_t
get_num_msg, 365, 367
message_queue_t, 365
receive, 365, 366
remove, 365, 366, 367
send, 365, 366
timed_receive, 365, 367
timed_send, 365, 366
try_receive, 365, 366
try_send, 365, 366

Class template node_allocator
allocate, 297, 298
allocate_individual, 297, 299
allocate_many, 297, 299, 299
allocate_one, 297, 299, 299
construct, 297, 299
deallocate, 297, 298, 299, 299

237

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

deallocate_free_blocks, 297, 298
deallocate_individual, 297, 300
deallocate_many, 297, 299
deallocate_one, 297, 299, 299, 299, 300
destroy, 297, 299
node_allocator, 297, 298
swap, 297, 300

Class template null_index
begin, 332, 332, 332
end, 332, 332, 332, 332, 332, 332, 332
null_index, 332, 332

Class template offset_ptr
get, 321, 323
offset_ptr, 321, 321, 322, 322, 322, 322, 322, 322
pointer_to, 321, 324

Class template private_adaptive_pool
allocate, 313, 314
allocate_individual, 313, 316
allocate_many, 313, 315, 315
allocate_one, 313, 316, 316
construct, 313, 315
deallocate, 313, 315, 315, 315
deallocate_free_blocks, 313, 315
deallocate_individual, 313, 316
deallocate_many, 313, 315
deallocate_one, 313, 316, 316, 316, 316
destroy, 313, 315
private_adaptive_pool, 313, 314
swap, 313, 316

Class template private_node_allocator
allocate, 301, 302
allocate_individual, 301, 304
allocate_many, 301, 303, 303
allocate_one, 301, 303, 304
construct, 301, 303
deallocate, 301, 302, 303, 303
deallocate_free_blocks, 301, 302
deallocate_individual, 301, 304
deallocate_many, 301, 303
deallocate_one, 301, 303, 304, 304, 304
destroy, 301, 303
private_node_allocator, 301, 302
swap, 301, 304

Class template rbtree_best_fit
allocate, 326, 326
allocate_aligned, 326, 327
all_memory_deallocated, 326, 327
check_sanity, 326, 327
deallocate, 326, 327
get_min_size, 326, 328
grow, 326, 327
rbtree_best_fit, 326, 326
shrink_to_fit, 326, 327
zero_free_memory, 326, 327

Class template scoped_lock
lock, 284, 286, 286
lock_exception, 286, 286, 287, 287
release, 284, 287

238

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

scoped_lock, 284
swap, 284, 287
timed_lock, 284, 287, 287
timed_unlock_upgradable_and_lock, 286
try_lock, 284, 286, 286
try_unlock_sharable_and_lock, 286
try_unlock_upgradable_and_lock, 286
unlock, 284, 286, 287, 287
unlock_upgradable_and_lock, 285

Class template scoped_ptr
get, 356, 357, 357
release, 356, 356, 357
reset, 356, 357, 357
scoped_ptr, 356, 356, 356
swap, 356, 357

Class template segment_manager
atomic_func, 334, 336
construct, 334, 335, 336
construct_it, 334, 336, 336
destroy, 334, 336, 336
destroy_ptr, 334, 337
find, 334, 335, 335
find_or_construct, 334, 335, 336
find_or_construct_it, 334, 336, 336
get_allocator, 334, 337
get_deleter, 334, 337
get_instance_length, 334, 338
get_instance_name, 334, 338
get_instance_type, 334, 338
get_min_size, 334, 338
get_num_named_objects, 334, 337
get_num_unique_objects, 334, 337
reserve_named_objects, 334, 337
reserve_unique_objects, 334, 337
segment_manager, 334, 334, 335
segment_manager_base, 334
shrink_to_fit_indexes, 334, 337
try_atomic_func, 334, 336

Class template segment_manager_base
allocate, 376, 377, 377
allocate_aligned, 376, 377, 377
all_memory_deallocated, 376, 378
check_sanity, 376, 378
deallocate, 376, 378
get_min_size, 376, 378
grow, 376, 378
memory_algorithm, 376
mutex_family, 376
segment_manager_base, 376
segment_manager_base_type, 376
shrink_to_fit, 376, 378
void_pointer, 376
zero_free_memory, 376, 378

Class template sharable_lock
lock, 288, 290
lock_exception, 290, 290, 290, 290
lock_sharable, 290
release, 288, 290

239

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

sharable_lock, 288, 288, 288, 289, 289
swap, 288, 290
timed_lock, 288, 290
timed_lock_sharable, 290
try_lock, 288, 290
try_lock_sharable, 290
unlock, 288, 290
unlock_and_lock_sharable, 289
unlock_sharable, 289, 290
unlock_upgradable_and_lock_sharable, 289

Class template shared_ptr
get, 360, 361, 362
reset, 360, 362, 362, 362
shared_ptr, 360
swap, 360, 363

Class template simple_seq_fit
simple_seq_fit, 325

Class template std
char_type, 399
clear, 399, 400, 400
int_type, 399
off_type, 399
pos_type, 399
reserve, 399, 400, 400, 401, 401
swap_vector, 399, 400, 400
traits_type, 399
vector_type, 399

Class template unique_ptr
deleter_type, 392
element_type, 392
get, 392, 393, 394, 395, 395, 395
get_deleter, 392, 393, 394, 395, 395, 395
pointer, 392
release, 392, 395
reset, 392, 395
swap, 392, 395
unique_ptr, 392, 392, 393, 393

Class template unordered_map_index
reserve, 333, 333
shrink_to_fit, 333, 333
unordered_map_index_aux, 333

Class template upgradable_lock
lock, 291, 293
lock_exception, 293, 293, 293, 293
lock_upgradable, 293
release, 291, 293
swap, 291, 294
timed_lock, 291, 293
timed_lock_upgradable, 293
try_lock, 291, 293
try_lock_upgradable, 293
try_unlock_sharable_and_lock_upgradable, 292
unlock, 291, 293
unlock_upgradable, 292, 293
upgradable_lock, 291, 291, 291, 292, 292

Class template weak_ptr
lock, 363, 364
reset, 363, 364

240

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

swap, 363, 365
weak_ptr, 363

Class windows_shared_memory
swap, 440, 441
windows_shared_memory, 440

Class xsi_key
xsi_key, 442

Class xsi_shared_memory
remove, 443, 444, 444
swap, 443, 444
xsi_shared_memory, 443

clear
Class template basic_vectorbuf, 353, 354, 354
Class template basic_vectorstream, 355, 356, 356
Class template std, 399, 400, 400

Common Managed Mapped Files
managed_mapped_file, 70
wmanaged_mapped_file, 70

Common Managed Shared Memory Classes
fixed_managed_shared_memory, 67
managed_shared_memory, 67
wfixed_managed_shared_memory, 67
wmanaged_shared_memory, 67

construct
Class template allocator, 294, 296
Class template cached_adaptive_pool, 317, 319
Class template cached_node_allocator, 305, 307
Class template node_allocator, 297, 299
Class template private_adaptive_pool, 313, 315
Class template private_node_allocator, 301, 303
Class template segment_manager, 334, 335, 336

Constructing Managed Mapped Files
remove, 70

construct_it
Class template segment_manager, 334, 336, 336

Containers of containers
void_allocator, 117

create_only_t
Struct create_only_t, 272

Creating maps in shared memory
name, 8

Creating named shared memory objects
if, 4

Creating vectors in shared memory
if, 6

D
data

What's A Message Queue?, 62
deallocate

Class template adaptive_pool, 309, 310, 311, 311
Class template allocator, 294, 295, 295, 295
Class template cached_adaptive_pool, 317, 319, 319, 320
Class template cached_node_allocator, 305, 306, 307, 307
Class template node_allocator, 297, 298, 299, 299
Class template private_adaptive_pool, 313, 315, 315, 315
Class template private_node_allocator, 301, 302, 303, 303

241

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378
Performance of raw memory allocations, 146
Writing a new shared memory allocation algorithm, 148, 149

deallocate_free_blocks
Class template adaptive_pool, 309, 311
Class template cached_adaptive_pool, 317, 319
Class template cached_node_allocator, 305, 306
Class template node_allocator, 297, 298
Class template private_adaptive_pool, 313, 315
Class template private_node_allocator, 301, 302

deallocate_individual
Class template adaptive_pool, 309, 312
Class template allocator, 294, 296
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 308
Class template node_allocator, 297, 300
Class template private_adaptive_pool, 313, 316
Class template private_node_allocator, 301, 304

deallocate_many
Class template adaptive_pool, 309, 311
Class template allocator, 294, 295
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 307
Class template node_allocator, 297, 299
Class template private_adaptive_pool, 313, 315
Class template private_node_allocator, 301, 303
Multiple allocation functions, 81

deallocate_one
Class template adaptive_pool, 309, 311, 311, 312, 312
Class template allocator, 294, 296, 296, 296, 296
Class template cached_adaptive_pool, 317, 320, 320, 320, 320
Class template cached_node_allocator, 305, 307, 307, 308, 308
Class template node_allocator, 297, 299, 299, 299, 300
Class template private_adaptive_pool, 313, 316, 316, 316, 316
Class template private_node_allocator, 301, 303, 304, 304, 304

defer_lock_type
Struct defer_lock_type, 417

deleter
Class template deleter, 382
Struct template managed_shared_ptr, 389

deleter_type
Class template unique_ptr, 392
Shared pointer and weak pointer, 135

Demotions (Upgradable Mutex only)
unlock_and_lock_sharable, 49
unlock_and_lock_upgradable, 49
unlock_upgradable_and_lock_sharable, 49

destroy
Class template allocator, 294, 296
Class template cached_adaptive_pool, 317, 319
Class template cached_node_allocator, 305, 307
Class template node_allocator, 297, 299
Class template private_adaptive_pool, 313, 315
Class template private_node_allocator, 301, 303
Class template segment_manager, 334, 336, 336

destroy_ptr
Class template segment_manager, 334, 337

242

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Direct iostream formatting: vectorstream and bufferstream
while, 124

E
element_type

Class template unique_ptr, 392
enable_shared_from_this

Class template enable_shared_from_this, 383
end

Class template null_index, 332, 332, 332, 332, 332, 332, 332
Example: Serializing a database through the message queue

if, 93
while, 93

Exclusive Locking (Sharable & Upgradable Mutexes)
lock, 47
timed_lock, 47
try_lock, 47
unlock, 47

Executing an object function atomically
atomic_func, 76

Expand in place memory allocation
assert, 83

F
File Locking Operations

lock, 58
lock_sharable, 58
timed_lock, 58
timed_lock_sharable, 58
try_lock, 58
try_lock_sharable, 58
unlock, 58
unlock_sharable, 58

file_lock
Class file_lock, 401

file_mapping
Class file_mapping, 278, 278

find
Class template iset_index, 329, 329, 329
Class template iunordered_set_index, 330, 330, 330
Class template segment_manager, 334, 335, 335
Performance of named allocations, 146

find_or_construct
Class template segment_manager, 334, 335, 336

find_or_construct_it
Class template segment_manager, 334, 336, 336

fixed_managed_shared_memory
Common Managed Shared Memory Classes, 67
Header < boost/interprocess/interprocess_fwd.hpp >, 282

flat_map_index_aux
Building custom indexes, 150
Struct template flat_map_index_aux, 280

flush
Be Careful With Iostream Writing, 62
Class mapped_region, 369, 370
Class template basic_managed_mapped_file, 347, 348

for

243

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

Formatting directly in your character buffer: bufferstream
assert, 127
basic_bufferstream, 127
buffer, 127, 127
bufferstream, 127
char_type, 127
for, 127
int_type, 127
off_type, 127
pos_type, 127
traits_type, 127
wbufferstream, 127

Formatting directly in your character vector: vectorstream
assert, 124
basic_vectorstream, 124
char_type, 124
for, 124
int_type, 124
off_type, 124
pos_type, 124
reserve, 124
swap_vector, 124, 124
traits_type, 124
vector_type, 124

Function template make_managed_shared_ptr
make_managed_shared_ptr, 390, 390

Function template make_managed_unique_ptr
make_managed_unique_ptr, 396

Function template make_managed_weak_ptr
make_managed_weak_ptr, 397

Function template swap
swap, 387, 387

Function template to_raw_pointer
to_raw_pointer, 387, 388

G
get

Class template intrusive_ptr, 358, 359, 359, 359, 359, 359
Class template offset_ptr, 321, 323
Class template scoped_ptr, 356, 357, 357
Class template shared_ptr, 360, 361, 362
Class template unique_ptr, 392, 393, 394, 395, 395, 395

get_allocator
Class template segment_manager, 334, 337

get_deleter
Class template segment_manager, 334, 337
Class template unique_ptr, 392, 393, 394, 395, 395, 395

get_instance_length
Class template segment_manager, 334, 338

get_instance_name
Class template segment_manager, 334, 338

get_instance_type
Class template segment_manager, 334, 338

get_min_size
Class template rbtree_best_fit, 326, 328

244

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template segment_manager, 334, 338
Class template segment_manager_base, 376, 378
Writing a new shared memory allocation algorithm, 148, 149

get_num_msg
Class template message_queue_t, 365, 367

get_num_named_objects
Class template segment_manager, 334, 337

get_num_unique_objects
Class template segment_manager, 334, 337

get_page_size
Class mapped_region, 369, 371

Global try_to_lock
try_lock, 418

grow
Class template basic_managed_external_buffer, 338, 339
Class template basic_managed_heap_memory, 346, 346
Class template basic_managed_mapped_file, 347, 348
Class template basic_managed_shared_memory, 340, 341
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378
Managed Heap Memory: Boost.Interprocess machinery in heap memory, 91
Writing a new shared memory allocation algorithm, 148, 149

Growing managed segments
assert, 77

H
Header < boost/interprocess/allocators/allocator.hpp >

buffer, 263
Header < boost/interprocess/errors.hpp >

native_error_t, 275
Header < boost/interprocess/interprocess_fwd.hpp >

fixed_managed_shared_memory, 282
managed_external_buffer, 282
managed_heap_memory, 282
managed_mapped_file, 282
managed_shared_memory, 282
managed_windows_shared_memory, 282
managed_xsi_shared_memory, 282
message_queue, 282
wfixed_managed_shared_memory, 282
wmanaged_external_buffer, 282
wmanaged_heap_memory, 282
wmanaged_mapped_file, 282
wmanaged_shared_memory, 282
wmanaged_windows_shared_memory, 282
wmanaged_xsi_shared_memory, 282

Header < boost/interprocess/offset_ptr.hpp >
BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR, 371
BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF, 371
BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER, 371
BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR, 371

Header < boost/interprocess/smart_ptr/intrusive_ptr.hpp >
swap, 383
to_raw_pointer, 383

Header < boost/interprocess/smart_ptr/scoped_ptr.hpp >
swap, 387
to_raw_pointer, 387

245

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header < boost/interprocess/smart_ptr/shared_ptr.hpp >
make_managed_shared_ptr, 388
swap, 388
to_raw_pointer, 388

Header < boost/interprocess/smart_ptr/unique_ptr.hpp >
make_managed_unique_ptr, 390
swap, 390

Header < boost/interprocess/smart_ptr/weak_ptr.hpp >
make_managed_weak_ptr, 396
swap, 396

Header < boost/interprocess/streams/bufferstream.hpp >
bufferbuf, 397
bufferstream, 397
ibufferstream, 397
obufferstream, 397
wbufferbuf, 397
wbufferstream, 397
wibufferstream, 397
wobufferstream, 397

I
ibufferstream

Header < boost/interprocess/streams/bufferstream.hpp >, 397
if

Creating named shared memory objects, 4
Creating vectors in shared memory, 6
Example: Serializing a database through the message queue, 93
Intrusive pointer, 131
Managed External Buffer: Constructing all Boost.Interprocess objects in a user provided buffer, 88
Multiple allocation functions, 81
Opening managed shared memory and mapped files with Copy On Write or Read Only modes, 86
Scoped lock, 34
Scoped pointer, 133
Sharable Lock And Upgradable Lock, 51
Using shared memory as a pool of unnamed memory blocks, 3

index_aux
Building custom indexes, 150

index_t
Building custom indexes, 150
Struct template flat_map_index_aux, 280

insert_commit
Class template iunordered_set_index, 330, 331

interprocess_condition
Class interprocess_condition, 404, 404

interprocess_condition_any
Class interprocess_condition_any, 405, 405

interprocess_exception
Class bad_alloc, 277
Class interprocess_exception, 276, 276
Class lock_exception, 277

interprocess_mutex
Class interprocess_mutex, 407, 407

interprocess_recursive_mutex
Class interprocess_recursive_mutex, 408, 408

interprocess_semaphore
Class interprocess_semaphore, 410, 410

interprocess_sharable_mutex

246

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class interprocess_sharable_mutex, 411, 411
interprocess_upgradable_mutex

Class interprocess_upgradable_mutex, 413, 413
Introduction

buffer, 66, 66
Intrusive pointer

if, 131
intrusive_ptr_add_ref, 131, 131
intrusive_ptr_release, 131, 131
segment_manager, 131, 131

intrusive_ptr
Class template intrusive_ptr, 358

intrusive_ptr_add_ref
Class template intrusive_ptr, 358, 358, 358, 359
Intrusive pointer, 131, 131

intrusive_ptr_release
Class template intrusive_ptr, 358, 359
Intrusive pointer, 131, 131

int_type
Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

iset_index_aux
Class template iset_index, 329

iunordered_set_index_aux
Class template iunordered_set_index, 330

K
key_less

Building custom indexes, 150
Struct template flat_map_index_aux, 280

key_type
Building custom indexes, 150, 150
Struct template flat_map_index_aux, 280

L
lock

Anonymous condition example, 39, 39
Anonymous mutex example, 35, 35
Class file_lock, 401, 402
Class interprocess_mutex, 407, 407
Class interprocess_recursive_mutex, 408, 409
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_mutex, 424, 425
Class named_recursive_mutex, 426, 427
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 437, 437
Class template scoped_lock, 284, 286, 286
Class template sharable_lock, 288, 290
Class template upgradable_lock, 291, 293
Class template weak_ptr, 363, 364
Exclusive Locking (Sharable & Upgradable Mutexes), 47
File Locking Operations, 58
Mutex Operations, 32
Named mutex example, 38

247

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Scoped lock, 34
Sharable Lock And Upgradable Lock, 51
What's a Sharable and an Upgradable Mutex?, 46

Lock Transfers Through Move Semantics
unlock_and_lock_sharable, 53

lock_exception
Class lock_exception, 277, 277
Class template scoped_lock, 286, 286, 287, 287
Class template sharable_lock, 290, 290, 290, 290
Class template upgradable_lock, 293, 293, 293, 293

lock_sharable
Class file_lock, 401, 403
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template sharable_lock, 290
File Locking Operations, 58
Sharable Lock And Upgradable Lock, 51, 51
Sharable Locking (Sharable & Upgradable Mutexes), 48

lock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template upgradable_lock, 293
Sharable Lock And Upgradable Lock, 51
Upgradable Locking (Upgradable Mutex only), 48

M
Macro BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR

BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR, 374, 374, 374
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF, 374, 374, 374
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER, 374, 374, 374
Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR, 373, 373, 373
make_managed_shared_ptr

Function template make_managed_shared_ptr, 390, 390
Header < boost/interprocess/smart_ptr/shared_ptr.hpp >, 388

make_managed_unique_ptr
Function template make_managed_unique_ptr, 396
Header < boost/interprocess/smart_ptr/unique_ptr.hpp >, 390

make_managed_weak_ptr
Function template make_managed_weak_ptr, 397
Header < boost/interprocess/smart_ptr/weak_ptr.hpp >, 396

Managed External Buffer: Constructing all Boost.Interprocess objects in a user provided buffer
if, 88
managed_external_buffer, 88
wmanaged_external_buffer, 88

Managed Heap Memory: Boost.Interprocess machinery in heap memory
grow, 91
managed_heap_memory, 91
wmanaged_heap_memory, 91

managed_external_buffer
Header < boost/interprocess/interprocess_fwd.hpp >, 282

248

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Managed External Buffer: Constructing all Boost.Interprocess objects in a user provided buffer, 88
managed_heap_memory

Header < boost/interprocess/interprocess_fwd.hpp >, 282
Managed Heap Memory: Boost.Interprocess machinery in heap memory, 91

managed_mapped_file
Common Managed Mapped Files, 70
Header < boost/interprocess/interprocess_fwd.hpp >, 282

managed_shared_memory
Common Managed Shared Memory Classes, 67
Header < boost/interprocess/interprocess_fwd.hpp >, 282

managed_shared_ptr
Struct template managed_shared_ptr, 389

managed_unique_ptr
Struct template managed_unique_ptr, 396

managed_weak_ptr
Struct template managed_weak_ptr, 397

managed_windows_shared_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282

managed_xsi_shared_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282

mapped_region
Class mapped_region, 369, 369, 369

mapped_type
Building custom indexes, 150, 150
Struct template flat_map_index_aux, 280

Mapping Address Independent Pointer: offset_ptr
assert, 29

memory_algorithm
Class template segment_manager_base, 376

message_queue
Header < boost/interprocess/interprocess_fwd.hpp >, 282

message_queue_t
Class template message_queue_t, 365

Move semantics in Interprocess containers
assert, 115

multiallocation_chain
Multiple allocation functions, 81

Multiple allocation functions
allocate, 81, 81
allocate_many, 81, 81, 81
deallocate_many, 81
if, 81
multiallocation_chain, 81
while, 81

Mutex Operations
lock, 32
timed_lock, 32
try_lock, 32
unlock, 32

mutex_family
Class template segment_manager_base, 376
Struct mutex_family, 418
The memory algorithm, 142
Writing a new shared memory allocation algorithm, 148, 148, 148, 148, 149

mutex_type
Struct mutex_family, 418
Struct null_mutex_family, 419
Writing a new shared memory allocation algorithm, 148

249

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

N
name

Boost unordered containers, 118
Building custom indexes, 150
Creating maps in shared memory, 8

Named mutex example
lock, 38

named_condition
Class named_condition, 420, 420, 420

named_condition_any
Class named_condition_any, 422, 422, 422

named_mutex
Class named_mutex, 424, 424, 424

named_recursive_mutex
Class named_recursive_mutex, 426, 426, 426

named_semaphore
Class named_semaphore, 428, 428, 428

named_sharable_mutex
Class named_sharable_mutex, 430, 430, 430

named_upgradable_mutex
Class named_upgradable_mutex, 433, 433, 433

native_error_t
Header < boost/interprocess/errors.hpp >, 275

node_allocator
Class template node_allocator, 297, 298

node_allocator: A process-shared segregated storage
assert, 99

notify_all
Class interprocess_condition, 404, 404
Class interprocess_condition_any, 405, 406
Class named_condition, 420, 421
Class named_condition_any, 422, 423

notify_one
Class interprocess_condition, 404, 404
Class interprocess_condition_any, 405, 406
Class named_condition, 420, 421
Class named_condition_any, 422, 423

null_index
Class template null_index, 332, 332

null_mutex
Class null_mutex, 437, 437

null_mutex_family
Struct null_mutex_family, 419

O
obufferstream

Header < boost/interprocess/streams/bufferstream.hpp >, 397
offset_ptr

Class template offset_ptr, 321, 321, 322, 322, 322, 322, 322, 322
off_type

Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

Opening managed shared memory and mapped files with Copy On Write or Read Only modes
if, 86

open_copy_on_write_t
Struct open_copy_on_write_t, 273

250

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

open_only_t
Struct open_only_t, 272

open_or_create_t
Struct open_or_create_t, 273

open_read_only_t
Struct open_read_only_t, 272

open_read_private_t
Struct open_read_private_t, 273

P
Performance of named allocations

find, 146
Performance of raw memory allocations

allocate, 146, 146
deallocate, 146
reserve, 146

permissions
Class permissions, 375

pointer
Class template deleter, 382
Class template unique_ptr, 392
Scoped pointer, 133

pointer_to
Class template offset_ptr, 321, 324

post
Class interprocess_semaphore, 410, 410
Class named_semaphore, 428, 429

pos_type
Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

pred
Class interprocess_condition, 405
Class interprocess_condition_any, 406
Class named_condition, 421
Class named_condition_any, 423

private_adaptive_pool
Class template private_adaptive_pool, 313, 314

private_adaptive_pool: a private adaptive pool
assert, 107

private_node_allocator
Class template private_node_allocator, 301, 302

private_node_allocator: a private segregated storage
assert, 100

Promotions (Upgradable Mutex only)
timed_unlock_upgradable_and_lock, 50
try_unlock_sharable_and_lock, 50
try_unlock_sharable_and_lock_upgradable, 50
try_unlock_upgradable_and_lock, 50
unlock_upgradable_and_lock, 50

R
rbtree_best_fit

Class template rbtree_best_fit, 326, 326
receive

Class template message_queue_t, 365, 366
recursive_mutex_type

251

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Struct mutex_family, 418
Struct null_mutex_family, 419
Writing a new shared memory allocation algorithm, 148

release
Class template scoped_lock, 284, 287
Class template scoped_ptr, 356, 356, 357
Class template sharable_lock, 288, 290
Class template unique_ptr, 392, 395
Class template upgradable_lock, 291, 293
Scoped pointer, 133, 133

remove
Class file_mapping, 278, 279
Class named_condition, 420, 420, 421
Class named_condition_any, 422, 422, 423
Class named_mutex, 424, 424, 425
Class named_recursive_mutex, 426, 426, 427
Class named_semaphore, 428, 428, 429
Class named_sharable_mutex, 430, 430, 432
Class named_upgradable_mutex, 433, 434, 436
Class shared_memory_object, 379, 380, 381
Class template basic_managed_mapped_file, 348
Class template basic_managed_shared_memory, 341
Class template basic_managed_xsi_shared_memory, 344, 345, 345
Class template message_queue_t, 365, 366, 367
Class xsi_shared_memory, 443, 444, 444
Constructing Managed Mapped Files, 70
Removing shared memory, 17

remove_file_on_destroy
Class remove_file_on_destroy, 280

remove_shared_memory_on_destroy
Class remove_shared_memory_on_destroy, 381

Removing shared memory
remove, 17

reserve
Building custom indexes, 150, 150
Class template basic_vectorbuf, 353, 354
Class template basic_vectorstream, 355, 356, 356
Class template flat_map_index, 328, 328
Class template iset_index, 329, 329
Class template iunordered_set_index, 330, 330
Class template map_index, 331, 331
Class template std, 399, 400, 400, 401, 401
Class template unordered_map_index, 333, 333
Formatting directly in your character vector: vectorstream, 124
Performance of raw memory allocations, 146

reserve_named_objects
Class template segment_manager, 334, 337

reserve_unique_objects
Class template segment_manager, 334, 337

reset
Class template scoped_ptr, 356, 357, 357
Class template shared_ptr, 360, 362, 362, 362
Class template unique_ptr, 392, 395
Class template weak_ptr, 363, 364

S
Scoped lock

252

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

if, 34
lock, 34
unlock, 34

Scoped Lock and Sharable Lock With File Locking
unlock_and_lock_sharable, 60

Scoped pointer
if, 133
pointer, 133
release, 133, 133
segment_manager, 133, 133

scoped_lock
Class template scoped_lock, 284

scoped_ptr
Class template scoped_ptr, 356, 356, 356

segment_manager
Building custom indexes, 150
Class template segment_manager, 334, 334, 335
Intrusive pointer, 131, 131
Scoped pointer, 133, 133

segment_manager_base
Building custom indexes, 150, 150
Class template segment_manager, 334
Class template segment_manager_base, 376
Struct template flat_map_index_aux, 280

segment_manager_base_type
Class template segment_manager_base, 376

send
Class template message_queue_t, 365, 366

set_default
Class permissions, 375, 375

set_max_cached_nodes
cached_adaptive_pool: Avoiding synchronization overhead, 109
cached_node_allocator: caching nodes to avoid overhead, 103
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 308

set_permissions
Class permissions, 375, 375

set_unrestricted
Class permissions, 375, 375

Sharable Lock And Upgradable Lock
if, 51
lock, 51
lock_sharable, 51, 51
lock_upgradable, 51
timed_lock_sharable, 51
timed_lock_upgradable, 51
try_lock_sharable, 51
try_lock_upgradable, 51
unlock_sharable, 51, 51
unlock_upgradable, 51

Sharable Locking (Sharable & Upgradable Mutexes)
lock_sharable, 48
timed_lock_sharable, 48
try_lock_sharable, 48
unlock_sharable, 48

sharable_lock
Class template sharable_lock, 288, 288, 288, 289, 289

Shared pointer and weak pointer

253

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assert, 135
deleter_type, 135

shared_memory_object
Class shared_memory_object, 379

shared_ptr
Class template shared_ptr, 360

shrink_by
Class mapped_region, 369, 370

shrink_to_fit
Building custom indexes, 150
Class template basic_managed_mapped_file, 347, 349
Class template basic_managed_shared_memory, 340, 341
Class template flat_map_index, 328, 328
Class template iset_index, 329, 329
Class template iunordered_set_index, 330, 330
Class template map_index, 331, 331
Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378
Class template unordered_map_index, 333, 333

shrink_to_fit_indexes
Class template segment_manager, 334, 337

Simple Lock Transfer
unlock, 53
unlock_sharable, 53

simple_seq_fit
Class template simple_seq_fit, 325

Struct accept_ownership_type
accept_ownership_type, 417

Struct create_only_t
create_only_t, 272

Struct defer_lock_type
defer_lock_type, 417

Struct mutex_family
mutex_family, 418
mutex_type, 418
recursive_mutex_type, 418

Struct null_mutex_family
mutex_type, 419
null_mutex_family, 419
recursive_mutex_type, 419

Struct open_copy_on_write_t
open_copy_on_write_t, 273

Struct open_only_t
open_only_t, 272

Struct open_or_create_t
open_or_create_t, 273

Struct open_read_only_t
open_read_only_t, 272

Struct open_read_private_t
open_read_private_t, 273

Struct template flat_map_index_aux
allocator_type, 280
flat_map_index_aux, 280
index_t, 280
key_less, 280
key_type, 280
mapped_type, 280
segment_manager_base, 280

254

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

value_type, 280
Struct template managed_shared_ptr

deleter, 389
managed_shared_ptr, 389
type, 389
void_allocator, 389

Struct template managed_unique_ptr
managed_unique_ptr, 396
type, 396

Struct template managed_weak_ptr
managed_weak_ptr, 397
type, 397

Struct try_to_lock_type
try_to_lock_type, 417

swap
Class file_lock, 401, 402
Class file_mapping, 278, 279
Class mapped_region, 369, 370
Class shared_memory_object, 379, 380
Class template adaptive_pool, 309, 312
Class template allocator, 294, 296
Class template basic_managed_external_buffer, 338, 339
Class template basic_managed_heap_memory, 346, 347
Class template basic_managed_mapped_file, 347, 348
Class template basic_managed_shared_memory, 340, 341
Class template basic_managed_windows_shared_memory, 342, 343
Class template basic_managed_xsi_shared_memory, 344, 345
Class template cached_adaptive_pool, 317, 320
Class template cached_node_allocator, 305, 308
Class template intrusive_ptr, 358, 360
Class template node_allocator, 297, 300
Class template private_adaptive_pool, 313, 316
Class template private_node_allocator, 301, 304
Class template scoped_lock, 284, 287
Class template scoped_ptr, 356, 357
Class template sharable_lock, 288, 290
Class template shared_ptr, 360, 363
Class template unique_ptr, 392, 395
Class template upgradable_lock, 291, 294
Class template weak_ptr, 363, 365
Class windows_shared_memory, 440, 441
Class xsi_shared_memory, 443, 444
Function template swap, 387, 387
Header < boost/interprocess/smart_ptr/intrusive_ptr.hpp >, 383
Header < boost/interprocess/smart_ptr/scoped_ptr.hpp >, 387
Header < boost/interprocess/smart_ptr/shared_ptr.hpp >, 388
Header < boost/interprocess/smart_ptr/unique_ptr.hpp >, 390
Header < boost/interprocess/smart_ptr/weak_ptr.hpp >, 396

swap_vector
Class template basic_vectorbuf, 353, 354
Class template basic_vectorstream, 355, 355
Class template std, 399, 400, 400
Formatting directly in your character vector: vectorstream, 124, 124

Synchronization guarantees
allocate, 74

255

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

T
The memory algorithm

mutex_family, 142
void_pointer, 142

The segment manager
allocate, 143

timed_lock
Class file_lock, 401, 402
Class interprocess_mutex, 407, 408
Class interprocess_recursive_mutex, 408, 409
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_mutex, 424, 425
Class named_recursive_mutex, 426, 427
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template scoped_lock, 284, 287, 287
Class template sharable_lock, 288, 290
Class template upgradable_lock, 291, 293
Exclusive Locking (Sharable & Upgradable Mutexes), 47
File Locking Operations, 58
Mutex Operations, 32

timed_lock_sharable
Class file_lock, 401, 403
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 415
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template sharable_lock, 290
File Locking Operations, 58
Sharable Lock And Upgradable Lock, 51
Sharable Locking (Sharable & Upgradable Mutexes), 48

timed_lock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template upgradable_lock, 293
Sharable Lock And Upgradable Lock, 51
Upgradable Locking (Upgradable Mutex only), 48

timed_receive
Class template message_queue_t, 365, 367

timed_send
Class template message_queue_t, 365, 366

timed_unlock_upgradable_and_lock
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 436
Class null_mutex, 437, 439, 439
Class template scoped_lock, 286
Promotions (Upgradable Mutex only), 50
Transfers To Scoped Lock, 55

timed_wait
Class interprocess_condition, 404, 405, 405
Class interprocess_condition_any, 405, 406, 406
Class interprocess_semaphore, 410, 410
Class named_condition, 420, 421, 421

256

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class named_condition_any, 422, 423, 423
Class named_semaphore, 428, 429

to_raw_pointer
Function template to_raw_pointer, 387, 388
Header < boost/interprocess/smart_ptr/intrusive_ptr.hpp >, 383
Header < boost/interprocess/smart_ptr/scoped_ptr.hpp >, 387
Header < boost/interprocess/smart_ptr/shared_ptr.hpp >, 388

traits_type
Class template std, 399
Formatting directly in your character buffer: bufferstream, 127
Formatting directly in your character vector: vectorstream, 124

Transferring Unlocked Locks
assert, 56
unlock_and_lock_sharable, 56

Transfers To Scoped Lock
timed_unlock_upgradable_and_lock, 55
try_unlock_sharable_and_lock, 55
try_unlock_upgradable_and_lock, 55
unlock_upgradable_and_lock, 55

Transfers To Sharable Lock
unlock_and_lock_sharable, 56
unlock_upgradable_and_lock_sharable, 56

Transfers To Upgradable Lock
try_unlock_sharable_and_lock_upgradable, 55
unlock_and_lock_upgradable, 55

truncate
Class shared_memory_object, 379, 380

try_atomic_func
Class template segment_manager, 334, 336

try_lock
Class file_lock, 401, 402
Class interprocess_mutex, 407, 408
Class interprocess_recursive_mutex, 408, 409
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_mutex, 424, 425
Class named_recursive_mutex, 426, 427
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 437, 437
Class template scoped_lock, 284, 286, 286
Class template sharable_lock, 288, 290
Class template upgradable_lock, 291, 293
Exclusive Locking (Sharable & Upgradable Mutexes), 47
File Locking Operations, 58
Global try_to_lock, 418
Mutex Operations, 32

try_lock_sharable
Class file_lock, 401, 403
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434
Class null_mutex, 437, 438, 438
Class template sharable_lock, 290
File Locking Operations, 58
Sharable Lock And Upgradable Lock, 51
Sharable Locking (Sharable & Upgradable Mutexes), 48

257

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

try_lock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template upgradable_lock, 293
Sharable Lock And Upgradable Lock, 51
Upgradable Locking (Upgradable Mutex only), 48

try_receive
Class template message_queue_t, 365, 366

try_send
Class template message_queue_t, 365, 366

try_to_lock_type
Struct try_to_lock_type, 417

try_unlock_sharable_and_lock
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 436
Class null_mutex, 437, 439, 439
Class template scoped_lock, 286
Promotions (Upgradable Mutex only), 50
Transfers To Scoped Lock, 55

try_unlock_sharable_and_lock_upgradable
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 436
Class null_mutex, 437, 439, 439
Class template upgradable_lock, 292
Promotions (Upgradable Mutex only), 50
Transfers To Upgradable Lock, 55

try_unlock_upgradable_and_lock
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 436
Class null_mutex, 437, 439, 439
Class template scoped_lock, 286
Promotions (Upgradable Mutex only), 50
Transfers To Scoped Lock, 55

try_wait
Class interprocess_semaphore, 410, 410
Class named_semaphore, 428, 429

type
Struct template managed_shared_ptr, 389
Struct template managed_unique_ptr, 396
Struct template managed_weak_ptr, 397

U
Unique pointer

assert, 139
unique_ptr

Class template unique_ptr, 392, 392, 393, 393
unlock

Class file_lock, 401, 402
Class interprocess_mutex, 407, 408
Class interprocess_recursive_mutex, 408, 409
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 414
Class named_mutex, 424, 425
Class named_recursive_mutex, 426, 427
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 434

258

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class null_mutex, 437, 438, 438
Class template scoped_lock, 284, 286, 287, 287
Class template sharable_lock, 288, 290
Class template upgradable_lock, 291, 293
Exclusive Locking (Sharable & Upgradable Mutexes), 47
File Locking Operations, 58
Mutex Operations, 32
Scoped lock, 34
Simple Lock Transfer, 53

unlock_and_lock_sharable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template sharable_lock, 289
Demotions (Upgradable Mutex only), 49
Lock Transfers Through Move Semantics, 53
Scoped Lock and Sharable Lock With File Locking, 60
Transferring Unlocked Locks, 56
Transfers To Sharable Lock, 56

unlock_and_lock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Demotions (Upgradable Mutex only), 49
Transfers To Upgradable Lock, 55

unlock_sharable
Class file_lock, 401, 403
Class interprocess_sharable_mutex, 411, 412
Class interprocess_upgradable_mutex, 413, 415
Class named_sharable_mutex, 430, 431
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template sharable_lock, 289, 290
File Locking Operations, 58
Sharable Lock And Upgradable Lock, 51, 51
Sharable Locking (Sharable & Upgradable Mutexes), 48
Simple Lock Transfer, 53

unlock_upgradable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template upgradable_lock, 292, 293
Sharable Lock And Upgradable Lock, 51
Upgradable Locking (Upgradable Mutex only), 48

unlock_upgradable_and_lock
Class interprocess_upgradable_mutex, 413, 416
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 439, 439
Class template scoped_lock, 285
Promotions (Upgradable Mutex only), 50
Transfers To Scoped Lock, 55

unlock_upgradable_and_lock_sharable
Class interprocess_upgradable_mutex, 413, 415
Class named_upgradable_mutex, 433, 435
Class null_mutex, 437, 438, 438
Class template sharable_lock, 289
Demotions (Upgradable Mutex only), 49
Transfers To Sharable Lock, 56

259

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unordered_map_index_aux
Class template unordered_map_index, 333

Upgradable Locking (Upgradable Mutex only)
lock_upgradable, 48
timed_lock_upgradable, 48
try_lock_upgradable, 48
unlock_upgradable, 48

upgradable_lock
Class template upgradable_lock, 291, 291, 291, 292, 292

Using shared memory as a pool of unnamed memory blocks
if, 3

V
value_type

Building custom indexes, 150
Struct template flat_map_index_aux, 280

vector_type
Class template std, 399
Formatting directly in your character vector: vectorstream, 124

void_allocator
Containers of containers, 117
Struct template managed_shared_ptr, 389

void_pointer
Class template segment_manager_base, 376
The memory algorithm, 142
Writing a new shared memory allocation algorithm, 148, 148, 148, 148

W
wait

Class bad_alloc, 277
Class interprocess_condition, 404, 404, 404
Class interprocess_condition_any, 405, 406, 406
Class interprocess_semaphore, 410, 410
Class named_condition, 420, 421, 421
Class named_condition_any, 422, 423, 423
Class named_semaphore, 428, 429

wbufferbuf
Header < boost/interprocess/streams/bufferstream.hpp >, 397

wbufferstream
Formatting directly in your character buffer: bufferstream, 127
Header < boost/interprocess/streams/bufferstream.hpp >, 397

weak_ptr
Class template weak_ptr, 363

wfixed_managed_shared_memory
Common Managed Shared Memory Classes, 67
Header < boost/interprocess/interprocess_fwd.hpp >, 282

What's A Message Queue?
data, 62

What's a Sharable and an Upgradable Mutex?
lock, 46

while
Anonymous mutex example, 35, 35
Direct iostream formatting: vectorstream and bufferstream, 124
Example: Serializing a database through the message queue, 93
Multiple allocation functions, 81

wibufferstream
Header < boost/interprocess/streams/bufferstream.hpp >, 397

260

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows_shared_memory
Class windows_shared_memory, 440

wmanaged_external_buffer
Header < boost/interprocess/interprocess_fwd.hpp >, 282
Managed External Buffer: Constructing all Boost.Interprocess objects in a user provided buffer, 88

wmanaged_heap_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282
Managed Heap Memory: Boost.Interprocess machinery in heap memory, 91

wmanaged_mapped_file
Common Managed Mapped Files, 70
Header < boost/interprocess/interprocess_fwd.hpp >, 282

wmanaged_shared_memory
Common Managed Shared Memory Classes, 67
Header < boost/interprocess/interprocess_fwd.hpp >, 282

wmanaged_windows_shared_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282

wmanaged_xsi_shared_memory
Header < boost/interprocess/interprocess_fwd.hpp >, 282

wobufferstream
Header < boost/interprocess/streams/bufferstream.hpp >, 397

Writing a new shared memory allocation algorithm
allocate, 148, 149, 149, 149
deallocate, 148, 149
get_min_size, 148, 149
grow, 148, 149
mutex_family, 148, 148, 148, 148, 149
mutex_type, 148
recursive_mutex_type, 148
void_pointer, 148, 148, 148, 148

X
xsi_key

Class xsi_key, 442
xsi_shared_memory

Class xsi_shared_memory, 443

Z
zero_free_memory

Class template rbtree_best_fit, 326, 327
Class template segment_manager_base, 376, 378

261

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Interprocess Reference

Header <boost/interprocess/allocators/adaptive_pool.hpp>
Describes adaptive_pool pooled shared memory STL compatible allocator

namespace boost {
namespace interprocess {
template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,

unsigned char OP>
bool operator==(const adaptive_pool< T, S, NodesPerBlock, F, OP > &,

const adaptive_pool< T, S, NodesPerBlock, F, OP > &);
template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,

unsigned char OP>
bool operator!=(const adaptive_pool< T, S, NodesPerBlock, F, OP > &,

const adaptive_pool< T, S, NodesPerBlock, F, OP > &);
}

}

Function template operator==

boost::interprocess::operator==

Synopsis

// In header: <boost/interprocess/allocators/adaptive_pool.hpp>

template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,
unsigned char OP>

bool operator==(const adaptive_pool< T, S, NodesPerBlock, F, OP > & alloc1,
const adaptive_pool< T, S, NodesPerBlock, F, OP > & alloc2);

