Boost.Optional

Fernando Luis Cacciola Carballal
Copyright © 2003-2007 Fernando Luis Cacciola Carballal

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1 0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents

Lo 1A= o] o ST OPPTTTSPPPTTR 2
(DY Lol 01 o | TSP UPPPPPRPPPPN 3
TRE MOOELS ... ettt ettt ettt e e s 3
LR = 107 o TP POPPPTRRTPPIN 4
L LS A= oSSR UPPPTRP 4
116 0= 1 TP PSPPSR 7
[Dc L= s IS 0 = L1 o PO UPPPTTRPUPPPPN 9
(S 01T o) = PSP POPPPTRN 23
OPLIONEL FEIUMN VAIUBS ...ttt e ettt e ettt e e ettt e e et et e e e et b e e ettt e e et et e e e e ra s 23
OPLioNal 10CEI VAITADIES ... et e e et e et e et et e e e e 23
OPLioNal TALA MEMDEIS ...t ettt ettt e et et e e et ettt e et e b r et e eb e e et eba e et e ebe e e e e nna e eenaas 24
Bypassing expensive unnecessary default CONSIIUCTIONocciuueiiiiii e e e eeees 24
OPIONE] TEFEIBNCES ...ttt ettt ettt ettt e oo ettt e et e b et e e e et e e e et e aa et e nn e eaaan 25
Rebinding semantics for assignment of Optional FEfEIENCESo.uuiii i e e 26
TR F= oy o o) = PSP SPPPTRRN 28
YN Lo 1o o 1H Lo oL g o R oo o) PP 31
EXCEPLION SAfELY GUAIAINTEES eeeeii ettt ettt e e et e ettt e et et e e et e b e e et et e e et e b e e et et e e et ab e e e enba s 32
TYPE FEOUITEIMENES ..ottt eett ettt ettt ettt e ettt e e ettt oo et ettt e et ettt e et e ekt e e et et e e e et et s e et e e ba e e e e ee bt e e eeeba s e e eenbn s eaeenbnaeaeen 34
IMPIEMENEALTION NOLES ...ttt ettt ettt ettt t ettt o e et et e ettt b e et e et e et e et r et e et reeenaa e eeennes 35
DependencieS and POIBDITTLY it et e et e e ettt e e e et et e e e e et e e e e e e e nb e aen 36
ACKNOWIEAGIMENES ...ttt ettt e e et e ettt e e et et e e et e ta et e et e be e e et ete s e e e eeth e e e enbe e eeeebnaeeeenns 37
1

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Optional

Motivation

Consider these functions which should return a value but which might not have a value to return:
e (A)doubl e sqrt(double n);

* (B)char get_async_input();

* (C) poi nt pol ygon::get_any_point_effectively_inside();

There are different approaches to the issue of not having avalue to return.

A typical approach isto consider the existence of avalid return value as a postcondition, so that if the function cannot compute the
valueto return, it has either undefined behavior (and can use assert in adebug build) or uses aruntime check and throws an exception
if the postcondition is violated. Thisis a reasonable choice for example, for function (A), because the lack of a proper return value
isdirectly related to aninvalid parameter (out of domain argument), so it isappropriateto requirethe calleeto supply only parameters
inavalid domain for execution to continue normally.

However, function (B), because of its asynchronous nature, does not fail just because it can't find avalue to return; so it is incorrect
to consider such a situation an error and assert or throw an exception. This function must return, and somehow, must tell the callee
that it is not returning a meaningful value.

A similar situation occurs with function (C): it is conceptually an error to ask a null-area polygon to return a point inside itself, but
in many applications, it isjust impractical for performance reasons to treat this as an error (because detecting that the polygon has
no area might be too expensive to be required to be tested previously), and either an arbitrary point (typically at infinity) isreturned,
or some efficient way to tell the callee that there is no such point is used.

There are various mechanismsto let functions communicate that the returned value is not valid. One such mechanism, which is quite
common sinceit has zero or negligible overhead, isto use aspecial value which isreserved to communicate this. Classical examples
of such specia values are ECF, st ri ng: : npos, pointsat infinity, etc...

When those values exist, i.e. thereturn type can hold all meaningful values plusthe signal value, this mechanism is quite appropriate
and well known. Unfortunately, there are cases when such values do not exist. In these cases, the usua alternative is either to use a
wider type, such asi nt in place of char ; or acompound type, such asst d: : pai r <poi nt, bool >.

Returning a st d: : pai r <T, bool >, thus attaching a boolean flag to the result which indicates if the result is meaningful, has the
advantage that can be turned into aconsistent idiom since thefirst element of the pair can be whatever the function would conceptually
return. For example, the last two functions could have the following interface:

std: : pair<char, bool > get _async_i nput () ;
st d: : pai r<point, bool > pol ygon: : get _any_poi nt _effectively_inside();

These functions use a consistent interface for dealing with possibly inexistent results:

std: : pair<point,bool> p = poly.get_any_point_effectively_inside();
if (p.second)
flood_fill(p.first);

However, not only is this quite a burden syntactically, it is aso error prone since the user can easily use the function result (first
element of the pair) without ever checking if it hasavalid value.

Clearly, we need a better idiom.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Optional

Development

The models

In C++, we can declare an object (a variable) of type T, and we can give this variable an initial value (through an initializer. (c.f.
8.5)). When a declaration includes a non-empty initializer (an initial valueis given), it is said that the object has been initialized. If
the declaration uses an empty initializer (no initial value is given), and neither default nor value initialization applies, it is said that
the objectisuninitialized. Itsactual value exist but hasan indeterminateinitial value (c.f. 8.5.9). opt i onal <T> intendsto formalize
the notion of initialization (or lack of it) allowing a program to test whether an object has been initialized and stating that access to
the value of an uninitialized object is undefined behavior. That is, when avariable is declared asopt i onal <T> and no initial value
is given, the variable is formally uninitialized. A formally uninitialized optional object has conceptually no value at al and this
situation can be tested at runtime. It is formally undefined behavior to try to access the value of an uninitialized optional. An unini-
tialized optional can be assigned a value, in which case its initialization state changes to initialized. Furthermore, given the formal
treatment of initialization statesin optional objects, it is even possible to reset an optional to uninitialized.

In C++ thereisno formal notion of uninitialized objects, which meansthat objects aways have aninitial value even if indeterminate.
As discussed on the previous section, this has a drawback because you need additional information to tell if an object has been ef-
fectively initialized. One of the typical waysin which this has been historically dealt with isviaaspecia value: EOF, npos, -1, €tc...
Thisis equivalent to adding the special value to the set of possible values of agiven type. This super set of T plus some nil_t—were
ni | _t issome stateless POD-can be modeled in modern languages as adiscriminated union of T and nil_t. Discriminated unions
are often called variants. A variant has a current type, which in our caseis either T or ni | _t . Using the Boost.Variant library, this
model can be implemented in terms of boost : : vari ant <T, ni | _t >. Thereis precedent for a discriminated union as a model for
an optiona value: the Haskell Maybe built-in type constructor. Thus, a discriminated union T+ni | _t serves as a conceptual
foundation.

