
python 2.0
Joel de Guzman

David Abrahams
Copyright © 2002-2005 Joel de Guzman, David Abrahams

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at ht-
tp://www.boost.org/LICENSE_1_0.txt)

Table of Contents
QuickStart .. 2
Building Hello World .. 3
Exposing Classes ... 5

Constructors .. 5
Class Data Members ... 6
Class Properties ... 7
Inheritance .. 7
Class Virtual Functions ... 8
Virtual Functions with Default Implementations ... 9
Class Operators/Special Functions ... 11

Functions .. 13
Call Policies .. 13
Overloading .. 16
Default Arguments .. 16
Auto-Overloading ... 18

Object Interface ... 20
Basic Interface ... 20
Derived Object types ... 21
Extracting C++ objects .. 22
Enums .. 23
Creating boost::python::object from PyObject* .. 24

Embedding .. 25
Using the interpreter ... 26

Iterators .. 28
Exception Translation .. 30
General Techniques .. 31

Creating Packages .. 31
Extending Wrapped Objects in Python .. 33
Reducing Compiling Time ... 35

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

QuickStart
The Boost Python Library is a framework for interfacing Python and C++. It allows you to quickly and seamlessly expose C++
classes functions and objects to Python, and vice-versa, using no special tools -- just your C++ compiler. It is designed to wrap C++
interfaces non-intrusively, so that you should not have to change the C++ code at all in order to wrap it, making Boost.Python ideal
for exposing 3rd-party libraries to Python. The library's use of advanced metaprogramming techniques simplifies its syntax for users,
so that wrapping code takes on the look of a kind of declarative interface definition language (IDL).

Hello World
Following C/C++ tradition, let's start with the "hello, world". A C++ Function:

char const* greet()
{

return "hello, world";
}

can be exposed to Python by writing a Boost.Python wrapper:

#include <boost/python.hpp>

BOOST_PYTHON_MODULE(hello_ext)
{

using namespace boost::python;
def("greet", greet);

}

That's it. We're done. We can now build this as a shared library. The resulting DLL is now visible to Python. Here's a sample Python
session:

>>> import hello_ext
>>> print hello_ext.greet()
hello, world

Next stop... Building your Hello World module from start to finish...

2

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Building Hello World

From Start To Finish
Now the first thing you'd want to do is to build the Hello World module and try it for yourself in Python. In this section, we will
outline the steps necessary to achieve that. We will use the build tool that comes bundled with every boost distribution: bjam.

Note

Building without bjam

Besides bjam, there are of course other ways to get your module built. What's written here should not be taken as
"the one and only way". There are of course other build tools apart from bjam.

Take note however that the preferred build tool for Boost.Python is bjam. There are so many ways to set up the
build incorrectly. Experience shows that 90% of the "I can't build Boost.Python" problems come from people who
had to use a different tool.

We will skip over the details. Our objective will be to simply create the hello world module and run it in Python. For a complete
reference to building Boost.Python, check out: building.html. After this brief bjam tutorial, we should have built the DLLs and run
a python program using the extension.

The tutorial example can be found in the directory: libs/python/example/tutorial. There, you can find:

• hello.cpp

• hello.py

• Jamroot

The hello.cpp file is our C++ hello world example. The Jamroot is a minimalist bjam script that builds the DLLs for us. Finally,
hello.py is our Python program that uses the extension in hello.cpp.

Before anything else, you should have the bjam executable in your boost directory or somewhere in your path such that bjam can
be executed in the command line. Pre-built Boost.Jam executables are available for most platforms. The complete list of Bjam ex-
ecutables can be found here.

Let's Jam!

Here is our minimalist Jamroot file. Simply copy the file and tweak use-project boost to where your boost root directory is and
your OK.

The comments contained in the Jamrules file above should be sufficient to get you going.

Running bjam
bjam is run using your operating system's command line interpreter.

Start it up.

3

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../building.html
http://sourceforge.net/project/showfiles.php?group_id=7586
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../../example/tutorial/Jamroot
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A file called user-config.jam in your home directory is used to configure your tools. In Windows, your home directory can be found
by typing:

ECHO %HOMEDRIVE%%HOMEPATH%

into a command prompt window. Your file should at least have the rules for your compiler and your python installation. A specific
example of this on Windows would be:

MSVC configuration
using msvc : 8.0 ;

Python configuration
using python : 2.4 : C:dev/tools/Python ;

The first rule tells Bjam to use the MSVC 8.0 compiler and associated tools. The second rule provides information on Python, its
version and where it is located. The above assumes that the Python installation is in C:dev/tools\/Python. If you have one fairly
"standard" python installation for your platform, you might not need to do this.

Now we are ready... Be sure to cd to libs/python/example/tutorial where the tutorial "hello.cpp" and the "Jamroot"
is situated.

Finally:

bjam

It should be building now:

cd C:\dev\boost\libs\python\example\tutorial
bjam
...patience...
...found 1101 targets...
...updating 35 targets...

And so on... Finally:

Creating library path-to-boost_python.dll
 Creating library /path-to-hello_ext.exp/
passed ... hello.test
...updated 35 targets...

Or something similar. If all is well, you should now have built the DLLs and run the Python program.

There you go... Have fun!

4

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exposing Classes
Now let's expose a C++ class to Python.

Consider a C++ class/struct that we want to expose to Python:

struct World
{

void set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
std::string msg;

};

We can expose this to Python by writing a corresponding Boost.Python C++ Wrapper:

#include <boost/python.hpp>
using namespace boost::python;

BOOST_PYTHON_MODULE(hello)
{

class_<World>("World")
.def("greet", &World::greet)
.def("set", &World::set)

;
}

Here, we wrote a C++ class wrapper that exposes the member functions greet and set. Now, after building our module as a shared
library, we may use our class World in Python. Here's a sample Python session:

>>> import hello
>>> planet = hello.World()
>>> planet.set('howdy')
>>> planet.greet()
'howdy'

Constructors
Our previous example didn't have any explicit constructors. Since World is declared as a plain struct, it has an implicit default con-
structor. Boost.Python exposes the default constructor by default, which is why we were able to write

>>> planet = hello.World()

We may wish to wrap a class with a non-default constructor. Let us build on our previous example:

struct World
{

World(std::string msg): msg(msg) {} // added constructor
void set(std::string msg) { this->msg = msg; }
std::string greet() { return msg; }
std::string msg;

};

This time World has no default constructor; our previous wrapping code would fail to compile when the library tried to expose it.
We have to tell class_<World> about the constructor we want to expose instead.