Description

Equality test for same type of adaptive_pool

Function template operator!=

boost::interprocess::operator!=

Synopsis

// In header: <boost/interprocess/allocators/adaptive_pool.hpp>

template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,
unsigned char OP>

bool operator!=(const adaptive_pool< T, S, NodesPerBlock, F, OP > & alloc1,
const adaptive_pool< T, S, NodesPerBlock, F, OP > & alloc2);

Description

Inequality test for same type of adaptive_pool

262

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/allocators/adaptive_pool.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header <boost/interprocess/allocators/allocator.hpp>
Describes an allocator that allocates portions of fixed size memory buffer (shared memory, mapped file...)

namespace boost {
namespace interprocess {
template<typename T, typename SegmentManager>
bool operator==(const allocator< T, SegmentManager > &,

const allocator< T, SegmentManager > &);
template<typename T, typename SegmentManager>
bool operator!=(const allocator< T, SegmentManager > &,

const allocator< T, SegmentManager > &);
}

}

Function template operator==

boost::interprocess::operator==

Synopsis

// In header: <boost/interprocess/allocators/allocator.hpp>

template<typename T, typename SegmentManager>
bool operator==(const allocator< T, SegmentManager > & alloc1,

const allocator< T, SegmentManager > & alloc2);

Description

Equality test for same type of allocator

Function template operator!=

boost::interprocess::operator!=

Synopsis

// In header: <boost/interprocess/allocators/allocator.hpp>

template<typename T, typename SegmentManager>
bool operator!=(const allocator< T, SegmentManager > & alloc1,

const allocator< T, SegmentManager > & alloc2);

Description

Inequality test for same type of allocator

Header <boost/interprocess/allocators/cached_adapt-
ive_pool.hpp>
Describes cached_adaptive_pool pooled shared memory STL compatible allocator

263

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/allocators/allocator.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/allocators/cached_adaptive_pool.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/allocators/cached_adaptive_pool.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
namespace interprocess {
template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,

std::size_t OP>
bool operator==(const cached_adaptive_pool< T, S, NodesPerBlock, F, OP > &,

const cached_adaptive_pool< T, S, NodesPerBlock, F, OP > &);
template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,

std::size_t OP>
bool operator!=(const cached_adaptive_pool< T, S, NodesPerBlock, F, OP > &,

const cached_adaptive_pool< T, S, NodesPerBlock, F, OP > &);
}

}

Function template operator==

boost::interprocess::operator==

Synopsis

// In header: <boost/interprocess/allocators/cached_adaptive_pool.hpp>

template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,
std::size_t OP>

bool operator==(const cached_adaptive_pool< T, S, NodesPerBlock, F, OP > & alloc1,
const cached_adaptive_pool< T, S, NodesPerBlock, F, OP > & alloc2);

Description

Equality test for same type of cached_adaptive_pool

Function template operator!=

boost::interprocess::operator!=

Synopsis

// In header: <boost/interprocess/allocators/cached_adaptive_pool.hpp>

template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,
std::size_t OP>

bool operator!=(const cached_adaptive_pool< T, S, NodesPerBlock, F, OP > & alloc1,
const cached_adaptive_pool< T, S, NodesPerBlock, F, OP > & alloc2);

Description

Inequality test for same type of cached_adaptive_pool

Header <boost/interprocess/allocators/cached_node_allocat-
or.hpp>
Describes cached_cached_node_allocator pooled shared memory STL compatible allocator

264

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/allocators/cached_node_allocator.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/allocators/cached_node_allocator.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
namespace interprocess {
template<typename T, typename S, std::size_t NPC>
bool operator==(const cached_node_allocator< T, S, NPC > &,

const cached_node_allocator< T, S, NPC > &);
template<typename T, typename S, std::size_t NPC>
bool operator!=(const cached_node_allocator< T, S, NPC > &,

const cached_node_allocator< T, S, NPC > &);
}

}

Function template operator==

boost::interprocess::operator==

Synopsis

// In header: <boost/interprocess/allocators/cached_node_allocator.hpp>

template<typename T, typename S, std::size_t NPC>
bool operator==(const cached_node_allocator< T, S, NPC > & alloc1,

const cached_node_allocator< T, S, NPC > & alloc2);

Description

Equality test for same type of cached_node_allocator

Function template operator!=

boost::interprocess::operator!=

Synopsis

// In header: <boost/interprocess/allocators/cached_node_allocator.hpp>

template<typename T, typename S, std::size_t NPC>
bool operator!=(const cached_node_allocator< T, S, NPC > & alloc1,

const cached_node_allocator< T, S, NPC > & alloc2);

Description

Inequality test for same type of cached_node_allocator

Header <boost/interprocess/allocators/node_allocator.hpp>
Describes node_allocator pooled shared memory STL compatible allocator

265

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/allocators/node_allocator.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
namespace interprocess {
template<typename T, typename S, std::size_t NPC>
bool operator==(const node_allocator< T, S, NPC > &,

const node_allocator< T, S, NPC > &);
template<typename T, typename S, std::size_t NPC>
bool operator!=(const node_allocator< T, S, NPC > &,

const node_allocator< T, S, NPC > &);
}

}

Function template operator==

boost::interprocess::operator==

Synopsis

// In header: <boost/interprocess/allocators/node_allocator.hpp>

template<typename T, typename S, std::size_t NPC>
bool operator==(const node_allocator< T, S, NPC > & alloc1,

const node_allocator< T, S, NPC > & alloc2);

Description

Equality test for same type of node_allocator

Function template operator!=

boost::interprocess::operator!=

Synopsis

// In header: <boost/interprocess/allocators/node_allocator.hpp>

template<typename T, typename S, std::size_t NPC>
bool operator!=(const node_allocator< T, S, NPC > & alloc1,

const node_allocator< T, S, NPC > & alloc2);

Description

Inequality test for same type of node_allocator

Header <boost/interprocess/allocators/private_adaptive_pool.hpp>
Describes private_adaptive_pool_base pooled shared memory STL compatible allocator

266

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/allocators/private_adaptive_pool.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
namespace interprocess {
template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,

unsigned char OP>
bool operator==(const private_adaptive_pool< T, S, NodesPerBlock, F, OP > &,

const private_adaptive_pool< T, S, NodesPerBlock, F, OP > &);
template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,

unsigned char OP>
bool operator!=(const private_adaptive_pool< T, S, NodesPerBlock, F, OP > &,

const private_adaptive_pool< T, S, NodesPerBlock, F, OP > &);
}

}

Function template operator==

boost::interprocess::operator==

Synopsis

// In header: <boost/interprocess/allocators/private_adaptive_pool.hpp>

template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,
unsigned char OP>

bool operator==(const private_adaptive_pool< T, S, NodesPerBlock, F, OP > & alloc1,
const private_adaptive_pool< T, S, NodesPerBlock, F, OP > & alloc2);

Description

Equality test for same type of private_adaptive_pool

Function template operator!=

boost::interprocess::operator!=

Synopsis

// In header: <boost/interprocess/allocators/private_adaptive_pool.hpp>

template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,
unsigned char OP>

bool operator!=(const private_adaptive_pool< T, S, NodesPerBlock, F, OP > & alloc1,
const private_adaptive_pool< T, S, NodesPerBlock, F, OP > & alloc2);

Description

Inequality test for same type of private_adaptive_pool

Header <boost/interprocess/allocators/private_node_allocat-
or.hpp>
Describes private_node_allocator_base pooled shared memory STL compatible allocator

267

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/allocators/private_node_allocator.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/allocators/private_node_allocator.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
namespace interprocess {
template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,

unsigned char OP>
bool operator==(const private_node_allocator< T, S, NodesPerBlock, F, OP > &,

const private_node_allocator< T, S, NodesPerBlock, F, OP > &);
template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,

unsigned char OP>
bool operator!=(const private_node_allocator< T, S, NodesPerBlock, F, OP > &,

const private_node_allocator< T, S, NodesPerBlock, F, OP > &);
}

}

Function template operator==

boost::interprocess::operator==

Synopsis

// In header: <boost/interprocess/allocators/private_node_allocator.hpp>

template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,
unsigned char OP>

bool operator==(const private_node_allocator< T, S, NodesPerBlock, F, OP > & alloc1,
const private_node_allocator< T, S, NodesPerBlock, F, OP > & alloc2);

Description

Equality test for same type of private_node_allocator

Function template operator!=

boost::interprocess::operator!=

Synopsis

// In header: <boost/interprocess/allocators/private_node_allocator.hpp>

template<typename T, typename S, std::size_t NodesPerBlock, std::size_t F,
unsigned char OP>

bool operator!=(const private_node_allocator< T, S, NodesPerBlock, F, OP > & alloc1,
const private_node_allocator< T, S, NodesPerBlock, F, OP > & alloc2);

Description

Inequality test for same type of private_node_allocator

Header <boost/interprocess/anonymous_shared_memory.hpp>
Describes a function that creates anonymous shared memory that can be shared between forked processes

268

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/anonymous_shared_memory.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
namespace interprocess {
mapped_region anonymous_shared_memory(std::size_t, void * = 0);

}
}

Function anonymous_shared_memory

boost::interprocess::anonymous_shared_memory

Synopsis

// In header: <boost/interprocess/anonymous_shared_memory.hpp>

mapped_region anonymous_shared_memory(std::size_t size, void * address = 0);

Description

A function that creates an anonymous shared memory segment of size "size". If "address" is passed the function will try to map the
segment in that address. Otherwise the operating system will choose the mapping address. The function returns a mapped_region
holding that segment or throws interprocess_exception if the function fails.

Header <boost/interprocess/containers/allocation_type.hpp>

Global allocate_new

boost::interprocess::allocate_new

Synopsis

// In header: <boost/interprocess/containers/allocation_type.hpp>

static const allocation_type allocate_new;

Global expand_fwd

boost::interprocess::expand_fwd

Synopsis

// In header: <boost/interprocess/containers/allocation_type.hpp>

static const allocation_type expand_fwd;

Global expand_bwd

boost::interprocess::expand_bwd

269

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/containers/allocation_type.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/containers/allocation_type.hpp>

static const allocation_type expand_bwd;

Global shrink_in_place

boost::interprocess::shrink_in_place

Synopsis

// In header: <boost/interprocess/containers/allocation_type.hpp>

static const allocation_type shrink_in_place;

Global try_shrink_in_place

boost::interprocess::try_shrink_in_place

Synopsis

// In header: <boost/interprocess/containers/allocation_type.hpp>

static const allocation_type try_shrink_in_place;

Global nothrow_allocation

boost::interprocess::nothrow_allocation

Synopsis

// In header: <boost/interprocess/containers/allocation_type.hpp>

static const allocation_type nothrow_allocation;

Global zero_memory

boost::interprocess::zero_memory

Synopsis

// In header: <boost/interprocess/containers/allocation_type.hpp>

static const allocation_type zero_memory;

270

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header <boost/interprocess/containers/deque.hpp>

Header <boost/interprocess/containers/flat_map.hpp>

Header <boost/interprocess/containers/flat_set.hpp>

Header <boost/interprocess/containers/list.hpp>

Header <boost/interprocess/containers/map.hpp>

Header <boost/interprocess/containers/pair.hpp>

Header <boost/interprocess/containers/set.hpp>

Header <boost/interprocess/containers/slist.hpp>

Header <boost/interprocess/containers/stable_vector.hpp>

Header <boost/interprocess/containers/string.hpp>

Header <boost/interprocess/containers/vector.hpp>

Header <boost/interprocess/containers/version_type.hpp>

Header <boost/interprocess/creation_tags.hpp>

namespace boost {
namespace interprocess {
struct create_only_t;
struct open_only_t;
struct open_read_only_t;
struct open_read_private_t;
struct open_copy_on_write_t;
struct open_or_create_t;

static const create_only_t create_only;
static const open_only_t open_only;
static const open_read_only_t open_read_only;
static const open_or_create_t open_or_create;
static const open_copy_on_write_t open_copy_on_write;

}
}

Struct create_only_t

boost::interprocess::create_only_t

271

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/containers/deque.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/containers/flat_map.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/containers/flat_set.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/containers/list.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/containers/map.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/containers/pair.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/containers/set.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/containers/slist.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/containers/stable_vector.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/containers/string.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/containers/vector.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/containers/version_type.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/creation_tags.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/creation_tags.hpp>

struct create_only_t {
};

Description

Tag to indicate that the resource must be only created

Struct open_only_t

boost::interprocess::open_only_t

Synopsis

// In header: <boost/interprocess/creation_tags.hpp>

struct open_only_t {
};

Description

Tag to indicate that the resource must be only opened

Struct open_read_only_t

boost::interprocess::open_read_only_t

Synopsis

// In header: <boost/interprocess/creation_tags.hpp>

struct open_read_only_t {
};

Description

Tag to indicate that the resource must be only opened for reading

Struct open_read_private_t

boost::interprocess::open_read_private_t

272

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/creation_tags.hpp>

struct open_read_private_t {
};

Description

Tag to indicate that the resource must be only opened privately for reading

Struct open_copy_on_write_t

boost::interprocess::open_copy_on_write_t

Synopsis

// In header: <boost/interprocess/creation_tags.hpp>

struct open_copy_on_write_t {
};

Description

Tag to indicate that the resource must be only opened for reading

Struct open_or_create_t

boost::interprocess::open_or_create_t

Synopsis

// In header: <boost/interprocess/creation_tags.hpp>

struct open_or_create_t {
};

Description

Tag to indicate that the resource must be created. If already created, it must be opened.

Global create_only

boost::interprocess::create_only

273

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/creation_tags.hpp>

static const create_only_t create_only;

Description

Value to indicate that the resource must be only created

Global open_only

boost::interprocess::open_only

Synopsis

// In header: <boost/interprocess/creation_tags.hpp>

static const open_only_t open_only;

Description

Value to indicate that the resource must be only opened

Global open_read_only

boost::interprocess::open_read_only

Synopsis

// In header: <boost/interprocess/creation_tags.hpp>

static const open_read_only_t open_read_only;

Description

Value to indicate that the resource must be only opened for reading

Global open_or_create

boost::interprocess::open_or_create

Synopsis

// In header: <boost/interprocess/creation_tags.hpp>

static const open_or_create_t open_or_create;

Description

Value to indicate that the resource must be created. If already created, it must be opened.

274

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Global open_copy_on_write

boost::interprocess::open_copy_on_write

Synopsis

// In header: <boost/interprocess/creation_tags.hpp>

static const open_copy_on_write_t open_copy_on_write;

Description

Value to indicate that the resource must be only opened for reading

Header <boost/interprocess/errors.hpp>
Describes the error numbering of interprocess classes

namespace boost {
namespace interprocess {

enum error_code_t { no_error = = 0, system_error, other_error,
 security_error, read_only_error, io_error, path_error,
 not_found_error, busy_error, already_exists_error,
 not_empty_error, is_directory_error,
 out_of_space_error, out_of_memory_error,
 out_of_resource_error, lock_error, sem_error,
 mode_error, size_error, corrupted_error,
 not_such_file_or_directory, invalid_argument,
 timeout_when_locking_error,
 timeout_when_waiting_error };

typedef int native_error_t;
}

}

Header <boost/interprocess/exceptions.hpp>
Describes exceptions thrown by interprocess classes

namespace boost {
namespace interprocess {
class interprocess_exception;
class lock_exception;
class bad_alloc;

}
}

Class interprocess_exception

boost::interprocess::interprocess_exception

275

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/errors.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/exceptions.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/exceptions.hpp>

class interprocess_exception : public exception {
public:
// construct/copy/destruct
interprocess_exception(const char *);
interprocess_exception(const error_info &, const char * = 0);
~interprocess_exception();

// public member functions
const char * what() const;
native_error_t get_native_error() const;
error_code_t get_error_code() const;

};

Description

This class is the base class of all exceptions thrown by boost::interprocess

interprocess_exception public construct/copy/destruct

1.
interprocess_exception(const char * err);

2.
interprocess_exception(const error_info & err_info, const char * str = 0);

3.
~interprocess_exception();

interprocess_exception public member functions

1.
const char * what() const;

2.
native_error_t get_native_error() const;

3.
error_code_t get_error_code() const;

Class lock_exception

boost::interprocess::lock_exception

276

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/exceptions.hpp>

class lock_exception : public boost::interprocess::interprocess_exception {
public:
// construct/copy/destruct
lock_exception();

// public member functions
const char * what() const;

};

Description

This is the exception thrown by shared interprocess_mutex family when a deadlock situation is detected or when using a interpro-
cess_condition the interprocess_mutex is not locked

lock_exception public construct/copy/destruct

1.
lock_exception();

lock_exception public member functions

1.
const char * what() const;

Class bad_alloc

boost::interprocess::bad_alloc

Synopsis

// In header: <boost/interprocess/exceptions.hpp>

class bad_alloc : public boost::interprocess::interprocess_exception {
public:
// construct/copy/destruct
bad_alloc();

// public member functions
const char * what() const;

};

Description

This is the exception thrown by named interprocess_semaphore when a deadlock situation is detected or when an error is detected
in the post/wait operation This is the exception thrown by synchronization objects when there is an error in a wait() function This
exception is thrown when a named object is created in "open_only" mode and the resource was not already created This exception
is thrown when a memory request can't be fulfilled.

277

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bad_alloc public construct/copy/destruct

1.
bad_alloc();

bad_alloc public member functions

1.
const char * what() const;

Header <boost/interprocess/file_mapping.hpp>
Describes file_mapping and mapped region classes

namespace boost {
namespace interprocess {
class file_mapping;
class remove_file_on_destroy;

}
}

Class file_mapping

boost::interprocess::file_mapping

Synopsis

// In header: <boost/interprocess/file_mapping.hpp>

class file_mapping {
public:
// construct/copy/destruct
file_mapping();
file_mapping(const char *, mode_t);
file_mapping(file_mapping &&);

 file_mapping& operator=(file_mapping &&);
~file_mapping();

// public member functions
void swap(file_mapping &);
mode_t get_mode() const;
mapping_handle_t get_mapping_handle() const;
const char * get_name() const;

// public static functions
static bool remove(const char *);

};

Description

A class that wraps a file-mapping that can be used to create mapped regions from the mapped files

file_mapping public construct/copy/destruct

1.
file_mapping();

278

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/file_mapping.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Constructs an empty file mapping. Does not throw

2.
file_mapping(const char * filename, mode_t mode);

Opens a file mapping of file "filename", starting in offset "file_offset", and the mapping's size will be "size". The mapping can
be opened for read-only "read_only" or read-write "read_write" modes. Throws interprocess_exception on error.

3.
file_mapping(file_mapping && moved);

Moves the ownership of "moved"'s file mapping object to *this. After the call, "moved" does not represent any file mapping object.
Does not throw

4.
file_mapping& operator=(file_mapping && moved);

Moves the ownership of "moved"'s file mapping to *this. After the call, "moved" does not represent any file mapping. Does not
throw

5.
~file_mapping();

Destroys the file mapping. All mapped regions created from this are still valid. Does not throw

file_mapping public member functions

1.
void swap(file_mapping & other);

Swaps to file_mappings. Does not throw.

2.
mode_t get_mode() const;

Returns access mode used in the constructor

3.
mapping_handle_t get_mapping_handle() const;

Obtains the mapping handle to be used with mapped_region

4.
const char * get_name() const;

Returns the name of the file used in the constructor.

file_mapping public static functions

1.
static bool remove(const char * filename);

Removes the file named "filename" even if it's been memory mapped. Returns true on success. The function might fail in some
operating systems if the file is being used other processes and no deletion permission was shared.

Class remove_file_on_destroy

boost::interprocess::remove_file_on_destroy

279

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/file_mapping.hpp>

class remove_file_on_destroy {
public:
// construct/copy/destruct
remove_file_on_destroy(const char *);
~remove_file_on_destroy();

};

Description

A class that stores the name of a file and tries to remove it in its destructor Useful to remove temporary files in the presence of ex-
ceptions

remove_file_on_destroy public construct/copy/destruct

1.
remove_file_on_destroy(const char * name);

2.
~remove_file_on_destroy();

Header <boost/interprocess/indexes/flat_map_index.hpp>
Describes index adaptor of boost::map container, to use it as name/shared memory index

namespace boost {
namespace interprocess {
template<typename MapConfig> struct flat_map_index_aux;

}
}

Struct template flat_map_index_aux

boost::interprocess::flat_map_index_aux — Helper class to define typedefs from IndexTraits.

Synopsis

// In header: <boost/interprocess/indexes/flat_map_index.hpp>

template<typename MapConfig>
struct flat_map_index_aux {
// types
typedef MapConfig::key_type key_type;
typedef MapConfig::mapped_type mapped_type;
typedef MapConfig::segment_manager_base segment_manager_base;
typedef std::less< key_type > key_less;
typedef std::pair< key_type, mapped_type > value_type;
typedef allocator< value_type,segment_manager_base > allocator_type;
typedef flat_map< key_type, mapped_type, key_less, allocator_type > index_t;

};

280

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/indexes/flat_map_index.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header <boost/interprocess/indexes/iset_index.hpp>
Describes index adaptor of boost::intrusive::set container, to use it as name/shared memory index

Header <boost/interprocess/indexes/iunordered_set_index.hpp>
Describes index adaptor of boost::intrusive::unordered_set container, to use it as name/shared memory index

Header <boost/interprocess/indexes/map_index.hpp>
Describes index adaptor of boost::map container, to use it as name/shared memory index

Header <boost/interprocess/indexes/null_index.hpp>
Describes a null index adaptor, so that if we don't want to construct named objects, we can use this null index type to save resources.

Header <boost/interprocess/indexes/unordered_map_index.hpp>
Describes index adaptor of boost::unordered_map container, to use it as name/shared memory index

281

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/indexes/iset_index.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/indexes/iunordered_set_index.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/indexes/map_index.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/indexes/null_index.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/indexes/unordered_map_index.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header <boost/interprocess/interprocess_fwd.hpp>

namespace boost {
namespace interprocess {
template<typename Mutex> class scoped_lock;
template<typename SharableMutex> class sharable_lock;
template<typename UpgradableMutex> class upgradable_lock;
template<typename T, typename SegmentManager> class allocator;
template<typename T, typename SegmentManager,

std::size_t NodesPerBlock = 64>
class node_allocator;

template<typename T, typename SegmentManager,
std::size_t NodesPerBlock = 64>

class private_node_allocator;
template<typename T, typename SegmentManager,

std::size_t NodesPerBlock = 64>
class cached_node_allocator;

template<typename T, typename SegmentManager,
std::size_t NodesPerBlock = 64, std::size_t MaxFreeBlocks = 2,
unsigned char OverheadPercent = 5>

class adaptive_pool;
template<typename T, typename SegmentManager,

std::size_t NodesPerBlock = 64, std::size_t MaxFreeBlocks = 2,
unsigned char OverheadPercent = 5>

class private_adaptive_pool;
template<typename T, typename SegmentManager,

std::size_t NodesPerBlock = 64, std::size_t MaxFreeBlocks = 2,
unsigned char OverheadPercent = 5>

class cached_adaptive_pool;
template<typename T, typename DifferenceType = std::ptrdiff_t,

typename OffsetType = std::size_t,
std::size_t Alignment = offset_type_alignment>

class offset_ptr;
template<typename MutexFamily, typename VoidMutex = offset_ptr<void> >
class simple_seq_fit;

template<typename MutexFamily, typename VoidMutex = offset_ptr<void>,
std::size_t MemAlignment = 0>

class rbtree_best_fit;
template<typename IndexConfig> class flat_map_index;
template<typename IndexConfig> class iset_index;
template<typename IndexConfig> class iunordered_set_index;
template<typename IndexConfig> class map_index;
template<typename IndexConfig> class null_index;
template<typename IndexConfig> class unordered_map_index;
template<typename CharType, typename MemoryAlgorithm,

template< class IndexConfig > class IndexType>
class segment_manager;

template<typename CharType, typename MemoryAlgorithm,
template< class IndexConfig > class IndexType>

class basic_managed_external_buffer;
template<typename CharType, typename MemoryAlgorithm,

template< class IndexConfig > class IndexType>
class basic_managed_shared_memory;

template<typename CharType, typename MemoryAlgorithm,
template< class IndexConfig > class IndexType>

class basic_managed_windows_shared_memory;
template<typename CharType, typename MemoryAlgorithm,

template< class IndexConfig > class IndexType>
class basic_managed_xsi_shared_memory;

template<typename CharType, typename MemoryAlgorithm,
template< class IndexConfig > class IndexType>

class basic_managed_heap_memory;

282

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/interprocess_fwd.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<typename CharType, typename MemoryAlgorithm,
template< class IndexConfig > class IndexType>

class basic_managed_mapped_file;
template<typename CharT, typename CharTraits = std::char_traits<CharT> >
class basic_bufferbuf;

template<typename CharT, typename CharTraits = std::char_traits<CharT> >
class basic_ibufferstream;

template<typename CharT, typename CharTraits = std::char_traits<CharT> >
class basic_obufferstream;

template<typename CharT, typename CharTraits = std::char_traits<CharT> >
class basic_bufferstream;

template<typename CharVector,
typename CharTraits = std::char_traits<typename CharVector::value_type> >

class basic_vectorbuf;
template<typename CharVector,

typename CharTraits = std::char_traits<typename CharVector::value_type> >
class basic_ivectorstream;

template<typename CharVector,
typename CharTraits = std::char_traits<typename CharVector::value_type> >

class basic_ovectorstream;
template<typename CharVector,

typename CharTraits = std::char_traits<typename CharVector::value_type> >
class basic_vectorstream;

template<typename T, typename Deleter> class scoped_ptr;
template<typename T, typename VoidPointer> class intrusive_ptr;
template<typename T, typename VoidAllocator, typename Deleter>
class shared_ptr;

template<typename T, typename VoidAllocator, typename Deleter>
class weak_ptr;

template<typename VoidPointer> class message_queue_t;

typedef basic_managed_external_buffer< char,rbtree_best_fit< null_mutex_family >,iset_in↵
dex > managed_external_buffer;

typedef basic_managed_external_buffer< wchar_t,rbtree_best_fit< null_mutex_family >,iset_in↵
dex > wmanaged_external_buffer;

typedef basic_managed_shared_memory< char,rbtree_best_fit< mutex_family >,iset_index > man↵
aged_shared_memory;

typedef basic_managed_shared_memory< wchar_t,rbtree_best_fit< mutex_family >,iset_index > wman↵
aged_shared_memory;

typedef basic_managed_windows_shared_memory< char,rbtree_best_fit< mutex_family >,iset_in↵
dex > managed_windows_shared_memory;

typedef basic_managed_windows_shared_memory< wchar_t,rbtree_best_fit< mutex_family >,iset_in↵
dex > wmanaged_windows_shared_memory;

typedef basic_managed_xsi_shared_memory< char,rbtree_best_fit< mutex_family >,iset_index > man↵
aged_xsi_shared_memory;

typedef basic_managed_xsi_shared_memory< wchar_t,rbtree_best_fit< mutex_family >,iset_in↵
dex > wmanaged_xsi_shared_memory;

typedef basic_managed_shared_memory< char,rbtree_best_fit< mutex_family, void * >,iset_in↵
dex > fixed_managed_shared_memory;

typedef basic_managed_shared_memory< wchar_t,rbtree_best_fit< mutex_family, void * >,iset_in↵
dex > wfixed_managed_shared_memory;

typedef basic_managed_heap_memory< char,rbtree_best_fit< null_mutex_family >,iset_index > man↵
aged_heap_memory;

typedef basic_managed_heap_memory< wchar_t,rbtree_best_fit< null_mutex_family >,iset_in↵
dex > wmanaged_heap_memory;

typedef basic_managed_mapped_file< char,rbtree_best_fit< mutex_family >,iset_index > man↵
aged_mapped_file;

typedef basic_managed_mapped_file< wchar_t,rbtree_best_fit< mutex_family >,iset_index > wman↵

283

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

aged_mapped_file;
typedef message_queue_t< offset_ptr< void > > message_queue;

static const std::size_t offset_type_alignment;
}

}

Class template scoped_lock

boost::interprocess::scoped_lock

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename Mutex>
class scoped_lock {
public:
// construct/copy/destruct
scoped_lock();
explicit scoped_lock(mutex_type &);
scoped_lock(mutex_type &, defer_lock_type);
scoped_lock(mutex_type &, accept_ownership_type);
scoped_lock(mutex_type &, try_to_lock_type);
scoped_lock(mutex_type &, const boost::posix_time::ptime &);
scoped_lock(scoped_lock &&);
template<typename T>
explicit scoped_lock(upgradable_lock< T > &&, unspecified = 0);

template<typename T>
scoped_lock(upgradable_lock< T > &&, try_to_lock_type, unspecified = 0);

template<typename T>
scoped_lock(upgradable_lock< T > &&, boost::posix_time::ptime &,

unspecified = 0);
template<typename T>
scoped_lock(sharable_lock< T > &&, try_to_lock_type, unspecified = 0);

 scoped_lock& operator=(scoped_lock &&);
~scoped_lock();

// public member functions
void lock();
*bool try_lock();
*bool timed_lock(const boost::posix_time::ptime &);
*void unlock();
bool owns() const;
operator unspecified_bool_type() const;
mutex_type * mutex() const;
mutex_type * release();
void swap(scoped_lock< mutex_type > &);

};

Description

scoped_lock is meant to carry out the tasks for locking, unlocking, try-locking and timed-locking (recursive or not) for the Mutex.
The Mutex need not supply all of this functionality. If the client of scoped_lock<Mutex> does not use functionality which the Mutex
does not supply, no harm is done. Mutex ownership transfer is supported through the syntax of move semantics. Ownership transfer
is allowed both by construction and assignment. The scoped_lock does not support copy semantics. A compile time error results if
copy construction or copy assignment is attempted. Mutex ownership can also be moved from an upgradable_lock and sharable_lock
via constructor. In this role, scoped_lock shares the same functionality as a write_lock.

284

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

scoped_lock public construct/copy/destruct

1.
scoped_lock();

Effects: Default constructs a scoped_lock. Postconditions: owns() == false and mutex() == 0.

2.
explicit scoped_lock(mutex_type & m);

Effects: m.lock(). Postconditions: owns() == true and mutex() == &m. Notes: The constructor will take ownership of the mutex.
If another thread already owns the mutex, this thread will block until the mutex is released. Whether or not this constructor handles
recursive locking depends upon the mutex.

3.
scoped_lock(mutex_type & m, defer_lock_type);

Postconditions: owns() == false, and mutex() == &m. Notes: The constructor will not take ownership of the mutex. There is no
effect required on the referenced mutex.

4.
scoped_lock(mutex_type & m, accept_ownership_type);

Postconditions: owns() == true, and mutex() == &m. Notes: The constructor will suppose that the mutex is already locked. There
is no effect required on the referenced mutex.

5.
scoped_lock(mutex_type & m, try_to_lock_type);

Effects: m.try_lock(). Postconditions: mutex() == &m. owns() == the return value of the m.try_lock() executed within the con-
structor. Notes: The constructor will take ownership of the mutex if it can do so without waiting. Whether or not this constructor
handles recursive locking depends upon the mutex. If the mutex_type does not support try_lock, this constructor will fail at
compile time if instantiated, but otherwise have no effect.

6.
scoped_lock(mutex_type & m, const boost::posix_time::ptime & abs_time);

Effects: m.timed_lock(abs_time). Postconditions: mutex() == &m. owns() == the return value of the m.timed_lock(abs_time)
executed within the constructor. Notes: The constructor will take ownership of the mutex if it can do it until abs_time is reached.
Whether or not this constructor handles recursive locking depends upon the mutex. If the mutex_type does not support try_lock,
this constructor will fail at compile time if instantiated, but otherwise have no effect.

7.
scoped_lock(scoped_lock && scop);

Postconditions: mutex() == the value scop.mutex() had before the constructor executes. s1.mutex() == 0. owns() == the value of
scop.owns() before the constructor executes. scop.owns(). Notes: If the scop scoped_lock owns the mutex, ownership is moved
to thisscoped_lock with no blocking. If the scop scoped_lock does not own the mutex, then neither will this scoped_lock.
Only a moved scoped_lock's will match this signature. An non-moved scoped_lock can be moved with the expression:
"boost::move(lock);". This constructor does not alter the state of the mutex, only potentially who owns it.

8.
template<typename T>
explicit scoped_lock(upgradable_lock< T > && upgr, unspecified = 0);

Effects: If upgr.owns() then calls unlock_upgradable_and_lock() on the referenced mutex. upgr.release() is called. Postconditions:
mutex() == the value upgr.mutex() had before the construction. upgr.mutex() == 0. owns() == upgr.owns() before the construction.
upgr.owns() == false after the construction. Notes: If upgr is locked, this constructor will lock this scoped_lock while unlocking
upgr. If upgr is unlocked, then this scoped_lock will be unlocked as well. Only a moved upgradable_lock's will match this
signature. An non-moved upgradable_lock can be moved with the expression: "boost::move(lock);" This constructor may
block if other threads hold a sharable_lock on this mutex (sharable_lock's can share ownership with an upgradable_lock).

285

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

9.
template<typename T>
scoped_lock(upgradable_lock< T > && upgr, try_to_lock_type, unspecified = 0);

Effects: If upgr.owns() then calls try_unlock_upgradable_and_lock() on the referenced mutex: a)if try_unlock_upgrad-
able_and_lock() returns true then mutex() obtains the value from upgr.release() and owns() is set to true. b)if try_unlock_upgrad-
able_and_lock() returns false then upgr is unaffected and this scoped_lock construction as the same effects as a default construc-
tion. c)Else upgr.owns() is false. mutex() obtains the value from upgr.release() and owns() is set to false Notes: This construction
will not block. It will try to obtain mutex ownership from upgr immediately, while changing the lock type from a "read lock" to
a "write lock". If the "read lock" isn't held in the first place, the mutex merely changes type to an unlocked "write lock". If the
"read lock" is held, then mutex transfer occurs only if it can do so in a non-blocking manner.

10.
template<typename T>
scoped_lock(upgradable_lock< T > && upgr,

boost::posix_time::ptime & abs_time, unspecified = 0);

Effects: If upgr.owns() then calls timed_unlock_upgradable_and_lock(abs_time) on the referenced mutex: a)if timed_unlock_up-
gradable_and_lock(abs_time) returns true then mutex() obtains the value from upgr.release() and owns() is set to true. b)if
timed_unlock_upgradable_and_lock(abs_time) returns false then upgr is unaffected and this scoped_lock construction as the
same effects as a default construction. c)Else upgr.owns() is false. mutex() obtains the value from upgr.release() and owns() is
set to false Notes: This construction will not block. It will try to obtain mutex ownership from upgr immediately, while changing
the lock type from a "read lock" to a "write lock". If the "read lock" isn't held in the first place, the mutex merely changes type
to an unlocked "write lock". If the "read lock" is held, then mutex transfer occurs only if it can do so in a non-blocking manner.

11.
template<typename T>
scoped_lock(sharable_lock< T > && shar, try_to_lock_type, unspecified = 0);

Effects: If shar.owns() then calls try_unlock_sharable_and_lock() on the referenced mutex. a)if try_unlock_sharable_and_lock()
returns true then mutex() obtains the value from shar.release() and owns() is set to true. b)if try_unlock_sharable_and_lock() returns
false then shar is unaffected and this scoped_lock construction has the same effects as a default construction. c)Else shar.owns()
is false. mutex() obtains the value from shar.release() and owns() is set to false Notes: This construction will not block. It will try
to obtain mutex ownership from shar immediately, while changing the lock type from a "read lock" to a "write lock". If the "read
lock" isn't held in the first place, the mutex merely changes type to an unlocked "write lock". If the "read lock" is held, then mutex
transfer occurs only if it can do so in a non-blocking manner.

12.
scoped_lock& operator=(scoped_lock && scop);

Effects: If owns() before the call, then unlock() is called on mutex(). *this gets the state of scop and scop gets set to a default
constructed state. Notes: With a recursive mutex it is possible that both this and scop own the same mutex before the assignment.
In this case, this will own the mutex after the assignment (and scop will not), but the mutex's lock count will be decremented by
one.

13.
~scoped_lock();

Effects: if (owns()) mp_mutex->unlock(). Notes: The destructor behavior ensures that the mutex lock is not leaked.

scoped_lock public member functions

1.
void lock();

Effects: If mutex() == 0 or if already locked, throws a lock_exception() exception. Calls lock() on the referenced mutex. Postcon-
ditions: owns() == true. Notes: The scoped_lock changes from a state of not owning the mutex, to owning the mutex, blocking
if necessary.

2.
*bool try_lock();

286

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: If mutex() == 0 or if already locked, throws a lock_exception() exception. Calls try_lock() on the referenced mutex.
Postconditions: owns() == the value returned from mutex()->try_lock(). Notes: The scoped_lock changes from a state of not
owning the mutex, to owning the mutex, but only if blocking was not required. If the mutex_type does not support try_lock(),
this function will fail at compile time if instantiated, but otherwise have no effect.

3.
*bool timed_lock(const boost::posix_time::ptime & abs_time);

Effects: If mutex() == 0 or if already locked, throws a lock_exception() exception. Calls timed_lock(abs_time) on the referenced
mutex. Postconditions: owns() == the value returned from mutex()-> timed_lock(abs_time). Notes: The scoped_lock changes
from a state of not owning the mutex, to owning the mutex, but only if it can obtain ownership by the specified time. If the mu-
tex_type does not support timed_lock (), this function will fail at compile time if instantiated, but otherwise have no effect.

4.
*void unlock();

Effects: If mutex() == 0 or if not locked, throws a lock_exception() exception. Calls unlock() on the referenced mutex. Postcon-
ditions: owns() == false. Notes: The scoped_lock changes from a state of owning the mutex, to not owning the mutex.

5.
bool owns() const;

Effects: Returns true if this scoped_lock has acquired the referenced mutex.

6.
operator unspecified_bool_type() const;

Conversion to bool. Returns owns().

7.
mutex_type * mutex() const;

Effects: Returns a pointer to the referenced mutex, or 0 if there is no mutex to reference.

8.
mutex_type * release();

Effects: Returns a pointer to the referenced mutex, or 0 if there is no mutex to reference. Postconditions: mutex() == 0 and owns()
== false.

9.
void swap(scoped_lock< mutex_type > & other);

Effects: Swaps state with moved lock. Throws: Nothing.

Class template sharable_lock

boost::interprocess::sharable_lock

287

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename SharableMutex>
class sharable_lock {
public:
// construct/copy/destruct
sharable_lock();
explicit sharable_lock(mutex_type &);
sharable_lock(mutex_type &, defer_lock_type);
sharable_lock(mutex_type &, accept_ownership_type);
sharable_lock(mutex_type &, try_to_lock_type);
sharable_lock(mutex_type &, const boost::posix_time::ptime &);
sharable_lock(sharable_lock< mutex_type > &&);
template<typename T> sharable_lock(upgradable_lock< T > &&, unspecified = 0);
template<typename T> sharable_lock(scoped_lock< T > &&, unspecified = 0);

 sharable_lock& operator=(sharable_lock< mutex_type > &&);
~sharable_lock();

// public member functions
void lock();
bool try_lock();
bool timed_lock(const boost::posix_time::ptime &);
void unlock();
bool owns() const;
operator unspecified_bool_type() const;
mutex_type * mutex() const;
mutex_type * release();
void swap(sharable_lock< mutex_type > &);

};

Description

sharable_lock is meant to carry out the tasks for sharable-locking (such as read-locking), unlocking, try-sharable-locking and timed-
sharable-locking (recursive or not) for the Mutex. The Mutex need not supply all of this functionality. If the client of sharable_lock<Mu-
tex> does not use functionality which the Mutex does not supply, no harm is done. Mutex ownership can be shared among shar-
able_locks, and a single upgradable_lock. sharable_lock does not support copy semantics. But sharable_lock supports ownership
transfer from an sharable_lock, upgradable_lock and scoped_lock via transfer_lock syntax.

sharable_lock public construct/copy/destruct

1.
sharable_lock();

Effects: Default constructs a sharable_lock. Postconditions: owns() == false and mutex() == 0.

2.
explicit sharable_lock(mutex_type & m);

Effects: m.lock_sharable(). Postconditions: owns() == true and mutex() == &m. Notes: The constructor will take sharable-own-
ership of the mutex. If another thread already owns the mutex with exclusive ownership (scoped_lock), this thread will block
until the mutex is released. If another thread owns the mutex with sharable or upgradable ownership, then no blocking will occur.
Whether or not this constructor handles recursive locking depends upon the mutex.

3.
sharable_lock(mutex_type & m, defer_lock_type);

Postconditions: owns() == false, and mutex() == &m. Notes: The constructor will not take ownership of the mutex. There is no
effect required on the referenced mutex.

288

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

4.
sharable_lock(mutex_type & m, accept_ownership_type);

Postconditions: owns() == true, and mutex() == &m. Notes: The constructor will suppose that the mutex is already sharable
locked. There is no effect required on the referenced mutex.

5.
sharable_lock(mutex_type & m, try_to_lock_type);

Effects: m.try_lock_sharable() Postconditions: mutex() == &m. owns() == the return value of the m.try_lock_sharable() executed
within the constructor. Notes: The constructor will take sharable-ownership of the mutex if it can do so without waiting. Whether
or not this constructor handles recursive locking depends upon the mutex. If the mutex_type does not support try_lock_sharable,
this constructor will fail at compile time if instantiated, but otherwise have no effect.

6.
sharable_lock(mutex_type & m, const boost::posix_time::ptime & abs_time);

Effects: m.timed_lock_sharable(abs_time) Postconditions: mutex() == &m. owns() == the return value of the
m.timed_lock_sharable() executed within the constructor. Notes: The constructor will take sharable-ownership of the mutex if it
can do so within the time specified. Whether or not this constructor handles recursive locking depends upon the mutex. If the
mutex_type does not support timed_lock_sharable, this constructor will fail at compile time if instantiated, but otherwise have
no effect.

7.
sharable_lock(sharable_lock< mutex_type > && upgr);

Postconditions: mutex() == upgr.mutex(). owns() == the value of upgr.owns() before the construction. upgr.owns() == false after
the construction. Notes: If the upgr sharable_lock owns the mutex, ownership is moved to this sharable_lock with no
blocking. If the upgr sharable_lock does not own the mutex, then neither will this sharable_lock. Only a moved shar-
able_lock's will match this signature. An non-moved sharable_lock can be moved with the expression: "boost::move(lock);".
This constructor does not alter the state of the mutex, only potentially who owns it.