A vari ant <T, ni | _t > follows naturally from the traditional idiom of extending the range of possible values adding an additional
sentinel value with the special meaning of Nothing. However, this additional Nothing valueislargely irrelevant for our purpose since
our goal isto formalize the notion of uninitialized objects and, while a special extended value can be used to convey that meaning,
it is not strictly necessary in order to do so.

The observation madein thelast paragraph about theirrelevant nature of the additional ni | _t with respect to purpose of opt i onal <T>
suggests an aternative model: a container that either has avalue of T or nothing.

As of thiswriting | don't know of any precedence for a variable-size fixed-capacity (of 1) stack-based container model for optional
values, yet | believe this is the consequence of the lack of practical implementations of such a container rather than an inherent
shortcoming of the container model.

In any event, both the di scriminated-union or the single-element container model s serve asaconceptual ground for aclassrepresenting
optional—i.e. possibly uninitialized—objects. For instance, these model s show the exact semantics required for awrapper of optional
values:

Discriminated-union:

» deep-copy semantics. copies of the variant implies copies of the value.

 deep-relational semantics. comparisons between variants matches both current types and values
* If thevariant's current type is T, it ismodeling an initialized optional.

« If the variant's current typeisnot T, it is modeling an uninitialized optional.

» Testing if the variant's current type is T modelstesting if the optional isinitialized

» Trying to extract a T from avariant when its current type is not T, models the undefined behavior of trying to access the value of
an uninitialized optional

Single-element container:

 deep-copy semantics: copies of the container implies copies of the value.

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/optional/doc/html/../../../variant/index.html
http://www.haskell.org/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

 deep-relational semantics. comparisons between containers compare container size and if match, contained value
« If the container is not empty (contains an object of type T), it is modeling an initialized optional.

« If the container is empty, it is modeling an uninitialized optional.

» Testing if the container is empty modelstesting if the optional isinitialized

» Trying to extract aT from an empty container models the undefined behavior of trying to access the value of an uninitialized op-
tiona

The semantics

Objects of type opt i onal <T> are intended to be used in places where objects of type T would but which might be uninitialized.
Hence, opt i onal <T>'spurposeisto formalize the additional possibly uninitialized state. From the perspective of thisrole, opt i on-

al <T> can have the same operational semantics of T plus the additional semantics corresponding to this special state. As such, op-

ti onal <T> could bethought of asasupertypeof T. Of course, we can't do that in C++, so we need to compose the desired semantics
using a different mechanism. Doing it the other way around, that is, making opt i onal <T> asubtype of T is not only conceptually
wrong but also impractical: it is not allowed to derive from a non-class type, such as a built-in type.

We can draw from the purpose of opt i onal <T> the required basic semantics:
» Default Construction: To introduce aformally uninitialized wrapped object.

» Direct Value Construction via copy: To introduce a formally initialized wrapped object whose value is obtained as a copy of
some object.

» Deep Copy Construction: To obtain a new yet equivalent wrapped object.

» Direct Value Assignment (upon initialized): To assign a value to the wrapped object.

» Direct Value Assignment (upon uninitialized): To initialize the wrapped object with a value obtained as a copy of some object.
» Assignment (upon initialized): To assign to the wrapped object the value of another wrapped object.

» Assignment (upon uninitialized): To initialize the wrapped object with value of another wrapped object.

» Deep Relational Operations (when supported by the type T): To compare wrapped object values taking into account the
presence of uninitialized states.

» Value access: To unwrap the wrapped object.

* Initialization state query: To determine if the object isformally initialized or not.

» Swap: To exchange wrapped objects. (with whatever exception safety guarantees are provided by T's swap).
» De-initialization: To release the wrapped object (if any) and leave the wrapper in the uninitialized state.

Additional operations are useful, such as converting constructors and converting assignments, in-place construction and assignment,
and safe value access via a pointer to the wrapped object or null.

The Interface

Sincethe purpose of optional isto allow usto use objectswith aformal uninitialized additional stete, theinterface could try to follow
the interface of the underlying T type as much as possible. In order to choose the proper degree of adoption of the native T interface,
the following must be noted: Even if all the operations supported by an instance of type T are defined for the entire range of values
for such atype, an opt i onal <T> extends such a set of values with a new value for which most (otherwise valid) operations are not
defined in terms of T.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Optional

Furthermore, sinceopt i onal <T> itself ismerely aT wrapper (modeling aT supertype), any attempt to define such operations upon
uninitialized optionals will be totally artificial w.r.t. T.

This library chooses an interface which follows from T's interface only for those operations which are well defined (w.r.t the type
T) even if any of the operands are uninitialized. These operations include: construction, copy-construction, assignment, swap and
relationa operations.

For the value access operations, which are undefined (w.r.t the type T) when the operand is uninitialized, a different interface is
chosen (which will be explained next).

Also, the presence of the possibly uninitialized state requires additional operations not provided by T itself which are supported by
aspecia interface.

Lexically-hinted Value Access in the presence of possibly untitialized optional objects: The
operators * and ->

A relevant feature of a pointer is that it can have a null pointer value. Thisis a special value which is used to indicate that the
pointer is not referring to any object at all. In other words, null pointer values convey the notion of inexistent objects.

This meaning of the null pointer value allowed pointers to became a de facto standard for handling optional objects because all you
have to do to refer to a value which you don't really have isto use a null pointer value of the appropriate type. Pointers have been
used for decades—from the days of C APIsto modern C++ libraries—to refer to optional (that is, possibly inexistent) objects; par-
ticularly as optional arguments to a function, but also quite often as optional data members.

The possible presence of anull pointer value makes the operations that access the pointee's value possibly undefined, therefore, ex-
pressions which use dereference and access operators, suchas: (*p = 2) and(p->foo()), implicitly convey the notion of
optionality, and thisinformation istied to the syntax of the expressions. That is, the presence of operators* and - > tell by themselves
—without any additional context— that the expression will be undefined unless the implied pointee actually exist.

Such adefacto idiom for referring to optional objects can be formalized in the form of a concept: the Optional Pointee concept. This
concept captures the syntactic usage of operators*, - > and conversion to bool to convey the notion of optionality.

However, pointers are good to refer to optional objects, but not particularly good to handle the optional objectsin all other respects,
such asinitializing or moving/copying them. The problem residesin the shall ow-copy of pointer semantics: if you need to effectively
move or copy the object, pointers alone are not enough. The problem isthat copies of pointers do not imply copies of pointees. For
example, as was discussed in the motivation, pointers alone cannot be used to return optional objects from a function because the
object must move outside from the function and into the caller's context.