5

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/python.hpp>
using namespace boost::python;

BOOST_PYTHON_MODULE(hello)
{

class_<World>("World", init<std::string>())
.def("greet", &World::greet)
.def("set", &World::set)

;
}

init<std::string>() exposes the constructor taking in a std::string (in Python, constructors are spelled ""__init__"").

We can expose additional constructors by passing more init<...>s to the def() member function. Say for example we have an-
other World constructor taking in two doubles:

class_<World>("World", init<std::string>())
.def(init<double, double>())
.def("greet", &World::greet)
.def("set", &World::set)

;

On the other hand, if we do not wish to expose any constructors at all, we may use no_init instead:

class_<Abstract>("Abstract", no_init)

This actually adds an __init__ method which always raises a Python RuntimeError exception.

Class Data Members
Data members may also be exposed to Python so that they can be accessed as attributes of the corresponding Python class. Each
data member that we wish to be exposed may be regarded as read-only or read-write. Consider this class Var:

struct Var
{

Var(std::string name) : name(name), value() {}
std::string const name;
float value;

};

Our C++ Var class and its data members can be exposed to Python:

class_<Var>("Var", init<std::string>())
.def_readonly("name", &Var::name)
.def_readwrite("value", &Var::value);

Then, in Python, assuming we have placed our Var class inside the namespace hello as we did before:

>>> x = hello.Var('pi')
>>> x.value = 3.14
>>> print x.name, 'is around', x.value
pi is around 3.14

Note that name is exposed as read-only while value is exposed as read-write.

6

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

>>> x.name = 'e' # can't change name
Traceback (most recent call last):
File "<stdin>", line 1, in ?

AttributeError: can't set attribute

Class Properties
In C++, classes with public data members are usually frowned upon. Well designed classes that take advantage of encapsulation
hide the class' data members. The only way to access the class' data is through access (getter/setter) functions. Access functions expose
class properties. Here's an example:

struct Num
{

Num();
float get() const;
void set(float value);
...

};

However, in Python attribute access is fine; it doesn't neccessarily break encapsulation to let users handle attributes directly, because
the attributes can just be a different syntax for a method call. Wrapping our Num class using Boost.Python:

class_<Num>("Num")
.add_property("rovalue", &Num::get)
.add_property("value", &Num::get, &Num::set);

And at last, in Python:

>>> x = Num()
>>> x.value = 3.14
>>> x.value, x.rovalue
(3.14, 3.14)
>>> x.rovalue = 2.17 # error!

Take note that the class property rovalue is exposed as read-only since the rovalue setter member function is not passed in:

.add_property("rovalue", &Num::get)

Inheritance
In the previous examples, we dealt with classes that are not polymorphic. This is not often the case. Much of the time, we will be
wrapping polymorphic classes and class hierarchies related by inheritance. We will often have to write Boost.Python wrappers for
classes that are derived from abstract base classes.

Consider this trivial inheritance structure:

struct Base { virtual ~Base(); };
struct Derived : Base {};

And a set of C++ functions operating on Base and Derived object instances:

void b(Base*);
void d(Derived*);
Base* factory() { return new Derived; }

7

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

We've seen how we can wrap the base class Base:

class_<Base>("Base")
/*...*/
;

Now we can inform Boost.Python of the inheritance relationship between Derived and its base class Base. Thus:

class_<Derived, bases<Base> >("Derived")
/*...*/
;

Doing so, we get some things for free:

1. Derived automatically inherits all of Base's Python methods (wrapped C++ member functions)

2. If Base is polymorphic, Derived objects which have been passed to Python via a pointer or reference to Base can be passed
where a pointer or reference to Derived is expected.

Now, we will expose the C++ free functions b and d and factory:

def("b", b);
def("d", d);
def("factory", factory);

Note that free function factory is being used to generate new instances of class Derived. In such cases, we use re-
turn_value_policy<manage_new_object> to instruct Python to adopt the pointer to Base and hold the instance in a new Python
Base object until the the Python object is destroyed. We will see more of Boost.Python call policies later.

// Tell Python to take ownership of factory's result
def("factory", factory,

return_value_policy<manage_new_object>());

Class Virtual Functions
In this section, we will learn how to make functions behave polymorphically through virtual functions. Continuing our example, let
us add a virtual function to our Base class:

struct Base
{

virtual ~Base() {}
virtual int f() = 0;

};

One of the goals of Boost.Python is to be minimally intrusive on an existing C++ design. In principle, it should be possible to expose
the interface for a 3rd party library without changing it. It is not ideal to add anything to our class Base. Yet, when you have a virtual
function that's going to be overridden in Python and called polymorphically from C++, we'll need to add some scaffoldings to make
things work properly. What we'll do is write a class wrapper that derives from Base that will unintrusively hook into the virtual
functions so that a Python override may be called:

8

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct BaseWrap : Base, wrapper<Base>
{

int f()
{

return this->get_override("f")();
}

};

Notice too that in addition to inheriting from Base, we also multiply- inherited wrapper<Base> (See Wrapper). The wrapper
template makes the job of wrapping classes that are meant to overridden in Python, easier.

MSVC6/7 Workaround

If you are using Microsoft Visual C++ 6 or 7, you have to write f as:

return call<int>(this->get_override("f").ptr());.

BaseWrap's overridden virtual member function f in effect calls the corresponding method of the Python object through
get_override.

Finally, exposing Base:

class_<BaseWrap, boost::noncopyable>("Base")
.def("f", pure_virtual(&Base::f))
;

pure_virtual signals Boost.Python that the function f is a pure virtual function.

Note

member function and methods

Python, like many object oriented languages uses the term methods. Methods correspond roughly to C++'s member
functions

Virtual Functions with Default Implementations
We've seen in the previous section how classes with pure virtual functions are wrapped using Boost.Python's class wrapper facilities.
If we wish to wrap non-pure-virtual functions instead, the mechanism is a bit different.