8.
template<typename T>
sharable_lock(upgradable_lock< T > && upgr, unspecified = 0);

Effects: If upgr.owns() then calls unlock_upgradable_and_lock_sharable() on the referenced mutex. Postconditions: mutex() ==
the value upgr.mutex() had before the construction. upgr.mutex() == 0 owns() == the value of upgr.owns() before construction.
upgr.owns() == false after the construction. Notes: If upgr is locked, this constructor will lock this sharable_lock while unlocking
upgr. Only a moved sharable_lock's will match this signature. An non-moved upgradable_lock can be moved with the
expression: "boost::move(lock);".

9.
template<typename T> sharable_lock(scoped_lock< T > && scop, unspecified = 0);

Effects: If scop.owns() then calls unlock_and_lock_sharable() on the referenced mutex. Postconditions: mutex() == the value
scop.mutex() had before the construction. scop.mutex() == 0 owns() == scop.owns() before the constructor. After the construction,
scop.owns() == false. Notes: If scop is locked, this constructor will transfer the exclusive ownership to a sharable-ownership of
this sharable_lock. Only a moved scoped_lock's will match this signature. An non-moved scoped_lock can be moved
with the expression: "boost::move(lock);".

10.
sharable_lock& operator=(sharable_lock< mutex_type > && upgr);

Effects: If owns() before the call, then unlock_sharable() is called on mutex(). *this gets the state of upgr and upgr gets set to a
default constructed state. Notes: With a recursive mutex it is possible that both this and upgr own the mutex before the assignment.
In this case, this will own the mutex after the assignment (and upgr will not), but the mutex's lock count will be decremented by
one.

11.
~sharable_lock();

289

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: if (owns()) mp_mutex->unlock_sharable(). Notes: The destructor behavior ensures that the mutex lock is not leaked.

sharable_lock public member functions

1.
void lock();

Effects: If mutex() == 0 or already locked, throws a lock_exception() exception. Calls lock_sharable() on the referenced mutex.
Postconditions: owns() == true. Notes: The sharable_lock changes from a state of not owning the mutex, to owning the mutex,
blocking if necessary.

2.
bool try_lock();

Effects: If mutex() == 0 or already locked, throws a lock_exception() exception. Calls try_lock_sharable() on the referenced
mutex. Postconditions: owns() == the value returned from mutex()->try_lock_sharable(). Notes: The sharable_lock changes
from a state of not owning the mutex, to owning the mutex, but only if blocking was not required. If the mutex_type does not
support try_lock_sharable(), this function will fail at compile time if instantiated, but otherwise have no effect.

3.
bool timed_lock(const boost::posix_time::ptime & abs_time);

Effects: If mutex() == 0 or already locked, throws a lock_exception() exception. Calls timed_lock_sharable(abs_time) on the
referenced mutex. Postconditions: owns() == the value returned from mutex()->timed_lock_sharable(elps_time). Notes: The
sharable_lock changes from a state of not owning the mutex, to owning the mutex, but only if it can obtain ownership within
the specified time interval. If the mutex_type does not support timed_lock_sharable(), this function will fail at compile time if
instantiated, but otherwise have no effect.

4.
void unlock();

Effects: If mutex() == 0 or not locked, throws a lock_exception() exception. Calls unlock_sharable() on the referenced mutex.
Postconditions: owns() == false. Notes: The sharable_lock changes from a state of owning the mutex, to not owning the mutex.

5.
bool owns() const;

Effects: Returns true if this scoped_lock has acquired the referenced mutex.

6.
operator unspecified_bool_type() const;

Conversion to bool. Returns owns().

7.
mutex_type * mutex() const;

Effects: Returns a pointer to the referenced mutex, or 0 if there is no mutex to reference.

8.
mutex_type * release();

Effects: Returns a pointer to the referenced mutex, or 0 if there is no mutex to reference. Postconditions: mutex() == 0 and owns()
== false.

9.
void swap(sharable_lock< mutex_type > & other);

Effects: Swaps state with moved lock. Throws: Nothing.

290

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template upgradable_lock

boost::interprocess::upgradable_lock

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename UpgradableMutex>
class upgradable_lock {
public:
// construct/copy/destruct
upgradable_lock();
explicit upgradable_lock(mutex_type &);
upgradable_lock(mutex_type &, defer_lock_type);
upgradable_lock(mutex_type &, accept_ownership_type);
upgradable_lock(mutex_type &, try_to_lock_type);
upgradable_lock(mutex_type &, const boost::posix_time::ptime &);
upgradable_lock(upgradable_lock< mutex_type > &&);
template<typename T> upgradable_lock(scoped_lock< T > &&, unspecified = 0);
template<typename T>
upgradable_lock(sharable_lock< T > &&, try_to_lock_type, unspecified = 0);

 upgradable_lock& operator=(upgradable_lock &&);
~upgradable_lock();

// public member functions
void lock();
bool try_lock();
bool timed_lock(const boost::posix_time::ptime &);
void unlock();
bool owns() const;
operator unspecified_bool_type() const;
mutex_type * mutex() const;
mutex_type * release();
void swap(upgradable_lock< mutex_type > &);

};

Description

upgradable_lock is meant to carry out the tasks for read-locking, unlocking, try-read-locking and timed-read-locking (recursive or
not) for the Mutex. Additionally the upgradable_lock can transfer ownership to a scoped_lock using transfer_lock syntax. The Mutex
need not supply all of the functionality. If the client of upgradable_lock<Mutex> does not use functionality which the Mutex does
not supply, no harm is done. Mutex ownership can be shared among read_locks, and a single upgradable_lock. upgradable_lock
does not support copy semantics. However upgradable_lock supports ownership transfer from a upgradable_locks or scoped_locks
via transfer_lock syntax.

upgradable_lock public construct/copy/destruct

1.
upgradable_lock();

Effects: Default constructs a upgradable_lock. Postconditions: owns() == false and mutex() == 0.

2.
explicit upgradable_lock(mutex_type & m);

3.
upgradable_lock(mutex_type & m, defer_lock_type);

291

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Postconditions: owns() == false, and mutex() == &m. Notes: The constructor will not take ownership of the mutex. There is no
effect required on the referenced mutex.

4.
upgradable_lock(mutex_type & m, accept_ownership_type);

Postconditions: owns() == true, and mutex() == &m. Notes: The constructor will suppose that the mutex is already upgradable
locked. There is no effect required on the referenced mutex.

5.
upgradable_lock(mutex_type & m, try_to_lock_type);

Effects: m.try_lock_upgradable(). Postconditions: mutex() == &m. owns() == the return value of the m.try_lock_upgradable()
executed within the constructor. Notes: The constructor will take upgradable-ownership of the mutex if it can do so without
waiting. Whether or not this constructor handles recursive locking depends upon the mutex. If the mutex_type does not support
try_lock_upgradable, this constructor will fail at compile time if instantiated, but otherwise have no effect.

6.
upgradable_lock(mutex_type & m, const boost::posix_time::ptime & abs_time);

Effects: m.timed_lock_upgradable(abs_time) Postconditions: mutex() == &m. owns() == the return value of the
m.timed_lock_upgradable() executed within the constructor. Notes: The constructor will take upgradable-ownership of the mutex
if it can do so within the time specified. Whether or not this constructor handles recursive locking depends upon the mutex. If the
mutex_type does not support timed_lock_upgradable, this constructor will fail at compile time if instantiated, but otherwise have
no effect.

7.
upgradable_lock(upgradable_lock< mutex_type > && upgr);

Effects: No effects on the underlying mutex. Postconditions: mutex() == the value upgr.mutex() had before the construction. up-
gr.mutex() == 0. owns() == upgr.owns() before the construction. upgr.owns() == false. Notes: If upgr is locked, this constructor
will lock this upgradable_lock while unlocking upgr. If upgr is unlocked, then this upgradable_lock will be unlocked as
well. Only a moved upgradable_lock's will match this signature. An non-moved upgradable_lock can be moved with the
expression: "boost::move(lock);". This constructor does not alter the state of the mutex, only potentially who owns it.

8.
template<typename T>
upgradable_lock(scoped_lock< T > && scop, unspecified = 0);

Effects: If scop.owns(), m_.unlock_and_lock_upgradable(). Postconditions: mutex() == the value scop.mutex() had before the
construction. scop.mutex() == 0. owns() == scop.owns() before the constructor. After the construction, scop.owns() == false.
Notes: If scop is locked, this constructor will transfer the exclusive-ownership to an upgradable-ownership of this upgrad-
able_lock. Only a moved sharable_lock's will match this signature. An non-moved sharable_lock can be moved with
the expression: "boost::move(lock);".

9.
template<typename T>
upgradable_lock(sharable_lock< T > && shar, try_to_lock_type,

unspecified = 0);

Effects: If shar.owns() then calls try_unlock_sharable_and_lock_upgradable() on the referenced mutex. a)if try_unlock_shar-
able_and_lock_upgradable() returns true then mutex() obtains the value from shar.release() and owns() is set to true. b)if try_un-
lock_sharable_and_lock_upgradable() returns false then shar is unaffected and this upgradable_lock construction has the same
effects as a default construction. c)Else shar.owns() is false. mutex() obtains the value from shar.release() and owns() is set to
false. Notes: This construction will not block. It will try to obtain mutex ownership from shar immediately, while changing the
lock type from a "read lock" to an "upgradable lock". If the "read lock" isn't held in the first place, the mutex merely changes type
to an unlocked "upgradable lock". If the "read lock" is held, then mutex transfer occurs only if it can do so in a non-blocking
manner.

10.
upgradable_lock& operator=(upgradable_lock && upgr);

292

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: If owns(), then unlock_upgradable() is called on mutex(). *this gets the state of upgr and upgr gets set to a default con-
structed state. Notes: With a recursive mutex it is possible that both this and upgr own the mutex before the assignment. In this
case, this will own the mutex after the assignment (and upgr will not), but the mutex's upgradable lock count will be decremented
by one.

11.
~upgradable_lock();

Effects: if (owns()) m_->unlock_upgradable(). Notes: The destructor behavior ensures that the mutex lock is not leaked.

upgradable_lock public member functions

1.
void lock();

Effects: If mutex() == 0 or if already locked, throws a lock_exception() exception. Calls lock_upgradable() on the referenced
mutex. Postconditions: owns() == true. Notes: The sharable_lock changes from a state of not owning the mutex, to owning
the mutex, blocking if necessary.

2.
bool try_lock();

Effects: If mutex() == 0 or if already locked, throws a lock_exception() exception. Calls try_lock_upgradable() on the referenced
mutex. Postconditions: owns() == the value returned from mutex()->try_lock_upgradable(). Notes: The upgradable_lock
changes from a state of not owning the mutex, to owning the mutex, but only if blocking was not required. If the mutex_type
does not support try_lock_upgradable(), this function will fail at compile time if instantiated, but otherwise have no effect.

3.
bool timed_lock(const boost::posix_time::ptime & abs_time);

Effects: If mutex() == 0 or if already locked, throws a lock_exception() exception. Calls timed_lock_upgradable(abs_time) on
the referenced mutex. Postconditions: owns() == the value returned from mutex()->timed_lock_upgradable(abs_time). Notes:
The upgradable_lock changes from a state of not owning the mutex, to owning the mutex, but only if it can obtain ownership
within the specified time. If the mutex_type does not support timed_lock_upgradable(abs_time), this function will fail at compile
time if instantiated, but otherwise have no effect.

4.
void unlock();

Effects: If mutex() == 0 or if not locked, throws a lock_exception() exception. Calls unlock_upgradable() on the referenced mutex.
Postconditions: owns() == false. Notes: The upgradable_lock changes from a state of owning the mutex, to not owning the
mutex.

5.
bool owns() const;

Effects: Returns true if this scoped_lock has acquired the referenced mutex.

6.
operator unspecified_bool_type() const;

Conversion to bool. Returns owns().

7.
mutex_type * mutex() const;

Effects: Returns a pointer to the referenced mutex, or 0 if there is no mutex to reference.

8.
mutex_type * release();

293

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: Returns a pointer to the referenced mutex, or 0 if there is no mutex to reference. Postconditions: mutex() == 0 and owns()
== false.

9.
void swap(upgradable_lock< mutex_type > & other);

Effects: Swaps state with moved lock. Throws: Nothing.

Class template allocator

boost::interprocess::allocator

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename T, typename SegmentManager>
class allocator {
public:
// construct/copy/destruct
allocator(segment_manager *);
allocator(const allocator &);
template<typename T2> allocator(const allocator< T2, SegmentManager > &);

// public member functions
segment_manager * get_segment_manager() const;
pointer allocate(size_type, cvoid_ptr = 0);
void deallocate(const pointer &, size_type);
size_type max_size() const;
size_type size(const pointer &) const;
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type, size_type,

size_type, size_type &, const pointer & = 0);
void allocate_many(size_type, size_type, multiallocation_chain &);
void allocate_many(const size_type *, size_type, multiallocation_chain &);
void deallocate_many(multiallocation_chain &);
pointer allocate_one();
void allocate_individual(size_type, multiallocation_chain &);
void deallocate_one(const pointer &);
void deallocate_individual(multiallocation_chain &);
pointer address(reference) const;
const_pointer address(const_reference) const;
template<typename P> void construct(const pointer &, P &&);
void destroy(const pointer &);

// friend functions
friend void swap(self_t &, self_t &);

};

Description

An STL compatible allocator that uses a segment manager as memory source. The internal pointer type will of the same type (raw,
smart) as "typename SegmentManager::void_pointer" type. This allows placing the allocator in shared memory, memory mapped-
files, etc...

allocator public construct/copy/destruct

1.
allocator(segment_manager * segment_mngr);

294

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Constructor from the segment manager. Never throws

2.
allocator(const allocator & other);

Constructor from other allocator. Never throws

3.
template<typename T2> allocator(const allocator< T2, SegmentManager > & other);

Constructor from related allocator. Never throws

allocator public member functions

1.
segment_manager * get_segment_manager() const;

Returns the segment manager. Never throws

2.
pointer allocate(size_type count, cvoid_ptr hint = 0);

Allocates memory for an array of count elements. Throws boost::interprocess::bad_alloc if there is no enough memory

3.
void deallocate(const pointer & ptr, size_type);

Deallocates memory previously allocated. Never throws

4.
size_type max_size() const;

Returns the number of elements that could be allocated. Never throws

5.
size_type size(const pointer & p) const;

Returns maximum the number of objects the previously allocated memory pointed by p can hold. This size only works for memory
allocated with allocate, allocation_command and allocate_many.

6.
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type command,

size_type limit_size, size_type preferred_size,
size_type & received_size, const pointer & reuse = 0);

7.
void allocate_many(size_type elem_size, size_type num_elements,

multiallocation_chain & chain);

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

8.
void allocate_many(const size_type * elem_sizes, size_type n_elements,

multiallocation_chain & chain);

Allocates n_elements elements, each one of size elem_sizes[i]in a contiguous block of memory. The elements must be deallocated

9.
void deallocate_many(multiallocation_chain & chain);

295

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

10.
pointer allocate_one();

Allocates just one object. Memory allocated with this function must be deallocated only with deallocate_one(). Throws
boost::interprocess::bad_alloc if there is no enough memory

11.
void allocate_individual(size_type num_elements,

multiallocation_chain & chain);

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

12.
void deallocate_one(const pointer & p);

Deallocates memory previously allocated with allocate_one(). You should never use deallocate_one to deallocate memory allocated
with other functions different from allocate_one(). Never throws

13.
void deallocate_individual(multiallocation_chain & chain);

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

14.
pointer address(reference value) const;

Returns address of mutable object. Never throws

15.
const_pointer address(const_reference value) const;

Returns address of non mutable object. Never throws

16.
template<typename P> void construct(const pointer & ptr, P && p);

Constructs an object Throws if T's constructor throws For backwards compatibility with libraries using C++03 allocators

17.
void destroy(const pointer & ptr);

Destroys object. Throws if object's destructor throws

allocator friend functions

1.
friend void swap(self_t & alloc1, self_t & alloc2);

Swap segment manager. Does not throw. If each allocator is placed in different memory segments, the result is undefined.

Class template node_allocator

boost::interprocess::node_allocator

296

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename T, typename SegmentManager, std::size_t NodesPerBlock = 64>
class node_allocator {
public:
// construct/copy/destruct
node_allocator(segment_manager *);
node_allocator(const node_allocator &);
template<typename T2>
node_allocator(const node_allocator< T2, SegmentManager, NodesPerBlock > &);

template<typename T2, typename SegmentManager2, std::size_t N2>
 node_allocator&

operator=(const node_allocator< T2, SegmentManager2, N2 > &);
~node_allocator();

// public member functions
void * get_node_pool() const;
segment_manager * get_segment_manager() const;
size_type max_size() const;
pointer allocate(size_type, cvoid_pointer = 0);
void deallocate(const pointer &, size_type);
void deallocate_free_blocks();
pointer address(reference) const;
const_pointer address(const_reference) const;
void construct(const pointer &, const_reference);
void destroy(const pointer &);
size_type size(const pointer &) const;
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type, size_type,

size_type, size_type &, const pointer & = 0);
void allocate_many(size_type, size_type, multiallocation_chain &);
void allocate_many(const size_type *, size_type, multiallocation_chain &);
void deallocate_many(multiallocation_chain &);
pointer allocate_one();
void allocate_individual(size_type, multiallocation_chain &);
void deallocate_one(const pointer &);
void deallocate_individual(multiallocation_chain &);

// friend functions
friend void swap(self_t &, self_t &);

};

Description

An STL node allocator that uses a segment manager as memory source. The internal pointer type will of the same type (raw, smart)
as "typename SegmentManager::void_pointer" type. This allows placing the allocator in shared memory, memory mapped-files,
etc... This node allocator shares a segregated storage between all instances of node_allocator with equal sizeof(T) placed in the same
segment group. NodesPerBlock is the number of nodes allocated at once when the allocator needs runs out of nodes

node_allocator public construct/copy/destruct

1.
node_allocator(segment_manager * segment_mngr);

Not assignable from other node_allocator Constructor from a segment manager. If not present, constructs a node pool. Increments
the reference count of the associated node pool. Can throw boost::interprocess::bad_alloc

2.
node_allocator(const node_allocator & other);

297

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Copy constructor from other node_allocator. Increments the reference count of the associated node pool. Never throws

3.
template<typename T2>
node_allocator(const node_allocator< T2, SegmentManager, NodesPerBlock > & other);

Copy constructor from related node_allocator. If not present, constructs a node pool. Increments the reference count of the
associated node pool. Can throw boost::interprocess::bad_alloc

4.
template<typename T2, typename SegmentManager2, std::size_t N2>
 node_allocator& operator=(const node_allocator< T2, SegmentManager2, N2 > &);

Not assignable from related node_allocator

5.
~node_allocator();

Destructor, removes node_pool_t from memory if its reference count reaches to zero. Never throws

node_allocator public member functions

1.
void * get_node_pool() const;

Returns a pointer to the node pool. Never throws

2.
segment_manager * get_segment_manager() const;

Returns the segment manager. Never throws

3.
size_type max_size() const;

Returns the number of elements that could be allocated. Never throws

4.
pointer allocate(size_type count, cvoid_pointer hint = 0);

Allocate memory for an array of count elements. Throws boost::interprocess::bad_alloc if there is no enough memory

5.
void deallocate(const pointer & ptr, size_type count);

Deallocate allocated memory. Never throws

6.
void deallocate_free_blocks();

Deallocates all free blocks of the pool

7.
pointer address(reference value) const;

Returns address of mutable object. Never throws

8.
const_pointer address(const_reference value) const;

Returns address of non mutable object. Never throws

298

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

9.
void construct(const pointer & ptr, const_reference v);

Copy construct an object. Throws if T's copy constructor throws

10.
void destroy(const pointer & ptr);

Destroys object. Throws if object's destructor throws

11.
size_type size(const pointer & p) const;

Returns maximum the number of objects the previously allocated memory pointed by p can hold. This size only works for memory
allocated with allocate, allocation_command and allocate_many.

12.
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type command,

size_type limit_size, size_type preferred_size,
size_type & received_size, const pointer & reuse = 0);

13.
void allocate_many(size_type elem_size, size_type num_elements,

multiallocation_chain & chain);

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

14.
void allocate_many(const size_type * elem_sizes, size_type n_elements,

multiallocation_chain & chain);

Allocates n_elements elements, each one of size elem_sizes[i]in a contiguous block of memory. The elements must be deallocated

15.
void deallocate_many(multiallocation_chain & chain);

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

16.
pointer allocate_one();

Allocates just one object. Memory allocated with this function must be deallocated only with deallocate_one(). Throws
boost::interprocess::bad_alloc if there is no enough memory

17.
void allocate_individual(size_type num_elements,

multiallocation_chain & chain);

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

18.
void deallocate_one(const pointer & p);

299

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Deallocates memory previously allocated with allocate_one(). You should never use deallocate_one to deallocate memory allocated
with other functions different from allocate_one(). Never throws

19.
void deallocate_individual(multiallocation_chain & chain);

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

node_allocator friend functions

1.
friend void swap(self_t & alloc1, self_t & alloc2);

Swaps allocators. Does not throw. If each allocator is placed in a different memory segment, the result is undefined.

Class template private_node_allocator

boost::interprocess::private_node_allocator

300

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename T, typename SegmentManager, std::size_t NodesPerBlock = 64>
class private_node_allocator {
public:
// construct/copy/destruct
private_node_allocator(segment_manager *);
private_node_allocator(const private_node_allocator &);
template<typename T2>
private_node_allocator(const private_node_allocator< T2, SegmentManager, NodesPerBlock > &);

template<typename T2, typename SegmentManager2, std::size_t N2>
 private_node_allocator&

operator=(const private_node_allocator< T2, SegmentManager2, N2 > &);
 private_node_allocator& operator=(const private_node_allocator &);
~private_node_allocator();

// public member functions
node_pool_t * get_node_pool() const;
segment_manager * get_segment_manager() const;
size_type max_size() const;
pointer allocate(size_type, cvoid_pointer = 0);
void deallocate(const pointer &, size_type);
void deallocate_free_blocks();
pointer address(reference) const;
const_pointer address(const_reference) const;
void construct(const pointer &, const_reference);
void destroy(const pointer &);
size_type size(const pointer &) const;
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type, size_type,

size_type, size_type &, const pointer & = 0);
void allocate_many(size_type, size_type, multiallocation_chain &);
void allocate_many(const size_type *, size_type, multiallocation_chain &);
void deallocate_many(multiallocation_chain &);
pointer allocate_one();
void allocate_individual(size_type, multiallocation_chain &);
void deallocate_one(const pointer &);
void deallocate_individual(multiallocation_chain &);

// friend functions
friend void swap(self_t &, self_t &);

};

Description

An STL node allocator that uses a segment manager as memory source. The internal pointer type will of the same type (raw, smart)
as "typename SegmentManager::void_pointer" type. This allows placing the allocator in shared memory, memory mapped-files,
etc... This allocator has its own node pool. NodesPerBlock is the number of nodes allocated at once when the allocator needs runs
out of nodes

private_node_allocator public construct/copy/destruct

1.
private_node_allocator(segment_manager * segment_mngr);

Constructor from a segment manager. If not present, constructs a node pool. Increments the reference count of the associated
node pool. Can throw boost::interprocess::bad_alloc

301

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.
private_node_allocator(const private_node_allocator & other);

Copy constructor from other private_node_allocator. Increments the reference count of the associated node pool. Never
throws

3.
template<typename T2>
private_node_allocator(const private_node_allocator< T2, SegmentManager, NodesPerBlock > &

 other);

Copy constructor from related private_node_allocator. If not present, constructs a node pool. Increments the reference
count of the associated node pool. Can throw boost::interprocess::bad_alloc

4.
template<typename T2, typename SegmentManager2, std::size_t N2>
 private_node_allocator&
operator=(const private_node_allocator< T2, SegmentManager2, N2 > &);

Not assignable from related private_node_allocator

5.
private_node_allocator& operator=(const private_node_allocator &);

Not assignable from other private_node_allocator

6.
~private_node_allocator();

Destructor, removes node_pool_t from memory if its reference count reaches to zero. Never throws

private_node_allocator public member functions

1.
node_pool_t * get_node_pool() const;

Returns a pointer to the node pool. Never throws

2.
segment_manager * get_segment_manager() const;

Returns the segment manager. Never throws

3.
size_type max_size() const;

Returns the number of elements that could be allocated. Never throws

4.
pointer allocate(size_type count, cvoid_pointer hint = 0);

Allocate memory for an array of count elements. Throws boost::interprocess::bad_alloc if there is no enough memory

5.
void deallocate(const pointer & ptr, size_type count);

Deallocate allocated memory. Never throws

6.
void deallocate_free_blocks();

Deallocates all free blocks of the pool

302

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

7.
pointer address(reference value) const;

Returns address of mutable object. Never throws

8.
const_pointer address(const_reference value) const;

Returns address of non mutable object. Never throws

9.
void construct(const pointer & ptr, const_reference v);

Copy construct an object. Throws if T's copy constructor throws

10.
void destroy(const pointer & ptr);

Destroys object. Throws if object's destructor throws

11.
size_type size(const pointer & p) const;

Returns maximum the number of objects the previously allocated memory pointed by p can hold. This size only works for memory
allocated with allocate, allocation_command and allocate_many.

12.
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type command,

size_type limit_size, size_type preferred_size,
size_type & received_size, const pointer & reuse = 0);

13.
void allocate_many(size_type elem_size, size_type num_elements,

multiallocation_chain & chain);

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

14.
void allocate_many(const size_type * elem_sizes, size_type n_elements,

multiallocation_chain & chain);

Allocates n_elements elements, each one of size elem_sizes[i]in a contiguous block of memory. The elements must be deallocated

15.
void deallocate_many(multiallocation_chain & chain);

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

16.
pointer allocate_one();

Allocates just one object. Memory allocated with this function must be deallocated only with deallocate_one(). Throws
boost::interprocess::bad_alloc if there is no enough memory

303

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

17.
void allocate_individual(size_type num_elements,

multiallocation_chain & chain);

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

18.
void deallocate_one(const pointer & p);

Deallocates memory previously allocated with allocate_one(). You should never use deallocate_one to deallocate memory allocated
with other functions different from allocate_one(). Never throws

19.
void deallocate_individual(multiallocation_chain & chain);

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

private_node_allocator friend functions

1.
friend void swap(self_t & alloc1, self_t & alloc2);

Swaps allocators. Does not throw. If each allocator is placed in a different memory segment, the result is undefined.

Class template cached_node_allocator

boost::interprocess::cached_node_allocator

304

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename T, typename SegmentManager, std::size_t NodesPerBlock = 64>
class cached_node_allocator {
public:
// construct/copy/destruct
cached_node_allocator(segment_manager *);
cached_node_allocator(const cached_node_allocator &);
template<typename T2>
cached_node_allocator(const cached_node_allocator< T2, SegmentManager, NodesPerBlock > &);

template<typename T2, typename SegmentManager2, std::size_t N2>
 cached_node_allocator&

operator=(const cached_node_allocator< T2, SegmentManager2, N2 > &);
 cached_node_allocator& operator=(const cached_node_allocator &);
~cached_node_allocator();

// public member functions
node_pool_t * get_node_pool() const;
segment_manager * get_segment_manager() const;
size_type max_size() const;
pointer allocate(size_type, cvoid_pointer = 0);
void deallocate(const pointer &, size_type);
void deallocate_free_blocks();
pointer address(reference) const;
const_pointer address(const_reference) const;
void construct(const pointer &, const_reference);
void destroy(const pointer &);
size_type size(const pointer &) const;
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type, size_type,

size_type, size_type &, const pointer & = 0);
void allocate_many(size_type, size_type, multiallocation_chain &);
void allocate_many(const size_type *, size_type, multiallocation_chain &);
void deallocate_many(multiallocation_chain &);
pointer allocate_one();
multiallocation_chain allocate_individual(size_type);
void deallocate_one(const pointer &);
void deallocate_individual(multiallocation_chain);
void set_max_cached_nodes(size_type);
size_type get_max_cached_nodes() const;

// friend functions
friend void swap(self_t &, self_t &);

};

Description

cached_node_allocator public construct/copy/destruct

1.
cached_node_allocator(segment_manager * segment_mngr);

Constructor from a segment manager. If not present, constructs a node pool. Increments the reference count of the associated
node pool. Can throw boost::interprocess::bad_alloc

2.
cached_node_allocator(const cached_node_allocator & other);

305

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Copy constructor from other cached_node_allocator. Increments the reference count of the associated node pool. Never
throws

3.
template<typename T2>
cached_node_allocator(const cached_node_allocator< T2, SegmentManager, NodesPerBlock > &

other);

Copy constructor from related cached_node_allocator. If not present, constructs a node pool. Increments the reference count
of the associated node pool. Can throw boost::interprocess::bad_alloc

4.
template<typename T2, typename SegmentManager2, std::size_t N2>
 cached_node_allocator&
operator=(const cached_node_allocator< T2, SegmentManager2, N2 > &);

Not assignable from related cached_node_allocator

5.
cached_node_allocator& operator=(const cached_node_allocator &);

Not assignable from other cached_node_allocator

6.
~cached_node_allocator();

Destructor, removes node_pool_t from memory if its reference count reaches to zero. Never throws

cached_node_allocator public member functions

1.
node_pool_t * get_node_pool() const;

Returns a pointer to the node pool. Never throws

2.
segment_manager * get_segment_manager() const;

Returns the segment manager. Never throws

3.
size_type max_size() const;

Returns the number of elements that could be allocated. Never throws

4.
pointer allocate(size_type count, cvoid_pointer hint = 0);

Allocate memory for an array of count elements. Throws boost::interprocess::bad_alloc if there is no enough memory

5.
void deallocate(const pointer & ptr, size_type count);

Deallocate allocated memory. Never throws

6.
void deallocate_free_blocks();

Deallocates all free blocks of the pool

7.
pointer address(reference value) const;

306

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Returns address of mutable object. Never throws

8.
const_pointer address(const_reference value) const;

Returns address of non mutable object. Never throws

9.
void construct(const pointer & ptr, const_reference v);

Default construct an object. Throws if T's default constructor throws

10.
void destroy(const pointer & ptr);

Destroys object. Throws if object's destructor throws

11.
size_type size(const pointer & p) const;

Returns maximum the number of objects the previously allocated memory pointed by p can hold. This size only works for memory
allocated with allocate, allocation_command and allocate_many.

12.
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type command,

size_type limit_size, size_type preferred_size,
size_type & received_size, const pointer & reuse = 0);

13.
void allocate_many(size_type elem_size, size_type num_elements,

multiallocation_chain & chain);

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

14.
void allocate_many(const size_type * elem_sizes, size_type n_elements,

multiallocation_chain & chain);

Allocates n_elements elements, each one of size elem_sizes[i]in a contiguous block of memory. The elements must be deallocated

15.
void deallocate_many(multiallocation_chain & chain);

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

16.
pointer allocate_one();

Allocates just one object. Memory allocated with this function must be deallocated only with deallocate_one(). Throws
boost::interprocess::bad_alloc if there is no enough memory

17.
multiallocation_chain allocate_individual(size_type num_elements);

307

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

18.
void deallocate_one(const pointer & p);

Deallocates memory previously allocated with allocate_one(). You should never use deallocate_one to deallocate memory allocated
with other functions different from allocate_one(). Never throws

19.
void deallocate_individual(multiallocation_chain it);

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

20.
void set_max_cached_nodes(size_type newmax);

Sets the new max cached nodes value. This can provoke deallocations if "newmax" is less than current cached nodes. Never
throws

21.
size_type get_max_cached_nodes() const;

Returns the max cached nodes parameter. Never throws

cached_node_allocator friend functions

1.
friend void swap(self_t & alloc1, self_t & alloc2);

Swaps allocators. Does not throw. If each allocator is placed in a different memory segment, the result is undefined.

Class template adaptive_pool

boost::interprocess::adaptive_pool

308

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename T, typename SegmentManager, std::size_t NodesPerBlock = 64,
std::size_t MaxFreeBlocks = 2, unsigned char OverheadPercent = 5>

class adaptive_pool {
public:
// construct/copy/destruct
adaptive_pool(segment_manager *);
adaptive_pool(const adaptive_pool &);
template<typename T2>
adaptive_pool(const adaptive_pool< T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, Over↵

headPercent > &);
template<typename T2, typename SegmentManager2, std::size_t N2,

std::size_t F2, unsigned char OP2>
 adaptive_pool&

operator=(const adaptive_pool< T2, SegmentManager2, N2, F2, OP2 > &);
~adaptive_pool();

// public member functions
void * get_node_pool() const;
segment_manager * get_segment_manager() const;
size_type max_size() const;
pointer allocate(size_type, cvoid_pointer = 0);
void deallocate(const pointer &, size_type);
void deallocate_free_blocks();
pointer address(reference) const;
const_pointer address(const_reference) const;
size_type size(const pointer &) const;
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type, size_type,

size_type, size_type &, const pointer & = 0);
void allocate_many(size_type, size_type, multiallocation_chain &);
void allocate_many(const size_type *, size_type, multiallocation_chain &);
void deallocate_many(multiallocation_chain &);
pointer allocate_one();
void allocate_individual(size_type, multiallocation_chain &);
void deallocate_one(const pointer &);
void deallocate_individual(multiallocation_chain &);

// friend functions
friend void swap(self_t &, self_t &);

};

Description

An STL node allocator that uses a segment manager as memory source. The internal pointer type will of the same type (raw, smart)
as "typename SegmentManager::void_pointer" type. This allows placing the allocator in shared memory, memory mapped-files,
etc...

This node allocator shares a segregated storage between all instances of adaptive_pool with equal sizeof(T) placed in the same segment
group. NodesPerBlock is the number of nodes allocated at once when the allocator needs runs out of nodes. MaxFreeBlocks is the
maximum number of totally free blocks that the adaptive node pool will hold. The rest of the totally free blocks will be deallocated
with the segment manager.

OverheadPercent is the (approximated) maximum size overhead (1-20%) of the allocator: (memory usable for nodes / total memory
allocated from the segment manager)

309

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

adaptive_pool public construct/copy/destruct

1.
adaptive_pool(segment_manager * segment_mngr);

Not assignable from other adaptive_pool Constructor from a segment manager. If not present, constructs a node pool. Increments
the reference count of the associated node pool. Can throw boost::interprocess::bad_alloc

2.
adaptive_pool(const adaptive_pool & other);

Copy constructor from other adaptive_pool. Increments the reference count of the associated node pool. Never throws

3.
template<typename T2>
adaptive_pool(const adaptive_pool< T2, SegmentManager, NodesPerBlock, MaxFreeBlocks, Over↵

headPercent > & other);

Copy constructor from related adaptive_pool. If not present, constructs a node pool. Increments the reference count of the
associated node pool. Can throw boost::interprocess::bad_alloc

4.
template<typename T2, typename SegmentManager2, std::size_t N2,

std::size_t F2, unsigned char OP2>
 adaptive_pool&
operator=(const adaptive_pool< T2, SegmentManager2, N2, F2, OP2 > &);

Not assignable from related adaptive_pool

5.
~adaptive_pool();

Destructor, removes node_pool_t from memory if its reference count reaches to zero. Never throws

adaptive_pool public member functions

1.
void * get_node_pool() const;

Returns a pointer to the node pool. Never throws

2.
segment_manager * get_segment_manager() const;

Returns the segment manager. Never throws

3.
size_type max_size() const;

Returns the number of elements that could be allocated. Never throws

4.
pointer allocate(size_type count, cvoid_pointer hint = 0);

Allocate memory for an array of count elements. Throws boost::interprocess::bad_alloc if there is no enough memory

5.
void deallocate(const pointer & ptr, size_type count);

Deallocate allocated memory. Never throws

310

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

6.
void deallocate_free_blocks();

Deallocates all free blocks of the pool

7.
pointer address(reference value) const;

Returns address of mutable object. Never throws

8.
const_pointer address(const_reference value) const;

Returns address of non mutable object. Never throws

9.
size_type size(const pointer & p) const;

Returns maximum the number of objects the previously allocated memory pointed by p can hold. This size only works for memory
allocated with allocate, allocation_command and allocate_many.

10.
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type command,

size_type limit_size, size_type preferred_size,
size_type & received_size, const pointer & reuse = 0);

11.
void allocate_many(size_type elem_size, size_type num_elements,

multiallocation_chain & chain);

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

12.
void allocate_many(const size_type * elem_sizes, size_type n_elements,

multiallocation_chain & chain);

Allocates n_elements elements, each one of size elem_sizes[i]in a contiguous block of memory. The elements must be deallocated

13.
void deallocate_many(multiallocation_chain & chain);

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

14.
pointer allocate_one();

Allocates just one object. Memory allocated with this function must be deallocated only with deallocate_one(). Throws
boost::interprocess::bad_alloc if there is no enough memory

15.
void allocate_individual(size_type num_elements,

multiallocation_chain & chain);

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

311

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

16.
void deallocate_one(const pointer & p);

Deallocates memory previously allocated with allocate_one(). You should never use deallocate_one to deallocate memory allocated
with other functions different from allocate_one(). Never throws

17.
void deallocate_individual(multiallocation_chain & chain);

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

adaptive_pool friend functions

1.
friend void swap(self_t & alloc1, self_t & alloc2);

Swaps allocators. Does not throw. If each allocator is placed in a different memory segment, the result is undefined.

Class template private_adaptive_pool

boost::interprocess::private_adaptive_pool

312

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename T, typename SegmentManager, std::size_t NodesPerBlock = 64,
std::size_t MaxFreeBlocks = 2, unsigned char OverheadPercent = 5>

class private_adaptive_pool {
public:
// construct/copy/destruct
private_adaptive_pool(segment_manager *);
private_adaptive_pool(const private_adaptive_pool &);
template<typename T2>
private_adaptive_pool(const private_adaptive_pool< T2, SegmentManager, NodesPerBlock, Max↵

FreeBlocks, OverheadPercent > &);
template<typename T2, typename SegmentManager2, std::size_t N2,

std::size_t F2, unsigned char OP2>
 private_adaptive_pool&

operator=(const private_adaptive_pool< T2, SegmentManager2, N2, F2 > &);
 private_adaptive_pool& operator=(const private_adaptive_pool &);
~private_adaptive_pool();

// public member functions
node_pool_t * get_node_pool() const;
segment_manager * get_segment_manager() const;
size_type max_size() const;
pointer allocate(size_type, cvoid_pointer = 0);
void deallocate(const pointer &, size_type);
void deallocate_free_blocks();
pointer address(reference) const;
const_pointer address(const_reference) const;
void construct(const pointer &, const_reference);
void destroy(const pointer &);
size_type size(const pointer &) const;
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type, size_type,

size_type, size_type &, const pointer & = 0);
void allocate_many(size_type, size_type, multiallocation_chain &);
void allocate_many(const size_type *, size_type, multiallocation_chain &);
void deallocate_many(multiallocation_chain &);
pointer allocate_one();
void allocate_individual(size_type, multiallocation_chain &);
void deallocate_one(const pointer &);
void deallocate_individual(multiallocation_chain &);

// friend functions
friend void swap(self_t &, self_t &);

};

Description

An STL node allocator that uses a segment manager as memory source. The internal pointer type will of the same type (raw, smart)
as "typename SegmentManager::void_pointer" type. This allows placing the allocator in shared memory, memory mapped-files,
etc... This allocator has its own node pool.

NodesPerBlock is the minimum number of nodes of nodes allocated at once when the allocator needs runs out of nodes. MaxFreeBlocks
is the maximum number of totally free blocks that the adaptive node pool will hold. The rest of the totally free blocks will be deal-
located with the segment manager.

OverheadPercent is the (approximated) maximum size overhead (1-20%) of the allocator: (memory usable for nodes / total memory
allocated from the segment manager)

313

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

private_adaptive_pool public construct/copy/destruct

1.
private_adaptive_pool(segment_manager * segment_mngr);

Constructor from a segment manager. If not present, constructs a node pool. Increments the reference count of the associated
node pool. Can throw boost::interprocess::bad_alloc

2.
private_adaptive_pool(const private_adaptive_pool & other);

Copy constructor from other private_adaptive_pool. Increments the reference count of the associated node pool. Never
throws

3.
template<typename T2>
private_adaptive_pool(const private_adaptive_pool< T2, SegmentManager, NodesPerBlock, Max↵

FreeBlocks, OverheadPercent > & other);

Copy constructor from related private_adaptive_pool. If not present, constructs a node pool. Increments the reference count
of the associated node pool. Can throw boost::interprocess::bad_alloc

4.
template<typename T2, typename SegmentManager2, std::size_t N2,

std::size_t F2, unsigned char OP2>
 private_adaptive_pool&
operator=(const private_adaptive_pool< T2, SegmentManager2, N2, F2 > &);

Not assignable from related private_adaptive_pool

5.
private_adaptive_pool& operator=(const private_adaptive_pool &);

Not assignable from other private_adaptive_pool

6.
~private_adaptive_pool();

Destructor, removes node_pool_t from memory if its reference count reaches to zero. Never throws

private_adaptive_pool public member functions

1.
node_pool_t * get_node_pool() const;

Returns a pointer to the node pool. Never throws

2.
segment_manager * get_segment_manager() const;

Returns the segment manager. Never throws

3.
size_type max_size() const;

Returns the number of elements that could be allocated. Never throws

4.
pointer allocate(size_type count, cvoid_pointer hint = 0);

Allocate memory for an array of count elements. Throws boost::interprocess::bad_alloc if there is no enough memory

314

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

5.
void deallocate(const pointer & ptr, size_type count);

Deallocate allocated memory. Never throws

6.
void deallocate_free_blocks();

Deallocates all free blocks of the pool

7.
pointer address(reference value) const;

Returns address of mutable object. Never throws

8.
const_pointer address(const_reference value) const;

Returns address of non mutable object. Never throws

9.
void construct(const pointer & ptr, const_reference v);

Copy construct an object. Throws if T's copy constructor throws

10.
void destroy(const pointer & ptr);

Destroys object. Throws if object's destructor throws

11.
size_type size(const pointer & p) const;

Returns maximum the number of objects the previously allocated memory pointed by p can hold. This size only works for memory
allocated with allocate, allocation_command and allocate_many.