A solution to the shallow-copy problem that is often used is to resort to dynamic allocation and use a smart pointer to automatically
handle the details of this. For example, if afunction is to optionally return an object X, it can use shar ed_pt r <X> as the return
value. However, thisrequires dynamic allocation of X. If Xisabuilt-in or small POD, thistechniqueisvery poor in terms of required
resources. Optional objectsare essentially values so it isvery convenient to be able to use automatic storage and deep-copy semantics
to manipulate optional values just as we do with ordinary values. Pointers do not have this semantics, so are inappropriate for the
initialization and transport of optional values, yet are quite convenient for handling the accessto the possible undefined val ue because
of the idiomatic aid present in the Optional Pointee concept incarnated by pointers.

Optional<T> as a model of OptionalPointee

For value access operations opt i onal <> uses operators* and - > to lexically warn about the possibly uninitialized state appealing
to the familiar pointer semantics w.r.t. to null pointers.

O Warning
However, it is particularly important to note that opt i onal <> objects are not pointers. opt i onal <> is not, and
does not model, a pointer.

For instance, opt i onal <> does not have shallow-copy so does not alias: two different optionals never refer to the same value unless
T itself is a reference (but may have equivalent values). The difference between an opt i onal <T> and a pointer must be kept in

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/optional/doc/html/../../../utility/OptionalPointee.html
http://www.boost.org/doc/libs/release/libs/optional/doc/html/../../../utility/OptionalPointee.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Optional

mind, particularly because the semantics of relational operators are different: since opt i onal <T> is a value-wrapper, relational
operators are deep: they compare optional values; but relational operators for pointers are shallow: they do not compare pointee
values. As aresult, you might be able to replace opt i onal <T> by T* on some situations but not always. Specifically, on generic

code written for both, you cannot use relational operators directly, and must use the template functions equal _poi nt ees() and
| ess_poi nt ees() instead.

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/optional/doc/html/../../../utility/OptionalPointee.html#equal
http://www.boost.org/doc/libs/release/libs/optional/doc/html/../../../utility/OptionalPointee.html#less
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

Synopsis

nanespace boost {

tenpl at e<cl ass T>
cl ass optional

{
public :

/1 (If Tis of reference type, the paraneters and results by reference are by val ue)

optional () ; =
optional (none_t) ; =
optional (T const& v) ; =

/'l [new in 1.34]

optional (bool condition, T const&v) ; =

optional (optional const&rhs) ; =

tenpl at e<cl ass U> explicit optional (optional <U> const& rhs) ; =

tenpl at e<cl ass I nPl aceFactory> explicit optional (InPlaceFactory const& f) ; =

tenpl at e<cl ass Typedl nPl aceFactory> explicit optional (TypedlnPlaceFactory const& f) ; =

optional & operator = (none_t) ;

optional & operator = (T const& v) ; =
optional & operator = (optional const& rhs) ; =&
t enpl at e<cl ass U> optional & operator = (optional <U> const& rhs) ; =

t enpl at e<cl ass | nPl aceFactory> optional & operator = (InPlaceFactory const& f) ;

t enpl at e<cl ass Typedl nPl aceFact ory> opti onal & operator = (Typedl nPl aceFactory const& f) ;

T const& get() const ; =

T& get() ; =

/1 [new in 1.34]

T const & get_value_or(T const& default) const ; =
T const* operator ->() const ; =

T* operator ->() ; =

T const & operator *() const ; =

T& operator *() ; =

T const* get_ptr() const ; =

T* get_ptr() ; =

oper at or unspecified-bool -type() const ; =
bool operator!() const ; ==

/| deprecated nethods

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

/1 (deprecated)
void reset() ; =

/'l (deprecat ed)
void reset (T const&) ; =

/1 (deprecated)

bool is_initialized() const ; =

i

tenpl ate<cl ass T> inline bool operator == (optional <T> const& x, optional <T> const&y) ; =
tenpl ate<cl ass T> inline bool operator != (optional <T> const& x, optional <T> const&y) ; =
tenpl ate<cl ass T> inline bool operator < (optional <T> const& x, optional <T> const&y) ; =
tenpl ate<cl ass T> inline bool operator > (optional <T> const& x, optional <T> const&y) ; =
tenpl ate<cl ass T> inline bool operator <= (optional <T> const& x, optional <T> const&y) ; =
tenpl ate<cl ass T> inline bool operator >= (optional <T> const& x, optional <T> const&y) ; ==

/'l [new in 1.34]
tenpl ate<class T> inline optional <T> nake_optional (T const& v) ; =

/1 [new in 1.34]
tenpl ate<class T> inline optional <T> nake_optional (bool condition, T const&v) ; =

/1 [new in 1.34]
tenpl ate<class T> inline T const& get_optional _value_or (optional <T> const& opt, T consté& del

fault) ; =

tenpl ate<class T> inline T const& get (optional <T> const& opt) ; =

tenpl ate<class T> inline T& get (optional <T> & opt) ; =

tenpl ate<class T> inline T const* get (optional <T> const* opt) ; =

tenpl ate<class T> inline T* get (optional <T>* opt) ; =

tenpl ate<class T> inline T const* get_pointer (optional <T> const& opt) ; =
tenpl ate<class T> inline T* get_pointer (optional <T> & opt) ; =

tenpl ate<class T> inline void swap(optional <T>& x, optional <T>&y) ; =

} I/ namespace boost

render

> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Optional

Detailed Semantics

Because T might be of reference type, in the sequel, those entries whose semantic depends on T being of reference type or not will
be distinguished using the following convention:

« If the entry reads: opt i onal <T(not a ref)>, the description corresponds only to the case where T is not of reference type.
« If the entry reads: opt i onal <T&>, the description corresponds only to the case where T is of reference type.

* If the entry reads: opt i onal <T>, the description is the same for both cases.

S Note
The following section contains various asser t () which are used only to show the postconditions as sample code.
It is not implied that the type T must support each particular expression but that if the expression is supported, the
implied condition holds.

optional class member functions

opti onal <T>::optional ();
» Effect: Default-Constructs an opt i onal .
» Postconditions: *t hi s isuninitialized.
* Throws: Nothing.
* Notes: T'sdefault constructor is not called.

e Example

opti onal <T> def
assert (!def)

opti onal <T>::optional (none_t);
» Effect: Constructs an opt i onal uninitialized.
» Postconditions: *t hi s isuninitialized.
» Throws: Nothing.

* Notes: T's default constructor is not called. The expression boost : : none denotes an instance of boost : : none_t that can be
used as the parameter.