Recall that in the previous section, we wrapped a class with a pure virtual function that we then implemented in C++, or Python
classes derived from it. Our base class:

struct Base
{

virtual int f() = 0;
};

had a pure virtual function f. If, however, its member function f was not declared as pure virtual:

9

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/wrapper.html
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/wrapper.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct Base
{

virtual ~Base() {}
virtual int f() { return 0; }

};

We wrap it this way:

struct BaseWrap : Base, wrapper<Base>
{

int f()
{

if (override f = this->get_override("f"))
return f(); // *note*

return Base::f();
}

int default_f() { return this->Base::f(); }
};

Notice how we implemented BaseWrap::f. Now, we have to check if there is an override for f. If none, then we call Base::f().

MSVC6/7 Workaround

If you are using Microsoft Visual C++ 6 or 7, you have to rewrite the line with the *note* as:

return call<char const*>(f.ptr());.

Finally, exposing:

class_<BaseWrap, boost::noncopyable>("Base")
.def("f", &Base::f, &BaseWrap::default_f)
;

Take note that we expose both &Base::f and &BaseWrap::default_f. Boost.Python needs to keep track of 1) the dispatch
function f and 2) the forwarding function to its default implementation default_f. There's a special def function for this purpose.

In Python, the results would be as expected:

>>> base = Base()
>>> class Derived(Base):
... def f(self):
... return 42
...
>>> derived = Derived()

Calling base.f():

>>> base.f()
0

Calling derived.f():

>>> derived.f()
42

10

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class Operators/Special Functions

Python Operators
C is well known for the abundance of operators. C++ extends this to the extremes by allowing operator overloading. Boost.Python
takes advantage of this and makes it easy to wrap C++ operator-powered classes.

Consider a file position class FilePos and a set of operators that take on FilePos instances:

class FilePos { /*...*/ };

FilePos operator+(FilePos, int);
FilePos operator+(int, FilePos);
int operator-(FilePos, FilePos);
FilePos operator-(FilePos, int);
FilePos& operator+=(FilePos&, int);
FilePos& operator-=(FilePos&, int);
bool operator<(FilePos, FilePos);

The class and the various operators can be mapped to Python rather easily and intuitively:

class_<FilePos>("FilePos")
.def(self + int()) // __add__
.def(int() + self) // __radd__
.def(self - self) // __sub__
.def(self - int()) // __sub__
.def(self += int()) // __iadd__
.def(self -= other<int>())
.def(self < self); // __lt__

The code snippet above is very clear and needs almost no explanation at all. It is virtually the same as the operators' signatures. Just
take note that self refers to FilePos object. Also, not every class T that you might need to interact with in an operator expression
is (cheaply) default-constructible. You can use other<T>() in place of an actual T instance when writing "self expressions".

Special Methods
Python has a few more Special Methods. Boost.Python supports all of the standard special method names supported by real Python
class instances. A similar set of intuitive interfaces can also be used to wrap C++ functions that correspond to these Python special
functions. Example:

class Rational
{ public: operator double() const; };

Rational pow(Rational, Rational);
Rational abs(Rational);
ostream& operator<<(ostream&,Rational);

class_<Rational>("Rational")
.def(float_(self)) // __float__
.def(pow(self, other<Rational>)) // __pow__
.def(abs(self)) // __abs__
.def(str(self)) // __str__
;

Need we say more?

11

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

What is the business of operator<<? Well, the method str requires the operator<< to do its work (i.e. operat-
or<< is used by the method defined by def(str(self)).

12

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Functions
In this chapter, we'll look at Boost.Python powered functions in closer detail. We will see some facilities to make exposing C++
functions to Python safe from potential pifalls such as dangling pointers and references. We will also see facilities that will make it
even easier for us to expose C++ functions that take advantage of C++ features such as overloading and default arguments.

Read on...

But before you do, you might want to fire up Python 2.2 or later and type >>> import this.

>>> import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than right now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Call Policies
In C++, we often deal with arguments and return types such as pointers and references. Such primitive types are rather, ummmm,
low level and they really don't tell us much. At the very least, we don't know the owner of the pointer or the referenced object. No
wonder languages such as Java and Python never deal with such low level entities. In C++, it's usually considered a good practice
to use smart pointers which exactly describe ownership semantics. Still, even good C++ interfaces use raw references and pointers
sometimes, so Boost.Python must deal with them. To do this, it may need your help. Consider the following C++ function:

X& f(Y& y, Z* z);

How should the library wrap this function? A naive approach builds a Python X object around result reference. This strategy might
or might not work out. Here's an example where it didn't

>>> x = f(y, z) # x refers to some C++ X
>>> del y
>>> x.some_method() # CRASH!

What's the problem?

Well, what if f() was implemented as shown below:

13

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

X& f(Y& y, Z* z)
{

y.z = z;
return y.x;

}

The problem is that the lifetime of result X& is tied to the lifetime of y, because the f() returns a reference to a member of the y object.
This idiom is is not uncommon and perfectly acceptable in the context of C++. However, Python users should not be able to crash
the system just by using our C++ interface. In this case deleting y will invalidate the reference to X. We have a dangling reference.

Here's what's happening:

1. f is called passing in a reference to y and a pointer to z

2. A reference to y.x is returned

3. y is deleted. x is a dangling reference

4. x.some_method() is called

5. BOOM!

We could copy result into a new object:

>>> f(y, z).set(42) # Result disappears
>>> y.x.get() # No crash, but still bad
3.14

This is not really our intent of our C++ interface. We've broken our promise that the Python interface should reflect the C++ interface
as closely as possible.

Our problems do not end there. Suppose Y is implemented as follows:

struct Y
{

X x; Z* z;
int z_value() { return z->value(); }

};

Notice that the data member z is held by class Y using a raw pointer. Now we have a potential dangling pointer problem inside Y:

>>> x = f(y, z) # y refers to z
>>> del z # Kill the z object
>>> y.z_value() # CRASH!

