
Thread 4.0.0
Anthony Williams

Vicente J. Botet Escriba
Copyright © 2007 -11 Anthony Williams
Copyright © 2011 -12 Vicente J. Botet Escriba

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Overview .. 3
Using and building the library .. 4

Configuration .. 5
Limitations .. 13

History ... 14
Future .. 22
Thread Management ... 23

Synopsis ... 23
Tutorial .. 23
Class thread .. 30
Namespace this_thread ... 42
Class thread_group EXTENSION .. 47

Scoped Threads .. 50
Motivation .. 50
Tutorial .. 50
Free Thread Functors .. 50
Class strict_scoped_thread ... 51
Class scoped_thread ... 53
Non-member function swap(scoped_thread&,scoped_thread&) ... 56

Synchronization ... 57
Tutorial .. 57
Mutex Concepts ... 71
Lock Options ... 84
Lock Guard ... 85
Lock Concepts ... 86
Lock Types ... 87
Other Lock Types - EXTENSION .. 99
Lock functions ... 105
Lock Factories - EXTENSION .. 107
Mutex Types .. 108
Condition Variables ... 115
One-time Initialization ... 126
Barriers ... 127
Futures ... 128

Thread Local Storage .. 161
Class thread_specific_ptr ... 162

Time Requirements ... 164
Deprecated .. 164

Emulations .. 166
=delete emulation .. 166
Move semantics .. 166

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bool explicit conversion ... 171
Scoped Enums ... 171

Acknowledgments .. 173
Conformance and Extension ... 174

C++11 standard Thread library .. 174
Shared Locking extensions ... 177

2

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview
Boost.Thread enables the use of multiple threads of execution with shared data in portable C++ code. It provides classes and functions
for managing the threads themselves, along with others for synchronizing data between the threads or providing separate copies of
data specific to individual threads.

The Boost.Thread library was originally written and designed by William E. Kempf (version 1).

Anthony Williams version (version 2) was a major rewrite designed to closely follow the proposals presented to the C++ Standards
Committee, in particular N2497, N2320, N2184, N2139, and N2094

Vicente J. Botet Escriba started (version 3) the adaptation to comply with the accepted Thread C++11 library (Make use of
Boost.Chrono and Boost.Move) and the Shared Locking Howard Hinnant proposal except for the upward conversions. Some minor
non-standard features have been added also as thread attributes, reverse_lock, shared_lock_guard.

In order to use the classes and functions described here, you can either include the specific headers specified by the descriptions of
each class or function, or include the master thread library header:

#include <boost/thread.hpp>

which includes all the other headers in turn.

3

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2497.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2320.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2184.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2139.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2094.html
http://home.roadrunner.com/~hinnant/bloomington/shared_mutex.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Using and building the library
Boost.Thread is configured following the conventions used to build libraries with separate source code. Boost.Thread will import/export
the code only if the user has specifically asked for it, by defining either BOOST_ALL_DYN_LINK if they want all boost libraries
to be dynamically linked, or BOOST_THREAD_DYN_LINK if they want just this one to be dynamically liked.

The definition of these macros determines whether BOOST_THREAD_USE_DLL is defined. If BOOST_THREAD_USE_DLL is
not defined, the library will define BOOST_THREAD_USE_DLL or BOOST_THREAD_USE_LIB depending on whether the
platform. On non windows platforms BOOST_THREAD_USE_LIB is defined if is not defined. In windows platforms,
BOOST_THREAD_USE_LIB is defined if BOOST_THREAD_USE_DLL and the compiler supports auto-tss cleanup with
Boost.Threads (for the time been Msvc and Intel)

The source code compiled when building the library defines a macros BOOST_THREAD_SOURCE that is used to import or export
it. The user must not define this macro in any case.

Boost.Thread depends on some non header-only libraries.

• Boost.System: This dependency is mandatory and you will need to link with the library.

• Boost.Chrono: This dependency is optional (see below how to configure) and you will need to link with the library if you use
some of the time related interfaces.

• Boost.DateTime: This dependency is mandatory, but even if Boost.DateTime is a non header-only library Boost.Thread uses only
parts that are header-only, so in principle you should not need to link with the library.

It seems that there are some IDE (as e.g. Visual Studio) that deduce the libraries that a program needs to link to inspecting the sources.
Such IDE could force to link to Boost.DateTime and/or Boost.Chrono.

As the single mandatory dependency is to Boost.System, the following

bjam toolset=msvc-11.0 --build-type=complete --with-thread

will install only boost_thread and boost_system.

Users of such IDE should force the Boost.Chrono and Boost.DateTime build using

bjam toolset=msvc-11.0 --build-type=complete --with-thread --with-chrono --with-date_time

The following section describes all the macros used to configure Boost.Thread.

4

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/1_48_0/libs/config/doc/html/boost_config/boost_macro_reference.html#boost_config.boost_macro_reference.macros_for_libraries_with_separate_source_code
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Configuration

5

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 1. Default Values for Configurable Features

V4V3V2Anti-FeatureFeature

YESYESYESDONT_USE_CHRONOUSES_CHRONO

YESYESYESDONT_PROVIDE_IN-
TERRUPTIONS

PROVIDES_INTER-
RUPTIONS

NONONO-THROW_IF_PRECON-
DITION_NOT_SATIS-
FIED

NONOYESDONT_PROVIDE_PROM-
ISE_LAZY

PROVIDES_PROM-
ISE_LAZY

YESYESNODONT_PROVIDE_BA-
SIC_THREAD_ID

P R O V I D E S _ B A -
SIC_THREAD_ID

YESYESNODONT_PROVIDE_GEN-
ERIC_SHARED_MU-
TEX_ON_WIN

PROVIDES_GENER-
IC_SHARED_MU-
TEX_ON_WIN

YESYESNODONT_PROVIDE_SHARED_MU-
T E X _ U P -

PROVIDES_SHARED_MU-
T E X _ U P -

WARDS_CONVER-
SION

WARDS_CONVER-
SION

YESYESNODONT_PROVIDE_EX-
PLICIT_LOCK_CON-
VERSION

PROVIDES_EXPLI-
CIT_LOCK_CONVER-
SION

YESYESNODONT_PROVIDE_FU-
TURE

PROVIDES_FUTURE

YESYESNODONT_PROVIDE_FU-
TURE_CTOR_ALLOC-
ATORS

P R O V I D E S _ F U -
TURE_CTOR_ALLOC-
ATORS

YESYESNODONT_PROVIDE_THREAD_DE-
S T R U C T -

PROVIDES_THREAD_DE-
S T R U C T -

OR_CALLS_TERMIN-
ATE_IF_JOINABLE

OR_CALLS_TERMIN-
ATE_IF_JOINABLE

YESYESNODONT_PROVIDE_THREAD_MOVE_AS-
SIGN_CALLS_TER-

PROVIDES_THREAD_MOVE_AS-
SIGN_CALLS_TER-

MINATE_IF_JOIN-
ABLE

MINATE_IF_JOIN-
ABLE

YESYESNODONT_PROVIDE_ONCE_CXX11PROVIDES_ONCE_CXX11

YESYESNODONT_USE_MOVEUSES_MOVE

NOYESYESDONT_USE_DATE-
TIME

USES_DATETIME

NOYESYESDONT_PROVIDE_THREAD_EQPROVIDES_THREAD_EQ

6

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

V4V3V2Anti-FeatureFeature

NOYESYESDONT_PROVIDE_CON-
DITION

PROVIDES_CONDI-
TION

NOYESYESDONT_PROVIDE_NES-
TED_LOCKS

P ROV I D E S _ N E S -
TED_LOCKS

YESNONODONT_PROVIDE_SIG-
N AT U R E _ PA C K -
AGED_TASK

PROVIDES_SIGNA-
T U R E _ P A C K -
AGED_TASK

YESNONODONT_PROVIDE_FU-
T U R E _ I N V A L -
ID_AFTER_GET

P R O V I D E S _ F U -
T U R E _ I N V A L -
ID_AFTER_GET

C++11NONODONT_PROVIDE_VARI-
ADIC_THREAD

PROVIDES_VARIAD-
IC_THREAD

Boost.Chrono

Boost.Thread uses by default Boost.Chrono for the time related functions and define BOOST_THREAD_USES_CHRONO if
BOOST_THREAD_DONT_USE_CHRONO is not defined. The user should define BOOST_THREAD_DONT_USE_CHRONO for compilers
that don't work well with Boost.Chrono.

Boost.Move

Boost.Thread uses by default an internal move semantic implementation. Since version 3.0.0 you can use the move emulation emu-
lation provided by Boost.Move.

When BOOST_THREAD_VERSION==2 define BOOST_THREAD_USES_MOVE if you want to use Boost.Move interface. When
BOOST_THREAD_VERSION>=3 define BOOST_THREAD_DONT_USE_MOVE if you don't want to use Boost.Move interface.

Boost.DateTime

The Boost.DateTime time related functions introduced in Boost 1.35.0, using the Boost.Date_Time library are deprecated. These
include (but are not limited to):

• boost::this_thread::sleep()

• timed_join()

• timed_wait()

• timed_lock()

When BOOST_THREAD_VERSION<=3 define BOOST_THREAD_DONT_USE_DATETIME if you don't want to use Boost.DateTime related
interfaces. When BOOST_THREAD_VERSION>3 define BOOST_THREAD_USES_DATETIME if you want to use Boost.DateTime related
interfaces.

boost::thread::oprator== deprecated

The following nested typedefs are deprecated:

• boost::thread::oprator==

• boost::thread::oprator!=

7

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

When BOOST_THREAD_PROVIDES_THREAD_EQ is defined Boost.Thread provides these deprecated feature.