12.
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type command,

size_type limit_size, size_type preferred_size,
size_type & received_size, const pointer & reuse = 0);

13.
void allocate_many(size_type elem_size, size_type num_elements,

multiallocation_chain & chain);

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

14.
void allocate_many(const size_type * elem_sizes, size_type n_elements,

multiallocation_chain & chain);

Allocates n_elements elements, each one of size elem_sizes[i]in a contiguous block of memory. The elements must be deallocated

15.
void deallocate_many(multiallocation_chain & chain);

315

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

16.
pointer allocate_one();

Allocates just one object. Memory allocated with this function must be deallocated only with deallocate_one(). Throws
boost::interprocess::bad_alloc if there is no enough memory

17.
void allocate_individual(size_type num_elements,

multiallocation_chain & chain);

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

18.
void deallocate_one(const pointer & p);

Deallocates memory previously allocated with allocate_one(). You should never use deallocate_one to deallocate memory allocated
with other functions different from allocate_one(). Never throws

19.
void deallocate_individual(multiallocation_chain & chain);

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

private_adaptive_pool friend functions

1.
friend void swap(self_t & alloc1, self_t & alloc2);

Swaps allocators. Does not throw. If each allocator is placed in a different memory segment, the result is undefined.

Class template cached_adaptive_pool

boost::interprocess::cached_adaptive_pool

316

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename T, typename SegmentManager, std::size_t NodesPerBlock = 64,
std::size_t MaxFreeBlocks = 2, unsigned char OverheadPercent = 5>

class cached_adaptive_pool {
public:
// construct/copy/destruct
cached_adaptive_pool(segment_manager *);
cached_adaptive_pool(const cached_adaptive_pool &);
template<typename T2>
cached_adaptive_pool(const cached_adaptive_pool< T2, SegmentManager, NodesPerBlock, MaxFreeB↵

locks, OverheadPercent > &);
template<typename T2, typename SegmentManager2, std::size_t N2,

std::size_t F2, unsigned char OP2>
 cached_adaptive_pool&

operator=(const cached_adaptive_pool< T2, SegmentManager2, N2, F2, OP2 > &);
 cached_adaptive_pool& operator=(const cached_adaptive_pool &);
~cached_adaptive_pool();

// public member functions
node_pool_t * get_node_pool() const;
segment_manager * get_segment_manager() const;
size_type max_size() const;
pointer allocate(size_type, cvoid_pointer = 0);
void deallocate(const pointer &, size_type);
void deallocate_free_blocks();
pointer address(reference) const;
const_pointer address(const_reference) const;
void construct(const pointer &, const_reference);
void destroy(const pointer &);
size_type size(const pointer &) const;
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type, size_type,

size_type, size_type &, const pointer & = 0);
void allocate_many(size_type, size_type, multiallocation_chain &);
void allocate_many(const size_type *, size_type, multiallocation_chain &);
void deallocate_many(multiallocation_chain &);
pointer allocate_one();
multiallocation_chain allocate_individual(size_type);
void deallocate_one(const pointer &);
void deallocate_individual(multiallocation_chain &);
void set_max_cached_nodes(size_type);
size_type get_max_cached_nodes() const;

// friend functions
friend void swap(self_t &, self_t &);

};

Description

An STL node allocator that uses a segment manager as memory source. The internal pointer type will of the same type (raw, smart)
as "typename SegmentManager::void_pointer" type. This allows placing the allocator in shared memory, memory mapped-files,
etc...

This node allocator shares a segregated storage between all instances of cached_adaptive_pool with equal sizeof(T) placed in the
same memory segment. But also caches some nodes privately to avoid some synchronization overhead.

317

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

NodesPerBlock is the minimum number of nodes of nodes allocated at once when the allocator needs runs out of nodes. MaxFreeBlocks
is the maximum number of totally free blocks that the adaptive node pool will hold. The rest of the totally free blocks will be deal-
located with the segment manager.

OverheadPercent is the (approximated) maximum size overhead (1-20%) of the allocator: (memory usable for nodes / total memory
allocated from the segment manager)

cached_adaptive_pool public construct/copy/destruct

1.
cached_adaptive_pool(segment_manager * segment_mngr);

Constructor from a segment manager. If not present, constructs a node pool. Increments the reference count of the associated
node pool. Can throw boost::interprocess::bad_alloc

2.
cached_adaptive_pool(const cached_adaptive_pool & other);

Copy constructor from other cached_adaptive_pool. Increments the reference count of the associated node pool. Never throws

3.
template<typename T2>
cached_adaptive_pool(const cached_adaptive_pool< T2, SegmentManager, NodesPerBlock, MaxFreeB↵

locks, OverheadPercent > & other);

Copy constructor from related cached_adaptive_pool. If not present, constructs a node pool. Increments the reference count
of the associated node pool. Can throw boost::interprocess::bad_alloc

4.
template<typename T2, typename SegmentManager2, std::size_t N2,

std::size_t F2, unsigned char OP2>
 cached_adaptive_pool&
operator=(const cached_adaptive_pool< T2, SegmentManager2, N2, F2, OP2 > &);

Not assignable from related cached_adaptive_pool

5.
cached_adaptive_pool& operator=(const cached_adaptive_pool &);

Not assignable from other cached_adaptive_pool

6.
~cached_adaptive_pool();

Destructor, removes node_pool_t from memory if its reference count reaches to zero. Never throws

cached_adaptive_pool public member functions

1.
node_pool_t * get_node_pool() const;

Returns a pointer to the node pool. Never throws

2.
segment_manager * get_segment_manager() const;

Returns the segment manager. Never throws

3.
size_type max_size() const;

Returns the number of elements that could be allocated. Never throws

318

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

4.
pointer allocate(size_type count, cvoid_pointer hint = 0);

Allocate memory for an array of count elements. Throws boost::interprocess::bad_alloc if there is no enough memory

5.
void deallocate(const pointer & ptr, size_type count);

Deallocate allocated memory. Never throws

6.
void deallocate_free_blocks();

Deallocates all free blocks of the pool

7.
pointer address(reference value) const;

Returns address of mutable object. Never throws

8.
const_pointer address(const_reference value) const;

Returns address of non mutable object. Never throws

9.
void construct(const pointer & ptr, const_reference v);

Copy construct an object. Throws if T's copy constructor throws

10.
void destroy(const pointer & ptr);

Destroys object. Throws if object's destructor throws

11.
size_type size(const pointer & p) const;

Returns maximum the number of objects the previously allocated memory pointed by p can hold. This size only works for memory
allocated with allocate, allocation_command and allocate_many.

12.
std::pair< pointer, bool >
allocation_command(boost::interprocess::allocation_type command,

size_type limit_size, size_type preferred_size,
size_type & received_size, const pointer & reuse = 0);

13.
void allocate_many(size_type elem_size, size_type num_elements,

multiallocation_chain & chain);

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

14.
void allocate_many(const size_type * elem_sizes, size_type n_elements,

multiallocation_chain & chain);

Allocates n_elements elements, each one of size elem_sizes[i]in a contiguous block of memory. The elements must be deallocated

319

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

15.
void deallocate_many(multiallocation_chain & chain);

Allocates many elements of size elem_size in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. The elements must be deallocated with deallocate(...)

16.
pointer allocate_one();

Allocates just one object. Memory allocated with this function must be deallocated only with deallocate_one(). Throws
boost::interprocess::bad_alloc if there is no enough memory

17.
multiallocation_chain allocate_individual(size_type num_elements);

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

18.
void deallocate_one(const pointer & p);

Deallocates memory previously allocated with allocate_one(). You should never use deallocate_one to deallocate memory allocated
with other functions different from allocate_one(). Never throws

19.
void deallocate_individual(multiallocation_chain & chain);

Allocates many elements of size == 1 in a contiguous block of memory. The minimum number to be allocated is min_elements,
the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to re-
ceived_size. Memory allocated with this function must be deallocated only with deallocate_one().

20.
void set_max_cached_nodes(size_type newmax);

Sets the new max cached nodes value. This can provoke deallocations if "newmax" is less than current cached nodes. Never
throws

21.
size_type get_max_cached_nodes() const;

Returns the max cached nodes parameter. Never throws

cached_adaptive_pool friend functions

1.
friend void swap(self_t & alloc1, self_t & alloc2);

Swaps allocators. Does not throw. If each allocator is placed in a different memory segment, the result is undefined.

Class template offset_ptr

boost::interprocess::offset_ptr

320

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename T, typename DifferenceType = std::ptrdiff_t,
typename OffsetType = std::size_t,
std::size_t Alignment = offset_type_alignment>

class offset_ptr {
public:
// construct/copy/destruct
offset_ptr();
offset_ptr(pointer);
template<typename T> offset_ptr(T *, unspecified = 0);
offset_ptr(const offset_ptr &);
template<typename T2>
offset_ptr(const offset_ptr< T2, DifferenceType, OffsetType, OffsetAlignment > &);

template<typename T2, typename P2, typename O2, std::size_t A2>
offset_ptr(const offset_ptr< T2, P2, O2, A2 > &, unspecified);

template<typename T2, typename P2, typename O2, std::size_t A2>
offset_ptr(const offset_ptr< T2, P2, O2, A2 > &, unspecified);

template<typename T2, typename P2, typename O2, std::size_t A2>
offset_ptr(const offset_ptr< T2, P2, O2, A2 > &, unspecified);

template<typename T2, typename P2, typename O2, std::size_t A2>
offset_ptr(const offset_ptr< T2, P2, O2, A2 > &, unspecified);

 offset_ptr& operator=(pointer);
 offset_ptr& operator=(const offset_ptr &);
template<typename T2>

 offset_ptr& operator=(const offset_ptr< T2, DifferenceType, OffsetType, OffsetAlignment > &);

// public member functions
pointer get() const;
offset_type get_offset() const;
pointer operator->() const;
reference operator*() const;
reference operator[](difference_type) const;
offset_ptr & operator+=(difference_type);
offset_ptr & operator-=(difference_type);
offset_ptr & operator++(void);
offset_ptr operator++(int);
offset_ptr & operator--(void);
offset_ptr operator--(int);
operator unspecified_bool_type() const;
bool operator!() const;

// public static functions
static offset_ptr pointer_to(reference);

// friend functions
friend offset_ptr operator+(difference_type, offset_ptr);
friend offset_ptr operator+(offset_ptr, difference_type);
friend offset_ptr operator-(offset_ptr, difference_type);
friend offset_ptr operator-(difference_type, offset_ptr);
friend difference_type operator-(const offset_ptr &, const offset_ptr &);

};

Description

A smart pointer that stores the offset between between the pointer and the the object it points. This allows offset allows special
properties, since the pointer is independent from the address address of the pointee, if the pointer and the pointee are still separated
by the same offset. This feature converts offset_ptr in a smart pointer that can be placed in shared memory and memory mapped
files mapped in different addresses in every process.

321

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

offset_ptr public construct/copy/destruct

1.
offset_ptr();

Default constructor (null pointer). Never throws.

2.
offset_ptr(pointer ptr);

Constructor from raw pointer (allows "0" pointer conversion). Never throws.

3.
template<typename T> offset_ptr(T * ptr, unspecified = 0);

Constructor from other pointer. Never throws.

4.
offset_ptr(const offset_ptr & ptr);

Constructor from other offset_ptr Never throws.

5.
template<typename T2>
offset_ptr(const offset_ptr< T2, DifferenceType, OffsetType, OffsetAlignment > & ptr);

Constructor from other offset_ptr. If pointers of pointee types are convertible, offset_ptrs will be convertibles. Never throws.

6.
template<typename T2, typename P2, typename O2, std::size_t A2>
offset_ptr(const offset_ptr< T2, P2, O2, A2 > & r, unspecified);

Emulates static_cast operator. Never throws.

7.
template<typename T2, typename P2, typename O2, std::size_t A2>
offset_ptr(const offset_ptr< T2, P2, O2, A2 > & r, unspecified);

Emulates const_cast operator. Never throws.

8.
template<typename T2, typename P2, typename O2, std::size_t A2>
offset_ptr(const offset_ptr< T2, P2, O2, A2 > & r, unspecified);

Emulates dynamic_cast operator. Never throws.

9.
template<typename T2, typename P2, typename O2, std::size_t A2>
offset_ptr(const offset_ptr< T2, P2, O2, A2 > & r, unspecified);

Emulates reinterpret_cast operator. Never throws.

10.
offset_ptr& operator=(pointer from);

Assignment from pointer (saves extra conversion). Never throws.

11.
offset_ptr& operator=(const offset_ptr & ptr);

Assignment from other offset_ptr. Never throws.

322

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

12.
template<typename T2>
 offset_ptr& operator=(const offset_ptr< T2, DifferenceType, OffsetType, OffsetAlignment >
& ptr);

Assignment from related offset_ptr. If pointers of pointee types are assignable, offset_ptrs will be assignable. Never throws.

offset_ptr public member functions

1.
pointer get() const;

Obtains raw pointer from offset. Never throws.

2.
offset_type get_offset() const;

3.
pointer operator->() const;

Pointer-like -> operator. It can return 0 pointer. Never throws.

4.
reference operator*() const;

Dereferencing operator, if it is a null offset_ptr behavior is undefined. Never throws.

5.
reference operator[](difference_type idx) const;

Indexing operator. Never throws.

6.
offset_ptr & operator+=(difference_type offset);

offset_ptr += difference_type. Never throws.

7.
offset_ptr & operator-=(difference_type offset);

offset_ptr -= difference_type. Never throws.

8.
offset_ptr & operator++(void);

++offset_ptr. Never throws.

9.
offset_ptr operator++(int);

offset_ptr++. Never throws.

10.
offset_ptr & operator--(void);

<ndash></ndash>
offset_ptr. Never throws.

11.
offset_ptr operator--(int);

offset_ptr

323

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

<ndash></ndash>
. Never throws.

12.
operator unspecified_bool_type() const;

safe bool conversion operator. Never throws.

13.
bool operator!() const;

Not operator. Not needed in theory, but improves portability. Never throws

offset_ptr public static functions

1.
static offset_ptr pointer_to(reference r);

Compatibility with pointer_traits

offset_ptr friend functions

1.
friend offset_ptr operator+(difference_type diff, offset_ptr right);

difference_type + offset_ptr operation

2.
friend offset_ptr operator+(offset_ptr left, difference_type diff);

offset_ptr + difference_type operation

3.
friend offset_ptr operator-(offset_ptr left, difference_type diff);

offset_ptr - diff operation

4.
friend offset_ptr operator-(difference_type diff, offset_ptr right);

offset_ptr - diff operation

5.
friend difference_type
operator-(const offset_ptr & pt, const offset_ptr & pt2);

offset_ptr - offset_ptr operation

Class template simple_seq_fit

boost::interprocess::simple_seq_fit

324

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename MutexFamily, typename VoidMutex = offset_ptr<void> >
class simple_seq_fit {
public:
// construct/copy/destruct
simple_seq_fit(size_type, size_type);

};

Description

This class implements the simple sequential fit algorithm with a simply linked list of free buffers.

simple_seq_fit public construct/copy/destruct

1.
simple_seq_fit(size_type segment_size, size_type extra_hdr_bytes);

Constructor. "size" is the total size of the managed memory segment, "extra_hdr_bytes" indicates the extra bytes beginning in
the sizeof(simple_seq_fit) offset that the allocator should not use at all.

Class template rbtree_best_fit

boost::interprocess::rbtree_best_fit

325

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename MutexFamily, typename VoidMutex = offset_ptr<void>,
std::size_t MemAlignment = 0>

class rbtree_best_fit {
public:
// construct/copy/destruct
rbtree_best_fit(size_type, size_type);
~rbtree_best_fit();

// public member functions
void * allocate(size_type);
void deallocate(void *);
size_type get_size() const;
size_type get_free_memory() const;
void zero_free_memory();
void grow(size_type);
void shrink_to_fit();
bool all_memory_deallocated();
bool check_sanity();
template<typename T>
std::pair< T *, bool >
allocation_command(boost::interprocess::allocation_type, size_type,

size_type, size_type &, T * = 0);
std::pair< void *, bool >
raw_allocation_command(boost::interprocess::allocation_type, size_type,

size_type, size_type &, void * = 0, size_type = 1);
size_type size(const void *) const;
void * allocate_aligned(size_type, size_type);

// public static functions
static size_type get_min_size(size_type);

};

Description

This class implements an algorithm that stores the free nodes in a red-black tree to have logarithmic search/insert times.

rbtree_best_fit public construct/copy/destruct

1.
rbtree_best_fit(size_type size, size_type extra_hdr_bytes);

Constructor. "size" is the total size of the managed memory segment, "extra_hdr_bytes" indicates the extra bytes beginning in
the sizeof(rbtree_best_fit) offset that the allocator should not use at all.

2.
~rbtree_best_fit();

Destructor.

rbtree_best_fit public member functions

1.
void * allocate(size_type nbytes);

Allocates bytes, returns 0 if there is not more memory.

326

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.
void deallocate(void * addr);

Deallocates previously allocated bytes.

3.
size_type get_size() const;

Returns the size of the memory segment.

4.
size_type get_free_memory() const;

Returns the number of free bytes of the segment.

5.
void zero_free_memory();

Initializes to zero all the memory that's not in use. This function is normally used for security reasons.

6.
void grow(size_type extra_size);

Increases managed memory in extra_size bytes more

7.
void shrink_to_fit();

Decreases managed memory as much as possible.

8.
bool all_memory_deallocated();

Returns true if all allocated memory has been deallocated.

9.
bool check_sanity();

Makes an internal sanity check and returns true if success

10.
template<typename T>
std::pair< T *, bool >
allocation_command(boost::interprocess::allocation_type command,

size_type limit_size, size_type preferred_size,
size_type & received_size, T * reuse_ptr = 0);

11.
std::pair< void *, bool >
raw_allocation_command(boost::interprocess::allocation_type command,

size_type limit_object, size_type preferred_object,
size_type & received_object, void * reuse_ptr = 0,
size_type sizeof_object = 1);

12.
size_type size(const void * ptr) const;

Returns the size of the buffer previously allocated pointed by ptr.

13.
void * allocate_aligned(size_type nbytes, size_type alignment);

327

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Allocates aligned bytes, returns 0 if there is not more memory. Alignment must be power of 2

rbtree_best_fit public static functions

1.
static size_type get_min_size(size_type extra_hdr_bytes);

Obtains the minimum size needed by the algorithm.

Class template flat_map_index

boost::interprocess::flat_map_index

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename IndexConfig>
class flat_map_index : public boost::container::flat_map< MapConfig > {
public:
// construct/copy/destruct
flat_map_index(segment_manager_base *);

// public member functions
void reserve(typename segment_manager_base::size_type);
void shrink_to_fit();

};

Description

Index type based in flat_map. Just derives from flat_map and defines the interface needed by managed memory segments.

flat_map_index public construct/copy/destruct

1.
flat_map_index(segment_manager_base * segment_mngr);

Constructor. Takes a pointer to the segment manager. Can throw.

flat_map_index public member functions

1.
void reserve(typename segment_manager_base::size_type n);

This reserves memory to optimize the insertion of n elements in the index.

2.
void shrink_to_fit();

This frees all unnecessary memory.

Class template iset_index

boost::interprocess::iset_index

328

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename IndexConfig>
class iset_index : public iset_index_aux::index_t< MapConfig > {
public:
// construct/copy/destruct
iset_index(typename MapConfig::segment_manager_base *);

// public member functions
void reserve(typename MapConfig::segment_manager_base::size_type);
void shrink_to_fit();
iterator find(const intrusive_compare_key_type &);
const_iterator find(const intrusive_compare_key_type &) const;
std::pair< iterator, bool >
insert_check(const intrusive_compare_key_type &, insert_commit_data &);

};

Description

Index type based in boost::intrusive::set. Just derives from boost::intrusive::set and defines the interface needed by managed memory
segments

iset_index public construct/copy/destruct

1.
iset_index(typename MapConfig::segment_manager_base *);

Constructor. Takes a pointer to the segment manager. Can throw

iset_index public member functions

1.
void reserve(typename MapConfig::segment_manager_base::size_type);

This reserves memory to optimize the insertion of n elements in the index

2.
void shrink_to_fit();

This frees all unnecessary memory.

3.
iterator find(const intrusive_compare_key_type & key);

4.
const_iterator find(const intrusive_compare_key_type & key) const;

5.
std::pair< iterator, bool >
insert_check(const intrusive_compare_key_type & key,

insert_commit_data & commit_data);

Class template iunordered_set_index

boost::interprocess::iunordered_set_index

329

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename IndexConfig>
class iunordered_set_index : private iunordered_set_index_aux::allocator_holder< MapConfig >,

public iunordered_set_index_aux::index_t< MapConfig >
{
public:
// construct/copy/destruct
iunordered_set_index(segment_manager_base *);
~iunordered_set_index();

// public member functions
void reserve(size_type);
void shrink_to_fit();
iterator find(const intrusive_compare_key_type &);
const_iterator find(const intrusive_compare_key_type &) const;
std::pair< iterator, bool >
insert_check(const intrusive_compare_key_type &, insert_commit_data &);
iterator insert_commit(value_type &, insert_commit_data &);

};

Description

Index type based in boost::intrusive::set. Just derives from boost::intrusive::set and defines the interface needed by managed memory
segments

iunordered_set_index public construct/copy/destruct

1.
iunordered_set_index(segment_manager_base * mngr);

Constructor. Takes a pointer to the segment manager. Can throw

2.
~iunordered_set_index();

iunordered_set_index public member functions

1.
void reserve(size_type new_n);

This reserves memory to optimize the insertion of n elements in the index

2.
void shrink_to_fit();

This tries to free unused memory previously allocated.

3.
iterator find(const intrusive_compare_key_type & key);

4.
const_iterator find(const intrusive_compare_key_type & key) const;

330

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

5.
std::pair< iterator, bool >
insert_check(const intrusive_compare_key_type & key,

insert_commit_data & commit_data);

6.
iterator insert_commit(value_type & val, insert_commit_data & commit_data);

Class template map_index

boost::interprocess::map_index

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename IndexConfig>
class map_index : public boost::container::map< MapConfig > {
public:
// construct/copy/destruct
map_index(segment_manager_base *);

// public member functions
void reserve(typename segment_manager_base::size_type);
void shrink_to_fit();

};

Description

Index type based in boost::interprocess::map. Just derives from boost::interprocess::map and defines the interface needed by managed
memory segments

map_index public construct/copy/destruct

1.
map_index(segment_manager_base * segment_mngr);

Constructor. Takes a pointer to the segment manager. Can throw

map_index public member functions

1.
void reserve(typename segment_manager_base::size_type);

This reserves memory to optimize the insertion of n elements in the index

2.
void shrink_to_fit();

This tries to free previously allocate unused memory.

Class template null_index

boost::interprocess::null_index

331

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename IndexConfig>
class null_index {
public:
// construct/copy/destruct
null_index(segment_manager_base *);

// public member functions
const_iterator begin() const;
iterator begin();
const_iterator end() const;
iterator end();

};

Description

Null index type used to save compilation time when named indexes are not needed.

null_index public construct/copy/destruct

1.
null_index(segment_manager_base *);

Empty constructor.

null_index public member functions

1.
const_iterator begin() const;

begin() is equal to end()

2.
iterator begin();

begin() is equal to end()

3.
const_iterator end() const;

begin() is equal to end()

4.
iterator end();

begin() is equal to end()

Class template unordered_map_index

boost::interprocess::unordered_map_index

332

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename IndexConfig>
class unordered_map_index :
public unordered_map_index_aux::index_t< MapConfig >

{
public:
// construct/copy/destruct
unordered_map_index(segment_manager_base *);

// public member functions
void reserve(typename segment_manager_base::size_type);
void shrink_to_fit();

};

Description

Index type based in unordered_map. Just derives from unordered_map and defines the interface needed by managed memory segments

unordered_map_index public construct/copy/destruct

1.
unordered_map_index(segment_manager_base * segment_mngr);

Constructor. Takes a pointer to the segment manager. Can throw

unordered_map_index public member functions

1.
void reserve(typename segment_manager_base::size_type n);

This reserves memory to optimize the insertion of n elements in the index

2.
void shrink_to_fit();

This tries to free previously allocate unused memory.

Class template segment_manager

boost::interprocess::segment_manager

333

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharType, typename MemoryAlgorithm,
template< class IndexConfig > class IndexType>

class segment_manager :
public boost::interprocess::segment_manager_base< MemoryAlgorithm >

{
public:
// construct/copy/destruct
explicit segment_manager(size_type);

// public member functions
template<typename T> std::pair< T *, size_type > find(const CharType *);
template<typename T> std::pair< T *, size_type > find(unspecified);
template<typename T>
std::pair< T *, size_type > find_no_lock(const CharType *);

template<typename T> std::pair< T *, size_type > find_no_lock(unspecified);
template<typename T> construct_proxy< T >::type construct(char_ptr_holder_t);
template<typename T>
construct_proxy< T >::type find_or_construct(char_ptr_holder_t);

template<typename T>
construct_proxy< T >::type construct(char_ptr_holder_t, std::nothrow_t);

template<typename T>
construct_proxy< T >::type
find_or_construct(char_ptr_holder_t, std::nothrow_t);

template<typename T>
construct_iter_proxy< T >::type construct_it(char_ptr_holder_t);

template<typename T>
construct_iter_proxy< T >::type find_or_construct_it(char_ptr_holder_t);

template<typename T>
construct_iter_proxy< T >::type
construct_it(char_ptr_holder_t, std::nothrow_t);

template<typename T>
construct_iter_proxy< T >::type
find_or_construct_it(char_ptr_holder_t, std::nothrow_t);

template<typename Func> *void atomic_func(Func &);
template<typename Func> bool try_atomic_func(Func &);
template<typename T> bool destroy(unspecified);
template<typename T> bool destroy(const CharType *);
template<typename T> void destroy_ptr(const T *);
void reserve_named_objects(size_type);
void reserve_unique_objects(size_type);
void shrink_to_fit_indexes();
size_type get_num_named_objects();
size_type get_num_unique_objects();
const_named_iterator named_begin() const;
const_named_iterator named_end() const;
const_unique_iterator unique_begin() const;
const_unique_iterator unique_end() const;
template<typename T> allocator< T >::type get_allocator();
template<typename T> deleter< T >::type get_deleter();

// public static functions
template<typename T> static const CharType * get_instance_name(const T *);
template<typename T> static size_type get_instance_length(const T *);
template<typename T> static instance_type get_instance_type(const T *);
static size_type get_min_size();

};

334

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Description

This object is placed in the beginning of memory segment and implements the allocation (named or anonymous) of portions of the
segment. This object contains two indexes that maintain an association between a name and a portion of the segment.

The first index contains the mappings for normal named objects using the char type specified in the template parameter.

The second index contains the association for unique instances. The key will be the const char * returned from type_info.name()
function for the unique type to be constructed.

segment_manager<CharType, MemoryAlgorithm, IndexType> inherits publicly from segment_manager_base<MemoryAlgorithm>
and inherits from it many public functions related to anonymous object and raw memory allocation. See segment_manager_base
reference to know about those functions.

segment_manager public construct/copy/destruct

1.
explicit segment_manager(size_type segment_size);

Constructor of the segment manager "size" is the size of the memory segment where the segment manager is being constructed.
Can throw

segment_manager public member functions

1.
template<typename T> std::pair< T *, size_type > find(const CharType * name);

Tries to find a previous named allocation. Returns the address and the object count. On failure the first member of the returned
pair is 0.

2.
template<typename T> std::pair< T *, size_type > find(unspecified name);

Tries to find a previous unique allocation. Returns the address and the object count. On failure the first member of the returned
pair is 0.

3.
template<typename T>
std::pair< T *, size_type > find_no_lock(const CharType * name);

Tries to find a previous named allocation. Returns the address and the object count. On failure the first member of the returned
pair is 0. This search is not mutex-protected!

4.
template<typename T>
std::pair< T *, size_type > find_no_lock(unspecified name);

Tries to find a previous unique allocation. Returns the address and the object count. On failure the first member of the returned
pair is 0. This search is not mutex-protected!

5.
template<typename T>
construct_proxy< T >::type construct(char_ptr_holder_t name);

Returns throwing "construct" proxy object

6.
template<typename T>
construct_proxy< T >::type find_or_construct(char_ptr_holder_t name);

Returns throwing "search or construct" proxy object

335

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

7.
template<typename T>
construct_proxy< T >::type construct(char_ptr_holder_t name, std::nothrow_t);

Returns no throwing "construct" proxy object

8.
template<typename T>
construct_proxy< T >::type
find_or_construct(char_ptr_holder_t name, std::nothrow_t);

Returns no throwing "search or construct" proxy object

9.
template<typename T>
construct_iter_proxy< T >::type construct_it(char_ptr_holder_t name);

Returns throwing "construct from iterators" proxy object.

10.
template<typename T>
construct_iter_proxy< T >::type find_or_construct_it(char_ptr_holder_t name);

Returns throwing "search or construct from iterators" proxy object

11.
template<typename T>
construct_iter_proxy< T >::type
construct_it(char_ptr_holder_t name, std::nothrow_t);

Returns no throwing "construct from iterators" proxy object

12.
template<typename T>
construct_iter_proxy< T >::type
find_or_construct_it(char_ptr_holder_t name, std::nothrow_t);

Returns no throwing "search or construct from iterators" proxy object

13.
template<typename Func> *void atomic_func(Func & f);

Calls object function blocking recursive interprocess_mutex and guarantees that no new named_alloc or destroy will be executed
by any process while executing the object function call

14.
template<typename Func> bool try_atomic_func(Func & f);

Tries to calls a functor guaranteeing that no new construction, search or destruction will be executed by any process while executing
the object function call. If the atomic function can't be immediatelly executed because the internal mutex is already locked, returns
false. If the functor throws, this function throws.

15.
template<typename T> bool destroy(unspecified);

Destroys a previously created unique instance. Returns false if the object was not present.

16.
template<typename T> bool destroy(const CharType * name);

Destroys the named object with the given name. Returns false if that object can't be found.

336

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

17.
template<typename T> void destroy_ptr(const T * p);

Destroys an anonymous, unique or named object using it's address

18.
void reserve_named_objects(size_type num);

Preallocates needed index resources to optimize the creation of "num" named objects in the managed memory segment. Can throw
boost::interprocess::bad_alloc if there is no enough memory.

19.
void reserve_unique_objects(size_type num);

Preallocates needed index resources to optimize the creation of "num" unique objects in the managed memory segment. Can
throw boost::interprocess::bad_alloc if there is no enough memory.

20.
void shrink_to_fit_indexes();

Calls shrink_to_fit in both named and unique object indexes to try to free unused memory from those indexes.

21.
size_type get_num_named_objects();

Returns the number of named objects stored in the segment.

22.
size_type get_num_unique_objects();

Returns the number of unique objects stored in the segment.

23.
const_named_iterator named_begin() const;

Returns a constant iterator to the beginning of the information about the named allocations performed in this segment manager

24.
const_named_iterator named_end() const;

Returns a constant iterator to the end of the information about the named allocations performed in this segment manager

25.
const_unique_iterator unique_begin() const;

Returns a constant iterator to the beginning of the information about the unique allocations performed in this segment manager

26.
const_unique_iterator unique_end() const;

Returns a constant iterator to the end of the information about the unique allocations performed in this segment manager

27.
template<typename T> allocator< T >::type get_allocator();

Returns an instance of the default allocator for type T initialized that allocates memory from this segment manager.

28.
template<typename T> deleter< T >::type get_deleter();

Returns an instance of the default allocator for type T initialized that allocates memory from this segment manager.

337

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

segment_manager public static functions

1.
template<typename T> static const CharType * get_instance_name(const T * ptr);

Returns the name of an object created with construct/find_or_construct functions. Does not throw

2.
template<typename T> static size_type get_instance_length(const T * ptr);

Returns the length of an object created with construct/find_or_construct functions. Does not throw.

3.
template<typename T> static instance_type get_instance_type(const T * ptr);

Returns is the the name of an object created with construct/find_or_construct functions. Does not throw

4.
static size_type get_min_size();

Obtains the minimum size needed by the segment manager

Class template basic_managed_external_buffer

boost::interprocess::basic_managed_external_buffer

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharType, typename MemoryAlgorithm,
template< class IndexConfig > class IndexType>

class basic_managed_external_buffer {
public:
// construct/copy/destruct
basic_managed_external_buffer();
basic_managed_external_buffer(create_only_t, void *, size_type);
basic_managed_external_buffer(open_only_t, void *, size_type);
basic_managed_external_buffer(basic_managed_external_buffer &&);

 basic_managed_external_buffer& operator=(basic_managed_external_buffer &&);

// public member functions
void grow(size_type);
void swap(basic_managed_external_buffer &);

};

Description

A basic user memory named object creation class. Inherits all basic functionality from basic_managed_memory_impl<CharType,
AllocationAlgorithm, IndexType>

basic_managed_external_buffer public construct/copy/destruct

1.
basic_managed_external_buffer();

Default constructor. Does nothing. Useful in combination with move semantics

2.
basic_managed_external_buffer(create_only_t, void * addr, size_type size);

338

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Creates and places the segment manager. This can throw.

3.
basic_managed_external_buffer(open_only_t, void * addr, size_type size);

Creates and places the segment manager. This can throw.

4.
basic_managed_external_buffer(basic_managed_external_buffer && moved);

Moves the ownership of "moved"'s managed memory to *this. Does not throw.

5.
basic_managed_external_buffer&
operator=(basic_managed_external_buffer && moved);

Moves the ownership of "moved"'s managed memory to *this. Does not throw.

basic_managed_external_buffer public member functions

1.
void grow(size_type extra_bytes);

2.
void swap(basic_managed_external_buffer & other);

Swaps the ownership of the managed heap memories managed by *this and other. Never throws.

Class template basic_managed_shared_memory

boost::interprocess::basic_managed_shared_memory

339

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharType, typename MemoryAlgorithm,
template< class IndexConfig > class IndexType>

class basic_managed_shared_memory {
public:
// construct/copy/destruct
basic_managed_shared_memory();
basic_managed_shared_memory(create_only_t, const char *, size_type,

const void * = 0,
const permissions & = permissions());

basic_managed_shared_memory(open_or_create_t, const char *, size_type,
const void * = 0,
const permissions & = permissions());

basic_managed_shared_memory(open_copy_on_write_t, const char *,
const void * = 0);

basic_managed_shared_memory(open_read_only_t, const char *,
const void * = 0);

basic_managed_shared_memory(open_only_t, const char *, const void * = 0);
basic_managed_shared_memory(basic_managed_shared_memory &&);

 basic_managed_shared_memory& operator=(basic_managed_shared_memory &&);
~basic_managed_shared_memory();

// public member functions
void swap(basic_managed_shared_memory &);

// public static functions
static bool grow(const char *, size_type);
static bool shrink_to_fit(const char *);

};

Description

A basic shared memory named object creation class. Initializes the shared memory segment. Inherits all basic functionality from
basic_managed_memory_impl<CharType, AllocationAlgorithm, IndexType>

basic_managed_shared_memory public construct/copy/destruct

1.
basic_managed_shared_memory();

Default constructor. Does nothing. Useful in combination with move semantics

2.
basic_managed_shared_memory(create_only_t, const char * name, size_type size,

const void * addr = 0,
const permissions & perm = permissions());

Creates shared memory and creates and places the segment manager. This can throw.

3.
basic_managed_shared_memory(open_or_create_t, const char * name,

size_type size, const void * addr = 0,
const permissions & perm = permissions());

Creates shared memory and creates and places the segment manager if segment was not created. If segment was created it connects
to the segment. This can throw.

340

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

4.
basic_managed_shared_memory(open_copy_on_write_t, const char * name,

const void * addr = 0);

Connects to a created shared memory and its segment manager. in copy_on_write mode. This can throw.

5.
basic_managed_shared_memory(open_read_only_t, const char * name,

const void * addr = 0);

Connects to a created shared memory and its segment manager. in read-only mode. This can throw.

6.
basic_managed_shared_memory(open_only_t, const char * name,

const void * addr = 0);

Connects to a created shared memory and its segment manager. This can throw.

7.
basic_managed_shared_memory(basic_managed_shared_memory && moved);

Moves the ownership of "moved"'s managed memory to *this. Does not throw

8.
basic_managed_shared_memory& operator=(basic_managed_shared_memory && moved);

Moves the ownership of "moved"'s managed memory to *this. Does not throw

9.
~basic_managed_shared_memory();

Destroys *this and indicates that the calling process is finished using the resource. The destructor function will deallocate any
system resources allocated by the system for use by this process for this resource. The resource can still be opened again calling
the open constructor overload. To erase the resource from the system use remove().

basic_managed_shared_memory public member functions

1.
void swap(basic_managed_shared_memory & other);

Swaps the ownership of the managed shared memories managed by *this and other. Never throws.

basic_managed_shared_memory public static functions

1.
static bool grow(const char * shmname, size_type extra_bytes);

Tries to resize the managed shared memory object so that we have room for more objects.

This function is not synchronized so no other thread or process should be reading or writing the file

2.
static bool shrink_to_fit(const char * shmname);

Tries to resize the managed shared memory to minimized the size of the file.

This function is not synchronized so no other thread or process should be reading or writing the file

Class template basic_managed_windows_shared_memory

boost::interprocess::basic_managed_windows_shared_memory

341

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharType, typename MemoryAlgorithm,
template< class IndexConfig > class IndexType>

class basic_managed_windows_shared_memory {
public:
// construct/copy/destruct
basic_managed_windows_shared_memory();
basic_managed_windows_shared_memory(create_only_t, const char *, size_type,

const void * = 0,
const permissions & = permissions());

basic_managed_windows_shared_memory(open_or_create_t, const char *,
size_type, const void * = 0,
const permissions & = permissions());

basic_managed_windows_shared_memory(open_only_t, const char *,
const void * = 0);

basic_managed_windows_shared_memory(open_copy_on_write_t, const char *,
const void * = 0);

basic_managed_windows_shared_memory(open_read_only_t, const char *,
const void * = 0);

basic_managed_windows_shared_memory(basic_managed_windows_shared_memory &&);
 basic_managed_windows_shared_memory&
operator=(basic_managed_windows_shared_memory &&);
~basic_managed_windows_shared_memory();

// public member functions
void swap(basic_managed_windows_shared_memory &);

};

Description

A basic managed windows shared memory creation class. Initializes the shared memory segment. Inherits all basic functionality
from basic_managed_memory_impl<CharType, AllocationAlgorithm, IndexType> Unlike basic_managed_shared_memory, it has
no kernel persistence and the shared memory is destroyed when all processes destroy all their windows_shared_memory objects and
mapped regions for the same shared memory or the processes end/crash.

Warning: basic_managed_windows_shared_memory and basic_managed_shared_memory can't communicate between them.

basic_managed_windows_shared_memory public construct/copy/destruct

1.
basic_managed_windows_shared_memory();

Default constructor. Does nothing. Useful in combination with move semantics

2.
basic_managed_windows_shared_memory(create_only_t, const char * name,

size_type size, const void * addr = 0,
const permissions & perm = permissions());

Creates shared memory and creates and places the segment manager. This can throw.

3.
basic_managed_windows_shared_memory(open_or_create_t, const char * name,

size_type size, const void * addr = 0,
const permissions & perm = permissions());

Creates shared memory and creates and places the segment manager if segment was not created. If segment was created it connects
to the segment. This can throw.

342

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

4.
basic_managed_windows_shared_memory(open_only_t, const char * name,

const void * addr = 0);

Connects to a created shared memory and its segment manager. This can throw.

5.
basic_managed_windows_shared_memory(open_copy_on_write_t, const char * name,

const void * addr = 0);

Connects to a created shared memory and its segment manager in copy_on_write mode. This can throw.

6.
basic_managed_windows_shared_memory(open_read_only_t, const char * name,

const void * addr = 0);

Connects to a created shared memory and its segment manager in read-only mode. This can throw.

7.
basic_managed_windows_shared_memory(basic_managed_windows_shared_memory && moved);

Moves the ownership of "moved"'s managed memory to *this. Does not throw

8.
basic_managed_windows_shared_memory&
operator=(basic_managed_windows_shared_memory && moved);

Moves the ownership of "moved"'s managed memory to *this. Does not throw

9.
~basic_managed_windows_shared_memory();

Destroys *this and indicates that the calling process is finished using the resource. All mapped regions are still valid after destruction.
When all mapped regions and basic_managed_windows_shared_memory objects referring the shared memory are destroyed,
the operating system will destroy the shared memory.

basic_managed_windows_shared_memory public member functions

1.
void swap(basic_managed_windows_shared_memory & other);

Swaps the ownership of the managed mapped memories managed by *this and other. Never throws.

Class template basic_managed_xsi_shared_memory

boost::interprocess::basic_managed_xsi_shared_memory

343

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharType, typename MemoryAlgorithm,
template< class IndexConfig > class IndexType>

class basic_managed_xsi_shared_memory {
public:
// construct/copy/destruct
basic_managed_xsi_shared_memory();
basic_managed_xsi_shared_memory(create_only_t, const xsi_key &, std::size_t,

const void * = 0,
const permissions & = permissions());

basic_managed_xsi_shared_memory(open_or_create_t, const xsi_key &,
std::size_t, const void * = 0,
const permissions & = permissions());

basic_managed_xsi_shared_memory(open_read_only_t, const xsi_key &,
const void * = 0);

basic_managed_xsi_shared_memory(open_only_t, const xsi_key &,
const void * = 0);

basic_managed_xsi_shared_memory(basic_managed_xsi_shared_memory &&);
 basic_managed_xsi_shared_memory&
operator=(basic_managed_xsi_shared_memory &&);
~basic_managed_xsi_shared_memory();

// public member functions
void swap(basic_managed_xsi_shared_memory &);
int get_shmid() const;

// public static functions
static bool remove(int);

};

Description

A basic X/Open System Interface (XSI) shared memory named object creation class. Initializes the shared memory segment. Inherits
all basic functionality from basic_managed_memory_impl<CharType, AllocationAlgorithm, IndexType>

basic_managed_xsi_shared_memory public construct/copy/destruct

1.
basic_managed_xsi_shared_memory();

Default constructor. Does nothing. Useful in combination with move semantics

2.
basic_managed_xsi_shared_memory(create_only_t, const xsi_key & key,

std::size_t size, const void * addr = 0,
const permissions & perm = permissions());

Creates shared memory and creates and places the segment manager. This can throw.

3.
basic_managed_xsi_shared_memory(open_or_create_t, const xsi_key & key,

std::size_t size, const void * addr = 0,
const permissions & perm = permissions());

Creates shared memory and creates and places the segment manager if segment was not created. If segment was created it connects
to the segment. This can throw.

344

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

4.
basic_managed_xsi_shared_memory(open_read_only_t, const xsi_key & key,

const void * addr = 0);

Connects to a created shared memory and its segment manager. in read-only mode. This can throw.

5.
basic_managed_xsi_shared_memory(open_only_t, const xsi_key & key,

const void * addr = 0);

Connects to a created shared memory and its segment manager. This can throw.