For reference, here's the implementation of f again:

X& f(Y& y, Z* z)
{

y.z = z;
return y.x;

}

Here's what's happening:

1. f is called passing in a reference to y and a pointer to z

2. A pointer to z is held by y

14

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3. A reference to y.x is returned

4. z is deleted. y.z is a dangling pointer

5. y.z_value() is called

6. z->value() is called

7. BOOM!

Call Policies
Call Policies may be used in situations such as the example detailed above. In our example, return_internal_reference and
with_custodian_and_ward are our friends:

def("f", f,
return_internal_reference<1,

with_custodian_and_ward<1, 2> >());

What are the 1 and 2 parameters, you ask?

return_internal_reference<1

Informs Boost.Python that the first argument, in our case Y& y, is the owner of the returned reference: X&. The "1" simply specifies
the first argument. In short: "return an internal reference X& owned by the 1st argument Y& y".

with_custodian_and_ward<1, 2>

Informs Boost.Python that the lifetime of the argument indicated by ward (i.e. the 2nd argument: Z* z) is dependent on the lifetime
of the argument indicated by custodian (i.e. the 1st argument: Y& y).

It is also important to note that we have defined two policies above. Two or more policies can be composed by chaining. Here's the
general syntax:

policy1<args...,
policy2<args...,

policy3<args...> > >

Here is the list of predefined call policies. A complete reference detailing these can be found here.

• with_custodian_and_ward: Ties lifetimes of the arguments

• with_custodian_and_ward_postcall: Ties lifetimes of the arguments and results

• return_internal_reference: Ties lifetime of one argument to that of result

• return_value_policy<T> with T one of:

• reference_existing_object: naive (dangerous) approach

• copy_const_reference: Boost.Python v1 approach

• copy_non_const_reference:

• manage_new_object: Adopt a pointer and hold the instance

15

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/reference.html#models_of_call_policies
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remember the Zen, Luke:

"Explicit is better than implicit"

"In the face of ambiguity, refuse the temptation to guess"

Overloading
The following illustrates a scheme for manually wrapping an overloaded member functions. Of course, the same technique can be
applied to wrapping overloaded non-member functions.

We have here our C++ class:

struct X
{

bool f(int a)
{

return true;
}

bool f(int a, double b)
{

return true;
}

bool f(int a, double b, char c)
{

return true;
}

int f(int a, int b, int c)
{

return a + b + c;
};

};

Class X has 4 overloaded functions. We will start by introducing some member function pointer variables:

bool (X::*fx1)(int) = &X::f;
bool (X::*fx2)(int, double) = &X::f;
bool (X::*fx3)(int, double, char)= &X::f;
int (X::*fx4)(int, int, int) = &X::f;

With these in hand, we can proceed to define and wrap this for Python:

.def("f", fx1)

.def("f", fx2)

.def("f", fx3)

.def("f", fx4)

Default Arguments
Boost.Python wraps (member) function pointers. Unfortunately, C++ function pointers carry no default argument info. Take a
function f with default arguments:

16

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int f(int, double = 3.14, char const* = "hello");

But the type of a pointer to the function f has no information about its default arguments:

int(*g)(int,double,char const*) = f; // defaults lost!

When we pass this function pointer to the def function, there is no way to retrieve the default arguments:

def("f", f); // defaults lost!

Because of this, when wrapping C++ code, we had to resort to manual wrapping as outlined in the previous section, or writing thin
wrappers:

// write "thin wrappers"
int f1(int x) { return f(x); }
int f2(int x, double y) { return f(x,y); }

/*...*/

// in module init
def("f", f); // all arguments
def("f", f2); // two arguments
def("f", f1); // one argument

When you want to wrap functions (or member functions) that either:

• have default arguments, or

• are overloaded with a common sequence of initial arguments

BOOST_PYTHON_FUNCTION_OVERLOADS
Boost.Python now has a way to make it easier. For instance, given a function:

int foo(int a, char b = 1, unsigned c = 2, double d = 3)
{

/*...*/
}

The macro invocation:

BOOST_PYTHON_FUNCTION_OVERLOADS(foo_overloads, foo, 1, 4)

will automatically create the thin wrappers for us. This macro will create a class foo_overloads that can be passed on to def(...).
The third and fourth macro argument are the minimum arguments and maximum arguments, respectively. In our foo function the
minimum number of arguments is 1 and the maximum number of arguments is 4. The def(...) function will automatically add
all the foo variants for us:

def("foo", foo, foo_overloads());

17

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS
Objects here, objects there, objects here there everywhere. More frequently than anything else, we need to expose member functions
of our classes to Python. Then again, we have the same inconveniences as before when default arguments or overloads with a common
sequence of initial arguments come into play. Another macro is provided to make this a breeze.

Like BOOST_PYTHON_FUNCTION_OVERLOADS, BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS may be used to automatically
create the thin wrappers for wrapping member functions. Let's have an example:

struct george
{

void
wack_em(int a, int b = 0, char c = 'x')
{

/*...*/
}

};

The macro invocation:

BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(george_overloads, wack_em, 1, 3)

will generate a set of thin wrappers for george's wack_em member function accepting a minimum of 1 and a maximum of 3 arguments
(i.e. the third and fourth macro argument). The thin wrappers are all enclosed in a class named george_overloads that can then
be used as an argument to def(...):

.def("wack_em", &george::wack_em, george_overloads());

See the overloads reference for details.

init and optional
A similar facility is provided for class constructors, again, with default arguments or a sequence of overloads. Remember init<...>?
For example, given a class X with a constructor:

struct X
{

X(int a, char b = 'D', std::string c = "constructor", double d = 0.0);
/*...*/

}

You can easily add this constructor to Boost.Python in one shot:

.def(init<int, optional<char, std::string, double> >())

Notice the use of init<...> and optional<...> to signify the default (optional arguments).

Auto-Overloading
It was mentioned in passing in the previous section that BOOST_PYTHON_FUNCTION_OVERLOADS and BOOST_PYTHON_MEMBER_FUNC-
TION_OVERLOADS can also be used for overloaded functions and member functions with a common sequence of initial arguments.
Here is an example:

18

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/overloads.html#BOOST_PYTHON_FUNCTION_OVERLOADS-spec
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void foo()
{

/*...*/
}

void foo(bool a)
{

/*...*/
}

void foo(bool a, int b)
{

/*...*/
}

void foo(bool a, int b, char c)
{

/*...*/
}

Like in the previous section, we can generate thin wrappers for these overloaded functions in one-shot:

BOOST_PYTHON_FUNCTION_OVERLOADS(foo_overloads, foo, 0, 3)

Then...