Use instead

• boost::thread::id::oprator==

• boost::thread::id::oprator!=

Warning

This is a breaking change respect to version 1.x.

When BOOST_THREAD_VERSION>=4 define BOOST_THREAD_PROVIDES_THREAD_EQ if you want this feature. When
BOOST_THREAD_VERSION<4 define BOOST_THREAD_DONT_PROVIDE_THREAD_EQ if you don't want this feature.

boost::condition deprecated

boost::condition is deprecated. When BOOST_THREAD_PROVIDES_CONDITION is defined Boost.Thread provides this deprecated
feature.

Use instead boost::condition_variable_any.

Warning

This is a breaking change respect to version 1.x.

When BOOST_THREAD_VERSION>3 define BOOST_THREAD_PROVIDES_CONDITION if you want this feature. When
BOOST_THREAD_VERSION<=3 define BOOST_THREAD_DONT_PROVIDE_CONDITION if you don't want this feature.

Mutex nested lock types deprecated

The following nested typedefs are deprecated:

• boost::mutex::scoped_lock,

• boost::mutex::scoped_try_lock,

• boost::timed_mutex::scoped_lock

• boost::timed_mutex::scoped_try_lock

• boost::timed_mutex::timed_scoped_timed_lock

• boost::recursive_mutex::scoped_lock,

• boost::recursive_mutex::scoped_try_lock,

• boost::recursive_timed_mutex::scoped_lock

• boost::recursive_timed_mutex::scoped_try_lock

• boost::recursive_timed_mutex::timed_scoped_timed_lock

When BOOST_THREAD_PROVIDES_NESTED_LOCKS is defined Boost.Thread provides these deprecated feature.

Use instead * boost::unique_lock<boost::mutex>, * boost::unique_lock<boost::mutex> with the try_to_lock_t
constructor, * boost::unique_lock<boost::timed_mutex> * boost::unique_lock<boost::timed_mutex> with the
try_to_lock_t constructor * boost::unique_lock<boost::timed_mutex> * boost::unique_lock<boost::recurs-

8

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ive_mutex>, * boost::unique_lock<boost::recursive_mutex> with the try_to_lock_t constructor, *
boost::unique_lock<boost::recursive_timed_mutex> * boost::unique_lock<boost::recursive_timed_mutex>
with the try_to_lock_t constructor * boost::unique_lock<boost::recursive_timed_mutex>

Warning

This is a breaking change respect to version 1.x.

When BOOST_THREAD_VERSION>=4 define BOOST_THREAD_PROVIDES_NESTED_LOCKS if you want these features. When
BOOST_THREAD_VERSION<4 define BOOST_THREAD_DONT_PROVIDE_NESTED_LOCKS if you don't want thes features.

thread::id

Boost.Thread uses by default a thread::id on Posix based on the pthread type (BOOST_THREAD_PROVIDES_BASIC_THREAD_ID).
For backward compatibility and also for compilers that don't work well with this modification the user can define
BOOST_THREAD_DONT_PROVIDE_BASIC_THREAD_ID.

Define BOOST_THREAD_DONT_PROVIDE_BASIC_THREAD_ID if you don't want these features.

Shared Locking Generic

The shared mutex implementation on Windows platform provides currently less functionality than the generic one that is used for
PTheads based platforms. In order to have access to these functions, the user needs to define BOOST_THREAD_PROVIDES_GENER-
IC_SHARED_MUTEX_ON_WIN to use the generic implementation, that while could be less efficient, provides all the functions.

When BOOST_THREAD_VERSION==2 define BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN if you want these
features. When BOOST_THREAD_VERSION>=3 define BOOST_THREAD_DONT_PROVIDE_GENERIC_SHARED_MUTEX_ON_WIN if
you don't want these features.

Shared Locking Upwards Conversion

Boost.Threads includes in version 3 the Shared Locking Upwards Conversion as defined in Shared Locking. These conversions need
to be used carefully to avoid deadlock or livelock. The user need to define explicitly BOOST_THREAD_PROVIDES_SHARED_MUTEX_UP-
WARDS_CONVERSION to get these upwards conversions.

When BOOST_THREAD_VERSION==2 define BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION if you want
these features. When BOOST_THREAD_VERSION>=3 define BOOST_THREAD_DONT_PROVIDE_SHARED_MUTEX_UPWARDS_CONVERSION
if you don't want these features.

Explicit Lock Conversion

In Shared Locking the lock conversions are explicit. As this explicit conversion breaks the lock interfaces, it is provided only if the
BOOST_THREAD_PROVIDES_EXPLICIT_LOCK_CONVERSION is defined.

When BOOST_THREAD_VERSION==2 define BOOST_THREAD_PROVIDES_EXPLICIT_LOCK_CONVERSION if you want these features.
When BOOST_THREAD_VERSION==3 define BOOST_THREAD_DONT_PROVIDE_EXPLICIT_LOCK_CONVERSION if you don't want
these features.

unique_future versus future

C++11 uses std::future. Versions of Boost.Thread previous to version 3.0.0 uses boost:unique_future. Since version 3.0.0
boost::future replaces boost::unique_future when BOOST_THREAD_PROVIDES_FUTURE is defined. The documentation
doesn't contains anymore however boost::unique_future.

When BOOST_THREAD_VERSION==2 define BOOST_THREAD_PROVIDES_FUTURE if you want to use boost::future. When
BOOST_THREAD_VERSION>=3 define BOOST_THREAD_DONT_PROVIDE_FUTURE if you want to use boost::unique_future.

9

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://home.roadrunner.com/~hinnant/bloomington/shared_mutex.html
http://home.roadrunner.com/~hinnant/bloomington/shared_mutex.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

promise lazy initialization

C++11 promise initialize the associated state at construction time. Versions of Boost.Thread previous to version 3.0.0 initialize it
lazily at any point in time in which this associated state is needed.

Since version 3.0.0 this difference in behavior can be configured. When BOOST_THREAD_PROVIDES_PROMISE_LAZY is defined
the backward compatible behavior is provided.

When BOOST_THREAD_VERSION==2 define BOOST_THREAD_DONT_PROVIDE_PROMISE_LAZY if you want to use boost::future.
When BOOST_THREAD_VERSION>=3 define BOOST_THREAD_PROVIDES_PROMISE_LAZY if you want to use boost::unique_future.

promise Allocator constructor

C++11 std::promise provides constructors with allocators.

template <typename R>
class promise
{
public:
template <class Allocator>
explicit promise(allocator_arg_t, Allocator a);

// ...
};
template <class R, class Alloc> struct uses_allocator<promise<R>,Alloc>: true_type {};

where

struct allocator_arg_t { };
constexpr allocator_arg_t allocator_arg = allocator_arg_t();

template <class T, class Alloc> struct uses_allocator;

Since version 3.0.0 Boost.Thread implements this constructor using the following interface

namespace boost
{
typedef container::allocator_arg_t allocator_arg_t;
constexpr allocator_arg_t allocator_arg = {};

namespace container
{
template <class R, class Alloc>
struct uses_allocator<promise<R>,Alloc>: true_type {};

}
template <class T, class Alloc>
struct uses_allocator : public container::uses_allocator<T, Alloc> {};

}

which introduces a dependency on Boost.Container. This feature is provided only if BOOST_THREAD_PROVIDES_FUTURE_CTOR_AL-
LOCATORS is defined.

When BOOST_THREAD_VERSION==2 define BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS if you want these features.
When BOOST_THREAD_VERSION>=3 define BOOST_THREAD_DONT_PROVIDE_FUTURE_CTOR_ALLOCATORS if you don't want
these features.

10

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Call to terminate if joinable

C++11 has a different semantic for the thread destructor and the move assignment. Instead of detaching the thread, calls to terminate()
if the thread was joinable. When BOOST_THREAD_PROVIDES_THREAD_DESTRUCTOR_CALLS_TERMINATE_IF_JOINABLE and
BOOST_THREAD_PROVIDES_THREAD_MOVE_ASSIGN_CALLS_TERMINATE_IF_JOINABLE is defined Boost.Thread provides the
C++ semantic.

When BOOST_THREAD_VERSION==2 define BOOST_THREAD_PROVIDES_THREAD_DESTRUCTOR_CALLS_TERMINATE_IF_JOINABLE
if you want these features. When BOOST_THREAD_VERSION>=3 define BOOST_THREAD_DONT_PROVIDE_THREAD_DESTRUCT-
OR_CALLS_TERMINATE_IF_JOINABLE if you don't want these features.

When BOOST_THREAD_VERSION==2 define BOOST_THREAD_PROVIDES_THREAD_MOVE_ASSIGN_CALLS_TERMINATE_IF_JOINABLE
if you want these features. When BOOST_THREAD_VERSION>=3 define BOOST_THREAD_DONT_PROVIDE_THREAD_MOVE_AS-
SIGN_CALLS_TERMINATE_IF_JOINABLE if you don't want these features.

once_flag

C++11 defines a default constructor for once_flag. When BOOST_THREAD_PROVIDES_ONCE_CXX11 is defined Boost.Thread
provides this C++ semantics. In this case, the previous aggregate syntax is not supported.

boost::once_flag once = BOOST_ONCE_INIT;

You should now just do

boost::once_flag once;

When BOOST_THREAD_VERSION==2 define BOOST_THREAD_PROVIDES_ONCE_CXX11 if you want these features. When
BOOST_THREAD_VERSION>=3 define BOOST_THREAD_DONT_PROVIDE_ONCE_CXX11 if you don't want these features.

Signature parameter for packaged_task

C++11 packaged task class has a Signature template parameter. When BOOST_THREAD_PROVIDES_SIGNATURE_PACKAGED_TASK
is defined Boost.Thread provides this C++ feature.

Warning

This is a breaking change respect to version 3.x.