* Example:

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

#i ncl ude <boost/ none. hpp>
opti onal <T> n(none)
assert (!'n)

optional <T (notaref)>::optional (T const& v)

Effect: Directly-Constructs an opt i onal .

Postconditions: *t hi s isinitialized and its value is acopy of v.

Throws: Whatever T: : T(T const &) throws.
* Notes. T:: T(T const&) iscaled.

» Exception Safety: Exceptions can only bethrown during T: : T(T const &); inthat case, this constructor has no effect.

* Example:
T v;
optional <T> opt(v);
assert (*opt == v)

optional <T&>::optional (T& ref)

 Effect: Directly-Constructsan opt i onal .

Postconditions: *t hi s isinitialized and its value is an instance of an internal type wrapping the referencer ef .

e Throws: Nothing.

* Example:
T v;
T& vref = v ;
optional <T&> opt (vref);
assert (*opt == v)
++ v ; [/ nutate referee
assert (*opt == v);

opti onal <T (not aref)>: : opti onal (bool condition, T const& v) ;
optional <T&> ::optional (bool condition, T& v) ;

* If condition istrue, same as:
optional <T (not aref)>: : optional (T const& v)

optional <T&> ::optional (T& v)

10

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

 otherwise, same as.
optional <T ['(not a ref)]>::optional ()

opti onal <T&> ::optional ()

optional <T (notaref)>:: opti onal (optional const& rhs);
 Effect: Copy-Constructs an opt i onal .
» Postconditions: If rhsisinitialized, *t hi s isinitialized and its value is a copy of the value of r hs; else*t hi s is uninitialized.
e Throws: Whatever T: : T(T const&) throws.
* Notes: If rhsisinitialized, T: : T(T const &) iscalled.
» Exception Safety: Exceptions can only bethrown during T: : T(T const &); inthat case, this constructor has no effect.

* Example:

optional <T> uni nit
assert (luninit);

optional <T> uinit2 (uninit)
assert (uninit2 == uninit);

optional <T> init(T(2));
assert (*init == T(2))

optional <T> init2 (init)
assert (init2 ==init)

opti onal <T&>: :optional (optional const& rhs);
» Effect: Copy-Constructs an opt i onal .

» Postconditions: If r hs isinitialized, *t hi s isinitiaized and its value is another reference to the same object referenced by *r hs;
else*t hi s isuninitialized.

» Throws: Nothing.
* Notes: If r hs isinitialized, both *t hi s and *r hs will reefer to the same object (they alias).

* Example:

11

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

optional <T&> uninit
assert (luninit);

optional <T&> uinit2 (uninit)
assert (uninit2 == uninit);

Tv=2; T&ref =v ;
optional <T> init(ref);
assert (*init == v)

optional <T> init2 (init)
assert (*init2 == v)

v = 3 ;

assert (*init ==

3)
assert (*init2 == 3)

tenpl at e<U> explicit optional <T (notaref)>:: optional (optional <U> const& rhs);
» Effect: Copy-Constructs an opt i onal .

» Postconditions: If r hs isinitialized, *t hi s isinitialized and itsvalue isacopy of thevalue of rhsconvertedtotypeT; else*t hi s
isuninitialized.

e Throws: Whatever T: : T(U const &) throws.
* Notes: T:: T(U const&) iscaledif r hs isinitialized, which requires avalid conversion fromuto T.
» Exception Safety: Exceptions can only bethrown during T: : T(U const &) ; inthat case, this constructor has no effect.

* Example:

opti onal <doubl e> x(123.4);
assert (*x == 123.4)

optional <int> y(x)
assert(*y == 123)

t enpl at e<I nPl aceFact ory> explicit optional <T (notaref)>: : optional (I nPl aceFactory const &
f)

t enpl at e<TypedI| nPl aceFactory> explicit optional <T (notaref)>::optional (Typedl nPl ace-
Factory const& f);

Effect: Constructsan opt i onal with avalue of T obtained from the factory.

Postconditions. *t hi s isinitialized and its value is directly given from the factory f (i.e., the value is not copied).

Throws. Whatever the T constructor called by the factory throws.

* Notes: See In-Place Factories

12

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

» Exception Safety: Exceptions can only be thrown during the call to the T constructor used by the factory; in that case, this con-
structor has no effect.

* Example:

class C{ C (char, double, std::string) ; }
Cv('"A,123.4,"hell0");

optional <C> x(in_place ("A, 123.4, "hello")); I/ InPlaceFactory used
optional <C> y(in_place<C>("A, 123.4, "hello")); /Il TypedlnPl aceFactory used

assert (*x == v)
assert (*y == v)

optional & optional <T (notaref)>: : operator= (T const& rhs)
» Effect: Assignsthevaluer hs to anopti onal .
» Postconditions: *t hi s isinitialized and its value isa copy of r hs.
* Throws: Whatever T: : operator=(T const&) or T:: T(T const &) throws.
* Notes: If *t hi s wasinitialized, T's assignment operator is used, otherwise, its copy-constructor is used.

» Exception Safety: In the event of an exception, the initialization state of *t hi s isunchanged and its value unspecified as far as
opti onal isconcerned (itisupto T'soper at or =()). If *t hi s isinitially uninitialized and T's copy constructor fails, *t hi s is
left properly uninitialized.

* Example:
T X;

opti onal <T> def
opti onal <T> opt (x)

Ty;

def =y ;

assert (*def ==y)
opt =y ;

assert (*opt ==y)

opti onal <T&>& optional <T&>::operator= (T& const& rhs)
» Effect: (Re)binds thee wrapped reference.
» Postconditions: *t hi s isinitialized and it references the same object referenced by r hs.
* Notes: If *t hi s wasinitialized, isisrebound to the new object. See here for details on this behavior.

* Example:

13

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Optional

int a=1;
int b =2;
T& ra = a ;
T& rb = b ;

optional <i nt & def
optional <int& opt(ra)

def =rb ; // binds 'def' to 'b" through 'rb'

assert (*def == b) ;

*def = a ; // changes the value of 'b' to a copy of the value of 'a'
assert (b ==a) ;

int ¢ = 3;

int&rc =c ;

opt =rc ; // REBINDS to 'c' through 'rc'

c =4,

assert (*opt == 4)

optional & optional <T (not aref)>: : operator= (optional const& rhs) ;
Effect: Assigns another opt i onal toanopti onal .
Postconditions: If r hs isinitialized, *t hi s isinitialized and its value is a copy of thevalue of r hs; else*t hi s isuninitialized.
Throws. Whatever T: : operator(T const& orT::T(T const&) throws.

Notes: If both*t hi s and r hs areinitialy initialized, T's assignment operator isused. If *t hi s isinitialy initialized but r hs is
uninitialized, T's [destructor] iscalled. If *t hi s isinitially uninitialized but r hs isinitialized, T's copy constructor is called.