.def("foo", (void(*)(bool, int, char))0, foo_overloads());

Notice though that we have a situation now where we have a minimum of zero (0) arguments and a maximum of 3 arguments.

Manual Wrapping
It is important to emphasize however that the overloaded functions must have a common sequence of initial arguments. Otherwise,
our scheme above will not work. If this is not the case, we have to wrap our functions manually.

Actually, we can mix and match manual wrapping of overloaded functions and automatic wrapping through BOOST_PYTHON_MEM-
BER_FUNCTION_OVERLOADS and its sister, BOOST_PYTHON_FUNCTION_OVERLOADS. Following up on our example presented in
the section on overloading, since the first 4 overload functins have a common sequence of initial arguments, we can use
BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS to automatically wrap the first three of the defs and manually wrap just the last.
Here's how we'll do this:

BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(xf_overloads, f, 1, 4)

Create a member function pointers as above for both X::f overloads:

bool (X::*fx1)(int, double, char) = &X::f;
int (X::*fx2)(int, int, int) = &X::f;

Then...

.def("f", fx1, xf_overloads());

.def("f", fx2)

19

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Object Interface
Python is dynamically typed, unlike C++ which is statically typed. Python variables may hold an integer, a float, list, dict, tuple, str,
long etc., among other things. In the viewpoint of Boost.Python and C++, these Pythonic variables are just instances of class object.
We will see in this chapter how to deal with Python objects.

As mentioned, one of the goals of Boost.Python is to provide a bidirectional mapping between C++ and Python while maintaining
the Python feel. Boost.Python C++ objects are as close as possible to Python. This should minimize the learning curve significantly.

Basic Interface
Class object wraps PyObject*. All the intricacies of dealing with PyObjects such as managing reference counting are handled
by the object class. C++ object interoperability is seamless. Boost.Python C++ objects can in fact be explicitly constructed from
any C++ object.

To illustrate, this Python code snippet:

def f(x, y):
if (y == 'foo'):

x[3:7] = 'bar'
else:

x.items += y(3, x)
return x

def getfunc():
return f;

Can be rewritten in C++ using Boost.Python facilities this way:

20

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

object f(object x, object y) {
if (y == "foo")

x.slice(3,7) = "bar";
else

x.attr("items") += y(3, x);
return x;

}
object getfunc() {

return object(f);
}

Apart from cosmetic differences due to the fact that we are writing the code in C++, the look and feel should be immediately apparent
to the Python coder.

Derived Object types
Boost.Python comes with a set of derived object types corresponding to that of Python's:

• list

• dict

• tuple

• str

• long_

• enum

These derived object types act like real Python types. For instance:

str(1) ==> "1"

Wherever appropriate, a particular derived object has corresponding Python type's methods. For instance, dict has a keys()
method:

d.keys()

make_tuple is provided for declaring tuple literals. Example:

make_tuple(123, 'D', "Hello, World", 0.0);

In C++, when Boost.Python objects are used as arguments to functions, subtype matching is required. For example, when a function
f, as declared below, is wrapped, it will only accept instances of Python's str type and subtypes.

void f(str name)
{

object n2 = name.attr("upper")(); // NAME = name.upper()
str NAME = name.upper(); // better
object msg = "%s is bigger than %s" % make_tuple(NAME,name);

}

In finer detail:

str NAME = name.upper();

21

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Illustrates that we provide versions of the str type's methods as C++ member functions.

object msg = "%s is bigger than %s" % make_tuple(NAME,name);

Demonstrates that you can write the C++ equivalent of "format" % x,y,z in Python, which is useful since there's no easy way
to do that in std C++.

Beware the common pitfall of forgetting that the constructors of most of Python's mutable types make copies, just as
in Python.

Python:

>>> d = dict(x.__dict__) # copies x.__dict__
>>> d['whatever'] = 3 # modifies the copy

C++:

dict d(x.attr("__dict__")); // copies x.__dict__
d['whatever'] = 3; // modifies the copy

class_<T> as objects
Due to the dynamic nature of Boost.Python objects, any class_<T> may also be one of these types! The following code snippet
wraps the class (type) object.

We can use this to create wrapped instances. Example:

object vec345 = (
class_<Vec2>("Vec2", init<double, double>())

.def_readonly("length", &Point::length)

.def_readonly("angle", &Point::angle)
)(3.0, 4.0);

assert(vec345.attr("length") == 5.0);

Extracting C++ objects
At some point, we will need to get C++ values out of object instances. This can be achieved with the extract<T> function. Consider
the following:

double x = o.attr("length"); // compile error

In the code above, we got a compiler error because Boost.Python object can't be implicitly converted to doubles. Instead, what
we wanted to do above can be achieved by writing:

double l = extract<double>(o.attr("length"));
Vec2& v = extract<Vec2&>(o);
assert(l == v.length());

The first line attempts to extract the "length" attribute of the Boost.Python object. The second line attempts to extract the Vec2
object from held by the Boost.Python object.

22

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Take note that we said "attempt to" above. What if the Boost.Python object does not really hold a Vec2 type? This is certainly a
possibility considering the dynamic nature of Python objects. To be on the safe side, if the C++ type can't be extracted, an appro-
priate exception is thrown. To avoid an exception, we need to test for extractibility:

extract<Vec2&> x(o);
if (x.check()) {

Vec2& v = x(); ...

The astute reader might have noticed that the extract<T> facility in fact solves the mutable copying problem:

dict d = extract<dict>(x.attr("__dict__"));
d["whatever"] = 3; // modifies x.__dict__ !

Enums
Boost.Python has a nifty facility to capture and wrap C++ enums. While Python has no enum type, we'll often want to expose our
C++ enums to Python as an int. Boost.Python's enum facility makes this easy while taking care of the proper conversions from
Python's dynamic typing to C++'s strong static typing (in C++, ints cannot be implicitly converted to enums). To illustrate, given a
C++ enum:

enum choice { red, blue };

the construct:

enum_<choice>("choice")
.value("red", red)
.value("blue", blue)
;

can be used to expose to Python. The new enum type is created in the current scope(), which is usually the current module. The
snippet above creates a Python class derived from Python's int type which is associated with the C++ type passed as its first para-
meter.

Note

what is a scope?

The scope is a class that has an associated global Python object which controls the Python namespace in which new
extension classes and wrapped functions will be defined as attributes. Details can be found here.