When BOOST_THREAD_VERSION<4 define BOOST_THREAD_PROVIDES_SIGNATURE_PACKAGED_TASK if you want this feature.
When BOOST_THREAD_VERSION>=4 define BOOST_THREAD_DONT_PROVIDE_SIGNATURE_PACKAGED_TASK if you don't want
this feature.

-var thread constructor with variadic rvalue parameters

C++11 thread constructor accep a variable number of rvalue argumentshas. When BOOST_THREAD_PROVIDES_VARIADIC_THREAD
is defined Boost.Thread provides this C++ feature if the following are not defined

• BOOST_NO_CXX11_VARIADIC_TEMPLATES

• BOOST_NO_CXX11_DECLTYPE

• BOOST_NO_CXX11_RVALUE_REFERENCES

• BOOST_NO_CXX11_HDR_TUPLE

When BOOST_THREAD_VERSION>4 define BOOST_THREAD_DONT_PROVIDE_VARIADIC_THREAD if you don't want this feature.

11

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

future<>::get() invalidates the future

C++11 future<>::get() invalidates the future once its value has been obtained. When BOOST_THREAD_PROVIDES_FUTURE_INVAL-
ID_AFTER_GET is defined Boost.Thread provides this C++ feature.

Warning

This is a breaking change respect to version 3.x.

When BOOST_THREAD_VERSION<4 define BOOST_THREAD_PROVIDES_FUTURE_INVALID_AFTER_GET if you want this feature.
When BOOST_THREAD_VERSION>=4 define BOOST_THREAD_DONT_PROVIDE_FUTURE_INVALID_AFTER_GET if you don't want
this feature.

Interruptions

Thread interruption, while useful, makes any interruption point less efficient than if the thread were not interruptible.

When BOOST_THREAD_PROVIDES_INTERRUPTIONS is defined Boost.Thread provides interruptions. When
BOOST_THREAD_DONT_PROVIDE_INTERRUPTIONS is defined Boost.Thread don't provide interruption.

Boost.Thread defines BOOST_THREAD_PROVIDES_INTERRUPTIONS if neither BOOST_THREAD_PROVIDES_INTERRUP-
TIONS nor BOOST_THREAD_DONT_PROVIDE_INTERRUPTIONS are defined, so that there is no compatibility break.

Version

BOOST_THREAD_VERSION defines the Boost.Thread version. The default version is 2. In this case the following breaking or extending
macros are defined if the opposite is not requested:

• BOOST_THREAD_PROVIDES_PROMISE_LAZY

The user can request the version 3 by defining BOOST_THREAD_VERSION to 3. In this case the following breaking or extending
macros are defined if the opposite is not requested:

• Breaking change BOOST_THREAD_PROVIDES_EXPLICIT_LOCK_CONVERSION

• Conformity & Breaking change BOOST_THREAD_PROVIDES_FUTURE

• Uniformity BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN

• Extension BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION

• Conformity BOOST_THREAD_PROVIDES_FUTURE_CTOR_ALLOCATORS

• Conformity & Breaking change BOOST_THREAD_PROVIDES_THREAD_DESTRUCTOR_CALLS_TERMINATE_IF_JOIN-
ABLE

• Conformity & Breaking change BOOST_THREAD_PROVIDES_THREAD_MOVE_ASSIGN_CALLS_TERMINATE_IF_JOIN-
ABLE

• Conformity & Breaking change BOOST_THREAD_PROVIDES_ONCE_CXX11

• Breaking change BOOST_THREAD_DONT_PROVIDE_PROMISE_LAZY

The default value for BOOST_THREAD_VERSION will be changed to 3 since Boost 1.54.

The user can request the version 4 by defining BOOST_THREAD_VERSION to 4. In this case the following breaking or extending
macros are defined if the opposite is not requested:

• Conformity & Breaking change BOOST_THREAD_PROVIDES_SIGNATURE_PACKAGED_TASK

12

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Conformity & Breaking change BOOST_THREAD_PROVIDES_FUTURE_INVALID_AFTER_GET

• Conformity BOOST_THREAD_PROVIDES_VARIADIC_THREAD

• Breaking change BOOST_THREAD_DONT_PROVIDE_THREAD_EQ

• Breaking change BOOST_THREAD_DONT_USE_DATETIME

The default value for BOOST_THREAD_VERSION will be changed to 4 since Boost 1.56.

Limitations
Some compilers don't work correctly with some of the added features.

SunPro

If __SUNPRO_CC < 0x5100 the library defines

• BOOST_THREAD_DONT_USE_MOVE

If __SUNPRO_CC < 0x5100 the library defines

• BOOST_THREAD_DONT_PROVIDE_FUTURE_CTOR_ALLOCATORS

VACPP

If __IBMCPP__ < 1100 the library defines

• BOOST_THREAD_DONT_USE_CHRONO

• BOOST_THREAD_USES_DATE

And Boost.Thread doesn't links with Boost.Chrono.

WCE

If _WIN32_WCE && _WIN32_WCE==0x501 the library defines

• BOOST_THREAD_DONT_PROVIDE_FUTURE_CTOR_ALLOCATORS

13

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

History
Version 4.0.0 - boost 1.53

Deprecated features:

Warning

Deprecated features since boost 1.53 will be available only until boost 1.58.

• C++11 compliance: packaged_task<R> is deprecated, use instead packaged_task<R()>. See
BOOST_THREAD_PROVIDES_SIGNATURE_PACKAGED_TASK and BOOST_THREAD_DONT_PROVIDE_SIGNA-
TURE_PACKAGED_TASK

• #7537 deprecate Mutex::scoped_lock and scoped_try_lock and boost::condition

New Features:

• #6270 c++11 compliance: Add thread constructor from movable callable and movable arguments Provided when
BOOST_THREAD_PROVIDES_VARIADIC_THREAD is defined (Default value from Boost 1.55): See
BOOST_THREAD_PROVIDES_VARIADIC_THREAD and BOOST_THREAD_DONT_PROVIDE_VARIADIC_THREAD.

• #7279 C++11 compliance: Add noexcept in system related functions

• #7280 C++11 compliance: Add promise::...at_thread_exit functions

• #7281 C++11 compliance: Add ArgTypes to packaged_task template. Provided when BOOST_THREAD_PROVIDES_SIGNA-
TURE_PACKAGED_TASK is defined (Default value from Boost 1.55). See BOOST_THREAD_PROVIDES_SIGNATURE_PACK-
AGED_TASK and BOOST_THREAD_DONT_PROVIDE_SIGNATURE_PACKAGED_TASK.

• #7282 C++11 compliance: Add packaged_task::make_ready_at_thread_exit function

• #7412 C++11 compliance: Add async from movable callable and movable arguments Provided when
BOOST_THREAD_PROVIDES_VARIADIC_THREAD and BOOST_THREAD_PROVIDES_SIGNATURE_PACKAGED_TASK
are defined (Default value from Boost 1.55): See BOOST_THREAD_PROVIDES_SIGNATURE_PACKAGED_TASK and
BOOST_THREAD_DONT_PROVIDE_SIGNATURE_PACKAGED_TASK, BOOST_THREAD_PROVIDES_VARIAD-
IC_THREAD and BOOST_THREAD_DONT_PROVIDE_VARIADIC_THREAD.

• #7413 C++11 compliance: Add async when the launch policy is deferred.

• #7414 C++11 compliance: future::get post-condition should be valid()==false.

• #7422 Provide a condition variable with zero-overhead performance penality.

• #7444 Async: Add make_future/make_shared_future.

• #7540 Threads: Add a helper class that join a thread on destruction.

• #7541 Threads: Add a thread wrapper class that joins on destruction.

• #7575 C++11 compliance: A future created by async should "join" in the destructor.

• #7587 Synchro: Add strict_lock and nested_strict_lock.

• #7588 Synchro: Split the locks.hpp in several files to limit dependencies.

• #7590 Synchro: Add lockable concept checkers based on Boost.ConceptCheck.

• #7591 Add lockable traits that can be used with enable_if.

14

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/7537
http://svn.boost.org/trac/boost/ticket/6270
http://svn.boost.org/trac/boost/ticket/7279
http://svn.boost.org/trac/boost/ticket/7280
http://svn.boost.org/trac/boost/ticket/7281
http://svn.boost.org/trac/boost/ticket/7282
http://svn.boost.org/trac/boost/ticket/7412
http://svn.boost.org/trac/boost/ticket/7413
http://svn.boost.org/trac/boost/ticket/7414
http://svn.boost.org/trac/boost/ticket/7422
http://svn.boost.org/trac/boost/ticket/7414
http://svn.boost.org/trac/boost/ticket/7540
http://svn.boost.org/trac/boost/ticket/7541
http://svn.boost.org/trac/boost/ticket/7575
http://svn.boost.org/trac/boost/ticket/7587
http://svn.boost.org/trac/boost/ticket/7588
http://svn.boost.org/trac/boost/ticket/7590
http://svn.boost.org/trac/boost/ticket/7591
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• #7592 Synchro: Add a null_mutex that is a no-op and that is a model of UpgardeLockable.

• #7593 Synchro: Add a externally_locked class.

• #7594 Threads: Allow to disable thread interruptions.

Fixed Bugs:

• #7464 BOOST_TEST(n_alive == 1); fails due to race condition in a regression test tool.

• #7657 Serious performance and memory consumption hit if condition_variable methods condition notify_one or notify_all is used
repeatedly.

• #7665 this_thread::sleep_for no longer uses steady_clock in thread.

• #7668 thread_group::join_all() should check whether its threads are joinable.

• #7669 thread_group::join_all() should catch resource_deadlock_would_occur.

• #7672 lockable_traits.hpp syntax error: "defined" token misspelled.