Exception Safety: Inthe event of an exception, the initialization state of *t hi s isunchanged and its value unspecified as far as
optional is concerned (it isup to T'soperat or=()). If *t hi s isinitialy uninitialized and T's copy constructor fails, *t hi s is
|eft properly uninitialized.

Example:

T v,

optional <T> opt(v);

optional <T> def

opt = def

assert (!def)

/'l previous value (copy of '"v') destroyed fromw thin 'opt’

opti onal <T&> & optional <T&>::operator= (optional <T&> const& rhs)
Effect: (Re)binds thee wrapped reference.

Postconditions: If *r hs isinitialized, *t hi s isinitialized and it referencesthe same object referenced by *r hs; otherwise, *t hi s
isuninitialized (and references no object).

Notes: If *t hi s wasinitialized and so is*rhs, thisisis rebound to the new object. See here for details on this behavior.

Example:

14

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

int a=1;
int b =2;
T& ra = a ;
T& rb = b ;

optional <i nt & def
optional <int& ora(ra)
optional <int& orb(rb)

def = orb ; // binds "def' to 'b'" through 'rb" wapped within 'orb'

assert (*def == b)

*def = ora ; // changes the value of 'b'" to a copy of the value of '"a'
assert (b == a)

int ¢ = 3;

int&rc =c ;

optional <int& orc(rc)

ora =orc ; // REBINDS ora to 'c' through "rc'
c =4,

assert (*ora == 4)

t enpl at e<U> optional & opti onal <T (not aref)>: : operator= (optional <U> const& rhs) ;
» Effect: Assigns another convertible optional to an optional.

» Postconditions: If r hs isinitiadized, *t hi s isinitialized and its value is a copy of the value of r hs converted to type T; else
*t hi s isuninitialized.

e Throws: Whatever T: : operator=(U const&) orT:: T(U const&) throws.

* Notes: If both*t hi s and rhsareinitially initialized, T's assignment operator (from U) isused. If *t hi s isinitialy initialized but
r hs is uninitialized, T's destructor is called. If *t hi s isinitially uninitialized but rhs is initialized, T's converting constructor
(from U) iscalled.

» Exception Safety: Inthe event of an exception, the initialization state of *t hi s isunchanged and its value unspecified as far as
optional isconcerned (itisupto T'soper at or =()). If *t hi s isinitially uninitialized and T's converting constructor fails, *t hi s
isleft properly uninitialized.

* Example:

T v,
optional <T> optO(vVv);
optional <U> opt1;

optl = optO ;
assert (*optl == static_cast<U>(v))

voi d optional <T (notaref)>::reset(T const& v)

» Deprecated: sameasoperator= (T const& v) ;

15

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

voi d optional <T>::reset() ;

» Deprecated: Sameasoperator=(detail::none_t);

T const & optional <T (not aref)>: : operator*() const ;
T& optional <T (not aref)>: : operator*();
T const & optional <T (not aref)>: : get () const
T& optional <T (notaref)>: : get () ;
inline T const& get (optional <T (notaref)> const&) ;
inline T& get (optional <T (notaref)> &)
* Requirements: *t hi s isinitialized
» Returns: A reference to the contained value
e Throws: Nothing.
* Notes: The requirement is asserted via BOOST_ASSERT() .

* Example:

Tv

optional <T> opt (v);
T const& u = *opt;
assert ((u == v)

T w;

*opt = w ;

assert (*opt == w)

T const & optional <T (hot aref)>: : get _val ue_or(T const& default) const ;
T& optional <T (notaref)>::get _value_or(T& default) ;

inline T const& get_optional _val ue_or (optional <T(notaref)> const& o, T const& default

)

inline T& get_optional _value_or (optional <T (notaref)>& o, T& default) ;
» Returns: A reference to the contained value, if any, or def aul t .
* Throws: Nothing.

» Example:

16

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

Tv, z;

optional <T> def;

T const& y = def.get_value_or(z);

assert ((y == 2z)

optional <T> opt (v);

T const& u = get_optional _val ue_or(opt, z);
assert ((u ==v)

assert ((u'!=2z)

T const & optional <T&>::operator*() const ;

T & optional <T&>::operator*();

T const & optional <T&>::get() const ;

T& optional <T&>::get() ;

inline T const& get (optional <T& consté&) ;
inline T& get (optional <T& &) ;

* Requirements: *t hi s isinitialized

Returns: The reference contained.
e Throws: Nothing.
» Notes: The requirement is asserted via BOOST_ASSERT() .

* Example:

Tv ;

T& vref = v ;

optional <T&> opt (vref);
T const& vref2 = *opt;
assert (vref2 == v)

++ v

assert (*opt == v)

T const* optional <T (ot aref)>:: get_ptr() const ;
T* optional <T (notaref)>::get_ptr() ;
inline T const* get_pointer (optional <T (notaref)> const&)
inline T* get_pointer (optional<T (notaref)> &) ;
* Returns: If *t hi s isinitialized, apointer to the contained value; else 0 (null).
e Throws: Nothing.

* Notes: The contained value is permanently stored within *t hi s, so you should not hold nor delete this pointer

17

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

e Example

T v;

optional <T> opt(v);

optional <T> const copt(v);

T p = opt.get_ptr()

T const* cp = copt.get_ptr();
assert (p == get_pointer(opt));
assert (cp == get_pointer(copt))

T const* optional <T (ot aref)>: : operator ->() const ;
T* optional <T (notaref)>: : operator ->()

* Requirements: *t hi s isinitialized.

» Returns: A pointer to the contained value.

e Throws: Nothing.

» Notes: The requirement is asserted via BOOST_ASSERT() .

* Example:

struct X { int ndata ; }
X X

optional <X> opt (Xx);
opt->ndata = 2 ;

opti onal <T>:: oper at or unspecified-bool-type() const ;
» Returns: An unspecified value which if used on a boolean context is equivalent to (get () ! = 0)
* Throws: Nothing.

* Example:

optional <T> def ;
assert (def == 0);
optional <T> opt (v)
assert (opt);
assert (opt !'=0);

bool optional <T>::operator! () ;
* Returns: If *t hi s isuninitialized, t r ue; elsef al se.

* Throws: Nothing.

18

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

» Notes: Thisoperator isprovided for those compilerswhich can't use the unspecified-bool -type operator in certain boolean contexts.

* Example:

opti onal <T> opt
assert (!opt);
*opt = sone_T ;

/1 Notice the "doubl e-bang" idiom here.
assert (!lopt)

bool optional <T>::is_initialized() const
* Returns: true if theopti onal isinitialized, f al se otherwise.
» Throws: Nothing.