6.
basic_managed_xsi_shared_memory(basic_managed_xsi_shared_memory && moved);

Moves the ownership of "moved"'s managed memory to *this. Does not throw

7.
basic_managed_xsi_shared_memory&
operator=(basic_managed_xsi_shared_memory && moved);

Moves the ownership of "moved"'s managed memory to *this. Does not throw

8.
~basic_managed_xsi_shared_memory();

Destroys *this and indicates that the calling process is finished using the resource. The destructor function will deallocate any
system resources allocated by the system for use by this process for this resource. The resource can still be opened again calling
the open constructor overload. To erase the resource from the system use remove().

basic_managed_xsi_shared_memory public member functions

1.
void swap(basic_managed_xsi_shared_memory & other);

Swaps the ownership of the managed shared memories managed by *this and other. Never throws.

2.
int get_shmid() const;

basic_managed_xsi_shared_memory public static functions

1.
static bool remove(int shmid);

Erases a XSI shared memory object identified by shmid from the system. Returns false on error. Never throws

Class template basic_managed_heap_memory

boost::interprocess::basic_managed_heap_memory

345

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharType, typename MemoryAlgorithm,
template< class IndexConfig > class IndexType>

class basic_managed_heap_memory {
public:
// construct/copy/destruct
basic_managed_heap_memory();
basic_managed_heap_memory(size_type);
basic_managed_heap_memory(basic_managed_heap_memory &&);

 basic_managed_heap_memory& operator=(basic_managed_heap_memory &&);
~basic_managed_heap_memory();

// public member functions
bool grow(size_type);
void swap(basic_managed_heap_memory &);

};

Description

A basic heap memory named object creation class. Initializes the heap memory segment. Inherits all basic functionality from ba-
sic_managed_memory_impl<CharType, AllocationAlgorithm, IndexType>

basic_managed_heap_memory public construct/copy/destruct

1.
basic_managed_heap_memory();

Default constructor. Does nothing. Useful in combination with move semantics

2.
basic_managed_heap_memory(size_type size);

Creates heap memory and initializes the segment manager. This can throw.

3.
basic_managed_heap_memory(basic_managed_heap_memory && moved);

Moves the ownership of "moved"'s managed memory to *this. Does not throw.

4.
basic_managed_heap_memory& operator=(basic_managed_heap_memory && moved);

Moves the ownership of "moved"'s managed memory to *this. Does not throw.

5.
~basic_managed_heap_memory();

Destructor. Liberates the heap memory holding the managed data. Never throws.

basic_managed_heap_memory public member functions

1.
bool grow(size_type extra_bytes);

Tries to resize internal heap memory so that we have room for more objects. WARNING: If memory is reallocated, all the objects
will be binary-copied to the new buffer. To be able to use this function, all pointers constructed in this buffer must be offset
pointers. Otherwise, the result is undefined. Returns true if the growth has been successful, so you will have some extra bytes to
allocate new objects. If returns false, the heap allocation has failed.

346

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.
void swap(basic_managed_heap_memory & other);

Swaps the ownership of the managed heap memories managed by *this and other. Never throws.

Class template basic_managed_mapped_file

boost::interprocess::basic_managed_mapped_file

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharType, typename MemoryAlgorithm,
template< class IndexConfig > class IndexType>

class basic_managed_mapped_file {
public:
// construct/copy/destruct
basic_managed_mapped_file();
basic_managed_mapped_file(create_only_t, const char *, size_type,

const void * = 0,
const permissions & = permissions());

basic_managed_mapped_file(open_or_create_t, const char *, size_type,
const void * = 0,
const permissions & = permissions());

basic_managed_mapped_file(open_only_t, const char *, const void * = 0);
basic_managed_mapped_file(open_copy_on_write_t, const char *,

const void * = 0);
basic_managed_mapped_file(open_read_only_t, const char *, const void * = 0);
basic_managed_mapped_file(basic_managed_mapped_file &&);

 basic_managed_mapped_file& operator=(basic_managed_mapped_file &&);
~basic_managed_mapped_file();

// public member functions
void swap(basic_managed_mapped_file &);
bool flush();

// public static functions
static bool grow(const char *, size_type);
static bool shrink_to_fit(const char *);

};

Description

A basic mapped file named object creation class. Initializes the mapped file. Inherits all basic functionality from basic_man-
aged_memory_impl<CharType, AllocationAlgorithm, IndexType>

basic_managed_mapped_file public construct/copy/destruct

1.
basic_managed_mapped_file();

Creates mapped file and creates and places the segment manager. This can throw.

2.
basic_managed_mapped_file(create_only_t, const char * name, size_type size,

const void * addr = 0,
const permissions & perm = permissions());

Creates mapped file and creates and places the segment manager. This can throw.

347

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3.
basic_managed_mapped_file(open_or_create_t, const char * name, size_type size,

const void * addr = 0,
const permissions & perm = permissions());

Creates mapped file and creates and places the segment manager if segment was not created. If segment was created it connects
to the segment. This can throw.

4.
basic_managed_mapped_file(open_only_t, const char * name,

const void * addr = 0);

Connects to a created mapped file and its segment manager. This can throw.

5.
basic_managed_mapped_file(open_copy_on_write_t, const char * name,

const void * addr = 0);

Connects to a created mapped file and its segment manager in copy_on_write mode. This can throw.

6.
basic_managed_mapped_file(open_read_only_t, const char * name,

const void * addr = 0);

Connects to a created mapped file and its segment manager in read-only mode. This can throw.

7.
basic_managed_mapped_file(basic_managed_mapped_file && moved);

Moves the ownership of "moved"'s managed memory to *this. Does not throw

8.
basic_managed_mapped_file& operator=(basic_managed_mapped_file && moved);

Moves the ownership of "moved"'s managed memory to *this. Does not throw

9.
~basic_managed_mapped_file();

Destroys *this and indicates that the calling process is finished using the resource. The destructor function will deallocate any
system resources allocated by the system for use by this process for this resource. The resource can still be opened again calling
the open constructor overload. To erase the resource from the system use remove().

basic_managed_mapped_file public member functions

1.
void swap(basic_managed_mapped_file & other);

Swaps the ownership of the managed mapped memories managed by *this and other. Never throws.

2.
bool flush();

Flushes cached data to file. Never throws

basic_managed_mapped_file public static functions

1.
static bool grow(const char * filename, size_type extra_bytes);

Tries to resize mapped file so that we have room for more objects.

348

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function is not synchronized so no other thread or process should be reading or writing the file

2.
static bool shrink_to_fit(const char * filename);

Tries to resize mapped file to minimized the size of the file.

This function is not synchronized so no other thread or process should be reading or writing the file

Class template basic_bufferbuf

boost::interprocess::basic_bufferbuf

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharT, typename CharTraits = std::char_traits<CharT> >
class basic_bufferbuf : public std::basic_streambuf< CharT, CharTraits > {
public:
// construct/copy/destruct
explicit basic_bufferbuf(std::ios_base::openmode = std::ios_base::in|std::ios_base::out);
explicit basic_bufferbuf(CharT *, std::size_t,

std::ios_base::openmode = std::ios_base::in|std::ios_base::out);
~basic_bufferbuf();

// public member functions
std::pair< CharT *, std::size_t > buffer() const;
void buffer(CharT *, std::size_t);

};

Description

A streambuf class that controls the transmission of elements to and from a basic_xbufferstream. The elements are transmitted from
a to a fixed size buffer

basic_bufferbuf public construct/copy/destruct

1.
explicit basic_bufferbuf(std::ios_base::openmode mode = std::ios_base::in|std::ios_base::out);

Constructor. Does not throw.

2.
explicit basic_bufferbuf(CharT * buf, std::size_t length,

std::ios_base::openmode mode = std::ios_base::in|std::ios_base::out);

Constructor. Assigns formatting buffer. Does not throw.

3.
~basic_bufferbuf();

basic_bufferbuf public member functions

1.
std::pair< CharT *, std::size_t > buffer() const;

Returns the pointer and size of the internal buffer. Does not throw.

349

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.
void buffer(CharT * buf, std::size_t length);

Sets the underlying buffer to a new value Does not throw.

Class template basic_ibufferstream

boost::interprocess::basic_ibufferstream

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharT, typename CharTraits = std::char_traits<CharT> >
class basic_ibufferstream : public std::basic_istream< CharT, CharTraits > {
public:
// construct/copy/destruct
basic_ibufferstream(std::ios_base::openmode = std::ios_base::in);
basic_ibufferstream(const CharT *, std::size_t,

std::ios_base::openmode = std::ios_base::in);
~basic_ibufferstream();

// public member functions
basic_bufferbuf< CharT, CharTraits > * rdbuf() const;
std::pair< const CharT *, std::size_t > buffer() const;
void buffer(const CharT *, std::size_t);

};

Description

A basic_istream class that uses a fixed size character buffer as its formatting buffer.

basic_ibufferstream public construct/copy/destruct

1.
basic_ibufferstream(std::ios_base::openmode mode = std::ios_base::in);

Constructor. Does not throw.

2.
basic_ibufferstream(const CharT * buf, std::size_t length,

std::ios_base::openmode mode = std::ios_base::in);

Constructor. Assigns formatting buffer. Does not throw.

3.
~basic_ibufferstream();

basic_ibufferstream public member functions

1.
basic_bufferbuf< CharT, CharTraits > * rdbuf() const;

Returns the address of the stored stream buffer.

2.
std::pair< const CharT *, std::size_t > buffer() const;

Returns the pointer and size of the internal buffer. Does not throw.

350

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3.
void buffer(const CharT * buf, std::size_t length);

Sets the underlying buffer to a new value. Resets stream position. Does not throw.

Class template basic_obufferstream

boost::interprocess::basic_obufferstream

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharT, typename CharTraits = std::char_traits<CharT> >
class basic_obufferstream : public std::basic_ostream< CharT, CharTraits > {
public:
// construct/copy/destruct
basic_obufferstream(std::ios_base::openmode = std::ios_base::out);
basic_obufferstream(CharT *, std::size_t,

std::ios_base::openmode = std::ios_base::out);
~basic_obufferstream();

// public member functions
basic_bufferbuf< CharT, CharTraits > * rdbuf() const;
std::pair< CharT *, std::size_t > buffer() const;
void buffer(CharT *, std::size_t);

};

Description

A basic_ostream class that uses a fixed size character buffer as its formatting buffer.

basic_obufferstream public construct/copy/destruct

1.
basic_obufferstream(std::ios_base::openmode mode = std::ios_base::out);

Constructor. Does not throw.

2.
basic_obufferstream(CharT * buf, std::size_t length,

std::ios_base::openmode mode = std::ios_base::out);

Constructor. Assigns formatting buffer. Does not throw.

3.
~basic_obufferstream();

basic_obufferstream public member functions

1.
basic_bufferbuf< CharT, CharTraits > * rdbuf() const;

Returns the address of the stored stream buffer.

2.
std::pair< CharT *, std::size_t > buffer() const;

Returns the pointer and size of the internal buffer. Does not throw.

351

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3.
void buffer(CharT * buf, std::size_t length);

Sets the underlying buffer to a new value. Resets stream position. Does not throw.

Class template basic_bufferstream

boost::interprocess::basic_bufferstream

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharT, typename CharTraits = std::char_traits<CharT> >
class basic_bufferstream : public std::basic_iostream< CharT, CharTraits > {
public:
// construct/copy/destruct
basic_bufferstream(std::ios_base::openmode = std::ios_base::in|std::ios_base::out);
basic_bufferstream(CharT *, std::size_t,

std::ios_base::openmode = std::ios_base::in|std::ios_base::out);
~basic_bufferstream();

// public member functions
basic_bufferbuf< CharT, CharTraits > * rdbuf() const;
std::pair< CharT *, std::size_t > buffer() const;
void buffer(CharT *, std::size_t);

};

Description

A basic_iostream class that uses a fixed size character buffer as its formatting buffer.

basic_bufferstream public construct/copy/destruct

1.
basic_bufferstream(std::ios_base::openmode mode = std::ios_base::in|std::ios_base::out);

Constructor. Does not throw.

2.
basic_bufferstream(CharT * buf, std::size_t length,

std::ios_base::openmode mode = std::ios_base::in|std::ios_base::out);

Constructor. Assigns formatting buffer. Does not throw.

3.
~basic_bufferstream();

basic_bufferstream public member functions

1.
basic_bufferbuf< CharT, CharTraits > * rdbuf() const;

Returns the address of the stored stream buffer.

2.
std::pair< CharT *, std::size_t > buffer() const;

Returns the pointer and size of the internal buffer. Does not throw.

352

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3.
void buffer(CharT * buf, std::size_t length);

Sets the underlying buffer to a new value. Resets stream position. Does not throw.

Class template basic_vectorbuf

boost::interprocess::basic_vectorbuf

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharVector,
typename CharTraits = std::char_traits<typename CharVector::value_type> >

class basic_vectorbuf :
public std::basic_streambuf< CharVector::value_type, CharTraits >

{
public:
// construct/copy/destruct
explicit basic_vectorbuf(std::ios_base::openmode = std::ios_base::in|std::ios_base::out);
template<typename VectorParameter>
explicit basic_vectorbuf(const VectorParameter &,

std::ios_base::openmode = std::ios_base::in|std::ios_base::out);
~basic_vectorbuf();

// public member functions
void swap_vector(vector_type &);
const vector_type & vector() const;
void reserve(typename vector_type::size_type);
void clear();

};

Description

A streambuf class that controls the transmission of elements to and from a basic_ivectorstream, basic_ovectorstream or basic_vec-
torstream. It holds a character vector specified by CharVector template parameter as its formatting buffer. The vector must have
contiguous storage, like std::vector, boost::interprocess::vector or boost::interprocess::basic_string

basic_vectorbuf public construct/copy/destruct

1.
explicit basic_vectorbuf(std::ios_base::openmode mode = std::ios_base::in|std::ios_base::out);

Constructor. Throws if vector_type default constructor throws.

2.
template<typename VectorParameter>
explicit basic_vectorbuf(const VectorParameter & param,

std::ios_base::openmode mode = std::ios_base::in|std::ios_base::out);

Constructor. Throws if vector_type(const VectorParameter ¶m) throws.

3.
~basic_vectorbuf();

353

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_vectorbuf public member functions

1.
void swap_vector(vector_type & vect);

Swaps the underlying vector with the passed vector. This function resets the read/write position in the stream. Does not throw.

2.
const vector_type & vector() const;

Returns a const reference to the internal vector. Does not throw.

3.
void reserve(typename vector_type::size_type size);

Preallocates memory from the internal vector. Resets the stream to the first position. Throws if the internals vector's memory al-
location throws.

4.
void clear();

Calls clear() method of the internal vector. Resets the stream to the first position.

Class template basic_ivectorstream

boost::interprocess::basic_ivectorstream

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharVector,
typename CharTraits = std::char_traits<typename CharVector::value_type> >

class basic_ivectorstream {
};

Class template basic_ovectorstream

boost::interprocess::basic_ovectorstream

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharVector,
typename CharTraits = std::char_traits<typename CharVector::value_type> >

class basic_ovectorstream {
};

Class template basic_vectorstream

boost::interprocess::basic_vectorstream

354

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename CharVector,
typename CharTraits = std::char_traits<typename CharVector::value_type> >

class basic_vectorstream :
public std::basic_iostream< CharVector::value_type, CharTraits >

{
public:
// construct/copy/destruct
basic_vectorstream(std::ios_base::openmode = std::ios_base::in|std::ios_base::out);
template<typename VectorParameter>
basic_vectorstream(const VectorParameter &,

std::ios_base::openmode = std::ios_base::in|std::ios_base::out);
~basic_vectorstream();

// public member functions
basic_vectorbuf< CharVector, CharTraits > * rdbuf() const;
void swap_vector(vector_type &);
const vector_type & vector() const;
void reserve(typename vector_type::size_type);
void clear();

};

Description

A basic_iostream class that holds a character vector specified by CharVector template parameter as its formatting buffer. The vector
must have contiguous storage, like std::vector, boost::interprocess::vector or boost::interprocess::basic_string

basic_vectorstream public construct/copy/destruct

1.
basic_vectorstream(std::ios_base::openmode mode = std::ios_base::in|std::ios_base::out);

Constructor. Throws if vector_type default constructor throws.

2.
template<typename VectorParameter>
basic_vectorstream(const VectorParameter & param,

std::ios_base::openmode mode = std::ios_base::in|std::ios_base::out);

Constructor. Throws if vector_type(const VectorParameter ¶m) throws.

3.
~basic_vectorstream();

basic_vectorstream public member functions

1.
basic_vectorbuf< CharVector, CharTraits > * rdbuf() const;

2.
void swap_vector(vector_type & vect);

Swaps the underlying vector with the passed vector. This function resets the read/write position in the stream. Does not throw.

3.
const vector_type & vector() const;

355

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Returns a const reference to the internal vector. Does not throw.

4.
void reserve(typename vector_type::size_type size);

Calls reserve() method of the internal vector. Resets the stream to the first position. Throws if the internals vector's reserve throws.

5.
void clear();

Calls clear() method of the internal vector. Resets the stream to the first position.

Class template scoped_ptr

boost::interprocess::scoped_ptr

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename T, typename Deleter>
class scoped_ptr : private Deleter {
public:
// construct/copy/destruct
explicit scoped_ptr(const pointer & = 0, const Deleter & = Deleter());
~scoped_ptr();

// public member functions
void reset(const pointer & = 0);
void reset(const pointer &, const Deleter &);
pointer release();
reference operator*() const;
pointer & operator->();
const pointer & operator->() const;
pointer & get();
const pointer & get() const;
operator unspecified_bool_type() const;
bool operator!() const;
void swap(scoped_ptr &);

};

Description

scoped_ptr stores a pointer to a dynamically allocated object. The object pointed to is guaranteed to be deleted, either on destruction
of the scoped_ptr, or via an explicit reset. The user can avoid this deletion using release(). scoped_ptr is parameterized on T (the
type of the object pointed to) and Deleter (the functor to be executed to delete the internal pointer). The internal pointer will be of
the same pointer type as typename Deleter::pointer type (that is, if typename Deleter::pointer is offset_ptr<void>, the internal
pointer will be offset_ptr<T>).

scoped_ptr public construct/copy/destruct

1.
explicit scoped_ptr(const pointer & p = 0, const Deleter & d = Deleter());

Constructs a scoped_ptr, storing a copy of p(which can be 0) and d. Does not throw.

2.
~scoped_ptr();

356

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

If the stored pointer is not 0, destroys the object pointed to by the stored pointer. calling the operator() of the stored deleter.
Never throws

scoped_ptr public member functions

1.
void reset(const pointer & p = 0);

Deletes the object pointed to by the stored pointer and then stores a copy of p. Never throws

2.
void reset(const pointer & p, const Deleter & d);

Deletes the object pointed to by the stored pointer and then stores a copy of p and a copy of d.

3.
pointer release();

Assigns internal pointer as 0 and returns previous pointer. This will avoid deletion on destructor

4.
reference operator*() const;

Returns a reference to the object pointed to by the stored pointer. Never throws.

5.
pointer & operator->();

Returns the internal stored pointer. Never throws.

6.
const pointer & operator->() const;

Returns the internal stored pointer. Never throws.

7.
pointer & get();

Returns the stored pointer. Never throws.

8.
const pointer & get() const;

Returns the stored pointer. Never throws.

9.
operator unspecified_bool_type() const;

Conversion to bool Never throws

10.
bool operator!() const;

Returns true if the stored pointer is 0. Never throws.

11.
void swap(scoped_ptr & b);

Exchanges the internal pointer and deleter with other scoped_ptr Never throws.

357

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template intrusive_ptr

boost::interprocess::intrusive_ptr

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename T, typename VoidPointer>
class intrusive_ptr {
public:
// construct/copy/destruct
intrusive_ptr();
intrusive_ptr(const pointer &, bool = true);
intrusive_ptr(intrusive_ptr const &);
template<typename U> intrusive_ptr(intrusive_ptr< U, VP > const &);

 intrusive_ptr& operator=(intrusive_ptr const &);
template<typename U>

 intrusive_ptr& operator=(intrusive_ptr< U, VP > const &);
 intrusive_ptr& operator=(pointer);
~intrusive_ptr();

// public member functions
pointer & get();
const pointer & get() const;
T & operator*() const;
const pointer & operator->() const;
pointer & operator->();
operator unspecified_bool_type() const;
bool operator!() const;
void swap(intrusive_ptr &);

};

Description

The intrusive_ptr class template stores a pointer to an object with an embedded reference count. intrusive_ptr is parameterized on
T (the type of the object pointed to) and VoidPointer(a void pointer type that defines the type of pointer that intrusive_ptr will store).
intrusive_ptr<T, void *> defines a class with a T* member whereas intrusive_ptr<T, offset_ptr<void> > defines a class with a off-
set_ptr<T> member. Relies on unqualified calls to:

void intrusive_ptr_add_ref(T * p); void intrusive_ptr_release(T * p);

with (p != 0)

The object is responsible for destroying itself.

intrusive_ptr public construct/copy/destruct

1.
intrusive_ptr();

Constructor. Initializes internal pointer to 0. Does not throw

2.
intrusive_ptr(const pointer & p, bool add_ref = true);

Constructor. Copies pointer and if "p" is not zero and "add_ref" is true calls intrusive_ptr_add_ref(to_raw_pointer(p)). Does not
throw

3.
intrusive_ptr(intrusive_ptr const & rhs);

358

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Copy constructor. Copies the internal pointer and if "p" is not zero calls intrusive_ptr_add_ref(to_raw_pointer(p)). Does not throw

4.
template<typename U> intrusive_ptr(intrusive_ptr< U, VP > const & rhs);

Constructor from related. Copies the internal pointer and if "p" is not zero calls intrusive_ptr_add_ref(to_raw_pointer(p)). Does
not throw

5.
intrusive_ptr& operator=(intrusive_ptr const & rhs);

Assignment operator. Equivalent to intrusive_ptr(r).swap(*this). Does not throw

6.
template<typename U>
 intrusive_ptr& operator=(intrusive_ptr< U, VP > const & rhs);

Assignment from related. Equivalent to intrusive_ptr(r).swap(*this). Does not throw

7.
intrusive_ptr& operator=(pointer rhs);

Assignment from pointer. Equivalent to intrusive_ptr(r).swap(*this). Does not throw

8.
~intrusive_ptr();

Destructor. If internal pointer is not 0, calls intrusive_ptr_release(to_raw_pointer(m_ptr)). Does not throw

intrusive_ptr public member functions

1.
pointer & get();

Returns a reference to the internal pointer. Does not throw

2.
const pointer & get() const;

Returns a reference to the internal pointer. Does not throw

3.
T & operator*() const;

Returns *get(). Does not throw

4.
const pointer & operator->() const;

Returns *get(). Does not throw

5.
pointer & operator->();

Returns get(). Does not throw

6.
operator unspecified_bool_type() const;

Conversion to boolean. Does not throw

359

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

7.
bool operator!() const;

Not operator. Does not throw

8.
void swap(intrusive_ptr & rhs);

Exchanges the contents of the two smart pointers. Does not throw

Class template shared_ptr

boost::interprocess::shared_ptr

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename T, typename VoidAllocator, typename Deleter>
class shared_ptr {
public:
// construct/copy/destruct
shared_ptr();
explicit shared_ptr(const pointer &,

const VoidAllocator & = VoidAllocator(),
const Deleter & = Deleter());

shared_ptr(const shared_ptr &);
shared_ptr(const shared_ptr &, const pointer &);
template<typename Y>
shared_ptr(shared_ptr< Y, VoidAllocator, Deleter > const &);

template<typename Y>
explicit shared_ptr(weak_ptr< Y, VoidAllocator, Deleter > const &);

explicit shared_ptr(shared_ptr &&);
template<typename Y>

 shared_ptr& operator=(shared_ptr< Y, VoidAllocator, Deleter > const &);
 shared_ptr& operator=(BOOST_COPY_ASSIGN_REF(shared_ptr));
 shared_ptr& operator=(shared_ptr &&);

// public member functions
void reset();
template<typename Pointer>
void reset(const Pointer &, const VoidAllocator & = VoidAllocator(),

const Deleter & = Deleter());
template<typename Y>
void reset(shared_ptr< Y, VoidAllocator, Deleter > const &,

const pointer &);
reference operator*() const;
pointer operator->() const;
pointer get() const;
bool operator!() const;
bool unique() const;
long use_count() const;
void swap(shared_ptr< T, VoidAllocator, Deleter > &);

};

Description

shared_ptr stores a pointer to a dynamically allocated object. The object pointed to is guaranteed to be deleted when the last shared_ptr
pointing to it is destroyed or reset.

360

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

shared_ptr is parameterized on T (the type of the object pointed to), VoidAllocator (the void allocator to be used to allocate the
auxiliary data) and Deleter (the deleter whose operator() will be used to delete the object.

The internal pointer will be of the same pointer type as typename VoidAllocator::pointer type (that is, if typename VoidAllocat-
or::pointer is offset_ptr<void>, the internal pointer will be offset_ptr<T>).

Because the implementation uses reference counting, cycles of shared_ptr instances will not be reclaimed. For example, if main()
holds a shared_ptr to A, which directly or indirectly holds a shared_ptr back to A, A's use count will be 2. Destruction of the original
shared_ptr will leave A dangling with a use count of 1. Use weak_ptr to "break cycles."

shared_ptr public construct/copy/destruct

1.
shared_ptr();

Constructs an empty shared_ptr. Use_count() == 0 && get()== 0.

2.
explicit shared_ptr(const pointer & p,

const VoidAllocator & a = VoidAllocator(),
const Deleter & d = Deleter());

Constructs a shared_ptr that owns the pointer p. Auxiliary data will be allocated with a copy of a and the object will be deleted
with a copy of d. Requirements: Deleter and A's copy constructor must not throw.

3.
shared_ptr(const shared_ptr & r);

Copy constructs a shared_ptr. If r is empty, constructs an empty shared_ptr. Otherwise, constructs a shared_ptr that
shares ownership with r. Never throws.

4.
shared_ptr(const shared_ptr & other, const pointer & p);

Constructs a shared_ptr that shares ownership with other and stores p. Postconditions: get() == p && use_count() ==
r.use_count(). Throws: nothing.

5.
template<typename Y>
shared_ptr(shared_ptr< Y, VoidAllocator, Deleter > const & r);

If r is empty, constructs an empty shared_ptr. Otherwise, constructs a shared_ptr that shares ownership with r. Never throws.

6.
template<typename Y>
explicit shared_ptr(weak_ptr< Y, VoidAllocator, Deleter > const & r);

Constructs a shared_ptr that shares ownership with r and stores a copy of the pointer stored in r.

7.
explicit shared_ptr(shared_ptr && other);

Move-Constructs a shared_ptr that takes ownership of other resource and other is put in default-constructed state. Throws:
nothing.

8.
template<typename Y>
 shared_ptr& operator=(shared_ptr< Y, VoidAllocator, Deleter > const & r);

Equivalent to shared_ptr(r).swap(*this). Never throws

361

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

9.
shared_ptr& operator=(BOOST_COPY_ASSIGN_REF(shared_ptr) r);

Equivalent to shared_ptr(r).swap(*this). Never throws

10.
shared_ptr& operator=(shared_ptr && other);

Move-assignment. Equivalent to shared_ptr(other).swap(*this). Never throws

shared_ptr public member functions

1.
void reset();

This is equivalent to: this_type().swap(*this);

2.
template<typename Pointer>
void reset(const Pointer & p, const VoidAllocator & a = VoidAllocator(),

const Deleter & d = Deleter());

This is equivalent to: this_type(p, a, d).swap(*this);

3.
template<typename Y>
void reset(shared_ptr< Y, VoidAllocator, Deleter > const & r,

const pointer & p);

4.
reference operator*() const;

Returns a reference to the pointed type

5.
pointer operator->() const;

Returns the pointer pointing to the owned object

6.
pointer get() const;

Returns the pointer pointing to the owned object

7.
bool operator!() const;

Not operator. Returns true if this->get() != 0, false otherwise

8.
bool unique() const;

Returns use_count() == 1. unique() might be faster than use_count()

9.
long use_count() const;

Returns the number of shared_ptr objects, *this included, that share ownership with *this, or an unspecified nonnegative value
when *this is empty. use_count() is not necessarily efficient. Use only for debugging and testing purposes, not for production
code.

362

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

10.
void swap(shared_ptr< T, VoidAllocator, Deleter > & other);

Exchanges the contents of the two smart pointers.

Class template weak_ptr

boost::interprocess::weak_ptr

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename T, typename VoidAllocator, typename Deleter>
class weak_ptr {
public:
// construct/copy/destruct
weak_ptr();
template<typename Y> weak_ptr(weak_ptr< Y, A, D > const &);
template<typename Y> weak_ptr(shared_ptr< Y, A, D > const &);
template<typename Y> weak_ptr& operator=(weak_ptr< Y, A, D > const &);
template<typename Y> weak_ptr& operator=(shared_ptr< Y, A, D > const &);

// public member functions
shared_ptr< T, A, D > lock() const;
long use_count() const;
bool expired() const;
void reset();
void swap(this_type &);

};

Description

The weak_ptr class template stores a "weak reference" to an object that's already managed by a shared_ptr. To access the object, a
weak_ptr can be converted to a shared_ptr using the shared_ptr constructor or the member function lock. When the last shared_ptr
to the object goes away and the object is deleted, the attempt to obtain a shared_ptr from the weak_ptr instances that refer to the
deleted object will fail: the constructor will throw an exception of type bad_weak_ptr, and weak_ptr::lock will return an empty
shared_ptr.

Every weak_ptr meets the CopyConstructible and Assignable requirements of the C++ Standard Library, and so can be used in
standard library containers. Comparison operators are supplied so that weak_ptr works with the standard library's associative con-
tainers.

weak_ptr operations never throw exceptions.

The class template is parameterized on T, the type of the object pointed to.

weak_ptr public construct/copy/destruct

1.
weak_ptr();

Effects: Constructs an empty weak_ptr. Postconditions: use_count() == 0.

2.
template<typename Y> weak_ptr(weak_ptr< Y, A, D > const & r);

Effects: If r is empty, constructs an empty weak_ptr; otherwise, constructs a weak_ptr that shares ownership with r as if by
storing a copy of the pointer stored in r.

363

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Postconditions: use_count() == r.use_count().

Throws: nothing.

3.
template<typename Y> weak_ptr(shared_ptr< Y, A, D > const & r);

Effects: If r is empty, constructs an empty weak_ptr; otherwise, constructs a weak_ptr that shares ownership with r as if by
storing a copy of the pointer stored in r.

Postconditions: use_count() == r.use_count().

Throws: nothing.

4.
template<typename Y> weak_ptr& operator=(weak_ptr< Y, A, D > const & r);

Effects: Equivalent to weak_ptr(r).swap(*this).

Throws: nothing.

Notes: The implementation is free to meet the effects (and the implied guarantees) via different means, without creating a temporary.

5.
template<typename Y> weak_ptr& operator=(shared_ptr< Y, A, D > const & r);

Effects: Equivalent to weak_ptr(r).swap(*this).

Throws: nothing.

Notes: The implementation is free to meet the effects (and the implied guarantees) via different means, without creating a temporary.

weak_ptr public member functions

1.
shared_ptr< T, A, D > lock() const;

Returns: expired()? shared_ptr<T>(): shared_ptr<T>(*this).

Throws: nothing.

2.
long use_count() const;

Returns: 0 if *this is empty; otherwise, the number of shared_ptr objects that share ownership with *this.

Throws: nothing.

Notes: use_count() is not necessarily efficient. Use only for debugging and testing purposes, not for production code.

3.
bool expired() const;

Returns: Returns: use_count() == 0.

Throws: nothing.

Notes: expired() may be faster than use_count().

4.
void reset();

Effects: Equivalent to: weak_ptr().swap(*this).

364

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

5.
void swap(this_type & other);

Effects: Exchanges the contents of the two smart pointers.

Throws: nothing.

Class template message_queue_t

boost::interprocess::message_queue_t

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

template<typename VoidPointer>
class message_queue_t {
public:
// construct/copy/destruct
message_queue_t(create_only_t, const char *, size_type, size_type,

const permissions & = permissions());
message_queue_t(open_or_create_t, const char *, size_type, size_type,

const permissions & = permissions());
message_queue_t(open_only_t, const char *);
~message_queue_t();

// public member functions
void send(const void *, size_type, unsigned int);
bool try_send(const void *, size_type, unsigned int);
bool timed_send(const void *, size_type, unsigned int,

const boost::posix_time::ptime &);
void receive(void *, size_type, size_type &, unsigned int &);
bool try_receive(void *, size_type, size_type &, unsigned int &);
bool timed_receive(void *, size_type, size_type &, unsigned int &,

const boost::posix_time::ptime &);
size_type get_max_msg() const;
size_type get_max_msg_size() const;
size_type get_num_msg();

// public static functions
static bool remove(const char *);

};

Description

A class that allows sending messages between processes.

message_queue_t public construct/copy/destruct

1.
message_queue_t(create_only_t create_only, const char * name,

size_type max_num_msg, size_type max_msg_size,
const permissions & perm = permissions());

Creates a process shared message queue with name "name". For this message queue, the maximum number of messages will be
"max_num_msg" and the maximum message size will be "max_msg_size". Throws on error and if the queue was previously
created.

365

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.
message_queue_t(open_or_create_t open_or_create, const char * name,

size_type max_num_msg, size_type max_msg_size,
const permissions & perm = permissions());

Opens or creates a process shared message queue with name "name". If the queue is created, the maximum number of messages
will be "max_num_msg" and the maximum message size will be "max_msg_size". If queue was previously created the queue
will be opened and "max_num_msg" and "max_msg_size" parameters are ignored. Throws on error.

3.
message_queue_t(open_only_t open_only, const char * name);

Opens a previously created process shared message queue with name "name". If the queue was not previously created or there
are no free resources, throws an error.

4.
~message_queue_t();

Destroys *this and indicates that the calling process is finished using the resource. All opened message queues are still valid after
destruction. The destructor function will deallocate any system resources allocated by the system for use by this process for this
resource. The resource can still be opened again calling the open constructor overload. To erase the message queue from the
system use remove().

message_queue_t public member functions

1.
void send(const void * buffer, size_type buffer_size, unsigned int priority);

Sends a message stored in buffer "buffer" with size "buffer_size" in the message queue with priority "priority". If the message
queue is full the sender is blocked. Throws interprocess_error on error.

2.
bool try_send(const void * buffer, size_type buffer_size,

unsigned int priority);

Sends a message stored in buffer "buffer" with size "buffer_size" through the message queue with priority "priority". If the message
queue is full the sender is not blocked and returns false, otherwise returns true. Throws interprocess_error on error.

3.
bool timed_send(const void * buffer, size_type buffer_size,

unsigned int priority,
const boost::posix_time::ptime & abs_time);

Sends a message stored in buffer "buffer" with size "buffer_size" in the message queue with priority "priority". If the message
queue is full the sender retries until time "abs_time" is reached. Returns true if the message has been successfully sent. Returns
false if timeout is reached. Throws interprocess_error on error.

4.
void receive(void * buffer, size_type buffer_size, size_type & recvd_size,

unsigned int & priority);

Receives a message from the message queue. The message is stored in buffer "buffer", which has size "buffer_size". The received
message has size "recvd_size" and priority "priority". If the message queue is empty the receiver is blocked. Throws interpro-
cess_error on error.

5.
bool try_receive(void * buffer, size_type buffer_size, size_type & recvd_size,

unsigned int & priority);

366

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Receives a message from the message queue. The message is stored in buffer "buffer", which has size "buffer_size". The received
message has size "recvd_size" and priority "priority". If the message queue is empty the receiver is not blocked and returns false,
otherwise returns true. Throws interprocess_error on error.

6.
bool timed_receive(void * buffer, size_type buffer_size,

size_type & recvd_size, unsigned int & priority,
const boost::posix_time::ptime & abs_time);

Receives a message from the message queue. The message is stored in buffer "buffer", which has size "buffer_size". The received
message has size "recvd_size" and priority "priority". If the message queue is empty the receiver retries until time "abs_time" is
reached. Returns true if the message has been successfully sent. Returns false if timeout is reached. Throws interprocess_error
on error.

7.
size_type get_max_msg() const;

Returns the maximum number of messages allowed by the queue. The message queue must be opened or created previously.
Otherwise, returns 0. Never throws

8.
size_type get_max_msg_size() const;

Returns the maximum size of message allowed by the queue. The message queue must be opened or created previously. Otherwise,
returns 0. Never throws

9.
size_type get_num_msg();

Returns the number of messages currently stored. Never throws

message_queue_t public static functions

1.
static bool remove(const char * name);

Removes the message queue from the system. Returns false on error. Never throws

Global offset_type_alignment

boost::interprocess::offset_type_alignment

Synopsis

// In header: <boost/interprocess/interprocess_fwd.hpp>

static const std::size_t offset_type_alignment;

Header <boost/interprocess/ipc/message_queue.hpp>
Describes an inter-process message queue. This class allows sending messages between processes and allows blocking, non-blocking
and timed sending and receiving.

Header <boost/interprocess/managed_external_buffer.hpp>
Describes a named user memory allocation user class.

367

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/ipc/message_queue.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/managed_external_buffer.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header <boost/interprocess/managed_heap_memory.hpp>
Describes a named heap memory allocation user class.

Header <boost/interprocess/managed_mapped_file.hpp>

Header <boost/interprocess/managed_shared_memory.hpp>

Header <boost/interprocess/managed_win-
dows_shared_memory.hpp>

Header <boost/interprocess/managed_xsi_shared_memory.hpp>

Header <boost/interprocess/mapped_region.hpp>
Describes mapped region class

namespace boost {
namespace interprocess {
class mapped_region;

}
}

Class mapped_region

boost::interprocess::mapped_region

368

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/managed_heap_memory.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/managed_mapped_file.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/managed_shared_memory.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/managed_windows_shared_memory.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/managed_windows_shared_memory.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/managed_xsi_shared_memory.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/mapped_region.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/mapped_region.hpp>

class mapped_region {
public:
enum advice_types;
// construct/copy/destruct
template<typename MemoryMappable>
mapped_region(const MemoryMappable &, mode_t, offset_t = 0,

std::size_t = 0, const void * = 0);
mapped_region();
mapped_region(mapped_region &&);

 mapped_region& operator=(mapped_region &&);
~mapped_region();

// public member functions
void swap(mapped_region &);
std::size_t get_size() const;
void * get_address() const;
mode_t get_mode() const;
bool flush(std::size_t = 0, std::size_t = 0, bool = true);
bool shrink_by(std::size_t, bool = true);
bool advise(advice_types);

// public static functions
static std::size_t get_page_size();

};

Description

The mapped_region class represents a portion or region created from a memory_mappable object.

The OS can map a region bigger than the requested one, as region must be multiple of the page size, but mapped_region will always
refer to the region specified by the user.

mapped_region public construct/copy/destruct

1.
template<typename MemoryMappable>
mapped_region(const MemoryMappable & mapping, mode_t mode,

offset_t offset = 0, std::size_t size = 0,
const void * address = 0);

Creates a mapping region of the mapped memory "mapping", starting in offset "offset", and the mapping's size will be "size".
The mapping can be opened for read only, read-write or copy-on-write.

If an address is specified, both the offset and the address must be multiples of the page size.

The OS could allocate more pages than size/page_size(), but get_address() will always return the address passed in this function
(if not null) and get_size() will return the specified size.

2.
mapped_region();

Default constructor. Address will be 0 (nullptr). Size will be 0. Does not throw

3.
mapped_region(mapped_region && other);

369

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Move constructor. *this will be constructed taking ownership of "other"'s region and "other" will be left in default constructor
state.

4.
mapped_region& operator=(mapped_region && other);

Move assignment. If *this owns a memory mapped region, it will be destroyed and it will take ownership of "other"'s memory
mapped region.

5.
~mapped_region();

Destroys the mapped region. Does not throw

mapped_region public member functions

1.
void swap(mapped_region & other);

Swaps the mapped_region with another mapped region

2.
std::size_t get_size() const;

Returns the size of the mapping. Never throws.

3.
void * get_address() const;

Returns the base address of the mapping. Never throws.

4.
mode_t get_mode() const;

Returns the mode of the mapping used to construct the mapped region. Never throws.

5.
bool flush(std::size_t mapping_offset = 0, std::size_t numbytes = 0,

bool async = true);

Flushes to the disk a byte range within the mapped memory. If 'async' is true, the function will return before flushing operation
is completed If 'async' is false, function will return once data has been written into the underlying device (i.e., in mapped files
OS cached information is written to disk). Never throws. Returns false if operation could not be performed.

6.
bool shrink_by(std::size_t bytes, bool from_back = true);

Shrinks current mapped region. If after shrinking there is no longer need for a previously mapped memory page, accessing that
page can trigger a segmentation fault. Depending on the OS, this operation might fail (XSI shared memory), it can decommit
storage and free a portion of the virtual address space (e.g.POSIX) or this function can release some physical memory wihout
freeing any virtual address space(Windows). Returns true on success. Never throws.

7.
bool advise(advice_types advise);

Advises the implementation on the expected behavior of the application with respect to the data in the region. The implementation
may use this information to optimize handling of the region data. This function has no effect on the semantics of access to memory
in the region, although it may affect the performance of access. If the advise type is not known to the implementation, the function
returns false. True otherwise.

370

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

mapped_region public static functions

1.
static std::size_t get_page_size();

Returns the size of the page. This size is the minimum memory that will be used by the system when mapping a memory mappable
source and will restrict the address and the offset to map.

Type advice_types

boost::interprocess::mapped_region::advice_types

Synopsis

// In header: <boost/interprocess/mapped_region.hpp>

enum advice_types { advice_normal, advice_sequential, advice_random,
advice_willneed, advice_dontneed };

Description

This enum specifies region usage behaviors that an application can specify to the mapped region implementation.

advice_normal Specifies that the application has no advice to give on its behavior with respect to the region. It is the
default characteristic if no advice is given for a range of memory.

advice_sequential Specifies that the application expects to access the region sequentially from lower addresses to higher
addresses. The implementation can lower the priority of preceding pages within the region once a page
have been accessed.

advice_random Specifies that the application expects to access the region in a random order, and prefetching is likely
not advantageous.

advice_willneed Specifies that the application expects to access the region in the near future. The implementation can
prefetch pages of the region.

advice_dontneed Specifies that the application expects that it will not access the region in the near future. The implement-
ation can unload pages within the range to save system resources.

Header <boost/interprocess/mem_algo/rbtree_best_fit.hpp>
Describes a best-fit algorithm based in an intrusive red-black tree used to allocate objects in shared memory. This class is intended
as a base class for single segment and multi-segment implementations.

Header <boost/interprocess/mem_algo/simple_seq_fit.hpp>
Describes sequential fit algorithm used to allocate objects in shared memory.

Header <boost/interprocess/offset_ptr.hpp>
Describes a smart pointer that stores the offset between this pointer and target pointee, called offset_ptr.