You can access those values in Python as

>>> my_module.choice.red
my_module.choice.red

where my_module is the module where the enum is declared. You can also create a new scope around a class:

23

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/scope.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

scope in_X = class_<X>("X")
.def(...)
.def(...)

;

// Expose X::nested as X.nested
enum_<X::nested>("nested")

.value("red", red)

.value("blue", blue)
;

Creating boost::python::object from PyObject*
When you want a boost::python::object to manage a pointer to PyObject* pyobj one does:

boost::python::object o(boost::python::handle<>(pyobj));

In this case, the o object, manages the pyobj, it won’t increase the reference count on construction.

Otherwise, to use a borrowed reference:

boost::python::object o(boost::python::handle<>(boost::python::borrowed(pyobj)));

In this case, Py_INCREF is called, so pyobj is not destructed when object o goes out of scope.

24

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Embedding
By now you should know how to use Boost.Python to call your C++ code from Python. However, sometimes you may need to do
the reverse: call Python code from the C++-side. This requires you to embed the Python interpreter into your C++ program.

Currently, Boost.Python does not directly support everything you'll need when embedding. Therefore you'll need to use the Python/C
API to fill in the gaps. However, Boost.Python already makes embedding a lot easier and, in a future version, it may become unne-

cessary to touch the Python/C API at all. So stay tuned...

Building embedded programs
To be able to embed python into your programs, you have to link to both Boost.Python's as well as Python's own runtime library.

Boost.Python's library comes in two variants. Both are located in Boost's /libs/python/build/bin-stage subdirectory. On
Windows, the variants are called boost_python.lib (for release builds) and boost_python_debug.lib (for debugging). If you
can't find the libraries, you probably haven't built Boost.Python yet. See Building and Testing on how to do this.

Python's library can be found in the /libs subdirectory of your Python directory. On Windows it is called pythonXY.lib where X.Y
is your major Python version number.

Additionally, Python's /include subdirectory has to be added to your include path.

In a Jamfile, all the above boils down to:

projectroot c:\projects\embedded_program ; # location of the program

bring in the rules for python
SEARCH on python.jam = $(BOOST_BUILD_PATH) ;
include python.jam ;

exe embedded_program # name of the executable
 : #sources
 embedded_program.cpp
 : # requirements
 <find-library>boost_python <library-path>c:\boost\libs\python
 $(PYTHON_PROPERTIES)
 <library-path>$(PYTHON_LIB_PATH)
 <find-library>$(PYTHON_EMBEDDED_LIBRARY) ;

Getting started
Being able to build is nice, but there is nothing to build yet. Embedding the Python interpreter into one of your C++ programs requires
these 4 steps:

1. #include <boost/python.hpp>

2. Call Py_Initialize() to start the interpreter and create the __main__ module.

3. Call other Python C API routines to use the interpreter.

Note

Note that at this time you must not call Py_Finalize() to stop the interpreter. This may be fixed in a future
version of boost.python.

(Of course, there can be other C++ code between all of these steps.)

25

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.python.org/doc/current/api/api.html
http://www.python.org/doc/current/api/api.html
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../building.html
http://www.python.org/doc/current/api/initialization.html#l2h-652
http://www.python.org/doc/current/api/initialization.html#l2h-656
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Now that we can embed the interpreter in our programs, lets see how to put it to use...

Using the interpreter
As you probably already know, objects in Python are reference-counted. Naturally, the PyObjects of the Python C API are also
reference-counted. There is a difference however. While the reference-counting is fully automatic in Python, the Python C API requires
you to do it by hand. This is messy and especially hard to get right in the presence of C++ exceptions. Fortunately Boost.Python
provides the handle and object class templates to automate the process.

Running Python code
Boost.python provides three related functions to run Python code from C++.

object eval(str expression, object globals = object(), object locals = object())
object exec(str code, object globals = object(), object locals = object())
object exec_file(str filename, object globals = object(), object locals = object())

eval evaluates the given expression and returns the resulting value. exec executes the given code (typically a set of statements) re-
turning the result, and exec_file executes the code contained in the given file.

The globals and locals parameters are Python dictionaries containing the globals and locals of the context in which to run the
code. For most intents and purposes you can use the namespace dictionary of the __main__ module for both parameters.

Boost.python provides a function to import a module:

object import(str name)

import imports a python module (potentially loading it into the running process first), and returns it.

Let's import the __main__ module and run some Python code in its namespace:

object main_module = import("__main__");
object main_namespace = main_module.attr("__dict__");

object ignored = exec("hello = file('hello.txt', 'w')\n"
"hello.write('Hello world!')\n"
"hello.close()",
main_namespace);

This should create a file called 'hello.txt' in the current directory containing a phrase that is well-known in programming circles.

Manipulating Python objects
Often we'd like to have a class to manipulate Python objects. But we have already seen such a class above, and in the previous section:
the aptly named object class and its derivatives. We've already seen that they can be constructed from a handle. The following
examples should further illustrate this fact:

object main_module = import("__main__");
object main_namespace = main_module.attr("__dict__");
object ignored = exec("result = 5 ** 2", main_namespace);
int five_squared = extract<int>(main_namespace["result"]);

Here we create a dictionary object for the __main__ module's namespace. Then we assign 5 squared to the result variable and read
this variable from the dictionary. Another way to achieve the same result is to use eval instead, which returns the result directly:

26

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.python.org/doc/current/c-api/refcounting.html
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/handle.html
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/object.html
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/python/object.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

object result = eval("5 ** 2");
int five_squared = extract<int>(result);

Exception handling
If an exception occurs in the evaluation of the python expression, error_already_set is thrown:

try
{

object result = eval("5/0");
// execution will never get here:
int five_divided_by_zero = extract<int>(result);

}
catch(error_already_set const &)
{

// handle the exception in some way
}

The error_already_set exception class doesn't carry any information in itself. To find out more about the Python exception that
occurred, you need to use the exception handling functions of the Python C API in your catch-statement. This can be as simple as
calling PyErr_Print() to print the exception's traceback to the console, or comparing the type of the exception with those of the
standard exceptions:

catch(error_already_set const &)
{

if (PyErr_ExceptionMatches(PyExc_ZeroDivisionError))
{

// handle ZeroDivisionError specially
}
else
{

// print all other errors to stderr
PyErr_Print();

}
}

(To retrieve even more information from the exception you can use some of the other exception handling functions listed here.)