• #7798 boost::future set_wait_callback thread safety issues.

• #7808 Incorrect description of effects for this_thread::sleep_for and this_thread::sleep_until.

• #7812 Returns: cv_status::no_timeout if the call is returning because the time period specified by rel_time has elapsed,
cv_status::timeout otherwise.

• #7874 compile warning: thread.hpp:342: warning: type attributes are honored only at type definition.

• #7875 BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED should not be enabled by default.

• #7882 wrong exception text from condition_variable::wait(unique_lock<mutex>&).

Version 3.1.0 - boost 1.52

Deprecated Features:

Deprecated features since boost 1.50 available only until boost 1.55:

These deprecated features will be provided by default up to boost 1.52. If you don't want to include the deprecated features you could
define BOOST_THREAD_DONT_PROVIDE_DEPRECATED_FEATURES_SINCE_V3_0_0. Since 1.53 these features will not
be included any more by default. Since this version, if you want to include the deprecated features yet you could define
BOOST_THREAD_PROVIDE_DEPRECATED_FEATURES_SINCE_V3_0_0. These deprecated features will be only available
until boost 1.55, that is you have yet 1 year to move to the new features.

• Time related functions don't using the Boost.Chrono library, use the chrono overloads instead.

Breaking changes when BOOST_THREAD_VERSION==3 (Default value since Boost 1.53):

There are some new features which share the same interface but with different behavior. These breaking features are provided by
default when BOOST_THREAD_VERSION is 3, but the user can however choose the version 2 behavior by defining the corres-
ponding macro. As for the deprecated features, these broken features will be only available until boost 1.55.

• #6229 Rename the unique_future to future following the c++11.

• #6266 Breaking change: thread destructor should call terminate if joinable.

• #6269 Breaking change: thread move assignment should call terminate if joinable.

New Features:

15

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/7592
http://svn.boost.org/trac/boost/ticket/7593
http://svn.boost.org/trac/boost/ticket/7590
http://svn.boost.org/trac/boost/ticket/7464
http://svn.boost.org/trac/boost/ticket/7657
http://svn.boost.org/trac/boost/ticket/7665
http://svn.boost.org/trac/boost/ticket/7668
http://svn.boost.org/trac/boost/ticket/7669
http://svn.boost.org/trac/boost/ticket/7672
http://svn.boost.org/trac/boost/ticket/7798
http://svn.boost.org/trac/boost/ticket/7808
http://svn.boost.org/trac/boost/ticket/7812
http://svn.boost.org/trac/boost/ticket/7874
http://svn.boost.org/trac/boost/ticket/7875
http://svn.boost.org/trac/boost/ticket/7882
http://svn.boost.org/trac/boost/ticket/6229
http://svn.boost.org/trac/boost/ticket/6266
http://svn.boost.org/trac/boost/ticket/6269
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• #2361 thread_specific_ptr: document nature of the key, complexity and rationale.

• #4710 C++11 compliance: Missing async().

• #7283 C++11 compliance: Add notify_all_at_thread_exit.

• #7345 C++11 compliance: Add noexcept to recursive mutex try_lock.

Fixed Bugs:

• #2797 Two problems with thread_specific_ptr.

• #5274 failed to compile future.hpp with stlport 5.1.5 under msvc8.1, because of undefined class.

• #5431 compile error in Windows CE 6.0(interlocked).

• #5696 win32 detail::set_tss_data does nothing when tss_cleanup_function is NULL.

• #6931 mutex waits forwever with Intel C++ Compiler XE 12.1.5.344 Build 20120612

• #7045 Thread library does not automatically compile date_time.

• #7173 wrong function name interrupt_point().

• #7200 Unable to build boost.thread modularized.

• #7220 gcc 4.6.2 warns about inline+dllimport functions.

• #7238 this_thread::sleep_for() does not respond to interrupt().

• #7245 Minor typos on documentation related to version 3.

• #7272 win32/thread_primitives.hpp: (Unneccessary) Warning.

• #7284 Clarify that there is no access priority between lock and shared_lock on shared mutex.

• #7329 boost/thread/future.hpp does not compile on HPUX.

• #7336 BOOST_THREAD_DONT_USE_SYSTEM doesn't work.

• #7349 packaged_task holds reference to temporary.

• #7350 allocator_destructor does not destroy object

• #7360 Memory leak in pthread implementation of boost::thread_specific_ptr

• #7370 Boost.Thread documentation

• #7438 Segmentation fault in test_once regression test in group.join_all();

• #7461 detail::win32::ReleaseSemaphore may be called with count_to_release equal to 0

• #7499 call_once doesn't call even once

Version 3.0.1 - boost 1.51

Deprecated Features:

Deprecated features since boost 1.50 available only until boost 1.55:

These deprecated features will be provided by default up to boost 1.52. If you don't want to include the deprecated features you could
define BOOST_THREAD_DONT_PROVIDE_DEPRECATED_FEATURES_SINCE_V3_0_0. Since 1.53 these features will not

16

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/2361
http://svn.boost.org/trac/boost/ticket/4710
http://svn.boost.org/trac/boost/ticket/7283
http://svn.boost.org/trac/boost/ticket/7345
http://svn.boost.org/trac/boost/ticket/2797
http://svn.boost.org/trac/boost/ticket/5274
http://svn.boost.org/trac/boost/ticket/5431
http://svn.boost.org/trac/boost/ticket/5696
http://svn.boost.org/trac/boost/ticket/6931
http://svn.boost.org/trac/boost/ticket/7045
http://svn.boost.org/trac/boost/ticket/7173
http://svn.boost.org/trac/boost/ticket/7200
http://svn.boost.org/trac/boost/ticket/7220
http://svn.boost.org/trac/boost/ticket/7238
http://svn.boost.org/trac/boost/ticket/7245
http://svn.boost.org/trac/boost/ticket/7272
http://svn.boost.org/trac/boost/ticket/7284
http://svn.boost.org/trac/boost/ticket/7329
http://svn.boost.org/trac/boost/ticket/7336
http://svn.boost.org/trac/boost/ticket/7329
http://svn.boost.org/trac/boost/ticket/7350
http://svn.boost.org/trac/boost/ticket/7360
http://svn.boost.org/trac/boost/ticket/7370
http://svn.boost.org/trac/boost/ticket/7438
http://svn.boost.org/trac/boost/ticket/7461
http://svn.boost.org/trac/boost/ticket/7499
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

be included any more by default. Since this version, if you want to include the deprecated features yet you could define
BOOST_THREAD_PROVIDE_DEPRECATED_FEATURES_SINCE_V3_0_0. These deprecated features will be only available
until boost 1.55, that is you have 1 year and a half to move to the new features.

• Time related functions don't using the Boost.Chrono library, use the chrono overloads instead.

Breaking changes when BOOST_THREAD_VERSION==3:

There are some new features which share the same interface but with different behavior. These breaking features are provided by
default when BOOST_THREAD_VERSION is 3, but the user can however choose the version 2 behavior by defining the corres-
ponding macro. As for the deprecated features, these broken features will be only available until boost 1.55.

• #6229 Rename the unique_future to future following the c++11.

• #6266 Breaking change: thread destructor should call terminate if joinable.

• #6269 Breaking change: thread move assignment should call terminate if joinable.

Fixed Bugs:

• #4258 Linking with boost thread does not work on mingw/gcc 4.5.

• #4885 Access violation in set_tss_data at process exit due to invalid assumption about TlsAlloc.

• #6931 mutex waits forwever with Intel Compiler and /debug:parallel

• #7044 boost 1.50.0 header missing.

• #7052 Thread: BOOST_THREAD_PROVIDES_DEPRECATED_FEATURES_SINCE_V3_0_0 only masks thread::operator==,
thread::operator!= forward declarations, not definitions.

• #7066 An attempt to fix current_thread_tls_key static initialization order.

• #7074 Multiply defined symbol boost::allocator_arg.

• #7078 Trivial 64-bit warning fix on Windows for thread attribute stack size

• #7089 BOOST_THREAD_WAIT_BUG limits functionality without solving anything

Version 3.0.0 - boost 1.50

Breaking changes when BOOST_THREAD_VERSION==3:

• #6229 Breaking change: Rename the unique_future to future following the c++11.

• #6266 Breaking change: thread destructor should call terminate if joinable.

• #6269 Breaking change: thread move assignment should call terminate if joinable.

New Features:

• #1850 Request for unlock_guard to compliment lock_guard.

• #2637 Request for shared_mutex duration timed_lock and timed_lock_shared.

• #2741 Proposal to manage portable and non portable thread attributes.

• #3567 Request for shared_lock_guard.

• #6194 Adapt to Boost.Move.

• #6195 c++11 compliance: Provide the standard time related interface using Boost.Chrono.

17

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/6229
http://svn.boost.org/trac/boost/ticket/6266
http://svn.boost.org/trac/boost/ticket/6269
http://svn.boost.org/trac/boost/ticket/4258
http://svn.boost.org/trac/boost/ticket/4885
http://svn.boost.org/trac/boost/ticket/6931
http://svn.boost.org/trac/boost/ticket/7044
http://svn.boost.org/trac/boost/ticket/7052
http://svn.boost.org/trac/boost/ticket/7066
http://svn.boost.org/trac/boost/ticket/7074
http://svn.boost.org/trac/boost/ticket/7078
http://svn.boost.org/trac/boost/ticket/7089
http://svn.boost.org/trac/boost/ticket/6229
http://svn.boost.org/trac/boost/ticket/6266
http://svn.boost.org/trac/boost/ticket/6269
http://svn.boost.org/trac/boost/ticket/1850
http://svn.boost.org/trac/boost/ticket/2637
http://svn.boost.org/trac/boost/ticket/2741
http://svn.boost.org/trac/boost/ticket/3567
http://svn.boost.org/trac/boost/ticket/6194
http://svn.boost.org/trac/boost/ticket/6195
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• #6217 Enhance Boost.Thread shared mutex interface following Howard Hinnant proposal.