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR
BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR
BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF
BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER

371

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/mem_algo/rbtree_best_fit.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/mem_algo/simple_seq_fit.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/offset_ptr.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
template<typename T> struct has_trivial_constructor;
template<typename T> struct has_trivial_destructor;
namespace interprocess {
template<typename E, typename T, typename W, typename X, typename Y,

std::size_t Z>
std::basic_ostream< E, T > &
operator<<(std::basic_ostream< E, T > &,

offset_ptr< W, X, Y, Z > const &);
template<typename E, typename T, typename W, typename X, typename Y,

std::size_t Z>
std::basic_istream< E, T > &
operator>>(std::basic_istream< E, T > &, offset_ptr< W, X, Y, Z > &);

// Simulation of static_cast between pointers. Never throws.
template<typename T1, typename P1, typename O1, std::size_t A1,

typename T2, typename P2, typename O2, std::size_t A2>
boost::interprocess::offset_ptr< T1, P1, O1, A1 >
static_pointer_cast(const boost::interprocess::offset_ptr< T2, P2, O2, A2 > & r);

// Simulation of const_cast between pointers. Never throws.
template<typename T1, typename P1, typename O1, std::size_t A1,

typename T2, typename P2, typename O2, std::size_t A2>
boost::interprocess::offset_ptr< T1, P1, O1, A1 >
const_pointer_cast(const boost::interprocess::offset_ptr< T2, P2, O2, A2 > & r);

// Simulation of dynamic_cast between pointers. Never throws.
template<typename T1, typename P1, typename O1, std::size_t A1,

typename T2, typename P2, typename O2, std::size_t A2>
boost::interprocess::offset_ptr< T1, P1, O1, A1 >
dynamic_pointer_cast(const boost::interprocess::offset_ptr< T2, P2, O2, A2 > & r);

// Simulation of reinterpret_cast between pointers. Never throws.
template<typename T1, typename P1, typename O1, std::size_t A1,

typename T2, typename P2, typename O2, std::size_t A2>
boost::interprocess::offset_ptr< T1, P1, O1, A1 >
reinterpret_pointer_cast(const boost::interprocess::offset_ptr< T2, P2, O2, A2 > & r);

}
}

Function template operator<<

boost::interprocess::operator<<

Synopsis

// In header: <boost/interprocess/offset_ptr.hpp>

template<typename E, typename T, typename W, typename X, typename Y,
std::size_t Z>

std::basic_ostream< E, T > &
operator<<(std::basic_ostream< E, T > & os,

offset_ptr< W, X, Y, Z > const & p);

Description

operator<< for offset ptr

372

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Function template operator>>

boost::interprocess::operator>>

Synopsis

// In header: <boost/interprocess/offset_ptr.hpp>

template<typename E, typename T, typename W, typename X, typename Y,
std::size_t Z>

std::basic_istream< E, T > &
operator>>(std::basic_istream< E, T > & is, offset_ptr< W, X, Y, Z > & p);

Description

operator>> for offset ptr

Struct template has_trivial_constructor

boost::has_trivial_constructor

Synopsis

// In header: <boost/interprocess/offset_ptr.hpp>

template<typename T>
struct has_trivial_constructor {
};

Struct template has_trivial_destructor

boost::has_trivial_destructor

Synopsis

// In header: <boost/interprocess/offset_ptr.hpp>

template<typename T>
struct has_trivial_destructor {
};

Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR

Synopsis

// In header: <boost/interprocess/offset_ptr.hpp>

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR

373

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Macro BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR

BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR

Synopsis

// In header: <boost/interprocess/offset_ptr.hpp>

BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR

Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF

Synopsis

// In header: <boost/interprocess/offset_ptr.hpp>

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF

M a c r o
BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER

Synopsis

// In header: <boost/interprocess/offset_ptr.hpp>

BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER

Header <boost/interprocess/permissions.hpp>
Describes permissions class

namespace boost {
namespace interprocess {
class permissions;

}
}

Class permissions

boost::interprocess::permissions

374

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/permissions.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/permissions.hpp>

class permissions {
public:
// construct/copy/destruct
permissions(os_permissions_type);
permissions();

// public member functions
void set_default();
void set_unrestricted();
void set_permissions(os_permissions_type);
os_permissions_type get_permissions() const;

};

Description

The permissions class represents permissions to be set to shared memory or files, that can be constructed form usual permission
representations: a SECURITY_ATTRIBUTES pointer in windows or ORed rwx chmod integer in UNIX.

permissions public construct/copy/destruct

1.
permissions(os_permissions_type type);

Constructs a permissions object from a user provided os-dependent permissions.

2.
permissions();

Constructs a default permissions object: A null security attributes pointer for windows or 0644 for UNIX.

permissions public member functions

1.
void set_default();

Sets permissions to default values: A null security attributes pointer for windows or 0644 for UNIX.

2.
void set_unrestricted();

Sets permissions to unrestricted access: A null DACL for windows or 0666 for UNIX.

3.
void set_permissions(os_permissions_type perm);

Sets permissions from a user provided os-dependent permissions.

4.
os_permissions_type get_permissions() const;

Returns stored os-dependent permissions

375

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header <boost/interprocess/segment_manager.hpp>
Describes the object placed in a memory segment that provides named object allocation capabilities for single-segment and multi-
segment allocations.

namespace boost {
namespace interprocess {
template<typename MemoryAlgorithm> class segment_manager_base;

}
}

Class template segment_manager_base

boost::interprocess::segment_manager_base

Synopsis

// In header: <boost/interprocess/segment_manager.hpp>

template<typename MemoryAlgorithm>
class segment_manager_base : private MemoryAlgorithm {
public:
// types
typedef segment_manager_base< MemoryAlgorithm > segment_manager_base_type;
typedef MemoryAlgorithm::void_pointer void_pointer;
typedef MemoryAlgorithm::mutex_family mutex_family;
typedef MemoryAlgorithm memory_algorithm;

// construct/copy/destruct
segment_manager_base(size_type, size_type);

// public member functions
size_type get_size() const;
size_type get_free_memory() const;
void * allocate(size_type, std::nothrow_t);
void * allocate(size_type);
void * allocate_aligned(size_type, size_type, std::nothrow_t);
void * allocate_aligned(size_type, size_type);
template<typename T>
std::pair< T *, bool >
allocation_command(boost::interprocess::allocation_type, size_type,

size_type, size_type &, T * = 0);
std::pair< void *, bool >
raw_allocation_command(boost::interprocess::allocation_type, size_type,

size_type, size_type &, void * = 0, size_type = 1);
void deallocate(void *);
void grow(size_type);
void shrink_to_fit();
bool all_memory_deallocated();
bool check_sanity();
void zero_free_memory();
size_type size(const void *) const;

// public static functions
static size_type get_min_size(size_type);

// public data members
static const size_type PayloadPerAllocation;

};

376

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/segment_manager.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Description

This object is the public base class of segment manager. This class only depends on the memory allocation algorithm and implements
all the allocation features not related to named or unique objects.

Storing a reference to segment_manager forces the holder class to be dependent on index types and character types. When such de-
pendence is not desirable and only anonymous and raw allocations are needed, segment_manager_base is the correct answer.

segment_manager_base public construct/copy/destruct

1.
segment_manager_base(size_type sz, size_type reserved_bytes);

Constructor of the segment_manager_base

"size" is the size of the memory segment where the basic segment manager is being constructed.

"reserved_bytes" is the number of bytes after the end of the memory algorithm object itself that the memory algorithm will exclude
from dynamic allocation

Can throw

segment_manager_base public member functions

1.
size_type get_size() const;

Returns the size of the memory segment

2.
size_type get_free_memory() const;

Returns the number of free bytes of the memory segment

3.
void * allocate(size_type nbytes, std::nothrow_t);

Allocates nbytes bytes. This function is only used in single-segment management. Never throws

4.
void * allocate(size_type nbytes);

Allocates nbytes bytes. Throws boost::interprocess::bad_alloc on failure

5.
void * allocate_aligned(size_type nbytes, size_type alignment, std::nothrow_t);

Allocates nbytes bytes. This function is only used in single-segment management. Never throws

6.
void * allocate_aligned(size_type nbytes, size_type alignment);

Allocates nbytes bytes. This function is only used in single-segment management. Throws bad_alloc when fails

7.
template<typename T>
std::pair< T *, bool >
allocation_command(boost::interprocess::allocation_type command,

size_type limit_size, size_type preferred_size,
size_type & received_size, T * reuse_ptr = 0);

377

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

8.
std::pair< void *, bool >
raw_allocation_command(boost::interprocess::allocation_type command,

size_type limit_objects, size_type preferred_objects,
size_type & received_objects, void * reuse_ptr = 0,
size_type sizeof_object = 1);

9.
void deallocate(void * addr);

Deallocates the bytes allocated with allocate/allocate_many() pointed by addr

10.
void grow(size_type extra_size);

Increases managed memory in extra_size bytes more. This only works with single-segment management.

11.
void shrink_to_fit();

Decreases managed memory to the minimum. This only works with single-segment management.

12.
bool all_memory_deallocated();

Returns the result of "all_memory_deallocated()" function of the used memory algorithm

13.
bool check_sanity();

Returns the result of "check_sanity()" function of the used memory algorithm

14.
void zero_free_memory();

Writes to zero free memory (memory not yet allocated) of the memory algorithm

15.
size_type size(const void * ptr) const;

Returns the size of the buffer previously allocated pointed by ptr.

segment_manager_base public static functions

1.
static size_type get_min_size(size_type size);

Obtains the minimum size needed by the segment manager

segment_manager_base public public data members

1.
static const size_type PayloadPerAllocation;

This constant indicates the payload size associated with each allocation of the memory algorithm

Header <boost/interprocess/shared_memory_object.hpp>
Describes a shared memory object management class.

378

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/shared_memory_object.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
namespace interprocess {
class shared_memory_object;
class remove_shared_memory_on_destroy;

}
}

Class shared_memory_object

boost::interprocess::shared_memory_object

Synopsis

// In header: <boost/interprocess/shared_memory_object.hpp>

class shared_memory_object {
public:
// construct/copy/destruct
shared_memory_object();
shared_memory_object(create_only_t, const char *, mode_t,

const permissions & = permissions());
shared_memory_object(open_or_create_t, const char *, mode_t,

const permissions & = permissions());
shared_memory_object(open_only_t, const char *, mode_t);
shared_memory_object(shared_memory_object &&);

 shared_memory_object& operator=(shared_memory_object &&);
~shared_memory_object();

// public member functions
void swap(shared_memory_object &);
void truncate(offset_t);
const char * get_name() const;
bool get_size(offset_t &) const;
mode_t get_mode() const;
mapping_handle_t get_mapping_handle() const;

// public static functions
static bool remove(const char *);

};

Description

A class that wraps a shared memory mapping that can be used to create mapped regions from the mapped files

shared_memory_object public construct/copy/destruct

1.
shared_memory_object();

Default constructor. Represents an empty shared_memory_object.

2.
shared_memory_object(create_only_t, const char * name, mode_t mode,

const permissions & perm = permissions());

Creates a shared memory object with name "name" and mode "mode", with the access mode "mode" If the file previously exists,
throws an error.

379

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3.
shared_memory_object(open_or_create_t, const char * name, mode_t mode,

const permissions & perm = permissions());

Tries to create a shared memory object with name "name" and mode "mode", with the access mode "mode". If the file previously
exists, it tries to open it with mode "mode". Otherwise throws an error.

4.
shared_memory_object(open_only_t, const char * name, mode_t mode);

Tries to open a shared memory object with name "name", with the access mode "mode". If the file does not previously exist, it
throws an error.

5.
shared_memory_object(shared_memory_object && moved);

Moves the ownership of "moved"'s shared memory object to *this. After the call, "moved" does not represent any shared memory
object. Does not throw

6.
shared_memory_object& operator=(shared_memory_object && moved);

Moves the ownership of "moved"'s shared memory to *this. After the call, "moved" does not represent any shared memory. Does
not throw

7.
~shared_memory_object();

Destroys *this and indicates that the calling process is finished using the resource. All mapped regions are still valid after destruction.
The destructor function will deallocate any system resources allocated by the system for use by this process for this resource. The
resource can still be opened again calling the open constructor overload. To erase the resource from the system use remove().

shared_memory_object public member functions

1.
void swap(shared_memory_object & moved);

Swaps the shared_memory_objects. Does not throw.

2.
void truncate(offset_t length);

Sets the size of the shared memory mapping.

3.
const char * get_name() const;

Returns the name of the shared memory object.

4.
bool get_size(offset_t & size) const;

Returns true if the size of the shared memory object can be obtained and writes the size in the passed reference

5.
mode_t get_mode() const;

Returns access mode.

6.
mapping_handle_t get_mapping_handle() const;

380

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Returns mapping handle. Never throws.

shared_memory_object public static functions

1.
static bool remove(const char * name);

Erases a shared memory object from the system. Returns false on error. Never throws

Class remove_shared_memory_on_destroy

boost::interprocess::remove_shared_memory_on_destroy

Synopsis

// In header: <boost/interprocess/shared_memory_object.hpp>

class remove_shared_memory_on_destroy {
public:
// construct/copy/destruct
remove_shared_memory_on_destroy(const char *);
~remove_shared_memory_on_destroy();

};

Description

A class that stores the name of a shared memory and calls shared_memory_object::remove(name) in its destructor Useful to remove
temporary shared memory objects in the presence of exceptions

remove_shared_memory_on_destroy public construct/copy/destruct

1.
remove_shared_memory_on_destroy(const char * name);

2.
~remove_shared_memory_on_destroy();

Header <boost/interprocess/smart_ptr/deleter.hpp>
Describes the functor to delete objects from the segment.

namespace boost {
namespace interprocess {
template<typename T, typename SegmentManager> class deleter;

}
}

Class template deleter

boost::interprocess::deleter

381

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/smart_ptr/deleter.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/smart_ptr/deleter.hpp>

template<typename T, typename SegmentManager>
class deleter {
public:
// types
typedef boost::intrusive::pointer_traits< typename SegmentManager::void_pointer >::template re↵

bind_pointer< T >::type pointer;

// construct/copy/destruct
deleter(segment_manager_pointer);

// public member functions
void operator()(const pointer &);

};

Description

A deleter that uses the segment manager's destroy_ptr function to destroy the passed pointer resource.

This deleter is used

deleter public construct/copy/destruct

1.
deleter(segment_manager_pointer pmngr);

deleter public member functions

1.
void operator()(const pointer & p);

Header <boost/interprocess/smart_ptr/en-
able_shared_from_this.hpp>
Describes an utility to form a shared pointer from this

namespace boost {
namespace interprocess {
template<typename T, typename A, typename D> class enable_shared_from_this;

}
}

Class template enable_shared_from_this

boost::interprocess::enable_shared_from_this

382

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/smart_ptr/enable_shared_from_this.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/smart_ptr/enable_shared_from_this.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/smart_ptr/enable_shared_from_this.hpp>

template<typename T, typename A, typename D>
class enable_shared_from_this {
public:

// public member functions
shared_ptr< T, A, D > shared_from_this();
shared_ptr< T const, A, D > shared_from_this() const;

};

Description

This class is used as a base class that allows a shared_ptr to the current object to be obtained from within a member function. en-
able_shared_from_this defines two member functions called shared_from_this that return a shared_ptr<T> and shared_ptr<T const>,
depending on constness, to this.

enable_shared_from_this public member functions

1.
shared_ptr< T, A, D > shared_from_this();

2.
shared_ptr< T const, A, D > shared_from_this() const;

Header <boost/interprocess/smart_ptr/intrusive_ptr.hpp>
Describes an intrusive ownership pointer.

383

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/smart_ptr/intrusive_ptr.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
namespace interprocess {
template<typename T, typename U, typename VP>
bool operator==(intrusive_ptr< T, VP > const &,

intrusive_ptr< U, VP > const &);
template<typename T, typename U, typename VP>
bool operator!=(intrusive_ptr< T, VP > const &,

intrusive_ptr< U, VP > const &);
template<typename T, typename VP>
bool operator==(intrusive_ptr< T, VP > const &,

const typename intrusive_ptr< T, VP >::pointer &);
template<typename T, typename VP>
bool operator!=(intrusive_ptr< T, VP > const &,

const typename intrusive_ptr< T, VP >::pointer &);
template<typename T, typename VP>
bool operator==(const typename intrusive_ptr< T, VP >::pointer &,

intrusive_ptr< T, VP > const &);
template<typename T, typename VP>
bool operator!=(const typename intrusive_ptr< T, VP >::pointer &,

intrusive_ptr< T, VP > const &);
template<typename T, typename VP>
bool operator<(intrusive_ptr< T, VP > const &,

intrusive_ptr< T, VP > const &);
template<typename T, typename VP>
void swap(intrusive_ptr< T, VP > &, intrusive_ptr< T, VP > &);

template<typename E, typename T, typename Y, typename VP>
std::basic_ostream< E, T > &
operator<<(std::basic_ostream< E, T > & os,

intrusive_ptr< Y, VP > const & p);
template<typename T, typename VP>
boost::interprocess::intrusive_ptr< T, VP >::pointer
to_raw_pointer(intrusive_ptr< T, VP >);

}
}

Function template operator==

boost::interprocess::operator==

Synopsis

// In header: <boost/interprocess/smart_ptr/intrusive_ptr.hpp>

template<typename T, typename U, typename VP>
bool operator==(intrusive_ptr< T, VP > const & a,

intrusive_ptr< U, VP > const & b);

Description

Returns a.get() == b.get(). Does not throw

Function template operator!=

boost::interprocess::operator!=

384

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/smart_ptr/intrusive_ptr.hpp>

template<typename T, typename U, typename VP>
bool operator!=(intrusive_ptr< T, VP > const & a,

intrusive_ptr< U, VP > const & b);

Description

Returns a.get() != b.get(). Does not throw

Function template operator==

boost::interprocess::operator==

Synopsis

// In header: <boost/interprocess/smart_ptr/intrusive_ptr.hpp>

template<typename T, typename VP>
bool operator==(intrusive_ptr< T, VP > const & a,

const typename intrusive_ptr< T, VP >::pointer & b);

Description

Returns a.get() == b. Does not throw

Function template operator!=

boost::interprocess::operator!=

Synopsis

// In header: <boost/interprocess/smart_ptr/intrusive_ptr.hpp>

template<typename T, typename VP>
bool operator!=(intrusive_ptr< T, VP > const & a,

const typename intrusive_ptr< T, VP >::pointer & b);

Description

Returns a.get() != b. Does not throw

Function template operator==

boost::interprocess::operator==

385

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/smart_ptr/intrusive_ptr.hpp>

template<typename T, typename VP>
bool operator==(const typename intrusive_ptr< T, VP >::pointer & a,

intrusive_ptr< T, VP > const & b);

Description

Returns a == b.get(). Does not throw

Function template operator!=

boost::interprocess::operator!=

Synopsis

// In header: <boost/interprocess/smart_ptr/intrusive_ptr.hpp>

template<typename T, typename VP>
bool operator!=(const typename intrusive_ptr< T, VP >::pointer & a,

intrusive_ptr< T, VP > const & b);

Description

Returns a != b.get(). Does not throw

Function template operator<

boost::interprocess::operator<

Synopsis

// In header: <boost/interprocess/smart_ptr/intrusive_ptr.hpp>

template<typename T, typename VP>
bool operator<(intrusive_ptr< T, VP > const & a,

intrusive_ptr< T, VP > const & b);

Description

Returns a.get() < b.get(). Does not throw

Function template swap

boost::interprocess::swap

386

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/smart_ptr/intrusive_ptr.hpp>

template<typename T, typename VP>
void swap(intrusive_ptr< T, VP > & lhs, intrusive_ptr< T, VP > & rhs);

Description

Exchanges the contents of the two intrusive_ptrs. Does not throw

Function template to_raw_pointer

boost::interprocess::to_raw_pointer

Synopsis

// In header: <boost/interprocess/smart_ptr/intrusive_ptr.hpp>

template<typename T, typename VP>
boost::interprocess::intrusive_ptr< T, VP >::pointer
to_raw_pointer(intrusive_ptr< T, VP > p);

Description

Returns p.get(). Does not throw

Header <boost/interprocess/smart_ptr/scoped_ptr.hpp>
Describes the smart pointer scoped_ptr

namespace boost {
namespace interprocess {
template<typename T, typename D>
void swap(scoped_ptr< T, D > &, scoped_ptr< T, D > &);

template<typename T, typename D>
scoped_ptr< T, D >::pointer to_raw_pointer(scoped_ptr< T, D > const &);

}
}

Function template swap

boost::interprocess::swap

Synopsis

// In header: <boost/interprocess/smart_ptr/scoped_ptr.hpp>

template<typename T, typename D>
void swap(scoped_ptr< T, D > & a, scoped_ptr< T, D > & b);

387

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/smart_ptr/scoped_ptr.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Description

Exchanges the internal pointer and deleter with other scoped_ptr Never throws.

Function template to_raw_pointer

boost::interprocess::to_raw_pointer

Synopsis

// In header: <boost/interprocess/smart_ptr/scoped_ptr.hpp>

template<typename T, typename D>
scoped_ptr< T, D >::pointer to_raw_pointer(scoped_ptr< T, D > const & p);

Description

Returns a copy of the stored pointer Never throws

Header <boost/interprocess/smart_ptr/shared_ptr.hpp>
Describes the smart pointer shared_ptr

388

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/smart_ptr/shared_ptr.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
namespace interprocess {
template<typename T, typename ManagedMemory> struct managed_shared_ptr;
template<typename T, typename VoidAllocator, typename Deleter, typename U,

typename VoidAllocator2, typename Deleter2>
bool operator==(shared_ptr< T, VoidAllocator, Deleter > const & a,

shared_ptr< U, VoidAllocator2, Deleter2 > const & b);
template<typename T, typename VoidAllocator, typename Deleter, typename U,

typename VoidAllocator2, typename Deleter2>
bool operator!=(shared_ptr< T, VoidAllocator, Deleter > const & a,

shared_ptr< U, VoidAllocator2, Deleter2 > const & b);
template<typename T, typename VoidAllocator, typename Deleter, typename U,

typename VoidAllocator2, typename Deleter2>
bool operator<(shared_ptr< T, VoidAllocator, Deleter > const & a,

shared_ptr< U, VoidAllocator2, Deleter2 > const & b);
template<typename T, typename VoidAllocator, typename Deleter>
void swap(shared_ptr< T, VoidAllocator, Deleter > & a,

shared_ptr< T, VoidAllocator, Deleter > & b);
template<typename T, typename VoidAllocator, typename Deleter, typename U>
shared_ptr< T, VoidAllocator, Deleter >
static_pointer_cast(shared_ptr< U, VoidAllocator, Deleter > const & r);

template<typename T, typename VoidAllocator, typename Deleter, typename U>
shared_ptr< T, VoidAllocator, Deleter >
const_pointer_cast(shared_ptr< U, VoidAllocator, Deleter > const & r);

template<typename T, typename VoidAllocator, typename Deleter, typename U>
shared_ptr< T, VoidAllocator, Deleter >
dynamic_pointer_cast(shared_ptr< U, VoidAllocator, Deleter > const & r);

template<typename T, typename VoidAllocator, typename Deleter>
T * to_raw_pointer(shared_ptr< T, VoidAllocator, Deleter > const & p);

template<typename E, typename T, typename Y, typename VoidAllocator,
typename Deleter>

std::basic_ostream< E, T > &
operator<<(std::basic_ostream< E, T > & os,

shared_ptr< Y, VoidAllocator, Deleter > const & p);
template<typename T, typename ManagedMemory>
managed_shared_ptr< T, ManagedMemory >::type
make_managed_shared_ptr(T *, ManagedMemory &);

template<typename T, typename ManagedMemory>
managed_shared_ptr< T, ManagedMemory >::type
make_managed_shared_ptr(T *, ManagedMemory &, std::nothrow_t);

}
}

Struct template managed_shared_ptr

boost::interprocess::managed_shared_ptr

Synopsis

// In header: <boost/interprocess/smart_ptr/shared_ptr.hpp>

template<typename T, typename ManagedMemory>
struct managed_shared_ptr {
// types
typedef ManagedMemory::template allocator< void >::type void_allocator;
typedef ManagedMemory::template deleter< T >::type deleter;
typedef shared_ptr< T, void_allocator, deleter > type;

};

389

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Description

Returns the type of a shared pointer of type T with the allocator boost::interprocess::allocator allocator and boost::interprocess::deleter
deleter that can be constructed in the given managed segment type.

Function template make_managed_shared_ptr

boost::interprocess::make_managed_shared_ptr

Synopsis

// In header: <boost/interprocess/smart_ptr/shared_ptr.hpp>

template<typename T, typename ManagedMemory>
managed_shared_ptr< T, ManagedMemory >::type
make_managed_shared_ptr(T * constructed_object,

ManagedMemory & managed_memory);

Description

Returns an instance of a shared pointer constructed with the default allocator and deleter from a pointer of type T that has been allocated
in the passed managed segment

Function template make_managed_shared_ptr

boost::interprocess::make_managed_shared_ptr

Synopsis

// In header: <boost/interprocess/smart_ptr/shared_ptr.hpp>

template<typename T, typename ManagedMemory>
managed_shared_ptr< T, ManagedMemory >::type
make_managed_shared_ptr(T * constructed_object,

ManagedMemory & managed_memory, std::nothrow_t);

Description

Returns an instance of a shared pointer constructed with the default allocator and deleter from a pointer of type T that has been allocated
in the passed managed segment. Does not throw, return null shared pointer in error.

Header <boost/interprocess/smart_ptr/unique_ptr.hpp>
Describes the smart pointer unique_ptr

390

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/smart_ptr/unique_ptr.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
namespace interprocess {
template<typename T, typename D> class unique_ptr;

template<typename T, typename ManagedMemory> struct managed_unique_ptr;
template<typename T, typename D>
void swap(unique_ptr< T, D > & x, unique_ptr< T, D > & y);

template<typename T1, typename D1, typename T2, typename D2>
bool operator==(const unique_ptr< T1, D1 > & x,

const unique_ptr< T2, D2 > & y);
template<typename T1, typename D1, typename T2, typename D2>
bool operator!=(const unique_ptr< T1, D1 > & x,

const unique_ptr< T2, D2 > & y);
template<typename T1, typename D1, typename T2, typename D2>
bool operator<(const unique_ptr< T1, D1 > & x,

const unique_ptr< T2, D2 > & y);
template<typename T1, typename D1, typename T2, typename D2>
bool operator<=(const unique_ptr< T1, D1 > & x,

const unique_ptr< T2, D2 > & y);
template<typename T1, typename D1, typename T2, typename D2>
bool operator>(const unique_ptr< T1, D1 > & x,

const unique_ptr< T2, D2 > & y);
template<typename T1, typename D1, typename T2, typename D2>
bool operator>=(const unique_ptr< T1, D1 > & x,

const unique_ptr< T2, D2 > & y);
template<typename T, typename ManagedMemory>
managed_unique_ptr< T, ManagedMemory >::type
make_managed_unique_ptr(T *, ManagedMemory &);

}
}

Class template unique_ptr

boost::interprocess::unique_ptr

391

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/smart_ptr/unique_ptr.hpp>

template<typename T, typename D>
class unique_ptr {
public:
// types
typedef T element_type;
typedef D deleter_type;
typedef unspecified pointer;

// construct/copy/destruct
unique_ptr();
explicit unique_ptr(pointer);
unique_ptr(pointer, unspecified);
unique_ptr(unique_ptr &&);
template<typename U, typename E>
unique_ptr(unique_ptr &&, unspecified = nat());

 unique_ptr& operator=(unique_ptr &&);
template<typename U, typename E> unique_ptr& operator=(unique_ptr &&);

 unique_ptr& operator=(int nat::*);
~unique_ptr();

// public member functions
unspecified operator*() const;
pointer operator->() const;
pointer get() const;
deleter_reference get_deleter();
deleter_const_reference get_deleter() const;
operator int nat::*() const;
pointer release();
void reset(pointer = 0);
void swap(unique_ptr &);

};

Description

Template unique_ptr stores a pointer to an object and deletes that object using the associated deleter when it is itself destroyed (such
as when leaving block scope.

The unique_ptr provides a semantics of strict ownership. A unique_ptr owns the object it holds a pointer to.

A unique_ptr is not CopyConstructible, nor CopyAssignable, however it is MoveConstructible and Move-Assignable.

The uses of unique_ptr include providing exception safety for dynamically allocated memory, passing ownership of dynamically
allocated memory to a function, and returning dynamically allocated memory from a function

A client-supplied template argument D must be a function pointer or functor for which, given a value d of type D and a pointer ptr
to a type T*, the expression d(ptr) is valid and has the effect of deallocating the pointer as appropriate for that deleter. D may also
be an lvalue-reference to a deleter.

If the deleter D maintains state, it is intended that this state stay with the associated pointer as ownership is transferred from unique_ptr
to unique_ptr. The deleter state need never be copied, only moved or swapped as pointer ownership is moved around. That is, the
deleter need only be MoveConstructible, MoveAssignable, and Swappable, and need not be CopyConstructible (unless copied into
the unique_ptr) nor CopyAssignable.

unique_ptr public construct/copy/destruct

1.
unique_ptr();

392

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requires: D must be default constructible, and that construction must not throw an exception. D must not be a reference type.

Effects: Constructs a unique_ptr which owns nothing.

Postconditions: get() == 0. get_deleter() returns a reference to a default constructed deleter D.

Throws: nothing.

2.
explicit unique_ptr(pointer p);

Requires: The expression D()(p) must be well formed. The default constructor of D must not throw an exception.

D must not be a reference type.

Effects: Constructs a unique_ptr which owns p.

Postconditions: get() == p. get_deleter() returns a reference to a default constructed deleter D.

Throws: nothing.

3.
unique_ptr(pointer p, unspecified d);

Requires: The expression d(p) must be well formed.

Postconditions: get() == p. get_deleter() returns a reference to the internally stored deleter. If D is a reference type then get_deleter()
returns a reference to the lvalue d.

Throws: nothing.

4.
unique_ptr(unique_ptr && u);

Requires: If the deleter is not a reference type, construction of the deleter D from an lvalue D must not throw an exception.

Effects: Constructs a unique_ptr which owns the pointer which u owns (if any). If the deleter is not a reference type, it is move
constructed from u's deleter, otherwise the reference is copy constructed from u's deleter.

After the construction, u no longer owns a pointer. [Note: The deleter constructor can be implemented with boost::forward<D>.
-end note]

Postconditions: get() == value u.get() had before the construction. get_deleter() returns a reference to the internally stored deleter
which was constructed from u.get_deleter(). If D is a reference type then get_- deleter() and u.get_deleter() both reference the
same lvalue deleter.

Throws: nothing.

5.
template<typename U, typename E>
unique_ptr(unique_ptr && u, unspecified = nat());

Requires: If D is not a reference type, construction of the deleter D from an rvalue of type E must be well formed and not throw
an exception. If D is a reference type, then E must be the same type as D (diagnostic required). unique_ptr<U, E>::pointer must
be implicitly convertible to pointer.

Effects: Constructs a unique_ptr which owns the pointer which u owns (if any). If the deleter is not a reference type, it is move
constructed from u's deleter, otherwise the reference is copy constructed from u's deleter.

After the construction, u no longer owns a pointer.

393

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

postconditions get() == value u.get() had before the construction, modulo any required offset adjustments resulting from the cast
from U* to T*. get_deleter() returns a reference to the internally stored deleter which was constructed from u.get_deleter().

Throws: nothing.

6.
unique_ptr& operator=(unique_ptr && u);

Requires: Assignment of the deleter D from an rvalue D must not throw an exception.

Effects: reset(u.release()) followed by a move assignment from u's deleter to this deleter.

Postconditions: This unique_ptr now owns the pointer which u owned, and u no longer owns it.

Returns: *this.

Throws: nothing.

7.
template<typename U, typename E> unique_ptr& operator=(unique_ptr && u);

Requires: Assignment of the deleter D from an rvalue D must not throw an exception. U* must be implicitly convertible to T*.

Effects: reset(u.release()) followed by a move assignment from u's deleter to this deleter. If either D or E is a reference type, then
the referenced lvalue deleter participates in the move assignment.

Postconditions: This unique_ptr now owns the pointer which u owned, and u no longer owns it.

Returns: *this.

Throws: nothing.

8.
unique_ptr& operator=(int nat::*);

Assigns from the literal 0 or NULL.

Effects: reset().

Postcondition: get() == 0

Returns: *this.

Throws: nothing.

9.
~unique_ptr();

Effects: If get() == 0 there are no effects. Otherwise get_deleter()(get()).

Throws: nothing.

unique_ptr public member functions

1.
unspecified operator*() const;

Requires: get() != 0. Returns: *get(). Throws: nothing.

2.
pointer operator->() const;

394

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requires: get() != 0. Returns: get(). Throws: nothing.

3.
pointer get() const;

Returns: The stored pointer. Throws: nothing.

4.
deleter_reference get_deleter();

Returns: A reference to the stored deleter.

Throws: nothing.

5.
deleter_const_reference get_deleter() const;

Returns: A const reference to the stored deleter.

Throws: nothing.

6.
operator int nat::*() const;

Returns: An unspecified value that, when used in boolean contexts, is equivalent to get() != 0.

Throws: nothing.

7.
pointer release();

Postcondition: get() == 0.

Returns: The value get() had at the start of the call to release.

Throws: nothing.

8.
void reset(pointer p = 0);

Effects: If p == get() there are no effects. Otherwise get_deleter()(get()).

Postconditions: get() == p.

Throws: nothing.

9.
void swap(unique_ptr & u);

Requires: The deleter D is Swappable and will not throw an exception under swap.

Effects: The stored pointers of this and u are exchanged. The stored deleters are swapped (unqualified). Throws: nothing.

Struct template managed_unique_ptr

boost::interprocess::managed_unique_ptr

395

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/smart_ptr/unique_ptr.hpp>

template<typename T, typename ManagedMemory>
struct managed_unique_ptr {
// types
typedef unique_ptr< T, typename ManagedMemory::template deleter< T >::type > type;

};

Description

Returns the type of a unique pointer of type T with boost::interprocess::deleter deleter that can be constructed in the given managed
segment type.

Function template make_managed_unique_ptr

boost::interprocess::make_managed_unique_ptr

Synopsis

// In header: <boost/interprocess/smart_ptr/unique_ptr.hpp>

template<typename T, typename ManagedMemory>
managed_unique_ptr< T, ManagedMemory >::type
make_managed_unique_ptr(T * constructed_object,

ManagedMemory & managed_memory);

Description

Returns an instance of a unique pointer constructed with boost::interproces::deleter from a pointer of type T that has been allocated
in the passed managed segment

Header <boost/interprocess/smart_ptr/weak_ptr.hpp>
Describes the smart pointer weak_ptr.

namespace boost {
namespace interprocess {
template<typename T, typename ManagedMemory> struct managed_weak_ptr;
template<typename T, typename A, typename D, typename U, typename A2,

typename D2>
bool operator<(weak_ptr< T, A, D > const & a,

weak_ptr< U, A2, D2 > const & b);
template<typename T, typename A, typename D>
void swap(weak_ptr< T, A, D > & a, weak_ptr< T, A, D > & b);

template<typename T, typename ManagedMemory>
managed_weak_ptr< T, ManagedMemory >::type
make_managed_weak_ptr(T *, ManagedMemory &);

}
}

396

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/smart_ptr/weak_ptr.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Struct template managed_weak_ptr

boost::interprocess::managed_weak_ptr

Synopsis

// In header: <boost/interprocess/smart_ptr/weak_ptr.hpp>

template<typename T, typename ManagedMemory>
struct managed_weak_ptr {
// types
typedef weak_ptr< T, typename ManagedMemory::template allocator< void >::type, typename Man↵

agedMemory::template deleter< T >::type > type;
};

Description

Returns the type of a weak pointer of type T with the allocator boost::interprocess::allocator allocator and boost::interprocess::deleter
deleter that can be constructed in the given managed segment type.

Function template make_managed_weak_ptr

boost::interprocess::make_managed_weak_ptr

Synopsis

// In header: <boost/interprocess/smart_ptr/weak_ptr.hpp>

template<typename T, typename ManagedMemory>
managed_weak_ptr< T, ManagedMemory >::type
make_managed_weak_ptr(T * constructed_object,

ManagedMemory & managed_memory);

Description

Returns an instance of a weak pointer constructed with the default allocator and deleter from a pointer of type T that has been allocated
in the passed managed segment

Header <boost/interprocess/streams/bufferstream.hpp>
This file defines basic_bufferbuf, basic_ibufferstream, basic_obufferstream, and basic_bufferstream classes. These classes represent
streamsbufs and streams whose sources or destinations are fixed size character buffers.

namespace boost {
namespace interprocess {
typedef basic_bufferbuf< char > bufferbuf;
typedef basic_bufferstream< char > bufferstream;
typedef basic_ibufferstream< char > ibufferstream;
typedef basic_obufferstream< char > obufferstream;
typedef basic_bufferbuf< wchar_t > wbufferbuf;
typedef basic_bufferstream< wchar_t > wbufferstream;
typedef basic_ibufferstream< wchar_t > wibufferstream;
typedef basic_obufferstream< wchar_t > wobufferstream;

}
}

397

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/streams/bufferstream.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header <boost/interprocess/streams/vectorstream.hpp>
This file defines basic_vectorbuf, basic_ivectorstream, basic_ovectorstream, and basic_vectorstreamclasses. These classes represent
streamsbufs and streams whose sources or destinations are STL-like vectors that can be swapped with external vectors to avoid un-
necessary allocations/copies.

namespace boost {
namespace interprocess {
template<typename CharVector, typename CharTraits> class std;

}
}

Class template std

boost::interprocess::std

398

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/streams/vectorstream.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/streams/vectorstream.hpp>

template<typename CharVector, typename CharTraits>
class std : private std::basic_ostream< CharVector::value_type, CharTraits >,

private std::basic_istream< CharVector::value_type, CharTraits >
{
public:
// types
typedef CharVector vector_type;
typedef std::basic_ios< typename CharVector::value_type, CharTraits >::char_type char_type;
typedef std::basic_ios< char_type, CharTraits >::int_type int_type;
typedef std::basic_ios< char_type, CharTraits >::pos_type pos_type;
typedef std::basic_ios< char_type, CharTraits >::off_type off_type;
typedef std::basic_ios< char_type, CharTraits >::traits_type traits_type;
typedef CharVector vector_type;
typedef std::basic_ios< typename CharVector::value_type, CharTraits >::char_type char_type;
typedef std::basic_ios< char_type, CharTraits >::int_type int_type;
typedef std::basic_ios< char_type, CharTraits >::pos_type pos_type;
typedef std::basic_ios< char_type, CharTraits >::off_type off_type;
typedef std::basic_ios< char_type, CharTraits >::traits_type traits_type;

// public member functions
basic_ivectorstream(std::ios_base::openmode = std::ios_base::in);

template<typename VectorParameter>
basic_ivectorstream(const VectorParameter &,

std::ios_base::openmode = std::ios_base::in);
~basic_ivectorstream();

basic_vectorbuf< CharVector, CharTraits > * rdbuf() const;
void swap_vector(vector_type &);
const vector_type & vector() const;
void reserve(typename vector_type::size_type);
void clear();
basic_ovectorstream(std::ios_base::openmode = std::ios_base::out);

template<typename VectorParameter>
basic_ovectorstream(const VectorParameter &,

std::ios_base::openmode = std::ios_base::out);
~basic_ovectorstream();

basic_vectorbuf< CharVector, CharTraits > * rdbuf() const;
void swap_vector(vector_type &);
const vector_type & vector() const;
void reserve(typename vector_type::size_type);

};

Description

A basic_istream class that holds a character vector specified by CharVector template parameter as its formatting buffer. The vector
must have contiguous storage, like std::vector, boost::interprocess::vector or boost::interprocess::basic_string

A basic_ostream class that holds a character vector specified by CharVector template parameter as its formatting buffer. The vector
must have contiguous storage, like std::vector, boost::interprocess::vector or boost::interprocess::basic_string

std public member functions

1.
basic_ivectorstream(std::ios_base::openmode mode = std::ios_base::in);

Constructor. Throws if vector_type default constructor throws.

399

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.
template<typename VectorParameter>

basic_ivectorstream(const VectorParameter & param,
std::ios_base::openmode mode = std::ios_base::in);

Constructor. Throws if vector_type(const VectorParameter ¶m) throws.

3.
~basic_ivectorstream();

4.
basic_vectorbuf< CharVector, CharTraits > * rdbuf() const;

Returns the address of the stored stream buffer.

5.
void swap_vector(vector_type & vect);

Swaps the underlying vector with the passed vector. This function resets the read position in the stream. Does not throw.

6.
const vector_type & vector() const;

Returns a const reference to the internal vector. Does not throw.

7.
void reserve(typename vector_type::size_type size);

Calls reserve() method of the internal vector. Resets the stream to the first position. Throws if the internals vector's reserve throws.

8.
void clear();

Calls clear() method of the internal vector. Resets the stream to the first position.

9.
basic_ovectorstream(std::ios_base::openmode mode = std::ios_base::out);

Constructor. Throws if vector_type default constructor throws.

10.
template<typename VectorParameter>

basic_ovectorstream(const VectorParameter & param,
std::ios_base::openmode mode = std::ios_base::out);

Constructor. Throws if vector_type(const VectorParameter ¶m) throws.

11.
~basic_ovectorstream();

12.
basic_vectorbuf< CharVector, CharTraits > * rdbuf() const;

Returns the address of the stored stream buffer.

13.
void swap_vector(vector_type & vect);

Swaps the underlying vector with the passed vector. This function resets the write position in the stream. Does not throw.

400

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

14.
const vector_type & vector() const;

Returns a const reference to the internal vector. Does not throw.

15.
void reserve(typename vector_type::size_type size);

Calls reserve() method of the internal vector. Resets the stream to the first position. Throws if the internals vector's reserve throws.

Header <boost/interprocess/sync/file_lock.hpp>
Describes a class that wraps file locking capabilities.

namespace boost {
namespace interprocess {
class file_lock;

}
}

Class file_lock

boost::interprocess::file_lock

Synopsis

// In header: <boost/interprocess/sync/file_lock.hpp>

class file_lock {
public:
// construct/copy/destruct
file_lock();
file_lock(const char *);
file_lock(file_lock &&);

 file_lock& operator=(file_lock &&);
~file_lock();

// public member functions
void swap(file_lock &);
void lock();
bool try_lock();
bool timed_lock(const boost::posix_time::ptime &);
void unlock();
void lock_sharable();
bool try_lock_sharable();
bool timed_lock_sharable(const boost::posix_time::ptime &);
void unlock_sharable();

};

Description

A file lock, is a mutual exclusion utility similar to a mutex using a file. A file lock has sharable and exclusive locking capabilities
and can be used with scoped_lock and sharable_lock classes. A file lock can't guarantee synchronization between threads of the
same process so just use file locks to synchronize threads from different processes.