27

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/errors.html#error_already_set-spec
http://www.python.org/doc/api/exceptionHandling.html
http://www.python.org/doc/api/exceptionHandling.html#l2h-70
http://www.python.org/doc/api/standardExceptions.html
http://www.python.org/doc/api/exceptionHandling.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Iterators
In C++, and STL in particular, we see iterators everywhere. Python also has iterators, but these are two very different beasts.

C++ iterators:

• C++ has 5 type categories (random-access, bidirectional, forward, input, output)

• There are 2 Operation categories: reposition, access

• A pair of iterators is needed to represent a (first/last) range.

Python Iterators:

• 1 category (forward)

• 1 operation category (next())

• Raises StopIteration exception at end

The typical Python iteration protocol: for y in x... is as follows:

iter = x.__iter__() # get iterator
try:

while 1:
y = iter.next() # get each item
... # process y

except StopIteration: pass # iterator exhausted

Boost.Python provides some mechanisms to make C++ iterators play along nicely as Python iterators. What we need to do is to
produce appropriate __iter__ function from C++ iterators that is compatible with the Python iteration protocol. For example:

object get_iterator = iterator<vector<int> >();
object iter = get_iterator(v);
object first = iter.next();

Or for use in class_<>:

.def("__iter__", iterator<vector<int> >())

range

We can create a Python savvy iterator using the range function:

• range(start, finish)

• range<Policies,Target>(start, finish)

Here, start/finish may be one of:

• member data pointers

• member function pointers

• adaptable function object (use Target parameter)

iterator

• iterator<T, Policies>()

28

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Given a container T, iterator is a shortcut that simply calls range with &T::begin, &T::end.

Let's put this into action... Here's an example from some hypothetical bogon Particle accelerator code:

f = Field()
for x in f.pions:

smash(x)
for y in f.bogons:

count(y)

Now, our C++ Wrapper:

class_<F>("Field")
.property("pions", range(&F::p_begin, &F::p_end))
.property("bogons", range(&F::b_begin, &F::b_end));

stl_input_iterator

So far, we have seen how to expose C++ iterators and ranges to Python. Sometimes we wish to go the other way, though: we'd like
to pass a Python sequence to an STL algorithm or use it to initialize an STL container. We need to make a Python iterator look like
an STL iterator. For that, we use stl_input_iterator<>. Consider how we might implement a function that exposes
std::list<int>::assign() to Python:

template<typename T>
void list_assign(std::list<T>& l, object o) {

// Turn a Python sequence into an STL input range
stl_input_iterator<T> begin(o), end;
l.assign(begin, end);

}

// Part of the wrapper for list<int>
class_<std::list<int> >("list_int")

.def("assign", &list_assign<int>)
// ...
;

Now in Python, we can assign any integer sequence to list_int objects:

x = list_int();
x.assign([1,2,3,4,5])

29

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exception Translation
All C++ exceptions must be caught at the boundary with Python code. This boundary is the point where C++ meets Python.
Boost.Python provides a default exception handler that translates selected standard exceptions, then gives up:

raise RuntimeError, 'unidentifiable C++ Exception'

Users may provide custom translation. Here's an example:

struct PodBayDoorException;
void translator(PodBayDoorException const& x) {

PyErr_SetString(PyExc_UserWarning, "I'm sorry Dave...");
}
BOOST_PYTHON_MODULE(kubrick) {

register_exception_translator<
PodBayDoorException>(translator);

...

30

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

General Techniques
Here are presented some useful techniques that you can use while wrapping code with Boost.Python.

Creating Packages
A Python package is a collection of modules that provide to the user a certain functionality. If you're not familiar on how to create
packages, a good introduction to them is provided in the Python Tutorial.

But we are wrapping C++ code, using Boost.Python. How can we provide a nice package interface to our users? To better explain
some concepts, let's work with an example.

We have a C++ library that works with sounds: reading and writing various formats, applying filters to the sound data, etc. It is
named (conveniently) sounds. Our library already has a neat C++ namespace hierarchy, like so:

sounds::core
sounds::io
sounds::filters

We would like to present this same hierarchy to the Python user, allowing him to write code like this:

import sounds.filters
sounds.filters.echo(...) # echo is a C++ function

The first step is to write the wrapping code. We have to export each module separately with Boost.Python, like this:

/* file core.cpp */
BOOST_PYTHON_MODULE(core)
{

/* export everything in the sounds::core namespace */
...

}

/* file io.cpp */
BOOST_PYTHON_MODULE(io)
{

/* export everything in the sounds::io namespace */
...

}

/* file filters.cpp */
BOOST_PYTHON_MODULE(filters)
{

/* export everything in the sounds::filters namespace */
...

}

Compiling these files will generate the following Python extensions: core.pyd, io.pyd and filters.pyd.

Note

The extension .pyd is used for python extension modules, which are just shared libraries. Using the default for
your system, like .so for Unix and .dll for Windows, works just as well.

Now, we create this directory structure for our Python package:

31

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.python.org/doc/current/tut/node8.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

sounds/
 __init__.py
 core.pyd
 filters.pyd
 io.pyd

The file __init__.py is what tells Python that the directory sounds/ is actually a Python package. It can be a empty file, but can
also perform some magic, that will be shown later.

Now our package is ready. All the user has to do is put sounds into his PYTHONPATH and fire up the interpreter:

>>> import sounds.io
>>> import sounds.filters
>>> sound = sounds.io.open('file.mp3')
>>> new_sound = sounds.filters.echo(sound, 1.0)

Nice heh?

This is the simplest way to create hierarchies of packages, but it is not very flexible. What if we want to add a pure Python function
to the filters package, for instance, one that applies 3 filters in a sound object at once? Sure, you can do this in C++ and export it,
but why not do so in Python? You don't have to recompile the extension modules, plus it will be easier to write it.