• #6224 c++11 compliance: Add the use of standard noexcept on compilers supporting them.

• #6225 Add the use of standard =delete defaulted operations on compilers supporting them.

• #6226 c++11 compliance: Add explicit bool conversion from locks.

• #6228 Add promise constructor with allocator following the standard c++11.

• #6230 c++11 compliance: Follows the exception reporting mechanism as defined in the c++11.

• #6231 Add BasicLockable requirements in the documentation to follow c++11.

• #6272 c++11 compliance: Add thread::id hash specialization.

• #6273 c++11 compliance: Add cv_status enum class and use it on the conditions wait functions.

• #6342 c++11 compliance: Adapt the one_flag to the c++11 interface.

• #6671 upgrade_lock: missing mutex and release functions.

• #6672 upgrade_lock:: missing constructors from time related types.

• #6675 upgrade_lock:: missing non-member swap.

• #6676 lock conversion should be explicit.

• Added missing packaged_task::result_type and packaged_task:: constructor with allocator.

• Added packaged_task::reset()

Fixed Bugs:

• #2380 boost::move from lvalue does not work with gcc.

• #2430 shared_mutex for win32 doesn't have timed_lock_upgrade.

• #2575 Bug- Boost 1.36.0 on Itanium platform.

• #3160 Duplicate tutorial code in boost::thread.

• #4345 thread::id and joining problem with cascade of threads.

• #4521 Error using boost::move on packaged_task (MSVC 10).

• #4711 Must use implementation details to return move-only types.

• #4921 BOOST_THREAD_USE_DLL and BOOST_THREAD_USE_LIB are crucial and need to be documented.

• #5013 documentation: boost::thread: pthreas_exit causes terminate().

• #5173 boost::this_thread::get_id is very slow.

• #5351 interrupt a future get boost::unknown_exception.

• #5516 Upgrade lock is not acquired when previous upgrade lock releases if another read lock is present.

• #5990 shared_future<T>::get() has wrong return type.

• #6174 packaged_task doesn't correctly handle moving results.

• #6222 Compile error with SunStudio: unique_future move.

18

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/6217
http://svn.boost.org/trac/boost/ticket/6224
http://svn.boost.org/trac/boost/ticket/6225
http://svn.boost.org/trac/boost/ticket/6226
http://svn.boost.org/trac/boost/ticket/6228
http://svn.boost.org/trac/boost/ticket/6230
http://svn.boost.org/trac/boost/ticket/6231
http://svn.boost.org/trac/boost/ticket/6272
http://svn.boost.org/trac/boost/ticket/6273
http://svn.boost.org/trac/boost/ticket/6342
http://svn.boost.org/trac/boost/ticket/6671
http://svn.boost.org/trac/boost/ticket/6672
http://svn.boost.org/trac/boost/ticket/6675
http://svn.boost.org/trac/boost/ticket/6676
http://svn.boost.org/trac/boost/ticket/2380
http://svn.boost.org/trac/boost/ticket/2430
http://svn.boost.org/trac/boost/ticket/2575
http://svn.boost.org/trac/boost/ticket/3160
http://svn.boost.org/trac/boost/ticket/4345
http://svn.boost.org/trac/boost/ticket/4521
http://svn.boost.org/trac/boost/ticket/4711
http://svn.boost.org/trac/boost/ticket/4921
http://svn.boost.org/trac/boost/ticket/5013
http://svn.boost.org/trac/boost/ticket/5173
http://svn.boost.org/trac/boost/ticket/5351
http://svn.boost.org/trac/boost/ticket/5516
http://svn.boost.org/trac/boost/ticket/5990
http://svn.boost.org/trac/boost/ticket/6174
http://svn.boost.org/trac/boost/ticket/6222
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• #6354 PGI: Compiler threading support is not turned on.

• #6673 shared_lock: move assign doesn't works with c++11.

• #6674 shared_mutex: try_lock_upgrade_until doesn't works.

• #6908 Compile error due to unprotected definitions of _WIN32_WINNT and WINVER.

• #6940 TIME_UTC is a macro in C11.

• #6959 call of abs is ambiguous.

• Fix issue signaled on the ML with task_object(task_object const&) in presence of task_object(task_object &&)

Version 2.1.1 - boost 1.49

Fixed Bugs:

• #2309 Lack of g++ symbol visibility support in Boost.Thread.

• #2639 documentation should be extended(defer_lock, try_to_lock, ...).

• #3639 Boost.Thread doesn't build with Sun-5.9 on Linux.

• #3762 Thread can't be compiled with winscw (Codewarrior by Nokia).

• #3885 document about mix usage of boost.thread and native thread api.

• #3975 Incorrect precondition for promise::set_wait_callback().

• #4048 thread::id formatting involves locale

• #4315 gcc 4.4 Warning: inline ... declared as dllimport: attribute ignored.

• #4480 OpenVMS patches for compiler issues workarounds.

• #4819 boost.thread's documentation misprints.

• #5423 thread issues with C++0x.

• #5617 boost::thread::id copy ctor.

• #5739 set-but-not-used warnings with gcc-4.6.

• #5826 threads.cpp: resource leak on threads creation failure.

• #5839 thread.cpp: ThreadProxy leaks on exceptions.

• #5859 win32 shared_mutex constructor leaks on exceptions.

• #6100 Compute hardware_concurrency() using get_nprocs() on GLIBC systems.

• #6168 recursive_mutex is using wrong config symbol (possible typo).

• #6175 Compile error with SunStudio.

• #6200 patch to have condition_variable and mutex error better handle EINTR.

• #6207 shared_lock swap compiler error on clang 3.0 c++11.

• #6208 try_lock_wrapper swap compiler error on clang 3.0 c++11.

19

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/6354
http://svn.boost.org/trac/boost/ticket/6673
http://svn.boost.org/trac/boost/ticket/6674
http://svn.boost.org/trac/boost/ticket/6908
http://svn.boost.org/trac/boost/ticket/6940
http://svn.boost.org/trac/boost/ticket/6959
http://svn.boost.org/trac/boost/ticket/2309
http://svn.boost.org/trac/boost/ticket/2639
http://svn.boost.org/trac/boost/ticket/3639
http://svn.boost.org/trac/boost/ticket/3762
http://svn.boost.org/trac/boost/ticket/3885
http://svn.boost.org/trac/boost/ticket/3975
http://svn.boost.org/trac/boost/ticket/4048
http://svn.boost.org/trac/boost/ticket/4315
http://svn.boost.org/trac/boost/ticket/4480
http://svn.boost.org/trac/boost/ticket/4819
http://svn.boost.org/trac/boost/ticket/5423
http://svn.boost.org/trac/boost/ticket/5617
http://svn.boost.org/trac/boost/ticket/5739
http://svn.boost.org/trac/boost/ticket/5826
http://svn.boost.org/trac/boost/ticket/5839
http://svn.boost.org/trac/boost/ticket/5859
http://svn.boost.org/trac/boost/ticket/6100
http://svn.boost.org/trac/boost/ticket/6168
http://svn.boost.org/trac/boost/ticket/6175
http://svn.boost.org/trac/boost/ticket/6200
http://svn.boost.org/trac/boost/ticket/6207
http://svn.boost.org/trac/boost/ticket/6208
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Version 2.1.0 - Changes since boost 1.40

The 1.41.0 release of Boost adds futures to the thread library. There are also a few minor changes.

Changes since boost 1.35

The 1.36.0 release of Boost includes a few new features in the thread library:

• New generic lock() and try_lock() functions for locking multiple mutexes at once.

• Rvalue reference support for move semantics where the compilers supports it.

• A few bugs fixed and missing functions added (including the serious win32 condition variable bug).

• scoped_try_lock types are now backwards-compatible with Boost 1.34.0 and previous releases.

• Support for passing function arguments to the thread function by supplying additional arguments to the boost::thread con-
structor.

• Backwards-compatibility overloads added for timed_lock and timed_wait functions to allow use of xtime for timeouts.

Version 2.0.0 - Changes since boost 1.34

Almost every line of code in Boost.Thread has been changed since the 1.34 release of boost. However, most of the interface changes
have been extensions, so the new code is largely backwards-compatible with the old code. The new features and breaking changes
are described below.

New Features

• Instances of boost::thread and of the various lock types are now movable.

• Threads can be interrupted at interruption points.

• Condition variables can now be used with any type that implements the Lockable concept, through the use of boost::condi-
tion_variable_any (boost::condition is a typedef to boost::condition_variable_any, provided for backwards
compatibility). boost::condition_variable is provided as an optimization, and will only work with
boost::unique_lock<boost::mutex> (boost::mutex::scoped_lock).

• Thread IDs are separated from boost::thread, so a thread can obtain it's own ID (using boost::this_thread::get_id()),
and IDs can be used as keys in associative containers, as they have the full set of comparison operators.

• Timeouts are now implemented using the Boost DateTime library, through a typedef boost::system_time for absolute timeouts,
and with support for relative timeouts in many cases. boost::xtime is supported for backwards compatibility only.

• Locks are implemented as publicly accessible templates boost::lock_guard, boost::unique_lock, boost::shared_lock,
and boost::upgrade_lock, which are templated on the type of the mutex. The Lockable concept has been extended to include
publicly available lock() and unlock() member functions, which are used by the lock types.

Breaking Changes

The list below should cover all changes to the public interface which break backwards compatibility.