401

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/file_lock.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

file_lock public construct/copy/destruct

1.
file_lock();

Constructs an empty file mapping. Does not throw

2.
file_lock(const char * name);

Opens a file lock. Throws interprocess_exception if the file does not exist or there are no operating system resources.

3.
file_lock(file_lock && moved);

Moves the ownership of "moved"'s file mapping object to *this. After the call, "moved" does not represent any file mapping object.
Does not throw

4.
file_lock& operator=(file_lock && moved);

Moves the ownership of "moved"'s file mapping to *this. After the call, "moved" does not represent any file mapping. Does not
throw

5.
~file_lock();

Closes a file lock. Does not throw.

file_lock public member functions

1.
void swap(file_lock & other);

Swaps two file_locks. Does not throw.

2.
void lock();

Effects: The calling thread tries to obtain exclusive ownership of the mutex, and if another thread has exclusive, or sharable
ownership of the mutex, it waits until it can obtain the ownership. Throws: interprocess_exception on error.

3.
bool try_lock();

Effects: The calling thread tries to acquire exclusive ownership of the mutex without waiting. If no other thread has exclusive,
or sharable ownership of the mutex this succeeds. Returns: If it can acquire exclusive ownership immediately returns true. If it
has to wait, returns false. Throws: interprocess_exception on error.

4.
bool timed_lock(const boost::posix_time::ptime & abs_time);

Effects: The calling thread tries to acquire exclusive ownership of the mutex waiting if necessary until no other thread has exclusive,
or sharable ownership of the mutex or abs_time is reached. Returns: If acquires exclusive ownership, returns true. Otherwise returns
false. Throws: interprocess_exception on error.

5.
void unlock();

Precondition: The thread must have exclusive ownership of the mutex. Effects: The calling thread releases the exclusive ownership
of the mutex. Throws: An exception derived from interprocess_exception on error.

402

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

6.
void lock_sharable();

Effects: The calling thread tries to obtain sharable ownership of the mutex, and if another thread has exclusive ownership of the
mutex, waits until it can obtain the ownership. Throws: interprocess_exception on error.

7.
bool try_lock_sharable();

Effects: The calling thread tries to acquire sharable ownership of the mutex without waiting. If no other thread has exclusive
ownership of the mutex this succeeds. Returns: If it can acquire sharable ownership immediately returns true. If it has to wait,
returns false. Throws: interprocess_exception on error.

8.
bool timed_lock_sharable(const boost::posix_time::ptime & abs_time);

Effects: The calling thread tries to acquire sharable ownership of the mutex waiting if necessary until no other thread has exclusive
ownership of the mutex or abs_time is reached. Returns: If acquires sharable ownership, returns true. Otherwise returns false.
Throws: interprocess_exception on error.

9.
void unlock_sharable();

Precondition: The thread must have sharable ownership of the mutex. Effects: The calling thread releases the sharable ownership
of the mutex. Throws: An exception derived from interprocess_exception on error.

Header <boost/interprocess/sync/interprocess_condition.hpp>
Describes process-shared variables interprocess_condition class

namespace boost {
namespace interprocess {
class interprocess_condition;

}
namespace posix_time {
}

}

Class interprocess_condition

boost::interprocess::interprocess_condition

403

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/interprocess_condition.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/sync/interprocess_condition.hpp>

class interprocess_condition {
public:
// construct/copy/destruct
interprocess_condition();
~interprocess_condition();

// public member functions
void notify_one();
void notify_all();
template<typename L> void wait(L &);
template<typename L, typename Pr> void wait(L &, Pr);
template<typename L> bool timed_wait(L &, const boost::posix_time::ptime &);
template<typename L, typename Pr>
bool timed_wait(L &, const boost::posix_time::ptime &, Pr);

};

Description

This class is a condition variable that can be placed in shared memory or memory mapped files. Destroys the object of type
std::condition_variable_any

Unlike std::condition_variable in C++11, it is NOT safe to invoke the destructor if all threads have been only notified. It is required
that they have exited their respective wait functions.

interprocess_condition public construct/copy/destruct

1.
interprocess_condition();

Constructs a interprocess_condition. On error throws interprocess_exception.

2.
~interprocess_condition();

Destroys *this liberating system resources.

interprocess_condition public member functions

1.
void notify_one();

If there is a thread waiting on *this, change that thread's state to ready. Otherwise there is no effect.

2.
void notify_all();

Change the state of all threads waiting on *this to ready. If there are no waiting threads, notify_all() has no effect.

3.
template<typename L> void wait(L & lock);

Releases the lock on the interprocess_mutex object associated with lock, blocks the current thread of execution until readied
by a call to this->notify_one() or this->notify_all(), and then reacquires the lock.

4.
template<typename L, typename Pr> void wait(L & lock, Pr pred);

404

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The same as: while (!pred()) wait(lock)

5.
template<typename L>
bool timed_wait(L & lock, const boost::posix_time::ptime & abs_time);

Releases the lock on the interprocess_mutex object associated with lock, blocks the current thread of execution until readied
by a call to this->notify_one() or this->notify_all(), or until time abs_time is reached, and then reacquires the lock. Returns: false
if time abs_time is reached, otherwise true.

6.
template<typename L, typename Pr>
bool timed_wait(L & lock, const boost::posix_time::ptime & abs_time,

Pr pred);

The same as: while (!pred()) { if (!timed_wait(lock, abs_time)) return pred(); } return true;

Header <boost/interprocess/sync/interprocess_condi-
tion_any.hpp>
Describes process-shared variables interprocess_condition_any class

namespace boost {
namespace interprocess {
class interprocess_condition_any;

}
namespace posix_time {
}

}

Class interprocess_condition_any

boost::interprocess::interprocess_condition_any

Synopsis

// In header: <boost/interprocess/sync/interprocess_condition_any.hpp>

class interprocess_condition_any {
public:
// construct/copy/destruct
interprocess_condition_any();
~interprocess_condition_any();

// public member functions
void notify_one();
void notify_all();
template<typename L> void wait(L &);
template<typename L, typename Pr> void wait(L &, Pr);
template<typename L> bool timed_wait(L &, const boost::posix_time::ptime &);
template<typename L, typename Pr>
bool timed_wait(L &, const boost::posix_time::ptime &, Pr);

};

405

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/interprocess_condition_any.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/interprocess_condition_any.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Description

This class is a condition variable that can be placed in shared memory or memory mapped files.

The interprocess_condition_any class is a generalization of interprocess_condition. Whereas interprocess_condition works only on
Locks with mutex_type == interprocess_mutex interprocess_condition_any can operate on any user-defined lock that meets the
BasicLockable requirements (lock()/unlock() member functions).

Unlike std::condition_variable_any in C++11, it is NOT safe to invoke the destructor if all threads have been only notified. It is required
that they have exited their respective wait functions.

interprocess_condition_any public construct/copy/destruct

1.
interprocess_condition_any();

Constructs a interprocess_condition_any. On error throws interprocess_exception.

2.
~interprocess_condition_any();

Destroys *this liberating system resources.

interprocess_condition_any public member functions

1.
void notify_one();

If there is a thread waiting on *this, change that thread's state to ready. Otherwise there is no effect.

2.
void notify_all();

Change the state of all threads waiting on *this to ready. If there are no waiting threads, notify_all() has no effect.

3.
template<typename L> void wait(L & lock);

Releases the lock on the interprocess_mutex object associated with lock, blocks the current thread of execution until readied
by a call to this->notify_one() or this->notify_all(), and then reacquires the lock.

4.
template<typename L, typename Pr> void wait(L & lock, Pr pred);

The same as: while (!pred()) wait(lock)

5.
template<typename L>
bool timed_wait(L & lock, const boost::posix_time::ptime & abs_time);

Releases the lock on the interprocess_mutex object associated with lock, blocks the current thread of execution until readied
by a call to this->notify_one() or this->notify_all(), or until time abs_time is reached, and then reacquires the lock. Returns: false
if time abs_time is reached, otherwise true.

6.
template<typename L, typename Pr>
bool timed_wait(L & lock, const boost::posix_time::ptime & abs_time,

Pr pred);

The same as: while (!pred()) { if (!timed_wait(lock, abs_time)) return pred(); } return true;

406

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header <boost/interprocess/sync/interprocess_mutex.hpp>
Describes a mutex class that can be placed in memory shared by several processes.

namespace boost {
namespace interprocess {
class interprocess_mutex;

}
}

Class interprocess_mutex

boost::interprocess::interprocess_mutex

Synopsis

// In header: <boost/interprocess/sync/interprocess_mutex.hpp>

class interprocess_mutex {
public:
// construct/copy/destruct
interprocess_mutex();
~interprocess_mutex();

// public member functions
void lock();
bool try_lock();
bool timed_lock(const boost::posix_time::ptime &);
void unlock();

};

Description

Wraps a interprocess_mutex that can be placed in shared memory and can be shared between processes. Allows timed lock tries

interprocess_mutex public construct/copy/destruct

1.
interprocess_mutex();

Constructor. Throws interprocess_exception on error.

2.
~interprocess_mutex();

Destructor. If any process uses the mutex after the destructor is called the result is undefined. Does not throw.

interprocess_mutex public member functions

1.
void lock();

Effects: The calling thread tries to obtain ownership of the mutex, and if another thread has ownership of the mutex, it waits until
it can obtain the ownership. If a thread takes ownership of the mutex the mutex must be unlocked by the same mutex. Throws:
interprocess_exception on error.

407

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/interprocess_mutex.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.
bool try_lock();

Effects: The calling thread tries to obtain ownership of the mutex, and if another thread has ownership of the mutex returns im-
mediately. Returns: If the thread acquires ownership of the mutex, returns true, if the another thread has ownership of the mutex,
returns false. Throws: interprocess_exception on error.

3.
bool timed_lock(const boost::posix_time::ptime & abs_time);

Effects: The calling thread will try to obtain exclusive ownership of the mutex if it can do so in until the specified time is reached.
If the mutex supports recursive locking, the mutex must be unlocked the same number of times it is locked. Returns: If the thread
acquires ownership of the mutex, returns true, if the timeout expires returns false. Throws: interprocess_exception on error.

4.
void unlock();

Effects: The calling thread releases the exclusive ownership of the mutex. Throws: interprocess_exception on error.

Header <boost/interprocess/sync/interprocess_recursive_mu-
tex.hpp>
Describes interprocess_recursive_mutex and shared_recursive_try_mutex classes

namespace boost {
namespace interprocess {
class interprocess_recursive_mutex;

}
}

Class interprocess_recursive_mutex

boost::interprocess::interprocess_recursive_mutex

Synopsis

// In header: <boost/interprocess/sync/interprocess_recursive_mutex.hpp>

class interprocess_recursive_mutex {
public:
// construct/copy/destruct
interprocess_recursive_mutex();
~interprocess_recursive_mutex();

// public member functions
void lock();
bool try_lock();
bool timed_lock(const boost::posix_time::ptime &);
void unlock();

};

Description

Wraps a interprocess_mutex that can be placed in shared memory and can be shared between processes. Allows several locking calls
by the same process. Allows timed lock tries

408

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/interprocess_recursive_mutex.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/interprocess_recursive_mutex.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

interprocess_recursive_mutex public construct/copy/destruct

1.
interprocess_recursive_mutex();

Constructor. Throws interprocess_exception on error.

2.
~interprocess_recursive_mutex();

Destructor. If any process uses the mutex after the destructor is called the result is undefined. Does not throw.

interprocess_recursive_mutex public member functions

1.
void lock();

Effects: The calling thread tries to obtain ownership of the mutex, and if another thread has ownership of the mutex, it waits until
it can obtain the ownership. If a thread takes ownership of the mutex the mutex must be unlocked by the same mutex. The mutex
must be unlocked the same number of times it is locked. Throws: interprocess_exception on error.

2.
bool try_lock();

Tries to lock the interprocess_mutex, returns false when interprocess_mutex is already locked, returns true when success.
The mutex must be unlocked the same number of times it is locked. Throws: interprocess_exception if a severe error is
found

3.
bool timed_lock(const boost::posix_time::ptime & abs_time);

Tries to lock the interprocess_mutex, if interprocess_mutex can't be locked before abs_time time, returns false. The
mutex must be unlocked the same number of times it is locked. Throws: interprocess_exception if a severe error is found

4.
void unlock();

Effects: The calling thread releases the exclusive ownership of the mutex. If the mutex supports recursive locking, the mutex
must be unlocked the same number of times it is locked. Throws: interprocess_exception on error.

Header <boost/interprocess/sync/interprocess_semaphore.hpp>
Describes a interprocess_semaphore class for inter-process synchronization

namespace boost {
namespace interprocess {
class interprocess_semaphore;

}
}

Class interprocess_semaphore

boost::interprocess::interprocess_semaphore

409

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/interprocess_semaphore.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/sync/interprocess_semaphore.hpp>

class interprocess_semaphore {
public:
// construct/copy/destruct
interprocess_semaphore(unsigned int);
~interprocess_semaphore();

// public member functions
void post();
void wait();
bool try_wait();
bool timed_wait(const boost::posix_time::ptime &);

};

Description

Wraps a interprocess_semaphore that can be placed in shared memory and can be shared between processes. Allows timed lock tries

interprocess_semaphore public construct/copy/destruct

1.
interprocess_semaphore(unsigned int initialCount);

Creates a interprocess_semaphore with the given initial count. interprocess_exception if there is an error.

2.
~interprocess_semaphore();

Destroys the interprocess_semaphore. Does not throw

interprocess_semaphore public member functions

1.
void post();

Increments the interprocess_semaphore count. If there are processes/threads blocked waiting for the interprocess_sem-
aphore, then one of these processes will return successfully from its wait function. If there is an error an interprocess_ex-
ception exception is thrown.

2.
void wait();

Decrements the interprocess_semaphore. If the interprocess_semaphore value is not greater than zero, then the calling
process/thread blocks until it can decrement the counter. If there is an error an interprocess_exception exception is thrown.

3.
bool try_wait();

Decrements the interprocess_semaphore if the interprocess_semaphore's value is greater than zero and returns true. If
the value is not greater than zero returns false. If there is an error an interprocess_exception exception is thrown.

4.
bool timed_wait(const boost::posix_time::ptime & abs_time);

410

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Decrements the interprocess_semaphore if the interprocess_semaphore's value is greater than zero and returns true.
Otherwise, waits for the interprocess_semaphore to the posted or the timeout expires. If the timeout expires, the function
returns false. If the interprocess_semaphore is posted the function returns true. If there is an error throws sem_exception

Header <boost/interprocess/sync/interprocess_sharable_mu-
tex.hpp>
Describes interprocess_sharable_mutex class

namespace boost {
namespace interprocess {
class interprocess_sharable_mutex;

}
}

Class interprocess_sharable_mutex

boost::interprocess::interprocess_sharable_mutex

Synopsis

// In header: <boost/interprocess/sync/interprocess_sharable_mutex.hpp>

class interprocess_sharable_mutex {
public:
// construct/copy/destruct
interprocess_sharable_mutex(const interprocess_sharable_mutex &);
interprocess_sharable_mutex();

 interprocess_sharable_mutex& operator=(const interprocess_sharable_mutex &);
~interprocess_sharable_mutex();

// public member functions
void lock();
bool try_lock();
bool timed_lock(const boost::posix_time::ptime &);
void unlock();
void lock_sharable();
bool try_lock_sharable();
bool timed_lock_sharable(const boost::posix_time::ptime &);
void unlock_sharable();

};

Description

Wraps a interprocess_sharable_mutex that can be placed in shared memory and can be shared between processes. Allows timed lock
tries

interprocess_sharable_mutex public construct/copy/destruct

1.
interprocess_sharable_mutex(const interprocess_sharable_mutex &);

2.
interprocess_sharable_mutex();

411

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/interprocess_sharable_mutex.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/interprocess_sharable_mutex.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Constructs the sharable lock. Throws interprocess_exception on error.

3.
interprocess_sharable_mutex& operator=(const interprocess_sharable_mutex &);

4.
~interprocess_sharable_mutex();

Destroys the sharable lock. Does not throw.

interprocess_sharable_mutex public member functions

1.
void lock();

Effects: The calling thread tries to obtain exclusive ownership of the mutex, and if another thread has exclusive or sharable
ownership of the mutex, it waits until it can obtain the ownership. Throws: interprocess_exception on error.

2.
bool try_lock();

Effects: The calling thread tries to acquire exclusive ownership of the mutex without waiting. If no other thread has exclusive or
sharable ownership of the mutex this succeeds. Returns: If it can acquire exclusive ownership immediately returns true. If it has
to wait, returns false. Throws: interprocess_exception on error.

3.
bool timed_lock(const boost::posix_time::ptime & abs_time);

Effects: The calling thread tries to acquire exclusive ownership of the mutex waiting if necessary until no other thread has exclusive
or sharable ownership of the mutex or abs_time is reached. Returns: If acquires exclusive ownership, returns true. Otherwise returns
false. Throws: interprocess_exception on error.

4.
void unlock();

Precondition: The thread must have exclusive ownership of the mutex. Effects: The calling thread releases the exclusive ownership
of the mutex. Throws: An exception derived from interprocess_exception on error.

5.
void lock_sharable();

Effects: The calling thread tries to obtain sharable ownership of the mutex, and if another thread has exclusive ownership of the
mutex, waits until it can obtain the ownership. Throws: interprocess_exception on error.

6.
bool try_lock_sharable();

Effects: The calling thread tries to acquire sharable ownership of the mutex without waiting. If no other thread has exclusive
ownership of the mutex this succeeds. Returns: If it can acquire sharable ownership immediately returns true. If it has to wait,
returns false. Throws: interprocess_exception on error.

7.
bool timed_lock_sharable(const boost::posix_time::ptime & abs_time);

Effects: The calling thread tries to acquire sharable ownership of the mutex waiting if necessary until no other thread has exclusive
ownership of the mutex or abs_time is reached. Returns: If acquires sharable ownership, returns true. Otherwise returns false.
Throws: interprocess_exception on error.

8.
void unlock_sharable();

412

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Precondition: The thread must have sharable ownership of the mutex. Effects: The calling thread releases the sharable ownership
of the mutex. Throws: An exception derived from interprocess_exception on error.

Header <boost/interprocess/sync/interprocess_upgradable_mu-
tex.hpp>
Describes interprocess_upgradable_mutex class

namespace boost {
namespace interprocess {
class interprocess_upgradable_mutex;

}
}

Class interprocess_upgradable_mutex

boost::interprocess::interprocess_upgradable_mutex

Synopsis

// In header: <boost/interprocess/sync/interprocess_upgradable_mutex.hpp>

class interprocess_upgradable_mutex {
public:
// construct/copy/destruct
interprocess_upgradable_mutex(const interprocess_upgradable_mutex &);
interprocess_upgradable_mutex();

 interprocess_upgradable_mutex&
operator=(const interprocess_upgradable_mutex &);
~interprocess_upgradable_mutex();

// public member functions
void lock();
bool try_lock();
bool timed_lock(const boost::posix_time::ptime &);
void unlock();
void lock_sharable();
bool try_lock_sharable();
bool timed_lock_sharable(const boost::posix_time::ptime &);
void unlock_sharable();
void lock_upgradable();
bool try_lock_upgradable();
bool timed_lock_upgradable(const boost::posix_time::ptime &);
void unlock_upgradable();
void unlock_and_lock_upgradable();
void unlock_and_lock_sharable();
void unlock_upgradable_and_lock_sharable();
void unlock_upgradable_and_lock();
bool try_unlock_upgradable_and_lock();
*bool timed_unlock_upgradable_and_lock(const boost::posix_time::ptime &);
bool try_unlock_sharable_and_lock();
bool try_unlock_sharable_and_lock_upgradable();

};

413

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/interprocess_upgradable_mutex.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/interprocess_upgradable_mutex.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Description

Wraps a interprocess_upgradable_mutex that can be placed in shared memory and can be shared between processes. Allows timed
lock tries

interprocess_upgradable_mutex public construct/copy/destruct

1.
interprocess_upgradable_mutex(const interprocess_upgradable_mutex &);

2.
interprocess_upgradable_mutex();

Constructs the upgradable lock. Throws interprocess_exception on error.

3.
interprocess_upgradable_mutex&
operator=(const interprocess_upgradable_mutex &);

4.
~interprocess_upgradable_mutex();

Destroys the upgradable lock. Does not throw.

interprocess_upgradable_mutex public member functions

1.
void lock();

Effects: The calling thread tries to obtain exclusive ownership of the mutex, and if another thread has exclusive, sharable or up-
gradable ownership of the mutex, it waits until it can obtain the ownership. Throws: interprocess_exception on error.

2.
bool try_lock();

Effects: The calling thread tries to acquire exclusive ownership of the mutex without waiting. If no other thread has exclusive,
sharable or upgradable ownership of the mutex this succeeds. Returns: If it can acquire exclusive ownership immediately returns
true. If it has to wait, returns false. Throws: interprocess_exception on error.

3.
bool timed_lock(const boost::posix_time::ptime & abs_time);

Effects: The calling thread tries to acquire exclusive ownership of the mutex waiting if necessary until no other thread has exclusive,
sharable or upgradable ownership of the mutex or abs_time is reached. Returns: If acquires exclusive ownership, returns true.
Otherwise returns false. Throws: interprocess_exception on error.

4.
void unlock();

Precondition: The thread must have exclusive ownership of the mutex. Effects: The calling thread releases the exclusive ownership
of the mutex. Throws: An exception derived from interprocess_exception on error.

5.
void lock_sharable();

Effects: The calling thread tries to obtain sharable ownership of the mutex, and if another thread has exclusive ownership of the
mutex, waits until it can obtain the ownership. Throws: interprocess_exception on error.

6.
bool try_lock_sharable();

414

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: The calling thread tries to acquire sharable ownership of the mutex without waiting. If no other thread has exclusive
ownership of the mutex this succeeds. Returns: If it can acquire sharable ownership immediately returns true. If it has to wait,
returns false. Throws: interprocess_exception on error.

7.
bool timed_lock_sharable(const boost::posix_time::ptime & abs_time);

Effects: The calling thread tries to acquire sharable ownership of the mutex waiting if necessary until no other thread has exclusive
ownership of the mutex or abs_time is reached. Returns: If acquires sharable ownership, returns true. Otherwise returns false.
Throws: interprocess_exception on error.

8.
void unlock_sharable();

Precondition: The thread must have sharable ownership of the mutex. Effects: The calling thread releases the sharable ownership
of the mutex. Throws: An exception derived from interprocess_exception on error.

9.
void lock_upgradable();

Effects: The calling thread tries to obtain upgradable ownership of the mutex, and if another thread has exclusive or upgradable
ownership of the mutex, waits until it can obtain the ownership. Throws: interprocess_exception on error.

10.
bool try_lock_upgradable();

Effects: The calling thread tries to acquire upgradable ownership of the mutex without waiting. If no other thread has exclusive
or upgradable ownership of the mutex this succeeds. Returns: If it can acquire upgradable ownership immediately returns true.
If it has to wait, returns false. Throws: interprocess_exception on error.

11.
bool timed_lock_upgradable(const boost::posix_time::ptime & abs_time);

Effects: The calling thread tries to acquire upgradable ownership of the mutex waiting if necessary until no other thread has ex-
clusive or upgradable ownership of the mutex or abs_time is reached. Returns: If acquires upgradable ownership, returns true.
Otherwise returns false. Throws: interprocess_exception on error.

12.
void unlock_upgradable();

Precondition: The thread must have upgradable ownership of the mutex. Effects: The calling thread releases the upgradable
ownership of the mutex. Throws: An exception derived from interprocess_exception on error.

13.
void unlock_and_lock_upgradable();

Precondition: The thread must have exclusive ownership of the mutex. Effects: The thread atomically releases exclusive ownership
and acquires upgradable ownership. This operation is non-blocking. Throws: An exception derived from interprocess_excep-
tion on error.

14.
void unlock_and_lock_sharable();

Precondition: The thread must have exclusive ownership of the mutex. Effects: The thread atomically releases exclusive ownership
and acquires sharable ownership. This operation is non-blocking. Throws: An exception derived from interprocess_exception
on error.

15.
void unlock_upgradable_and_lock_sharable();

415

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Precondition: The thread must have upgradable ownership of the mutex. Effects: The thread atomically releases upgradable
ownership and acquires sharable ownership. This operation is non-blocking. Throws: An exception derived from interpro-
cess_exception on error.

16.
void unlock_upgradable_and_lock();

Precondition: The thread must have upgradable ownership of the mutex. Effects: The thread atomically releases upgradable
ownership and acquires exclusive ownership. This operation will block until all threads with sharable ownership release their
sharable lock. Throws: An exception derived from interprocess_exception on error.

17.
bool try_unlock_upgradable_and_lock();

Precondition: The thread must have upgradable ownership of the mutex. Effects: The thread atomically releases upgradable
ownership and tries to acquire exclusive ownership. This operation will fail if there are threads with sharable ownership, but it
will maintain upgradable ownership. Returns: If acquires exclusive ownership, returns true. Otherwise returns false. Throws: An
exception derived from interprocess_exception on error.

18.
*bool timed_unlock_upgradable_and_lock(const boost::posix_time::ptime & abs_time);

Precondition: The thread must have upgradable ownership of the mutex. Effects: The thread atomically releases upgradable
ownership and tries to acquire exclusive ownership, waiting if necessary until abs_time. This operation will fail if there are threads
with sharable ownership or timeout reaches, but it will maintain upgradable ownership. Returns: If acquires exclusive ownership,
returns true. Otherwise returns false. Throws: An exception derived from interprocess_exception on error.

19.
bool try_unlock_sharable_and_lock();

Precondition: The thread must have sharable ownership of the mutex. Effects: The thread atomically releases sharable ownership
and tries to acquire exclusive ownership. This operation will fail if there are threads with sharable or upgradable ownership, but
it will maintain sharable ownership. Returns: If acquires exclusive ownership, returns true. Otherwise returns false. Throws: An
exception derived from interprocess_exception on error.

20.
bool try_unlock_sharable_and_lock_upgradable();

Precondition: The thread must have sharable ownership of the mutex. Effects: The thread atomically releases sharable ownership
and tries to acquire upgradable ownership. This operation will fail if there are threads with sharable or upgradable ownership, but
it will maintain sharable ownership. Returns: If acquires upgradable ownership, returns true. Otherwise returns false. Throws:
An exception derived from interprocess_exception on error.

Header <boost/interprocess/sync/lock_options.hpp>
Describes the lock options with associated with interprocess_mutex lock constructors.

namespace boost {
namespace interprocess {
struct defer_lock_type;
struct try_to_lock_type;
struct accept_ownership_type;

static const defer_lock_type defer_lock;
static const try_to_lock_type try_to_lock;
static const accept_ownership_type accept_ownership;

}
namespace posix_time {
}

}

416

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/lock_options.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Struct defer_lock_type

boost::interprocess::defer_lock_type — Type to indicate to a mutex lock constructor that must not lock the mutex.

Synopsis

// In header: <boost/interprocess/sync/lock_options.hpp>

struct defer_lock_type {
};

Struct try_to_lock_type

boost::interprocess::try_to_lock_type — Type to indicate to a mutex lock constructor that must try to lock the mutex.

Synopsis

// In header: <boost/interprocess/sync/lock_options.hpp>

struct try_to_lock_type {
};

Struct accept_ownership_type

boost::interprocess::accept_ownership_type — Type to indicate to a mutex lock constructor that the mutex is already locked.

Synopsis

// In header: <boost/interprocess/sync/lock_options.hpp>

struct accept_ownership_type {
};

Global defer_lock

boost::interprocess::defer_lock

Synopsis

// In header: <boost/interprocess/sync/lock_options.hpp>

static const defer_lock_type defer_lock;

Description

An object indicating that the locking must be deferred.

417

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Global try_to_lock

boost::interprocess::try_to_lock

Synopsis

// In header: <boost/interprocess/sync/lock_options.hpp>

static const try_to_lock_type try_to_lock;

Description

An object indicating that a try_lock() operation must be executed.

Global accept_ownership

boost::interprocess::accept_ownership

Synopsis

// In header: <boost/interprocess/sync/lock_options.hpp>

static const accept_ownership_type accept_ownership;

Description

An object indicating that the ownership of lockable object must be accepted by the new owner.

Header <boost/interprocess/sync/mutex_family.hpp>
Describes a shared interprocess_mutex family fit algorithm used to allocate objects in shared memory.

namespace boost {
namespace interprocess {
struct mutex_family;
struct null_mutex_family;

}
}

Struct mutex_family

boost::interprocess::mutex_family

Synopsis

// In header: <boost/interprocess/sync/mutex_family.hpp>

struct mutex_family {
// types
typedef boost::interprocess::interprocess_mutex mutex_type;
typedef boost::interprocess::interprocess_recursive_mutex recursive_mutex_type;

};

418

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/mutex_family.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Description

Describes interprocess_mutex family to use with Interprocess framework based on boost::interprocess synchronization objects.

Struct null_mutex_family

boost::interprocess::null_mutex_family

Synopsis

// In header: <boost/interprocess/sync/mutex_family.hpp>

struct null_mutex_family {
// types
typedef boost::interprocess::null_mutex mutex_type;
typedef boost::interprocess::null_mutex recursive_mutex_type;

};

Description

Describes interprocess_mutex family to use with Interprocess frameworks based on null operation synchronization objects.

Header <boost/interprocess/sync/named_condition.hpp>
Describes a named condition class for inter-process synchronization

namespace boost {
namespace interprocess {
class named_condition;

}
}

Class named_condition

boost::interprocess::named_condition

419

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/named_condition.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/sync/named_condition.hpp>

class named_condition {
public:
// construct/copy/destruct
named_condition(create_only_t, const char *,

const permissions & = permissions());
named_condition(open_or_create_t, const char *,

const permissions & = permissions());
named_condition(open_only_t, const char *);
~named_condition();

// public member functions
*void notify_one();
void notify_all();
template<typename L> void wait(L &);
template<typename L, typename Pr> void wait(L &, Pr);
template<typename L> bool timed_wait(L &, const boost::posix_time::ptime &);
template<typename L, typename Pr>
bool timed_wait(L &, const boost::posix_time::ptime &, Pr);

// public static functions
static bool remove(const char *);

};

Description

A global condition variable that can be created by name. This condition variable is designed to work with named_mutex and can't
be placed in shared memory or memory mapped files.

named_condition public construct/copy/destruct

1.
named_condition(create_only_t create_only, const char * name,

const permissions & perm = permissions());

Creates a global condition with a name. If the condition can't be created throws interprocess_exception

2.
named_condition(open_or_create_t open_or_create, const char * name,

const permissions & perm = permissions());

Opens or creates a global condition with a name. If the condition is created, this call is equivalent to named_condition(cre-
ate_only_t, ...) If the condition is already created, this call is equivalent named_condition(open_only_t, ...) Does not
throw

3.
named_condition(open_only_t open_only, const char * name);

Opens a global condition with a name if that condition is previously created. If it is not previously created this function throws
interprocess_exception.

4.
~named_condition();

Destroys *this and indicates that the calling process is finished using the resource. The destructor function will deallocate any
system resources allocated by the system for use by this process for this resource. The resource can still be opened again calling
the open constructor overload. To erase the resource from the system use remove().

420

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

named_condition public member functions

1.
*void notify_one();

If there is a thread waiting on *this, change that thread's state to ready. Otherwise there is no effect.

2.
void notify_all();

Change the state of all threads waiting on *this to ready. If there are no waiting threads, notify_all() has no effect.

3.
template<typename L> void wait(L & lock);

Releases the lock on the named_mutex object associated with lock, blocks the current thread of execution until readied by a call
to this->notify_one() or this->notify_all(), and then reacquires the lock.

4.
template<typename L, typename Pr> void wait(L & lock, Pr pred);

The same as: while (!pred()) wait(lock)

5.
template<typename L>
bool timed_wait(L & lock, const boost::posix_time::ptime & abs_time);

Releases the lock on the named_mutex object associated with lock, blocks the current thread of execution until readied by a call
to this->notify_one() or this->notify_all(), or until time abs_time is reached, and then reacquires the lock. Returns: false if time
abs_time is reached, otherwise true.

6.
template<typename L, typename Pr>
bool timed_wait(L & lock, const boost::posix_time::ptime & abs_time,

Pr pred);

The same as: while (!pred()) { if (!timed_wait(lock, abs_time)) return pred(); } return true;

named_condition public static functions

1.
static bool remove(const char * name);

Erases a named condition from the system. Returns false on error. Never throws.

Header <boost/interprocess/sync/named_condition_any.hpp>
Describes a named condition class for inter-process synchronization

namespace boost {
namespace interprocess {
class named_condition_any;

}
}

Class named_condition_any

boost::interprocess::named_condition_any

421

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/named_condition_any.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/sync/named_condition_any.hpp>

class named_condition_any {
public:
// construct/copy/destruct
named_condition_any(create_only_t, const char *,

const permissions & = permissions());
named_condition_any(open_or_create_t, const char *,

const permissions & = permissions());
named_condition_any(open_only_t, const char *);
~named_condition_any();

// public member functions
*void notify_one();
void notify_all();
template<typename L> void wait(L &);
template<typename L, typename Pr> void wait(L &, Pr);
template<typename L> bool timed_wait(L &, const boost::posix_time::ptime &);
template<typename L, typename Pr>
bool timed_wait(L &, const boost::posix_time::ptime &, Pr);

// public static functions
static bool remove(const char *);

};

Description

A global condition variable that can be created by name. This condition variable is designed to work with named_mutex and can't
be placed in shared memory or memory mapped files.

named_condition_any public construct/copy/destruct

1.
named_condition_any(create_only_t, const char * name,

const permissions & perm = permissions());

Creates a global condition with a name. If the condition can't be created throws interprocess_exception

2.
named_condition_any(open_or_create_t, const char * name,

const permissions & perm = permissions());

Opens or creates a global condition with a name. If the condition is created, this call is equivalent to named_condition_any(cre-
ate_only_t, ...) If the condition is already created, this call is equivalent named_condition_any(open_only_t, ...) Does
not throw

3.
named_condition_any(open_only_t, const char * name);

Opens a global condition with a name if that condition is previously created. If it is not previously created this function throws
interprocess_exception.

4.
~named_condition_any();

Destroys *this and indicates that the calling process is finished using the resource. The destructor function will deallocate any
system resources allocated by the system for use by this process for this resource. The resource can still be opened again calling
the open constructor overload. To erase the resource from the system use remove().

422

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

named_condition_any public member functions

1.
*void notify_one();

If there is a thread waiting on *this, change that thread's state to ready. Otherwise there is no effect.

2.
void notify_all();

Change the state of all threads waiting on *this to ready. If there are no waiting threads, notify_all() has no effect.

3.
template<typename L> void wait(L & lock);

Releases the lock on the named_mutex object associated with lock, blocks the current thread of execution until readied by a call
to this->notify_one() or this->notify_all(), and then reacquires the lock.

4.
template<typename L, typename Pr> void wait(L & lock, Pr pred);

The same as: while (!pred()) wait(lock)

5.
template<typename L>
bool timed_wait(L & lock, const boost::posix_time::ptime & abs_time);

Releases the lock on the named_mutex object associated with lock, blocks the current thread of execution until readied by a call
to this->notify_one() or this->notify_all(), or until time abs_time is reached, and then reacquires the lock. Returns: false if time
abs_time is reached, otherwise true.

6.
template<typename L, typename Pr>
bool timed_wait(L & lock, const boost::posix_time::ptime & abs_time,

Pr pred);

The same as: while (!pred()) { if (!timed_wait(lock, abs_time)) return pred(); } return true;

named_condition_any public static functions

1.
static bool remove(const char * name);

Erases a named condition from the system. Returns false on error. Never throws.

Header <boost/interprocess/sync/named_mutex.hpp>
Describes a named mutex class for inter-process synchronization

namespace boost {
namespace interprocess {
class named_mutex;

}
}

Class named_mutex

boost::interprocess::named_mutex

423

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/named_mutex.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/sync/named_mutex.hpp>

class named_mutex {
public:
// construct/copy/destruct
named_mutex(create_only_t, const char *,

const permissions & = permissions());
named_mutex(open_or_create_t, const char *,

const permissions & = permissions());
named_mutex(open_only_t, const char *);
~named_mutex();

// public member functions
void unlock();
void lock();
bool try_lock();
bool timed_lock(const boost::posix_time::ptime &);

// public static functions
static bool remove(const char *);

};

Description

A mutex with a global name, so it can be found from different processes. This mutex can't be placed in shared memory, and each
process should have it's own named_mutex.

named_mutex public construct/copy/destruct

1.
named_mutex(create_only_t create_only, const char * name,

const permissions & perm = permissions());

Creates a global interprocess_mutex with a name. Throws interprocess_exception on error.

2.
named_mutex(open_or_create_t open_or_create, const char * name,

const permissions & perm = permissions());

Opens or creates a global mutex with a name. If the mutex is created, this call is equivalent to named_mutex(create_only_t,
...) If the mutex is already created, this call is equivalent named_mutex(open_only_t, ...) Does not throw

3.
named_mutex(open_only_t open_only, const char * name);

Opens a global mutex with a name if that mutex is previously created. If it is not previously created this function throws inter-
process_exception.

4.
~named_mutex();

Destroys *this and indicates that the calling process is finished using the resource. The destructor function will deallocate any
system resources allocated by the system for use by this process for this resource. The resource can still be opened again calling
the open constructor overload. To erase the resource from the system use remove().

424

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

named_mutex public member functions

1.
void unlock();

Unlocks a previously locked interprocess_mutex.

2.
void lock();

Locks interprocess_mutex, sleeps when interprocess_mutex is already locked. Throws interprocess_exception if
a severe error is found

3.
bool try_lock();

Tries to lock the interprocess_mutex, returns false when interprocess_mutex is already locked, returns true when success.
Throws interprocess_exception if a severe error is found

4.
bool timed_lock(const boost::posix_time::ptime & abs_time);

Tries to lock the interprocess_mutex until time abs_time, Returns false when timeout expires, returns true when locks. Throws
interprocess_exception if a severe error is found

named_mutex public static functions

1.
static bool remove(const char * name);

Erases a named mutex from the system. Returns false on error. Never throws.

Header <boost/interprocess/sync/named_recursive_mutex.hpp>
Describes a named named_recursive_mutex class for inter-process synchronization

namespace boost {
namespace interprocess {
class named_recursive_mutex;

}
}

Class named_recursive_mutex

boost::interprocess::named_recursive_mutex

425

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/named_recursive_mutex.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/sync/named_recursive_mutex.hpp>

class named_recursive_mutex {
public:
// construct/copy/destruct
named_recursive_mutex(create_only_t, const char *,

const permissions & = permissions());
named_recursive_mutex(open_or_create_t, const char *,

const permissions & = permissions());
named_recursive_mutex(open_only_t, const char *);
~named_recursive_mutex();

// public member functions
void unlock();
void lock();
bool try_lock();
bool timed_lock(const boost::posix_time::ptime &);

// public static functions
static bool remove(const char *);

};

Description

A recursive mutex with a global name, so it can be found from different processes. This mutex can't be placed in shared memory,
and each process should have it's own named_recursive_mutex.

named_recursive_mutex public construct/copy/destruct

1.
named_recursive_mutex(create_only_t create_only, const char * name,

const permissions & perm = permissions());

Creates a global recursive_mutex with a name. If the recursive_mutex can't be created throws interprocess_exception

2.
named_recursive_mutex(open_or_create_t open_or_create, const char * name,

const permissions & perm = permissions());

Opens or creates a global recursive_mutex with a name. If the recursive_mutex is created, this call is equivalent to named_re-
cursive_mutex(create_only_t, ...) If the recursive_mutex is already created, this call is equivalent named_recursive_mu-
tex(open_only_t, ...) Does not throw

3.
named_recursive_mutex(open_only_t open_only, const char * name);

Opens a global recursive_mutex with a name if that recursive_mutex is previously created. If it is not previously created this
function throws interprocess_exception.

4.
~named_recursive_mutex();

Destroys *this and indicates that the calling process is finished using the resource. The destructor function will deallocate any
system resources allocated by the system for use by this process for this resource. The resource can still be opened again calling
the open constructor overload. To erase the resource from the system use remove().

426

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

named_recursive_mutex public member functions

1.
void unlock();

Unlocks a previously locked named_recursive_mutex.

2.
void lock();

Locks named_recursive_mutex, sleeps when named_recursive_mutex is already locked. Throws interprocess_excep-
tion if a severe error is found.

3.
bool try_lock();

Tries to lock the named_recursive_mutex, returns false when named_recursive_mutex is already locked, returns true when
success. Throws interprocess_exception if a severe error is found.

4.
bool timed_lock(const boost::posix_time::ptime & abs_time);

Tries to lock the named_recursive_mutex until time abs_time, Returns false when timeout expires, returns true when locks.
Throws interprocess_exception if a severe error is found

named_recursive_mutex public static functions

1.
static bool remove(const char * name);

Erases a named recursive mutex from the system

Header <boost/interprocess/sync/named_semaphore.hpp>
Describes a named semaphore class for inter-process synchronization

namespace boost {
namespace interprocess {
class named_semaphore;

}
}

Class named_semaphore

boost::interprocess::named_semaphore

427

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/named_semaphore.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/sync/named_semaphore.hpp>

class named_semaphore {
public:
// construct/copy/destruct
named_semaphore(create_only_t, const char *, unsigned int,

const permissions & = permissions());
named_semaphore(open_or_create_t, const char *, unsigned int,

const permissions & = permissions());
named_semaphore(open_only_t, const char *);
~named_semaphore();

// public member functions
void post();
void wait();
bool try_wait();
bool timed_wait(const boost::posix_time::ptime &);

// public static functions
static bool remove(const char *);

};

Description

A semaphore with a global name, so it can be found from different processes. Allows several resource sharing patterns and efficient
acknowledgment mechanisms.

named_semaphore public construct/copy/destruct

1.
named_semaphore(create_only_t, const char * name, unsigned int initialCount,

const permissions & perm = permissions());

Creates a global semaphore with a name, and an initial count. If the semaphore can't be created throws interprocess_exception

2.
named_semaphore(open_or_create_t, const char * name,

unsigned int initialCount,
const permissions & perm = permissions());

Opens or creates a global semaphore with a name, and an initial count. If the semaphore is created, this call is equivalent to
named_semaphore(create_only_t, ...) If the semaphore is already created, this call is equivalent to named_sema-
phore(open_only_t, ...) and initialCount is ignored.

3.
named_semaphore(open_only_t, const char * name);

Opens a global semaphore with a name if that semaphore is previously. created. If it is not previously created this function throws
interprocess_exception.