If we want this flexibility, we will have to complicate our package hierarchy a little. First, we will have to change the name of the
extension modules:

/* file core.cpp */
BOOST_PYTHON_MODULE(_core)
{

...
/* export everything in the sounds::core namespace */

}

Note that we added an underscore to the module name. The filename will have to be changed to _core.pyd as well, and we do the
same to the other extension modules. Now, we change our package hierarchy like so:

sounds/
 __init__.py
 core/
 __init__.py

core.pyd
 filters/
 _init__.py

filters.pyd
 io/
 _init__.py
 _io.pyd

Note that we created a directory for each extension module, and added a __init__.py to each one. But if we leave it that way, the
user will have to access the functions in the core module with this syntax:

>>> import sounds.core._core
>>> sounds.core._core.foo(...)

which is not what we want. But here enters the __init__.py magic: everything that is brought to the __init__.py namespace
can be accessed directly by the user. So, all we have to do is bring the entire namespace from _core.pyd to core/__init__.py.
So add this line of code to sounds/core/__init__.py:

32

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.python.org/doc/current/tut/node8.html#SECTION008110000000000000000
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

from _core import *

We do the same for the other packages. Now the user accesses the functions and classes in the extension modules like before:

>>> import sounds.filters
>>> sounds.filters.echo(...)

with the additional benefit that we can easily add pure Python functions to any module, in a way that the user can't tell the difference
between a C++ function and a Python function. Let's add a pure Python function, echo_noise, to the filters package. This
function applies both the echo and noise filters in sequence in the given sound object. We create a file named sounds/fil-
ters/echo_noise.py and code our function:

import _filters
def echo_noise(sound):

s = _filters.echo(sound)
s = _filters.noise(sound)
return s

Next, we add this line to sounds/filters/__init__.py:

from echo_noise import echo_noise

And that's it. The user now accesses this function like any other function from the filters package:

>>> import sounds.filters
>>> sounds.filters.echo_noise(...)

Extending Wrapped Objects in Python
Thanks to Python's flexibility, you can easily add new methods to a class, even after it was already created:

>>> class C(object): pass
>>>
>>> # a regular function
>>> def C_str(self): return 'A C instance!'
>>>
>>> # now we turn it in a member function
>>> C.__str__ = C_str
>>>
>>> c = C()
>>> print c
A C instance!
>>> C_str(c)
A C instance!

Yes, Python rox.

We can do the same with classes that were wrapped with Boost.Python. Suppose we have a class point in C++:

33

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class point {...};

BOOST_PYTHON_MODULE(_geom)
{

class_<point>("point")...;
}

If we are using the technique from the previous session, Creating Packages, we can code directly into geom/__init__.py:

from _geom import *

a regular function
def point_str(self):

return str((self.x, self.y))

now we turn it into a member function
point.__str__ = point_str

All point instances created from C++ will also have this member function! This technique has several advantages:

• Cut down compile times to zero for these additional functions

• Reduce the memory footprint to virtually zero

• Minimize the need to recompile

• Rapid prototyping (you can move the code to C++ if required without changing the interface)

You can even add a little syntactic sugar with the use of metaclasses. Let's create a special metaclass that "injects" methods in other
classes.

The one Boost.Python uses for all wrapped classes.
You can use here any class exported by Boost instead of "point"
BoostPythonMetaclass = point.__class__

class injector(object):
class __metaclass__(BoostPythonMetaclass):

def __init__(self, name, bases, dict):
for b in bases:

if type(b) not in (self, type):
for k,v in dict.items():

setattr(b,k,v)
return type.__init__(self, name, bases, dict)

inject some methods in the point foo
class more_point(injector, point):

def __repr__(self):
return 'Point(x=%s, y=%s)' % (self.x, self.y)

def foo(self):
print 'foo!'

Now let's see how it got:

>>> print point()
Point(x=10, y=10)
>>> point().foo()
foo!

Another useful idea is to replace constructors with factory functions:

34

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

_point = point

def point(x=0, y=0):
return _point(x, y)

In this simple case there is not much gained, but for constructurs with many overloads and/or arguments this is often a great simpli-
fication, again with virtually zero memory footprint and zero compile-time overhead for the keyword support.

Reducing Compiling Time
If you have ever exported a lot of classes, you know that it takes quite a good time to compile the Boost.Python wrappers. Plus the
memory consumption can easily become too high. If this is causing you problems, you can split the class_ definitions in multiple
files:

/* file point.cpp */
#include <point.h>
#include <boost/python.hpp>

void export_point()
{

class_<point>("point")...;
}

/* file triangle.cpp */
#include <triangle.h>
#include <boost/python.hpp>

void export_triangle()
{

class_<triangle>("triangle")...;
}

Now you create a file main.cpp, which contains the BOOST_PYTHON_MODULE macro, and call the various export functions inside
it.

void export_point();
void export_triangle();

BOOST_PYTHON_MODULE(_geom)
{

export_point();
export_triangle();

}

Compiling and linking together all this files produces the same result as the usual approach:

#include <boost/python.hpp>
#include <point.h>
#include <triangle.h>

BOOST_PYTHON_MODULE(_geom)
{

class_<point>("point")...;
class_<triangle>("triangle")...;

}

but the memory is kept under control.

35

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This method is recommended too if you are developing the C++ library and exporting it to Python at the same time: changes in a
class will only demand the compilation of a single cpp, instead of the entire wrapper code.

Note

If you're exporting your classes with Pyste, take a look at the --multiple option, that generates the wrappers in
various files as demonstrated here.

Note

This method is useful too if you are getting the error message "fatal error C1204:Compiler limit:internal structure
overflow" when compiling a large source file, as explained in the FAQ.

36

python 2.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../../pyste/index.html
http://www.boost.org/doc/libs/release/libs/python/doc/tutorial/doc/html/../../../v2/faq.html#c1204
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	python 2.0
	Table of Contents
	QuickStart
	Building Hello World
	Exposing Classes
	Constructors
	Class Data Members
	Class Properties
	Inheritance
	Class Virtual Functions
	Virtual Functions with Default Implementations
	Class Operators/Special Functions

	Functions
	Call Policies
	Overloading
	Default Arguments
	Auto-Overloading

	Object Interface
	Basic Interface
	Derived Object types
	Extracting C++ objects
	Enums
	Creating boost::python::object from PyObject*

	Embedding
	Using the interpreter

	Iterators
	Exception Translation
	General Techniques
	Creating Packages
	Extending Wrapped Objects in Python
	Reducing Compiling Time