• boost::try_mutex has been removed, and the functionality subsumed into boost::mutex. boost::try_mutex is left as a
typedef, but is no longer a separate class.

• boost::recursive_try_mutex has been removed, and the functionality subsumed into boost::recursive_mutex.
boost::recursive_try_mutex is left as a typedef, but is no longer a separate class.

20

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• boost::detail::thread::lock_ops has been removed. Code that relies on the lock_ops implementation detail will no
longer work, as this has been removed, as it is no longer necessary now that mutex types now have public lock() and unlock()
member functions.

• scoped_lock constructors with a second parameter of type bool are no longer provided. With previous boost releases,

boost::mutex::scoped_lock some_lock(some_mutex,false);

could be used to create a lock object that was associated with a mutex, but did not lock it on construction. This facility has now
been replaced with the constructor that takes a boost::defer_lock_type as the second parameter:

boost::mutex::scoped_lock some_lock(some_mutex,boost::defer_lock);

• The locked() member function of the scoped_lock types has been renamed to owns_lock().

• You can no longer obtain a boost::thread instance representing the current thread: a default-constructed boost::thread
object is not associated with any thread. The only use for such a thread object was to support the comparison operators: this
functionality has been moved to boost::thread::id.

• The broken boost::read_write_mutex has been replaced with boost::shared_mutex.

• boost::mutex is now never recursive. For Boost releases prior to 1.35 boost::mutex was recursive on Windows and not on
POSIX platforms.

• When using a boost::recursive_mutex with a call to boost::condition_variable_any::wait(), the mutex is only
unlocked one level, and not completely. This prior behaviour was not guaranteed and did not feature in the tests.

21

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Future
The following features will be included in next releases.

1. Complete the C++11 missing features, in particular

• #7285 C++11 compliance: Allow to pass movable arguments for call_once.

• #6227 C++11 compliance: Use of variadic templates on Generic Locking Algorithms on compilers providing them.

2. Add some of the extension proposed in A Standardized Representation of Asynchronous Operations, in particular

• #7589 Synchro: Add polymorphic lockables.

• #7449 Synchro: Add a synchronized value class.

• #7445 Async: Add future<>.then.

• #7446 Async: Add when_any.

• #7447 Async: Add when_all.

• #7448 Async: Add async taking a scheduler parameter.

22

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/7285
http://svn.boost.org/trac/boost/ticket/6227
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3428.pdf
http://svn.boost.org/trac/boost/ticket/7589
http://svn.boost.org/trac/boost/ticket/7449
http://svn.boost.org/trac/boost/ticket/7445
http://svn.boost.org/trac/boost/ticket/7446
http://svn.boost.org/trac/boost/ticket/7447
http://svn.boost.org/trac/boost/ticket/7448
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Management

Synopsis

#include <boost/thread/thread.hpp>

namespace boost
{
class thread;
void swap(thread& lhs,thread& rhs) noexcept;

namespace this_thread
{
thread::id get_id() noexcept;
template<typename TimeDuration>
void yield() noexcept; // DEPRECATED
template <class Clock, class Duration>
void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);
template <class Rep, class Period>
void sleep_for(const chrono::duration<Rep, Period>& rel_time);

template<typename Callable>
void at_thread_exit(Callable func); // EXTENSION

void interruption_point(); // EXTENSION
bool interruption_requested() noexcept; // EXTENSION
bool interruption_enabled() noexcept; // EXTENSION
class disable_interruption; // EXTENSION
class restore_interruption; // EXTENSION

#if defined BOOST_THREAD_USES_DATETIME
template <TimeDuration>
void sleep(TimeDuration const& rel_time); // DEPRECATED
void sleep(system_time const& abs_time); // DEPRECATED

#endif
}
class thread_group; // EXTENSION

}

Tutorial
The boost::thread class is responsible for launching and managing threads. Each boost::thread object represents a single
thread of execution, or Not-a-Thread, and at most one boost::thread object represents a given thread of execution: objects of
type boost::thread are not copyable.

Objects of type boost::thread are movable, however, so they can be stored in move-aware containers, and returned from functions.
This allows the details of thread creation to be wrapped in a function.

boost::thread make_thread();

void f()
{

boost::thread some_thread=make_thread();
some_thread.join();

}

23

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

On compilers that support rvalue references, boost::thread provides a proper move constructor and move-as-
signment operator, and therefore meets the C++0x MoveConstructible and MoveAssignable concepts. With such
compilers, boost::thread can therefore be used with containers that support those concepts.

For other compilers, move support is provided with a move emulation layer, so containers must explicitly detect
that move emulation layer. See <boost/thread/detail/move.hpp> for details.

Launching threads

A new thread is launched by passing an object of a callable type that can be invoked with no parameters to the constructor. The object
is then copied into internal storage, and invoked on the newly-created thread of execution. If the object must not (or cannot) be
copied, then boost::ref can be used to pass in a reference to the function object. In this case, the user of Boost.Thread must ensure
that the referred-to object outlives the newly-created thread of execution.

struct callable
{

void operator()();
};

boost::thread copies_are_safe()
{

callable x;
return boost::thread(x);

} // x is destroyed, but the newly-created thread has a copy, so this is OK

boost::thread oops()
{

callable x;
return boost::thread(boost::ref(x));

} // x is destroyed, but the newly-created thread still has a reference
// this leads to undefined behaviour

If you wish to construct an instance of boost::thread with a function or callable object that requires arguments to be supplied,
this can be done by passing additional arguments to the boost::thread constructor:

void find_the_question(int the_answer);

boost::thread deep_thought_2(find_the_question,42);

The arguments are copied into the internal thread structure: if a reference is required, use boost::ref, just as for references to
callable functions.

There is an unspecified limit on the number of additional arguments that can be passed.

Thread attributes

Thread launched in this way are created with implementation defined thread attributes as stack size, scheduling, priority, ... or any
platform specific attributes. It is not evident how to provide a portable interface that allows the user to set the platform specific at-
tributes. Boost.Thread stay in the middle road through the class thread::attributes which allows to set at least in a portable way the
stack size as follows:

boost::thread::attributes attrs;
attrs.set_size(4096*10);
boost::thread deep_thought_2(attrs, find_the_question, 42);

24

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Even for this simple attribute there could be portable issues as some platforms could require that the stack size should have a minimal
size and/or be a multiple of a given page size. The library adapts the requested size to the platform constraints so that the user doesn't
need to take care of it.

This is the single attribute that is provided in a portable way. In order to set any other thread attribute at construction time the user
needs to use non portable code.

On PThread platforms the user will need to get the thread attributes handle and use it for whatever attribute.

Next follows how the user could set the stack size and the scheduling policy on PThread platforms.

boost::thread::attributes attrs;
// set portable attributes
// ...
attr.set_stack_size(4096*10);
#if defined(BOOST_THREAD_PLATFORM_WIN32)

// ... window version
#elif defined(BOOST_THREAD_PLATFORM_PTHREAD)

// ... pthread version
pthread_attr_setschedpolicy(attr.get_native_handle(), SCHED_RR);

#else
#error "Boost threads unavailable on this platform"
#endif
boost::thread th(attrs, find_the_question, 42);

On Windows platforms it is not so simple as there is no type that compiles the thread attributes. There is a linked to the creation of
a thread on Windows that is emulated via the thread::attributes class. This is the LPSECURITY_ATTRIBUTES lpThreadAttributes.
Boost.Thread provides a non portable set_security function so that the user can provide it before the thread creation as follows

#if defined(BOOST_THREAD_PLATFORM_WIN32)
boost::thread::attributes attrs;
// set portable attributes
attr.set_stack_size(4096*10);
// set non portable attribute
LPSECURITY_ATTRIBUTES sec;
// init sec
attr.set_security(sec);
boost::thread th(attrs, find_the_question, 42);
// Set other thread attributes using the native_handle_type.
//...

#else
#error "Platform not supported"
#endif

Exceptions in thread functions

If the function or callable object passed to the boost::thread constructor propagates an exception when invoked that is not of
type boost::thread_interrupted, std::terminate() is called.

Detaching thread

A thread can be detached by explicitly invoking the detach() member function on the boost::thread object. In this case, the
boost::thread object ceases to represent the now-detached thread, and instead represents Not-a-Thread.

int main()
{
boost::thread t(my_func);
t.detach();

}

25

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Joining a thread

In order to wait for a thread of execution to finish, the join(), __join_for or __join_until (timed_join() deprecated) member
functions of the boost::thread object must be used. join() will block the calling thread until the thread represented by the
boost::thread object has completed.

int main()
{
boost::thread t(my_func);
t.join();

}

If the thread of execution represented by the boost::thread object has already completed, or the boost::thread object represents
Not-a-Thread, then join() returns immediately.

int main()
{
boost::thread t;
t.join(); // do nothing

}

Timed based join are similar, except that a call to __join_for or __join_until will also return if the thread being waited for does not
complete when the specified time has elapsed or reached respectively.

int main()
{
boost::thread t;
if (t.join_for(boost::chrono::milliseconds(500)))
// do something else

t.join(); // join anyway
}

Destructor V1

When the boost::thread object that represents a thread of execution is destroyed the thread becomes detached. Once a thread is
detached, it will continue executing until the invocation of the function or callable object supplied on construction has completed,
or the program is terminated. A thread can also be detached by explicitly invoking the detach() member function on the
boost::thread object. In this case, the boost::thread object ceases to represent the now-detached thread, and instead represents
Not-a-Thread.

Destructor V2

When the boost::thread object that represents a thread of execution is destroyed the program terminates if the thread is __joinable__.

int main()
{
boost::thread t(my_func);

} // calls std::terminate()

You can use a thread_joiner to ensure that the thread has been joined at the thread destructor.