* Example:

opti onal <T> def

assert (!def.is initialized());
optional <T> opt (v)

assert (opt.is_initialized());

Free functions

opti onal <T (not aref)> nake_optional (T const& v)
* Returns: optional <T>(v) for thededuced type T of v.
* Example:
tenpl ate<cl ass T> void foo (optional <T> const& opt)

foo (make_optional (1+1)) ; // Creates an optional <int>

opti onal <T (not aref)> make_optional (bool condition, T const& v)
e Returns: optional <T>(condi tion, v) for the deduced type T of v.

* Example:

19

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

opti onal <doubl e> cal cul ate_foo()

{

doubl e val = conpute_foo();
return make_optional (is_not_nan_and_finite(val),val);

}

opti onal <doubl e> v = cal culate_foo();
if (!'v)
error("foo wasn't conputed");

bool operator == (optional <T> const& x, optional <T> const& vy);
* Returns: If bothx andy areinitialized, (*x == *y).If only x ory isinitialized, f al se. If both are uninitialized, t r ue.
e Throws: Nothing.

» Notes. Pointershave shallow relational operatorswhileopt i onal hasdeep relational operators. Do not use oper at or == directly
in generic code which expect to be given either an opt i onal <T> or a pointer; use equal _poi nt ees() instead

* Example:

T x(12);
T y(12);
T z(21);
optional <T> defO ;

optional <T>
optional <T>
optional <T>
optional <T>

def1 ;

opt X(x) ;
opt Y(y);
optZ(z);

/1 ldentity always hold
assert (def0 == def0);
assert (optX == optX);

/1 Both uninitialized conpare equal
assert (def0 == defl);

/1 Only one initialized conpare unequal .
assert (defO !'= optX);

/1 Both initialized conpare as (*lhs == *rhs)

assert (optX == optY)
assert (optX != optZ)

bool operator < (optional <T> const& x, optional <T> const&y);
* Returns: Ify isnotinitialized, f al se. If y isinitialized and x isnotinitialized, t r ue. If bothx andy areinitialized, (*x < *y).
e Throws: Nothing.

» Notes: Pointers have shallow relational operatorswhileopt i onal hasdeep relational operators. Do not useoper at or < directly
in generic code which expect to be given either an opt i onal <T> or apointer; usel ess_poi nt ees() instead.

20

render
httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/optional/doc/html/../../../utility/OptionalPointee.html#equal
http://www.boost.org/doc/libs/release/libs/optional/doc/html/../../../utility/OptionalPointee.html#less
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

e Example

T x(12);

T y(34);

opti onal <T> def
optional <T> opt X(X) ;
optional <T> opt Y(y);

/1 ldentity always hold
assert (!(def < def));
assert (optX == optX);

/1 Both uninitialized conpare equal
assert (def0 == defl);

/1 Only one initialized conpare unequal .
assert (defO !'= optX);

/1 Both initialized conpare as (*l hs == *rhs)
assert (optX == optY)
assert (optX !=optzZ)

bool operator != (optional <T> const& x, optional <T> const& vy);

e Returns: !'(x ==y);

* Throws: Nothing.

bool operator > (optional <T> const& x, optional <T> const& y);

e Returns. ('y < x);

» Throws: Nothing.

bool operator <= (optional <T> const& x, optional <T> const& vy);

* Returns: ! (y<x);

e Throws: Nothing.

bool operator >= (optional <T> const& x, optional <T> const& vy);

* Returns: ! (x<y);

» Throws: Nothing.

21

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

void swap (optional <T>& x, optional <T>& vy);

» Effect: If bothx andy areinitialized, calsswap(*x, *y) usingst d: : swap. If only oneisinitialized, say x, calls.y. reset (*x) ;
x. reset (); If noneisinitialized, does nothing.

» Postconditions: The states of x and y interchanged.
e Throws: If both areinitialized, whatever swap(T&, T&) throws. If only oneisinitialized, whatever T: : T (T const &) throws.

» Notes: If both areinitialized, swap(T&, T&) isused unqualified but withst d: : swap introduced in scope. If only oneisinitiaized,
T::~T() andT:: T(T const&) iscalled.

» Exception Safety: If both areinitialized, this operation has the exception safety guarantees of swap(T&, T&) . If only oneisini-
tialized, it has the same basic guarantee asopt i onal <T>::reset(T const&).

e Example

T x(12);

T y(21);

optional <T> defO0 ;
optional <T> def1l ;
opti onal <T> opt X(X) ;
optional <T> opt Y(y);

boost: : swap(defO,defl); // no-op

boost : : swap(def 0, opt X) ;

assert (*def0 == x);

assert (loptX);

boost: : swap(def0,optX); // Get back to original values
boost : : swap(opt X, optY) ;

assert (*optX ==y);
assert (*optY == x);

22

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

Examples

Optional return values

opti onal <char > get _async_i nput ()

{
if (!'queue.enmpty())
return optional <char>(queue.top())
el se return optional <char>(); // uninitialized
}
voi d receive_async_nessage()
{
opti onal <char> rcv
/'l The safe bool ean conversion from'rcv' is used here
while ((rcv = get_async_input()) &% !'timeout())
output (*rcv);
}

Optional local variables

optional <string> nane ;
if (database.open())

{

nanme. reset (database.| ookup(enpl oyer _nane))
}
el se
{

if (can_ask_user)

nanme. reset (user.ask(enployer_nane))

}
if (nane)

print (*name);
el se print("enployer's name not found!")

23

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

Optional data members

class figure

{
publi c:
figure()
/1 data menber "mclipping_rect' is uninitialized at this point.
}
void clip_in_rect (rect const& rect)
{
mclipping_rect.reset (rect) ; // initialized here.
}
void draw (canvas& cvs)
{
if (mclipping_rect)
do_cl i pping(*mclipping_rect);
cvs. drawxXXX(..);
}
/1 this can return NULL.
rect const* get_clipping_rect() { return get_pointer(mclipping_rect); }
private :
optional <rect> mcli ppi ng_rect
|

Bypassing expensive unnecessary default construction

cl ass ExpensiveCtor { ... }
class Fred

{
Fred() : mlLargeVector(10000) {}

std::vector< optional <Expensi veCtor> > mlLar geVect or

24

render

s httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Optional

Optional references

Thislibrary alows the template parameter T to be of reference type: T&, and to some extent, T const &.

However, since references are not real objects some restrictions apply and some operations are not available in this case;
» Converting constructors

» Converting assignment

* InPlace construction

* InPlace assignment

* Vaue-access via pointer

Also, even though opt i onal <T&> treats it wrapped pseudo-object much as areal value, atrue real reference is stored so aliasing
will ocurr:

» Copiesof opti onal <T&> will copy the references but all these references will nonethel ess reefer to the same object.