4.
~named_semaphore();

Destroys *this and indicates that the calling process is finished using the resource. The destructor function will deallocate any
system resources allocated by the system for use by this process for this resource. The resource can still be opened again calling
the open constructor overload. To erase the resource from the system use remove().

428

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

named_semaphore public member functions

1.
void post();

Increments the semaphore count. If there are processes/threads blocked waiting for the semaphore, then one of these processes
will return successfully from its wait function. If there is an error an interprocess_exception exception is thrown.

2.
void wait();

Decrements the semaphore. If the semaphore value is not greater than zero, then the calling process/thread blocks until it can
decrement the counter. If there is an error an interprocess_exception exception is thrown.

3.
bool try_wait();

Decrements the semaphore if the semaphore's value is greater than zero and returns true. If the value is not greater than zero returns
false. If there is an error an interprocess_exception exception is thrown.

4.
bool timed_wait(const boost::posix_time::ptime & abs_time);

Decrements the semaphore if the semaphore's value is greater than zero and returns true. Otherwise, waits for the semaphore to
the posted or the timeout expires. If the timeout expires, the function returns false. If the semaphore is posted the function returns
true. If there is an error throws sem_exception

named_semaphore public static functions

1.
static bool remove(const char * name);

Erases a named semaphore from the system. Returns false on error. Never throws.

Header <boost/interprocess/sync/named_sharable_mutex.hpp>
Describes a named sharable mutex class for inter-process synchronization

namespace boost {
namespace interprocess {
class named_sharable_mutex;

}
}

Class named_sharable_mutex

boost::interprocess::named_sharable_mutex

429

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/named_sharable_mutex.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/sync/named_sharable_mutex.hpp>

class named_sharable_mutex {
public:
// construct/copy/destruct
named_sharable_mutex(create_only_t, const char *,

const permissions & = permissions());
named_sharable_mutex(open_or_create_t, const char *,

const permissions & = permissions());
named_sharable_mutex(open_only_t, const char *);
~named_sharable_mutex();

// public member functions
void lock();
bool try_lock();
bool timed_lock(const boost::posix_time::ptime &);
void unlock();
void lock_sharable();
bool try_lock_sharable();
bool timed_lock_sharable(const boost::posix_time::ptime &);
void unlock_sharable();

// public static functions
static bool remove(const char *);

};

Description

A sharable mutex with a global name, so it can be found from different processes. This mutex can't be placed in shared memory,
and each process should have it's own named sharable mutex.

named_sharable_mutex public construct/copy/destruct

1.
named_sharable_mutex(create_only_t create_only, const char * name,

const permissions & perm = permissions());

Creates a global sharable mutex with a name. If the sharable mutex can't be created throws interprocess_exception

2.
named_sharable_mutex(open_or_create_t open_or_create, const char * name,

const permissions & perm = permissions());

Opens or creates a global sharable mutex with a name. If the sharable mutex is created, this call is equivalent to named_shar-
able_mutex(create_only_t, ...) If the sharable mutex is already created, this call is equivalent to named_sharable_mu-
tex(open_only_t, ...).

3.
named_sharable_mutex(open_only_t open_only, const char * name);

Opens a global sharable mutex with a name if that sharable mutex is previously. created. If it is not previously created this function
throws interprocess_exception.

4.
~named_sharable_mutex();

430

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Destroys *this and indicates that the calling process is finished using the resource. The destructor function will deallocate any
system resources allocated by the system for use by this process for this resource. The resource can still be opened again calling
the open constructor overload. To erase the resource from the system use remove().

named_sharable_mutex public member functions

1.
void lock();

Effects: The calling thread tries to obtain exclusive ownership of the mutex, and if another thread has exclusive or sharable
ownership of the mutex, it waits until it can obtain the ownership. Throws: interprocess_exception on error.

2.
bool try_lock();

Effects: The calling thread tries to acquire exclusive ownership of the mutex without waiting. If no other thread has exclusive or
sharable ownership of the mutex this succeeds. Returns: If it can acquire exclusive ownership immediately returns true. If it has
to wait, returns false. Throws: interprocess_exception on error.

3.
bool timed_lock(const boost::posix_time::ptime & abs_time);

Effects: The calling thread tries to acquire exclusive ownership of the mutex waiting if necessary until no other thread has exclusive,
or sharable ownership of the mutex or abs_time is reached. Returns: If acquires exclusive ownership, returns true. Otherwise returns
false. Throws: interprocess_exception on error.

4.
void unlock();

Precondition: The thread must have exclusive ownership of the mutex. Effects: The calling thread releases the exclusive ownership
of the mutex. Throws: An exception derived from interprocess_exception on error.

5.
void lock_sharable();

Effects: The calling thread tries to obtain sharable ownership of the mutex, and if another thread has exclusive ownership of the
mutex, waits until it can obtain the ownership. Throws: interprocess_exception on error.

6.
bool try_lock_sharable();

Effects: The calling thread tries to acquire sharable ownership of the mutex without waiting. If no other thread has exclusive
ownership of the mutex this succeeds. Returns: If it can acquire sharable ownership immediately returns true. If it has to wait,
returns false. Throws: interprocess_exception on error.

7.
bool timed_lock_sharable(const boost::posix_time::ptime & abs_time);

Effects: The calling thread tries to acquire sharable ownership of the mutex waiting if necessary until no other thread has exclusive
ownership of the mutex or abs_time is reached. Returns: If acquires sharable ownership, returns true. Otherwise returns false.
Throws: interprocess_exception on error.

8.
void unlock_sharable();

Precondition: The thread must have sharable ownership of the mutex. Effects: The calling thread releases the sharable ownership
of the mutex. Throws: An exception derived from interprocess_exception on error.

431

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

named_sharable_mutex public static functions

1.
static bool remove(const char * name);

Erases a named sharable mutex from the system. Returns false on error. Never throws.

Header <boost/interprocess/sync/named_upgradable_mutex.hpp>
Describes a named upgradable mutex class for inter-process synchronization

namespace boost {
namespace interprocess {
class named_upgradable_mutex;

}
}

Class named_upgradable_mutex

boost::interprocess::named_upgradable_mutex

432

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/named_upgradable_mutex.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/sync/named_upgradable_mutex.hpp>

class named_upgradable_mutex {
public:
// construct/copy/destruct
named_upgradable_mutex(create_only_t, const char *,

const permissions & = permissions());
named_upgradable_mutex(open_or_create_t, const char *,

const permissions & = permissions());
named_upgradable_mutex(open_only_t, const char *);
~named_upgradable_mutex();

// public member functions
void lock();
bool try_lock();
bool timed_lock(const boost::posix_time::ptime &);
void unlock();
void lock_sharable();
bool try_lock_sharable();
bool timed_lock_sharable(const boost::posix_time::ptime &);
void unlock_sharable();
void lock_upgradable();
bool try_lock_upgradable();
bool timed_lock_upgradable(const boost::posix_time::ptime &);
void unlock_upgradable();
void unlock_and_lock_upgradable();
void unlock_and_lock_sharable();
void unlock_upgradable_and_lock_sharable();
void unlock_upgradable_and_lock();
bool try_unlock_upgradable_and_lock();
bool timed_unlock_upgradable_and_lock(const boost::posix_time::ptime &);
bool try_unlock_sharable_and_lock();
bool try_unlock_sharable_and_lock_upgradable();

// public static functions
static bool remove(const char *);

};

Description

A upgradable mutex with a global name, so it can be found from different processes. This mutex can't be placed in shared memory,
and each process should have it's own named upgradable mutex.

named_upgradable_mutex public construct/copy/destruct

1.
named_upgradable_mutex(create_only_t create_only, const char * name,

const permissions & perm = permissions());

Creates a global upgradable mutex with a name. If the upgradable mutex can't be created throws interprocess_exception

2.
named_upgradable_mutex(open_or_create_t open_or_create, const char * name,

const permissions & perm = permissions());

Opens or creates a global upgradable mutex with a name. If the upgradable mutex is created, this call is equivalent to
named_upgradable_mutex(create_only_t, ...) If the upgradable mutex is already created, this call is equivalent to
named_upgradable_mutex(open_only_t, ...).

433

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3.
named_upgradable_mutex(open_only_t open_only, const char * name);

Opens a global upgradable mutex with a name if that upgradable mutex is previously. created. If it is not previously created this
function throws interprocess_exception.

4.
~named_upgradable_mutex();

Destroys *this and indicates that the calling process is finished using the resource. The destructor function will deallocate any
system resources allocated by the system for use by this process for this resource. The resource can still be opened again calling
the open constructor overload. To erase the resource from the system use remove().

named_upgradable_mutex public member functions

1.
void lock();

Effects: The calling thread tries to obtain exclusive ownership of the mutex, and if another thread has exclusive, sharable or up-
gradable ownership of the mutex, it waits until it can obtain the ownership. Throws: interprocess_exception on error.

2.
bool try_lock();

Effects: The calling thread tries to acquire exclusive ownership of the mutex without waiting. If no other thread has exclusive,
sharable or upgradable ownership of the mutex this succeeds. Returns: If it can acquire exclusive ownership immediately returns
true. If it has to wait, returns false. Throws: interprocess_exception on error.

3.
bool timed_lock(const boost::posix_time::ptime & abs_time);

Effects: The calling thread tries to acquire exclusive ownership of the mutex waiting if necessary until no other thread has exclusive,
sharable or upgradable ownership of the mutex or abs_time is reached. Returns: If acquires exclusive ownership, returns true.
Otherwise returns false. Throws: interprocess_exception on error.

4.
void unlock();

Precondition: The thread must have exclusive ownership of the mutex. Effects: The calling thread releases the exclusive ownership
of the mutex. Throws: An exception derived from interprocess_exception on error.

5.
void lock_sharable();

Effects: The calling thread tries to obtain sharable ownership of the mutex, and if another thread has exclusive ownership of the
mutex, waits until it can obtain the ownership. Throws: interprocess_exception on error.

6.
bool try_lock_sharable();

Effects: The calling thread tries to acquire sharable ownership of the mutex without waiting. If no other thread has exclusive
ownership of the mutex this succeeds. Returns: If it can acquire sharable ownership immediately returns true. If it has to wait,
returns false. Throws: interprocess_exception on error.

7.
bool timed_lock_sharable(const boost::posix_time::ptime & abs_time);

Effects: The calling thread tries to acquire sharable ownership of the mutex waiting if necessary until no other thread has exclusive
ownership of the mutex or abs_time is reached. Returns: If acquires sharable ownership, returns true. Otherwise returns false.
Throws: interprocess_exception on error.

434

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

8.
void unlock_sharable();

Precondition: The thread must have sharable ownership of the mutex. Effects: The calling thread releases the sharable ownership
of the mutex. Throws: An exception derived from interprocess_exception on error.

9.
void lock_upgradable();

Effects: The calling thread tries to obtain upgradable ownership of the mutex, and if another thread has exclusive or upgradable
ownership of the mutex, waits until it can obtain the ownership. Throws: interprocess_exception on error.

10.
bool try_lock_upgradable();

Effects: The calling thread tries to acquire upgradable ownership of the mutex without waiting. If no other thread has exclusive
or upgradable ownership of the mutex this succeeds. Returns: If it can acquire upgradable ownership immediately returns true.
If it has to wait, returns false. Throws: interprocess_exception on error.

11.
bool timed_lock_upgradable(const boost::posix_time::ptime & abs_time);

Effects: The calling thread tries to acquire upgradable ownership of the mutex waiting if necessary until no other thread has ex-
clusive or upgradable ownership of the mutex or abs_time is reached. Returns: If acquires upgradable ownership, returns true.
Otherwise returns false. Throws: interprocess_exception on error.

12.
void unlock_upgradable();

Precondition: The thread must have upgradable ownership of the mutex. Effects: The calling thread releases the upgradable
ownership of the mutex. Throws: An exception derived from interprocess_exception on error.

13.
void unlock_and_lock_upgradable();

Precondition: The thread must have exclusive ownership of the mutex. Effects: The thread atomically releases exclusive ownership
and acquires upgradable ownership. This operation is non-blocking. Throws: An exception derived from interprocess_excep-
tion on error.

14.
void unlock_and_lock_sharable();

Precondition: The thread must have exclusive ownership of the mutex. Effects: The thread atomically releases exclusive ownership
and acquires sharable ownership. This operation is non-blocking. Throws: An exception derived from interprocess_exception
on error.

15.
void unlock_upgradable_and_lock_sharable();

Precondition: The thread must have upgradable ownership of the mutex. Effects: The thread atomically releases upgradable
ownership and acquires sharable ownership. This operation is non-blocking. Throws: An exception derived from interpro-
cess_exception on error.

16.
void unlock_upgradable_and_lock();

Precondition: The thread must have upgradable ownership of the mutex. Effects: The thread atomically releases upgradable
ownership and acquires exclusive ownership. This operation will block until all threads with sharable ownership release it. Throws:
An exception derived from interprocess_exception on error.

435

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

17.
bool try_unlock_upgradable_and_lock();

Precondition: The thread must have upgradable ownership of the mutex. Effects: The thread atomically releases upgradable
ownership and tries to acquire exclusive ownership. This operation will fail if there are threads with sharable ownership, but it
will maintain upgradable ownership. Returns: If acquires exclusive ownership, returns true. Otherwise returns false. Throws: An
exception derived from interprocess_exception on error.

18.
bool timed_unlock_upgradable_and_lock(const boost::posix_time::ptime & abs_time);

Precondition: The thread must have upgradable ownership of the mutex. Effects: The thread atomically releases upgradable
ownership and tries to acquire exclusive ownership, waiting if necessary until abs_time. This operation will fail if there are threads
with sharable ownership or timeout reaches, but it will maintain upgradable ownership. Returns: If acquires exclusive ownership,
returns true. Otherwise returns false. Throws: An exception derived from interprocess_exception on error.

19.
bool try_unlock_sharable_and_lock();

Precondition: The thread must have sharable ownership of the mutex. Effects: The thread atomically releases sharable ownership
and tries to acquire exclusive ownership. This operation will fail if there are threads with sharable or upgradable ownership, but
it will maintain sharable ownership. Returns: If acquires exclusive ownership, returns true. Otherwise returns false. Throws: An
exception derived from interprocess_exception on error.

20.
bool try_unlock_sharable_and_lock_upgradable();

Precondition: The thread must have sharable ownership of the mutex. Effects: The thread atomically releases sharable ownership
and tries to acquire upgradable ownership. This operation will fail if there are threads with sharable or upgradable ownership, but
it will maintain sharable ownership. Returns: If acquires upgradable ownership, returns true. Otherwise returns false. Throws:
An exception derived from interprocess_exception on error.

named_upgradable_mutex public static functions

1.
static bool remove(const char * name);

Erases a named upgradable mutex from the system. Returns false on error. Never throws.

Header <boost/interprocess/sync/null_mutex.hpp>
Describes null_mutex classes

namespace boost {
namespace interprocess {
class null_mutex;

}
namespace posix_time {
}

}

Class null_mutex

boost::interprocess::null_mutex

436

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/null_mutex.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/sync/null_mutex.hpp>

class null_mutex {
public:
// construct/copy/destruct
null_mutex();
~null_mutex();

// public member functions
void lock();
bool try_lock();
bool timed_lock(const boost::posix_time::ptime &);
void unlock();
void lock_sharable();
bool try_lock_sharable();
bool timed_lock_sharable(const boost::posix_time::ptime &);
void unlock_sharable();
void lock_upgradable();
bool try_lock_upgradable();
bool timed_lock_upgradable(const boost::posix_time::ptime &);
void unlock_upgradable();
void unlock_and_lock_upgradable();
void unlock_and_lock_sharable();
void unlock_upgradable_and_lock_sharable();
void unlock_upgradable_and_lock();
bool try_unlock_upgradable_and_lock();
bool timed_unlock_upgradable_and_lock(const boost::posix_time::ptime &);
bool try_unlock_sharable_and_lock();
bool try_unlock_sharable_and_lock_upgradable();

};

Description

Implements a mutex that simulates a mutex without doing any operation and simulates a successful operation.

null_mutex public construct/copy/destruct

1.
null_mutex();

Constructor. Empty.

2.
~null_mutex();

Destructor. Empty.

null_mutex public member functions

1.
void lock();

Simulates a mutex lock() operation. Empty function.

2.
bool try_lock();

Simulates a mutex try_lock() operation. Equivalent to "return true;"

437

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3.
bool timed_lock(const boost::posix_time::ptime &);

Simulates a mutex timed_lock() operation. Equivalent to "return true;"

4.
void unlock();

Simulates a mutex unlock() operation. Empty function.

5.
void lock_sharable();

Simulates a mutex lock_sharable() operation. Empty function.

6.
bool try_lock_sharable();

Simulates a mutex try_lock_sharable() operation. Equivalent to "return true;"

7.
bool timed_lock_sharable(const boost::posix_time::ptime &);

Simulates a mutex timed_lock_sharable() operation. Equivalent to "return true;"

8.
void unlock_sharable();

Simulates a mutex unlock_sharable() operation. Empty function.

9.
void lock_upgradable();

Simulates a mutex lock_upgradable() operation. Empty function.

10.
bool try_lock_upgradable();

Simulates a mutex try_lock_upgradable() operation. Equivalent to "return true;"

11.
bool timed_lock_upgradable(const boost::posix_time::ptime &);

Simulates a mutex timed_lock_upgradable() operation. Equivalent to "return true;"

12.
void unlock_upgradable();

Simulates a mutex unlock_upgradable() operation. Empty function.

13.
void unlock_and_lock_upgradable();

Simulates unlock_and_lock_upgradable(). Empty function.

14.
void unlock_and_lock_sharable();

Simulates unlock_and_lock_sharable(). Empty function.

15.
void unlock_upgradable_and_lock_sharable();

438

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Simulates unlock_upgradable_and_lock_sharable(). Empty function.

16.
void unlock_upgradable_and_lock();

Simulates unlock_upgradable_and_lock(). Empty function.

17.
bool try_unlock_upgradable_and_lock();

Simulates try_unlock_upgradable_and_lock(). Equivalent to "return true;"

18.
bool timed_unlock_upgradable_and_lock(const boost::posix_time::ptime &);

Simulates timed_unlock_upgradable_and_lock(). Equivalent to "return true;"

19.
bool try_unlock_sharable_and_lock();

Simulates try_unlock_sharable_and_lock(). Equivalent to "return true;"

20.
bool try_unlock_sharable_and_lock_upgradable();

Simulates try_unlock_sharable_and_lock_upgradable(). Equivalent to "return true;"

Header <boost/interprocess/sync/scoped_lock.hpp>
Describes the scoped_lock class.

Header <boost/interprocess/sync/sharable_lock.hpp>
Describes the upgradable_lock class that serves to acquire the upgradable lock of a mutex.

Header <boost/interprocess/sync/upgradable_lock.hpp>
Describes the upgradable_lock class that serves to acquire the upgradable lock of a mutex.

Header <boost/interprocess/windows_shared_memory.hpp>
Describes a class representing a native windows shared memory.

namespace boost {
namespace interprocess {
class windows_shared_memory;

}
}

Class windows_shared_memory

boost::interprocess::windows_shared_memory

439

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/scoped_lock.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/sharable_lock.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/sync/upgradable_lock.hpp
http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/windows_shared_memory.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/windows_shared_memory.hpp>

class windows_shared_memory {
public:
// construct/copy/destruct
windows_shared_memory();
windows_shared_memory(create_only_t, const char *, mode_t, std::size_t,

const permissions & = permissions());
windows_shared_memory(open_or_create_t, const char *, mode_t, std::size_t,

const permissions & = permissions());
windows_shared_memory(open_only_t, const char *, mode_t);
windows_shared_memory(windows_shared_memory &&);

 windows_shared_memory& operator=(windows_shared_memory &&);
~windows_shared_memory();

// public member functions
void swap(windows_shared_memory &);
const char * get_name() const;
mode_t get_mode() const;
mapping_handle_t get_mapping_handle() const;

};

Description

A class that wraps the native Windows shared memory that is implemented as a file mapping of the paging file. Unlike
shared_memory_object, windows_shared_memory has no kernel persistence and the shared memory is destroyed when all processes
destroy all their windows_shared_memory objects and mapped regions for the same shared memory or the processes end/crash.

Warning: Windows native shared memory and interprocess portable shared memory (boost::interprocess::shared_memory_object)
can't communicate between them.

windows_shared_memory public construct/copy/destruct

1.
windows_shared_memory();

Default constructor. Represents an empty windows_shared_memory.

2.
windows_shared_memory(create_only_t, const char * name, mode_t mode,

std::size_t size,
const permissions & perm = permissions());

Creates a new native shared memory with name "name" and mode "mode", with the access mode "mode". If the file previously
exists, throws an error.

3.
windows_shared_memory(open_or_create_t, const char * name, mode_t mode,

std::size_t size,
const permissions & perm = permissions());

Tries to create a shared memory object with name "name" and mode "mode", with the access mode "mode". If the file previously
exists, it tries to open it with mode "mode". Otherwise throws an error.

4.
windows_shared_memory(open_only_t, const char * name, mode_t mode);

440

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Tries to open a shared memory object with name "name", with the access mode "mode". If the file does not previously exist, it
throws an error.

5.
windows_shared_memory(windows_shared_memory && moved);

Moves the ownership of "moved"'s shared memory object to *this. After the call, "moved" does not represent any shared memory
object. Does not throw

6.
windows_shared_memory& operator=(windows_shared_memory && moved);

Moves the ownership of "moved"'s shared memory to *this. After the call, "moved" does not represent any shared memory. Does
not throw

7.
~windows_shared_memory();

Destroys *this. All mapped regions are still valid after destruction. When all mapped regions and windows_shared_memory
objects referring the shared memory are destroyed, the operating system will destroy the shared memory.

windows_shared_memory public member functions

1.
void swap(windows_shared_memory & other);

Swaps to shared_memory_objects. Does not throw.

2.
const char * get_name() const;

Returns the name of the shared memory.

3.
mode_t get_mode() const;

Returns access mode.

4.
mapping_handle_t get_mapping_handle() const;

Returns the mapping handle. Never throws.

Header <boost/interprocess/xsi_key.hpp>
Describes a class representing a xsi key type.

namespace boost {
namespace interprocess {
class xsi_key;

}
}

Class xsi_key

boost::interprocess::xsi_key

441

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/xsi_key.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/xsi_key.hpp>

class xsi_key {
public:
// construct/copy/destruct
xsi_key();
xsi_key(const char *, boost::uint8_t);

// public member functions
key_t get_key() const;

};

Description

A class that wraps XSI (System V) key_t type. This type calculates key_t from path and id using ftok or sets key to IPC_PRIVATE
using the default constructor.

xsi_key public construct/copy/destruct

1.
xsi_key();

Default constructor. Represents a private xsi_key.

2.
xsi_key(const char * path, boost::uint8_t id);

Creates a new XSI shared memory with a key obtained from a call to ftok (with path "path" and id "id"), of size "size" and per-
missions "perm". If the shared memory previously exists, throws an error.

xsi_key public member functions

1.
key_t get_key() const;

Returns the internal key_t value.

Header <boost/interprocess/xsi_shared_memory.hpp>
Describes a class representing a native xsi shared memory.

namespace boost {
namespace interprocess {
class xsi_shared_memory;

}
}

Class xsi_shared_memory

boost::interprocess::xsi_shared_memory

442

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../../../boost/interprocess/xsi_shared_memory.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/interprocess/xsi_shared_memory.hpp>

class xsi_shared_memory {
public:
// construct/copy/destruct
xsi_shared_memory();
xsi_shared_memory(open_only_t, int);
xsi_shared_memory(create_only_t, const xsi_key &, std::size_t,

const permissions & = permissions());
xsi_shared_memory(open_or_create_t, const xsi_key &, std::size_t,

const permissions & = permissions());
xsi_shared_memory(open_only_t, const xsi_key &);
xsi_shared_memory(xsi_shared_memory &&);

 xsi_shared_memory& operator=(xsi_shared_memory &&);
~xsi_shared_memory();

// public member functions
void swap(xsi_shared_memory &);
int get_shmid() const;
mapping_handle_t get_mapping_handle() const;

// public static functions
static bool remove(int);

};

Description

A class that wraps XSI (System V) shared memory. Unlike shared_memory_object, xsi_shared_memory needs a valid xsi_key to
identify a shared memory object.

Warning: XSI shared memory and interprocess portable shared memory (boost::interprocess::shared_memory_object) can't commu-
nicate between them.

xsi_shared_memory public construct/copy/destruct

1.
xsi_shared_memory();

Default constructor. Represents an empty xsi_shared_memory.

2.
xsi_shared_memory(open_only_t, int shmid);

Initializes *this with a shmid previously obtained (possibly from another process) This lower-level initializer allows shared
memory mapping without having a key.

3.
xsi_shared_memory(create_only_t, const xsi_key & key, std::size_t size,

const permissions & perm = permissions());

Creates a new XSI shared memory from 'key', with size "size" and permissions "perm". If the shared memory previously exists,
throws an error.

4.
xsi_shared_memory(open_or_create_t, const xsi_key & key, std::size_t size,

const permissions & perm = permissions());

443

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Opens an existing shared memory with identifier 'key' or creates a new XSI shared memory from identifier 'key', with size "size"
and permissions "perm".

5.
xsi_shared_memory(open_only_t, const xsi_key & key);

Tries to open a XSI shared memory with identifier 'key' If the shared memory does not previously exist, it throws an error.

6.
xsi_shared_memory(xsi_shared_memory && moved);

Moves the ownership of "moved"'s shared memory object to *this. After the call, "moved" does not represent any shared memory
object. Does not throw

7.
xsi_shared_memory& operator=(xsi_shared_memory && moved);

Moves the ownership of "moved"'s shared memory to *this. After the call, "moved" does not represent any shared memory. Does
not throw

8.
~xsi_shared_memory();

Destroys *this. The shared memory won't be destroyed, just this connection to it. Use remove() to destroy the shared memory.

xsi_shared_memory public member functions

1.
void swap(xsi_shared_memory & other);

Swaps two xsi_shared_memorys. Does not throw.

2.
int get_shmid() const;

Returns the shared memory ID that identifies the shared memory

3.
mapping_handle_t get_mapping_handle() const;

Returns the mapping handle. Never throws

xsi_shared_memory public static functions

1.
static bool remove(int shmid);

Erases the XSI shared memory object identified by shmid from the system. Returns false on error. Never throws

444

Boost.Interprocess

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Interprocess
	Table of Contents
	Introduction
	Building Boost.Interprocess
	Tested compilers

	Quick Guide for the Impatient
	Using shared memory as a pool of unnamed memory blocks
	Creating named shared memory objects
	Using an offset smart pointer for shared memory
	Creating vectors in shared memory
	Creating maps in shared memory

	Some basic explanations
	Processes And Threads
	Sharing information between processes
	Persistence Of Interprocess Mechanisms
	Names Of Interprocess Mechanisms
	Constructors, destructors and lifetime of Interprocess named resources
	Permissions

	Sharing memory between processes
	Shared memory
	What is shared memory?
	Creating memory segments that can be shared between processes
	Header
	Creating shared memory segments
	Mapping Shared Memory Segments
	A Simple Example
	Emulation for systems without shared memory objects
	Removing shared memory
	Anonymous shared memory for UNIX systems
	Native windows shared memory
	XSI shared memory

	Memory Mapped Files
	What is a memory mapped file?
	Using mapped files
	Header
	Creating a file mapping
	Mapping File's Contents In Memory
	A Simple Example

	More About Mapped Regions
	One Class To Rule Them All
	Mapping Address In Several Processes
	Fixed Address Mapping
	Mapping Offset And Address Limitations

	Limitations When Constructing Objects In Mapped Regions
	Offset pointers instead of raw pointers
	References forbidden
	Virtuality forbidden
	Be careful with static class members

	Mapping Address Independent Pointer: offset_ptr
	Synchronization mechanisms
	Synchronization mechanisms overview
	Named And Anonymous Synchronization Mechanisms
	Types Of Synchronization Mechanisms

	Mutexes
	What's A Mutex?
	Mutex Operations
	Boost.Interprocess Mutex Types And Headers
	Scoped lock
	Anonymous mutex example
	Named mutex example

	Conditions
	What's A Condition Variable?
	Boost.Interprocess Condition Types And Headers
	Anonymous condition example

	Semaphores
	What's A Semaphore?
	Boost.Interprocess Semaphore Types And Headers
	Anonymous semaphore example

	Sharable and Upgradable Mutexes
	What's a Sharable and an Upgradable Mutex?
	Lock transitions for Upgradable Mutex
	Upgradable Mutex Operations
	Exclusive Locking (Sharable & Upgradable Mutexes)
	Sharable Locking (Sharable & Upgradable Mutexes)
	Upgradable Locking (Upgradable Mutex only)
	Demotions (Upgradable Mutex only)
	Promotions (Upgradable Mutex only)

	Boost.Interprocess Sharable & Upgradable Mutex Types And Headers
	Sharable Lock And Upgradable Lock
	Sharable Lock And Upgradable Lock Headers

	Lock Transfers Through Move Semantics
	Simple Lock Transfer
	Lock Transfer Summary
	Transfers To Scoped Lock
	Transfers To Upgradable Lock
	Transfers To Sharable Lock

	Transferring Unlocked Locks
	Transfer Failures

	File Locks
	What's A File Lock?
	File Locking Operations
	Scoped Lock and Sharable Lock With File Locking
	Caution: Synchronization limitations
	Be Careful With Iostream Writing

	Message Queue
	What's A Message Queue?
	Using a message queue

	Managed Memory Segments
	Making Interprocess Data Communication Easy
	Introduction
	Declaration of managed memory segment classes

	Managed Shared Memory
	Common Managed Shared Memory Classes
	Constructing Managed Shared Memory
	Using native windows shared memory
	Using XSI (system V) shared memory

	Managed Mapped File
	Common Managed Mapped Files
	Constructing Managed Mapped Files

	Managed Memory Segment Features
	Allocating fragments of a managed memory segment
	Obtaining handles to identify data
	Object construction function family
	Anonymous instance construction
	Unique instance construction
	Synchronization guarantees
	Index types for name/object mappings
	Segment Manager
	Obtaining information about a constructed object
	Executing an object function atomically

	Managed Memory Segment Advanced Features
	Obtaining information about the managed segment
	Growing managed segments
	Advanced index functions
	Allocating aligned memory portions
	Multiple allocation functions
	Expand in place memory allocation
	Opening managed shared memory and mapped files with Copy On Write or Read Only modes

	Managed Heap Memory And Managed External Buffer
	Managed External Buffer: Constructing all Boost.Interprocess objects in a user provided buffer
	Managed Heap Memory: Boost.Interprocess machinery in heap memory
	Differences between managed memory segments
	Example: Serializing a database through the message queue

	Allocators, containers and memory allocation algorithms
	Introduction to Interprocess allocators
	Properties of Boost.Interprocess allocators
	Swapping Boost.Interprocess allocators
	allocator: A general purpose allocator for managed memory segments

	Segregated storage node allocators
	Additional parameters and functions of segregated storage node allocators
	node_allocator: A process-shared segregated storage
	private_node_allocator: a private segregated storage
	cached_node_allocator: caching nodes to avoid overhead

	Adaptive pool node allocators
	Additional parameters and functions of adaptive pool node allocators
	adaptive_pool: a process-shared adaptive pool
	private_adaptive_pool: a private adaptive pool
	cached_adaptive_pool: Avoiding synchronization overhead

	Interprocess and containers in managed memory segments
	Container requirements for Boost.Interprocess allocators
	STL containers in managed memory segments
	Where is this being allocated?
	Move semantics in Interprocess containers
	Containers of containers

	Boost containers compatible with Boost.Interprocess
	Boost unordered containers
	Boost.MultiIndex containers

	Memory allocation algorithms
	simple_seq_fit: A simple shared memory management algorithm
	rbtree_best_fit: Best-fit logarithmic-time complexity allocation

	Direct iostream formatting: vectorstream and bufferstream
	Formatting directly in your character vector: vectorstream
	Formatting directly in your character buffer: bufferstream

	Ownership smart pointers
	Intrusive pointer
	Scoped pointer
	Shared pointer and weak pointer
	Unique pointer

	Architecture and internals
	Basic guidelines
	From the memory algorithm to the managed segment
	The memory algorithm
	The segment manager
	Boost.Interprocess managed memory segments

	Allocators and containers
	Boost.Interprocess allocators
	Implementation of Boost.Interprocess segregated storage pools
	Implementation of Boost.Interprocess adaptive pools
	Boost.Interprocess containers

	Performance of Boost.Interprocess
	Performance of raw memory allocations
	Performance of named allocations

	Customizing Boost.Interprocess
	Writing a new shared memory allocation algorithm
	Building custom STL compatible allocators for Boost.Interprocess
	Building custom indexes

	Acknowledgements, notes and links
	Notes
	Notes for Windows users
	COM Initialization
	Shared memory emulation folder

	Notes for Linux users
	Overcommit

	Thanks to...
	People

	Release Notes
	Boost 1.53 Release
	Boost 1.52 Release
	Boost 1.51 Release
	Boost 1.50 Release
	Boost 1.49 Release
	Boost 1.48 Release
	Boost 1.46 Release
	Boost 1.45 Release
	Boost 1.41 Release
	Boost 1.40 Release
	Boost 1.39 Release
	Boost 1.38 Release
	Boost 1.37 Release
	Boost 1.36 Release
	Boost 1.35 Release

	Books and interesting links
	Books
	Links

	Future improvements...
	Win32 synchronization is too basic
	Use of wide character names on Boost.Interprocess basic resources
	Security attributes
	Future inter-process communications

	Indexes
	Class Index
	Typedef Index
	Function Index

	Boost.Interprocess Reference
	Header <boost/interprocess/allocators/adaptive_pool.hpp>
	Function template operator==
	Function template operator!=

	Header <boost/interprocess/allocators/allocator.hpp>
	Function template operator==
	Function template operator!=

	Header <boost/interprocess/allocators/cached_adaptive_pool.hpp>
	Function template operator==
	Function template operator!=

	Header <boost/interprocess/allocators/cached_node_allocator.hpp>
	Function template operator==
	Function template operator!=

	Header <boost/interprocess/allocators/node_allocator.hpp>
	Function template operator==
	Function template operator!=

	Header <boost/interprocess/allocators/private_adaptive_pool.hpp>
	Function template operator==
	Function template operator!=

	Header <boost/interprocess/allocators/private_node_allocator.hpp>
	Function template operator==
	Function template operator!=

	Header <boost/interprocess/anonymous_shared_memory.hpp>
	Function anonymous_shared_memory

	Header <boost/interprocess/containers/allocation_type.hpp>
	Global allocate_new
	Global expand_fwd
	Global expand_bwd
	Global shrink_in_place
	Global try_shrink_in_place
	Global nothrow_allocation
	Global zero_memory

	Header <boost/interprocess/containers/deque.hpp>
	Header <boost/interprocess/containers/flat_map.hpp>
	Header <boost/interprocess/containers/flat_set.hpp>
	Header <boost/interprocess/containers/list.hpp>
	Header <boost/interprocess/containers/map.hpp>
	Header <boost/interprocess/containers/pair.hpp>
	Header <boost/interprocess/containers/set.hpp>
	Header <boost/interprocess/containers/slist.hpp>
	Header <boost/interprocess/containers/stable_vector.hpp>
	Header <boost/interprocess/containers/string.hpp>
	Header <boost/interprocess/containers/vector.hpp>
	Header <boost/interprocess/containers/version_type.hpp>
	Header <boost/interprocess/creation_tags.hpp>
	Struct create_only_t
	Struct open_only_t
	Struct open_read_only_t
	Struct open_read_private_t
	Struct open_copy_on_write_t
	Struct open_or_create_t
	Global create_only
	Global open_only
	Global open_read_only
	Global open_or_create
	Global open_copy_on_write

	Header <boost/interprocess/errors.hpp>
	Header <boost/interprocess/exceptions.hpp>
	Class interprocess_exception
	Class lock_exception
	Class bad_alloc

	Header <boost/interprocess/file_mapping.hpp>
	Class file_mapping
	Class remove_file_on_destroy

	Header <boost/interprocess/indexes/flat_map_index.hpp>
	Struct template flat_map_index_aux

	Header <boost/interprocess/indexes/iset_index.hpp>
	Header <boost/interprocess/indexes/iunordered_set_index.hpp>
	Header <boost/interprocess/indexes/map_index.hpp>
	Header <boost/interprocess/indexes/null_index.hpp>
	Header <boost/interprocess/indexes/unordered_map_index.hpp>
	Header <boost/interprocess/interprocess_fwd.hpp>
	Class template scoped_lock
	Class template sharable_lock
	Class template upgradable_lock
	Class template allocator
	Class template node_allocator
	Class template private_node_allocator
	Class template cached_node_allocator
	Class template adaptive_pool
	Class template private_adaptive_pool
	Class template cached_adaptive_pool
	Class template offset_ptr
	Class template simple_seq_fit
	Class template rbtree_best_fit
	Class template flat_map_index
	Class template iset_index
	Class template iunordered_set_index
	Class template map_index
	Class template null_index
	Class template unordered_map_index
	Class template segment_manager
	Class template basic_managed_external_buffer
	Class template basic_managed_shared_memory
	Class template basic_managed_windows_shared_memory
	Class template basic_managed_xsi_shared_memory
	Class template basic_managed_heap_memory
	Class template basic_managed_mapped_file
	Class template basic_bufferbuf
	Class template basic_ibufferstream
	Class template basic_obufferstream
	Class template basic_bufferstream
	Class template basic_vectorbuf
	Class template basic_ivectorstream
	Class template basic_ovectorstream
	Class template basic_vectorstream
	Class template scoped_ptr
	Class template intrusive_ptr
	Class template shared_ptr
	Class template weak_ptr
	Class template message_queue_t
	Global offset_type_alignment

	Header <boost/interprocess/ipc/message_queue.hpp>
	Header <boost/interprocess/managed_external_buffer.hpp>
	Header <boost/interprocess/managed_heap_memory.hpp>
	Header <boost/interprocess/managed_mapped_file.hpp>
	Header <boost/interprocess/managed_shared_memory.hpp>
	Header <boost/interprocess/managed_windows_shared_memory.hpp>
	Header <boost/interprocess/managed_xsi_shared_memory.hpp>
	Header <boost/interprocess/mapped_region.hpp>
	Class mapped_region
	Type advice_types

	Header <boost/interprocess/mem_algo/rbtree_best_fit.hpp>
	Header <boost/interprocess/mem_algo/simple_seq_fit.hpp>
	Header <boost/interprocess/offset_ptr.hpp>
	Function template operator<<
	Function template operator>>
	Struct template has_trivial_constructor
	Struct template has_trivial_destructor
	Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_PTR
	Macro BOOST_INTERPROCESS_OFFSET_PTR_BRANCHLESS_TO_PTR
	Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF
	Macro BOOST_INTERPROCESS_OFFSET_PTR_INLINE_TO_OFF_FROM_OTHER

	Header <boost/interprocess/permissions.hpp>
	Class permissions

	Header <boost/interprocess/segment_manager.hpp>
	Class template segment_manager_base

	Header <boost/interprocess/shared_memory_object.hpp>
	Class shared_memory_object
	Class remove_shared_memory_on_destroy

	Header <boost/interprocess/smart_ptr/deleter.hpp>
	Class template deleter

	Header <boost/interprocess/smart_ptr/enable_shared_from_this.hpp>
	Class template enable_shared_from_this

	Header <boost/interprocess/smart_ptr/intrusive_ptr.hpp>
	Function template operator==
	Function template operator!=
	Function template operator==
	Function template operator!=
	Function template operator==
	Function template operator!=
	Function template operator<
	Function template swap
	Function template to_raw_pointer

	Header <boost/interprocess/smart_ptr/scoped_ptr.hpp>
	Function template swap
	Function template to_raw_pointer

	Header <boost/interprocess/smart_ptr/shared_ptr.hpp>
	Struct template managed_shared_ptr
	Function template make_managed_shared_ptr
	Function template make_managed_shared_ptr

	Header <boost/interprocess/smart_ptr/unique_ptr.hpp>
	Class template unique_ptr
	Struct template managed_unique_ptr
	Function template make_managed_unique_ptr

	Header <boost/interprocess/smart_ptr/weak_ptr.hpp>
	Struct template managed_weak_ptr
	Function template make_managed_weak_ptr

	Header <boost/interprocess/streams/bufferstream.hpp>
	Header <boost/interprocess/streams/vectorstream.hpp>
	Class template std

	Header <boost/interprocess/sync/file_lock.hpp>
	Class file_lock

	Header <boost/interprocess/sync/interprocess_condition.hpp>
	Class interprocess_condition

	Header <boost/interprocess/sync/interprocess_condition_any.hpp>
	Class interprocess_condition_any

	Header <boost/interprocess/sync/interprocess_mutex.hpp>
	Class interprocess_mutex

	Header <boost/interprocess/sync/interprocess_recursive_mutex.hpp>
	Class interprocess_recursive_mutex

	Header <boost/interprocess/sync/interprocess_semaphore.hpp>
	Class interprocess_semaphore

	Header <boost/interprocess/sync/interprocess_sharable_mutex.hpp>
	Class interprocess_sharable_mutex

	Header <boost/interprocess/sync/interprocess_upgradable_mutex.hpp>
	Class interprocess_upgradable_mutex

	Header <boost/interprocess/sync/lock_options.hpp>
	Struct defer_lock_type
	Struct try_to_lock_type
	Struct accept_ownership_type
	Global defer_lock
	Global try_to_lock
	Global accept_ownership

	Header <boost/interprocess/sync/mutex_family.hpp>
	Struct mutex_family
	Struct null_mutex_family

	Header <boost/interprocess/sync/named_condition.hpp>
	Class named_condition

	Header <boost/interprocess/sync/named_condition_any.hpp>
	Class named_condition_any

	Header <boost/interprocess/sync/named_mutex.hpp>
	Class named_mutex

	Header <boost/interprocess/sync/named_recursive_mutex.hpp>
	Class named_recursive_mutex

	Header <boost/interprocess/sync/named_semaphore.hpp>
	Class named_semaphore

	Header <boost/interprocess/sync/named_sharable_mutex.hpp>
	Class named_sharable_mutex

	Header <boost/interprocess/sync/named_upgradable_mutex.hpp>
	Class named_upgradable_mutex

	Header <boost/interprocess/sync/null_mutex.hpp>
	Class null_mutex

	Header <boost/interprocess/sync/scoped_lock.hpp>
	Header <boost/interprocess/sync/sharable_lock.hpp>
	Header <boost/interprocess/sync/upgradable_lock.hpp>
	Header <boost/interprocess/windows_shared_memory.hpp>
	Class windows_shared_memory

	Header <boost/interprocess/xsi_key.hpp>
	Class xsi_key

	Header <boost/interprocess/xsi_shared_memory.hpp>
	Class xsi_shared_memory