26

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int main()
{
boost::thread t(my_func);
boost::thread_joiner g(t);
// do someting else

} // here the thread_joiner destructor will join the thread before it is destroyed.

Interruption

A running thread can be interrupted by invoking the interrupt() member function of the corresponding boost::thread object.
When the interrupted thread next executes one of the specified interruption points (or if it is currently blocked whilst executing one)
with interruption enabled, then a boost::thread_interrupted exception will be thrown in the interrupted thread. If not caught,
this will cause the execution of the interrupted thread to terminate. As with any other exception, the stack will be unwound, and de-
structors for objects of automatic storage duration will be executed.

If a thread wishes to avoid being interrupted, it can create an instance of boost::this_thread::disable_interruption.
Objects of this class disable interruption for the thread that created them on construction, and restore the interruption state to whatever
it was before on destruction:

void f()
{

// interruption enabled here
{

boost::this_thread::disable_interruption di;
// interruption disabled
{

boost::this_thread::disable_interruption di2;
// interruption still disabled

} // di2 destroyed, interruption state restored
// interruption still disabled

} // di destroyed, interruption state restored
// interruption now enabled

}

The effects of an instance of boost::this_thread::disable_interruption can be temporarily reversed by constructing an
instance of boost::this_thread::restore_interruption, passing in the boost::this_thread::disable_interruption
object in question. This will restore the interruption state to what it was when the boost::this_thread::disable_interruption
object was constructed, and then disable interruption again when the boost::this_thread::restore_interruption object
is destroyed.

void g()
{

// interruption enabled here
{

boost::this_thread::disable_interruption di;
// interruption disabled
{

boost::this_thread::restore_interruption ri(di);
// interruption now enabled

} // ri destroyed, interruption disable again
} // di destroyed, interruption state restored
// interruption now enabled

}

At any point, the interruption state for the current thread can be queried by calling boost::this_thread::interruption_en-
abled().

27

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Predefined Interruption Points

The following functions are interruption points, which will throw boost::thread_interrupted if interruption is enabled for
the current thread, and interruption is requested for the current thread:

• boost::thread::join()

• boost::thread::timed_join()

• boost::thread::try_join_for(),

• boost::thread::try_join_until(),

• boost::condition_variable::wait()

• boost::condition_variable::timed_wait()

• boost::condition_variable::wait_for()

• boost::condition_variable::wait_until()

• boost::condition_variable_any::wait()

• boost::condition_variable_any::timed_wait()

• boost::condition_variable_any::wait_for()

• boost::condition_variable_any::wait_until()

• boost::thread::sleep()

• boost::this_thread::sleep_for()

• boost::this_thread::sleep_until()

• boost::this_thread::interruption_point()

Thread IDs

Objects of class boost::thread::id can be used to identify threads. Each running thread of execution has a unique ID obtainable
from the corresponding boost::thread by calling the get_id() member function, or by calling
boost::this_thread::get_id() from within the thread. Objects of class boost::thread::id can be copied, and used as
keys in associative containers: the full range of comparison operators is provided. Thread IDs can also be written to an output stream
using the stream insertion operator, though the output format is unspecified.

Each instance of boost::thread::id either refers to some thread, or Not-a-Thread. Instances that refer to Not-a-Thread compare
equal to each other, but not equal to any instances that refer to an actual thread of execution. The comparison operators on
boost::thread::id yield a total order for every non-equal thread ID.

Using native interfaces with Boost.Thread resources

boost::thread class has members native_handle_type and native_handle providing access to the underlying native handle.

This native handle can be used to change for example the scheduling.

In general, it is not safe to use this handle with operations that can conflict with the ones provided by Boost.Thread. An example of
bad usage could be detaching a thread directly as it will not change the internals of the boost::thread instance, so for example
the joinable function will continue to return true, while the native thread is no more joinable.

28

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

thread t(fct);
thread::native_handle_type hnd=t.native_handle();
pthread_detach(hnd);
assert(t.joinable());

Using Boost.Thread interfaces in a native thread

Any thread of execution created using the native interface is called a native thread in this documentation.

The first example of a native thread of execution is the main thread.

The user can access to some synchronization functions related to the native current thread using the boost::this_thread yield,
sleep, sleep_for, sleep_until, functions.

int main() {
// ...
boost::this_thread::sleep_for(boost::chrono::milliseconds(10));
// ...

}

Of course all the synchronization facilities provided by Boost.Thread are also available on native threads.

The boost::this_thread interrupt related functions behave in a degraded mode when called from a thread created using the
native interface, i.e. boost::this_thread::interruption_enabled() returns false. As consequence the use of
boost::this_thread::disable_interruption and boost::this_thread::restore_interruption will do nothing
and calls to boost::this_thread::interruption_point() will be just ignored.

As the single way to interrupt a thread is through a boost::thread instance, interruption_request() wiil returns false for
the native threads.

pthread_exit POSIX limitation

pthread_exit in glibc/NPTL causes a "forced unwind" that is almost like a C++ exception, but not quite. On Mac OS X, for example,
pthread_exit unwinds without calling C++ destructors.

This behavior is incompatible with the current Boost.Thread design, so the use of this function in a POSIX thread result in undefined
behavior of any Boost.Thread function.

29

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class thread

#include <boost/thread/thread.hpp>

class thread
{
public:

class attributes; // EXTENSION

thread() noexcept;
thread(const thread&) = delete;
thread& operator=(const thread&) = delete;

thread(thread&&) noexcept;
thread& operator=(thread&&) noexcept;
~thread();

template <class F>
explicit thread(F f);
template <class F>
thread(F &&f);

template <class F,class A1,class A2,...>
thread(F f,A1 a1,A2 a2,...);
template <class F, class ...Args>
explicit thread(F&& f, Args&&... args);

template <class F>
explicit thread(attributes& attrs, F f); // EXTENSION
template <class F>
thread(attributes& attrs, F &&f); // EXTENSION
template <class F, class ...Args>
explicit thread(attributes& attrs, F&& f, Args&&... args);

// move support
thread(thread && x) noexcept;
thread& operator=(thread && x) noexcept;

void swap(thread& x) noexcept;

class id;

id get_id() const noexcept;

bool joinable() const noexcept;
void join();
template <class Rep, class Period>
bool try_join_for(const chrono::duration<Rep, Period>& rel_time); // EXTENSION
template <class Clock, class Duration>
bool try_join_until(const chrono::time_point<Clock, Duration>& t); // EXTENSION

void detach();

static unsigned hardware_concurrency() noexcept;

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

void interrupt(); // EXTENSION
bool interruption_requested() const noexcept; // EXTENSION

30

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#if defined BOOST_THREAD_USES_DATETIME
bool timed_join(const system_time& wait_until); // DEPRECATED
template<typename TimeDuration>
bool timed_join(TimeDuration const& rel_time); // DEPRECATED
static void sleep(const system_time& xt);// DEPRECATED

#endif

#if defined BOOST_THREAD_PROVIDES_THREAD_EQ
bool operator==(const thread& other) const; // DEPRECATED
bool operator!=(const thread& other) const; // DEPRECATED

#endif
static void yield() noexcept; // DEPRECATED

};

void swap(thread& lhs,thread& rhs) noexcept;

Default Constructor

thread() noexcept;

Effects: Constructs a boost::thread instance that refers to Not-a-Thread.

Postconditions: this->get_id()==thread::id()

Throws: Nothing

Move Constructor

thread(thread&& other) noexcept;

Effects: Transfers ownership of the thread managed by other (if any) to the newly constructed boost::thread
instance.

Postconditions: other.get_id()==thread::id() and get_id() returns the value of other.get_id() prior to the
construction

Throws: Nothing

Move assignment operator

thread& operator=(thread&& other) noexcept;

Warning

DEPRECATED since 3.0.0: BOOST_THREAD_DONT_PROVIDE_THREAD_MOVE_ASSIGN_CALLS_TER-
MINATE_IF_JOINABLE behavior.

Available only up to Boost 1.56.

Join the thread before moving.

Effects: Transfers ownership of the thread managed by other (if any) to *this.

31

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

- if defined BOOST_THREAD_DONT_PROVIDE_THREAD_MOVE_ASSIGN_CALLS_TERMIN-
ATE_IF_JOINABLE: If there was a thread previously associated with *this then that thread is detached,
DEPRECATED

- if defined BOOST_THREAD_PROVIDES_THREAD_MOVE_ASSIGN_CALLS_TERMINATE_IF_JOIN-
ABLE: If the thread is joinable calls to std::terminate.

Postconditions: other->get_id()==thread::id() and get_id() returns the value of other.get_id() prior to the
assignment.

Throws: Nothing

Thread Constructor

template<typename Callable>
thread(Callable func);

Requires: Callable must by Copyable and func() must be a valid expression.

Effects: func is copied into storage managed internally by the thread library, and that copy is invoked on a newly-
created thread of execution. If this invocation results in an exception being propagated into the internals
of the thread library that is not of type boost::thread_interrupted, then std::terminate() will
be called. Any return value from this invocation is ignored.

Postconditions: *this refers to the newly created thread of execution and this->get_id()!=thread::id().

Throws: boost::thread_resource_error if an error occurs.

Error Conditions: resource_unavailable_try_again : the system lacked the necessary resources to create an- other thread,
or the system-imposed limit on the number of threads in a process would be exceeded.

Thread Attributes Constructor EXTENSION

template<typename Callable>
thread(attributes& attrs, Callable func);

Preconditions: Callable must by copyable.

Effects: func is copied into storage managed internally by the thread library, and that copy is invoked on a newly-
created thread of execution with the specified attributes. If this invocation results in an exception being
propagated into the internals of the thread library that is not of type boost::thread_interrupted,
then std::terminate() will be called. Any return value from this invocation is ignored. If the attributes
declare the native thread as detached, the boost::thread will be detached.