» Vaue-accesswill actually provide accessto the referenced object rather than the reference itself.

25

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Optional

Rebinding semantics for assignment of optional refer-
ences

If you assigntoanuninitialized opt i onal <T&> the effectisto bind (for thefirst time) to the object. Clearly, thereisno other choice.

int x =1;

int&rx = x ;

optional <int&> ora ;

opti onal <i nt & orb(x)

ora =orb ; // now'ora' is bound to 'x" through 'rx'
*ora = 2 ; // Changes value of 'x' through 'ora'
assert (x==2);

If you assign to a bare C++ reference, the assignment is forwarded to the referenced object; it's value changes but the reference is
never rebound.

int a=1;
int&ra = a ;
int b =2;
int&rb = b ;

ra =rb ; // Changes the value of 'a" to 'b'
assert (a==b);

b =3;

assert(ral=b); // 'ra'" is not rebound to 'b’

Now, if you assign to an initialized opt i onal <T&>, the effect isto rebind to the new object instead of assigning the referee. This
is unlike bare C++ references.

int a=1;
int b =2;
int&ra = a ;
int&rb = b ;

optional <inté&> ora(ra)

optional <i nt & orb(rb)

ora =orb ; // 'ora" is rebound to 'b'

*ora = 3 ; // Changes value of 'b'" (not 'a')
assert(a==1);

assert (b==3);

Rationale

Rebinding semantics for the assignment of initialized opt i onal references has been chosen to provide consistency amonginitial-
ization states even at the expense of lack of consistency with the semantics of bare C++ references. It is true that opt i onal <U>
strives to behave as much as possible as U does whenever it isinitialized; but in the case when Uis T&, doing so would result in in-
consistent behavior w.r.t to the Ivalue initiaization state.

Imagineopt i onal <T&> forwarding assignment to the referenced object (thus changing the referenced object val ue but not rebinding),
and consider the following code:

optional <int& a = get();
int x =1 ;

int&rx = x ;

optional <inté& b(rx);
a=>b;

What does the assignment do?

26

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Optional

If a isuninitialized, the answer is clear: it binds to x (we now have another reference to x). But what if a is aready initialized? it
would change the value of the referenced object (whatever that is); which isinconsistent with the other possible case.

If opti onal <T&> would assign just like T& does, you would never be able to use Optional's assignment without explicitly handling
the previousinitialization state unless your code is capable of functioning whether after the assignment, a aliases the same object as
b or not.

That is, you would have to discriminate in order to be consistency.

If in your code rebinding to another object isnot an option, then is very likely that binding for the fist timeisn't either. In such case,
assignment to an uninitialized opt i onal <T&> shall be prohibited. It is quite possible that in such scenario the precondition that the
Ivalue must be already initialized exist. If it doesn't, then binding for the first time is OK while rebinding is not which is IMO very
unlikely. In such scenario, you can assign the value itself directly, asin:

assert(!!opt);
*opt =val ue;

27

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

In-Place Factories

One of the typical problems with wrappers and containersis that their interfaces usually provide an operation to initialize or assign
the contained object as a copy of some other object. This not only requires the underlying type to be Copy Constructible, but also
requires the existence of afully constructed object, often temporary, just to follow the copy from:

struct X
{
X (int, std:::string)
}
class W
{
X wrapped_ ;
publi c:
W(X const& x) : wapped_(x) {}
}
voi d foo()
{
/1l Tenporary object created.
W (X(123,"hello"))
}

A solution to this problem is to support direct construction of the contained object right in the container's storage. In this scheme,
the user only needs to supply the arguments to the constructor to use in the wrapped object construction.

class W

{
X wrapped_ ;
public:

W(X const& x) : wapped_(x) {}
W(int a0, std::string al) : wapped_(a0,al) {}

}

voi d foo()

{
/1 W apped object constructed in-place
/1 No tenporary created.
W (123, "hell 0")

}

A limitation of this method is that it doesn't scale well to wrapped objects with multiple constructors nor to generic code were the
constructor overloads are unknown.

The solution presented in this library is the family of InPlaceFactories and Typedl nPlaceFactories. These factories are a family
of classes which encapsulate an increasing number of arbitrary constructor parameters and supply a method to construct an object
of agiven type using those parameters at an address specified by the user via placement new.

For example, one member of this family looks like:

28

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/optional/doc/html/../../../utility/CopyConstructible.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

tenpl ate<class T, class A0, class Al>
cl ass Typedl nPl aceFactory2

{ A0 maO ; Al mal ;
public:
Typedl nPl aceFactory2(A0 const& a0, Al const& al) : maO(a0), mal(al) {}
void construct (void* p) { new (p) T(maO, mal) ; }
} o

A wrapper class aware of this can useit as:

class W

{
X wrapped_ ;
public:

W(X const& x) : wapped_(x) {}
W (Typedl nPl aceFactory2 const& fac) { fac.construct(&wapped_) ; }

}

voi d foo()

{
/1 W apped object constructed in-place via a Typedl nPl aceFactory.
/1 No tenporary created.
W (Typedl nPl aceFactory2<X int,std::string>(123,"hello"))

}

The factories are divided in two groups:

 TypedinPlaceFactories. those which take the target type as a primary template parameter.
 InPlaceFactories: those with atemplate const r uct (voi d*) member function taking the target type.
Within each group, al the family members differ only in the number of parameters allowed.

Thislibrary provides an overloaded set of hel per template functionsto construct these factories without requiring unnecessary template

parameters:
tenpl at e<cl ass A0, .. ., cl ass AN>
I nPl aceFact oryN <AQ, . . ., AN> in_place (A0 const& a0, ..., AN const& aN)
tenpl ate<class T,class AO, ..., cl ass AN>
Typedl nPl aceFact oryN <T, AO, . . ., AN> in_place (T const& a0, AO const& a0, ..., AN const& aN)

In-place factories can be used generically by the wrapper and user as follows:

29

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

class W

{
X wrapped_ ;
public:

W(X const& x) : wapped_(x) {}

tenpl ate< cl ass I nPlaceFactory >
W (InPlaceFactory const& fac) { fac.tenplate <X>construct (&wapped_) ; }

}

voi d foo()

{
/1 Wapped object constructed in-place via a |nPlaceFactory.
/1 No tenporary created.
W (in_place(123,"hello"))

}

The factories are implemented in the headers: in_place factory.hpp and typed_in_place factory.hpp

30

render
> httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/optional/doc/html/../../../../boost/utility/in_place_factory.hpp
http://www.boost.org/doc/libs/release/libs/optional/doc/html/../../../../boost/utility/typed_in_place_factory.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

A note about optional<bool>

opt i onal <bool > should be used with special caution and consideration.

First, it isfunctionally similar to atristate boolean (fal se,maybe,true) —such as boost::tribool— except that in atristate boolean, the
maybe state represents a valid value, unlike the corresponding state of an uninitialized opt i onal <bool >. It should be carefully
considered if an opt i onal <bool > instead of at ri bool isreally needed.

Second, opt i onal <> providesanimplicit conversiontobool . Thisconversion refersto theinitialization state and not to the contained
value. Using opt i onal <bool > can lead to subtle errors due to the implicit bool conversion:

void foo (bool v)
voi d bar ()
{

optional <bool > v = try();

/1 The followi ng intended to pass the value of '"v' to foo():
foo(v);

/1l But instead, the initialization state is passed

/!l due to a typo: it should have been foo(*v).

The only implicit conversion isto bool , and it is safe in the sense that typical integral promotions don't apply (i.e. if f oo() takes
anint instead, it won't compile).

31

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/optional/doc/html/../../../../doc/html/tribool.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Optional

Exception Safety Guarantees

Because of the current implementation (see Implementation Notes), all of the assignment methods:

e optional <T>::operator= (optional <T> const&)

e optional <T>::operator= (T const&)

e tenpl ate<cl ass U> optional <T>::operator= (optional <U> const&)

* tenpl ate<cl ass | nPl aceFact ory> optional <T>::operator= (InPlaceFactory const&)

* tenpl at e<cl ass Typedl nPl aceFact ory> opti onal <T>::operator= (Typedl nPl aceFactory const&)
e optional <T>:::reset (T constg&)

Can only guarantee the basic exception safety: The lvalue optional isleft uninitialized if an exception isthrown (any previous value
isfirst destroyed using T: : ~T())

On the other hand, the uninitializing methods:

e optional <T>::operator= (detail::none_t)

e optional <T>::reset()

Provide the no-throw guarantee (assuming a no-throw T: : ~T())

However, since opt i onal <> itself doesn't throw any exceptions, the only source for exceptions here are T's constructor, so if you
know the exception guaranteesfor T: : T (T const &), you know that opt i onal 'sassignment and reset has the same guarantees.

32

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

I

/1 Case 1: Exception thrown during assignnent.

I

T v0(123);

opti onal <T> opt 0(vO0);

try

{
T v1(456);
optional <T> opt1(vl);
opt0 = optl ;
/1 If no exception was thrown, assignnment succeeded.
assert(*optO == vl)

}

catch(...)

{
/1 If any exception was thrown, 'optQ' is reset to uninitialized.
assert(!opt0)

}

I

/1 Case 2: Exception thrown during reset(v)

I

T v0(123);

opti onal <T> opt (v0);

try

{
T v1(456);
opt.reset (vl)
/1 If no exception was thrown, reset succeeded.
assert(*opt == vl)

}

catch(...)

{
/1 If any exception was thrown, 'opt' is reset to uninitialized.
assert(!opt)

}

Swap

voi d swap(optional <T>& optional <T>&) hasthe same exception guarantee as swap(T&, T&) when both optionals are
initialized. If only one of the optionals is initialized, it gives the same basic exception guarantee as opti onal <T>::reset(T
const &) (sinceopti onal <T>::reset () doesn't throw). If none of the optionalsis initialized, it has no-throw guarantee since
itisano-op.

33

render

s httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

Type requirements

In general, T must be Copy Constructible and have a no-throw destructor. The copy-constructible requirement is not needed if In-
PlaceFactories are used.

T isnot required to be Default Constructible.

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/optional/doc/html/../../../utility/CopyConstructible.html
http://www.sgi.com/tech/stl/DefaultConstructible.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Optional

Implementation Notes

optional <T> is currently implemented using a custom aligned storage facility built from alignnent_of and
type_wi t h_al i gnment (both from Type Traits). It uses a separate boolean flag to indicate the initialization state. Placement new
with T's copy constructor and T's destructor are explicitly used to initialize,copy and destroy optional values. As aresult, T's default
constructor is effectively by-passed, but the exception guarantees are basic. It is planned to replace the current implementation with
another with stronger exception safety, such asafutureboost : : vari ant .

35

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

Dependencies and Portability

Theimplementation usest ype_t rai t s/ al i gnment _of . hpp andtype_traits/type_with_alignment.hpp

36

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Optional

Acknowledgments

Pre-formal review

 Peter Dimov suggested the name 'optional’, and was the first to point out the need for aligned storage.

» Douglas Gregor developed 'type_with_alignment', and later Eric Friedman coded ‘aligned_storage', which are the core of the op-
tional class implementation.

» Andrei Alexandrescu and Brian Parker also worked with aligned storage techniques and their work influenced the current imple-
mentation.

e Gennadiy Rozental made extensive and important comments which shaped the design.

» Vesa Karvonen and Douglas Gregor made quite useful comparisons between optional, variant and any; and made other relevant
comments.

» Douglas Gregor and Peter Dimov commented on comparisons and evaluation in boolean contexts.

* Eric Friedman helped understand the issues involved with aligned storage, move/copy operations and exception safety.

» Many others have participated with useful comments: Aleksey Gurotov, Kevlin Henney, David Abrahams, and others| can't recall.

Post-formal review

» William Kempf carefully considered the originally proposed interface and suggested the new interface which is currently used.

He also started and fueled the discussion about the analogy optional<>/smart pointer and about relational operators.

* Peter Dimov, Joel de Guzman, David Abrahams, Tanton Gibbs and lan Hanson focused on the relational semantics of optional

(originally undefined); concluding with the fact that the pointer-like interface doesn't make it a pointer so it shall have deep rela
tional operators.

» Augustus Saunders also explored the different relational semantics between optional <> and a pointer and devel oped the Optional -

Pointee concept as an aid against potential conflicts on generic code.

 Jodl de Guzman noticed that optional<> can be seen as an APl on top of variant<T,nil_t>.

» Dave Gomboc explained the meaning and usage of the Haskell anal og to optional <>: the Maybe type constructor (analogy originally

pointed out by David Sankel).

» Other comments were posted by Vincent Finn, Anthony Williams, Ed Brey, Rob Stewart, and others.
 Jodl de Guzman made the case for the support of references and hel ped with the proper semantics.

» Mat Marcus shown the virtues of avalue-oriented interface, influencing the current design, and contributed the idea of "none".

37

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Optional
	Table of Contents
	Motivation
	Development
	The models
	The semantics
	The Interface

	Synopsis
	Detailed Semantics
	Examples
	Optional return values
	Optional local variables
	Optional data members
	Bypassing expensive unnecessary default construction

	Optional references
	Rebinding semantics for assignment of optional references
	In-Place Factories
	A note about optional<bool>
	Exception Safety Guarantees
	Type requirements
	Implementation Notes
	Dependencies and Portability
	Acknowledgments