Postconditions: *this refers to the newly created thread of execution and this->get_id()!=thread::id().

Throws: boost::thread_resource_error if an error occurs.

Error Conditions: resource_unavailable_try_again : the system lacked the necessary resources to create an- other thread,
or the system-imposed limit on the number of threads in a process would be exceeded.

Thread Callable Move Constructor

template<typename Callable>
thread(Callable &&func);

Preconditions: Callable must by Movable.

32

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: func is moved into storage managed internally by the thread library, and that copy is invoked on a
newly-created thread of execution. If this invocation results in an exception being propagated into the
internals of the thread library that is not of type boost::thread_interrupted, then std::termin-
ate() will be called. Any return value from this invocation is ignored.

Postconditions: *this refers to the newly created thread of execution and this->get_id()!=thread::id().

Throws: boost::thread_resource_error if an error occurs.

Error Conditions: resource_unavailable_try_again : the system lacked the necessary resources to create an- other thread,
or the system-imposed limit on the number of threads in a process would be exceeded.

Thread Attributes Move Constructor EXTENSION

template<typename Callable>
thread(attributes& attrs, Callable func);

Preconditions: Callable must by copyable.

Effects: func is copied into storage managed internally by the thread library, and that copy is invoked on a newly-
created thread of execution with the specified attributes. If this invocation results in an exception being
propagated into the internals of the thread library that is not of type boost::thread_interrupted,
then std::terminate() will be called. Any return value from this invocation is ignored. If the attributes
declare the native thread as detached, the boost::thread will be detached.

Postconditions: *this refers to the newly created thread of execution and this->get_id()!=thread::id().

Throws: boost::thread_resource_error if an error occurs.

Error Conditions: resource_unavailable_try_again : the system lacked the necessary resources to create an- other thread,
or the system-imposed limit on the number of threads in a process would be exceeded.

Thread Constructor with arguments

template <class F,class A1,class A2,...>
thread(F f,A1 a1,A2 a2,...);

Preconditions: F and each An must by copyable or movable.

Effects: As if thread(boost::bind(f,a1,a2,...)). Consequently, f and each an are copied into internal
storage for access by the new thread.

Postconditions: *this refers to the newly created thread of execution.

Throws: boost::thread_resource_error if an error occurs.

Error Conditions: resource_unavailable_try_again : the system lacked the necessary resources to create an- other thread,
or the system-imposed limit on the number of threads in a process would be exceeded.

Note: Currently up to nine additional arguments a1 to a9 can be specified in addition to the function f.

Thread Destructor

~thread();

33

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Warning

DEPRECATED since 3.0.0: BOOST_THREAD_DONT_PROVIDE_THREAD_DESTRUCTOR_CALLS_TER-
MINATE_IF_JOINABLE behavior.

Available only up to Boost 1.56.

Join the thread before destroying or use a scoped thread.

Effects: - if defined BOOST_THREAD_DONT_PROVIDE_THREAD_DESTRUCTOR_CALLS_TERMINATE_IF_JOIN-
ABLE: If *this has an associated thread of execution, calls detach(), DEPRECATED

- BOOST_THREAD_PROVIDES_THREAD_DESTRUCTOR_CALLS_TERMINATE_IF_JOINABLE: If the thread
is joinable calls to std::terminate. Destroys *this.

Throws: Nothing.

Note: Either implicitly detaching or joining a joinable() thread in its destructor could result in difficult to debug correctness
(for detach) or performance (for join) bugs encountered only when an exception is raised. Thus the programmer
must ensure that the destructor is never executed while the thread is still joinable.

Member function joinable()

bool joinable() const noexcept;

Returns: true if *this refers to a thread of execution, false otherwise.

Throws: Nothing

Member function join()

void join();

Preconditions: the thread is joinable.

Effects: If *this refers to a thread of execution, waits for that thread of execution to complete.

Synchronization: The completion of the thread represented by *this synchronizes with the corresponding successful
join() return.

Note: Operations on *this are not synchronized.

Postconditions: If *this refers to a thread of execution on entry, that thread of execution has completed. *this no
longer refers to any thread of execution.

Throws: boost::thread_interrupted if the current thread of execution is interrupted or system_error

Error Conditions: resource_deadlock_would_occur: if deadlock is detected or this->get_id() ==

boost::this_thread::get_id().

invalid_argument: if the thread is not joinable and BOOST_THREAD_TRHOW_IF_PRECONDI-
TION_NOT_SATISFIED is defined.

Notes: join() is one of the predefined interruption points.

34

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member function timed_join() DEPRECATED

bool timed_join(const system_time& wait_until);

template<typename TimeDuration>
bool timed_join(TimeDuration const& rel_time);

Warning

DEPRECATED since 3.00.

Available only up to Boost 1.56.

Use instead try_join_for, try_join_until.

Preconditions: the thread is joinable.

Effects: If *this refers to a thread of execution, waits for that thread of execution to complete, the time
wait_until has been reach or the specified duration rel_time has elapsed. If *this doesn't refer to
a thread of execution, returns immediately.

Returns: true if *this refers to a thread of execution on entry, and that thread of execution has completed before
the call times out, false otherwise.

Postconditions: If *this refers to a thread of execution on entry, and timed_join returns true, that thread of execution
has completed, and *this no longer refers to any thread of execution. If this call to timed_join returns
false, *this is unchanged.

Throws: boost::thread_interrupted if the current thread of execution is interrupted or system_error

Error Conditions: resource_deadlock_would_occur: if deadlock is detected or this->get_id() == boost::this_thread::get_id().

invalid_argument: if the thread is not joinable and BOOST_THREAD_TRHOW_IF_PRECONDI-
TION_NOT_SATISFIED is defined.

Notes: timed_join() is one of the predefined interruption points.

Member function try_join_for() EXTENSION

template <class Rep, class Period>
bool try_join_for(const chrono::duration<Rep, Period>& rel_time);

Preconditions: the thread is joinable.

Effects: If *this refers to a thread of execution, waits for that thread of execution to complete, the specified
duration rel_time has elapsed. If *this doesn't refer to a thread of execution, returns immediately.

Returns: true if *this refers to a thread of execution on entry, and that thread of execution has completed before
the call times out, false otherwise.

Postconditions: If *this refers to a thread of execution on entry, and try_join_for returns true, that thread of exe-
cution has completed, and *this no longer refers to any thread of execution. If this call to try_join_for
returns false, *this is unchanged.

Throws: boost::thread_interrupted if the current thread of execution is interrupted or system_error

Error Conditions: resource_deadlock_would_occur: if deadlock is detected or this->get_id() == boost::this_thread::get_id().

35

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

invalid_argument: if the thread is not joinable and BOOST_THREAD_TRHOW_IF_PRECONDI-
TION_NOT_SATISFIED is defined.

Notes: try_join_for() is one of the predefined interruption points.

Member function try_join_until() EXTENSION

template <class Clock, class Duration>
bool try_join_until(const chrono::time_point<Clock, Duration>& abs_time);

Preconditions: the thread is joinable.

Effects: If *this refers to a thread of execution, waits for that thread of execution to complete, the time abs_time
has been reach. If *this doesn't refer to a thread of execution, returns immediately.

Returns: true if *this refers to a thread of execution on entry, and that thread of execution has completed before
the call times out, false otherwise.

Postconditions: If *this refers to a thread of execution on entry, and try_join_until returns true, that thread of
execution has completed, and *this no longer refers to any thread of execution. If this call to
try_join_until returns false, *this is unchanged.

Throws: boost::thread_interrupted if the current thread of execution is interrupted or system_error

Error Conditions: resource_deadlock_would_occur: if deadlock is detected or this->get_id() == boost::this_thread::get_id().

invalid_argument: if the thread is not joinable and BOOST_THREAD_TRHOW_IF_PRECONDI-
TION_NOT_SATISFIED is defined.

Notes: try_join_until() is one of the predefined interruption points.

Member function detach()

void detach();

Preconditions: the thread is joinable.

Effects: The thread of execution becomes detached, and no longer has an associated boost::thread object.

Postconditions: *this no longer refers to any thread of execution.

Throws: system_error

Error Conditions: no_such_process: if the thread is not valid.

invalid_argument: if the thread is not joinable and BOOST_THREAD_TRHOW_IF_PRECONDI-
TION_NOT_SATISFIED is defined.

Member function get_id()

thread::id get_id() const noexcept;

Returns: If *this refers to a thread of execution, an instance of boost::thread::id that represents that thread. Otherwise
returns a default-constructed boost::thread::id.

Throws: Nothing

36

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member function interrupt() EXTENSION

void interrupt();

Effects: If *this refers to a thread of execution, request that the thread will be interrupted the next time it enters one of the
predefined interruption points with interruption enabled, or if it is currently blocked in a call to one of the predefined
interruption points with interruption enabled .

Throws: Nothing

Static member function hardware_concurrency()

unsigned hardware_concurrency() noexecpt;

Returns: The number of hardware threads available on the current system (e.g. number of CPUs or cores or hyperthreading
units), or 0 if this information is not available.

Throws: Nothing

Member function native_handle()

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

Effects: Returns an instance of native_handle_type that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, native_handle() and native_handle_type are not present.

Throws: Nothing.

operator== DEPRECATED

bool operator==(const thread& other) const;

Warning

DEPRECATED since 4.0.0.

Available only up to Boost 1.58.

Use a.get_id()==b.get_id() instead`.

Returns: get_id()==other.get_id()

operator!= DEPRECATED

bool operator!=(const thread& other) const;

37

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Warning

DEPRECATED since 4.0.0.

Available only up to Boost 1.58.

Use a.get_id()!=b.get_id() instead`.

Returns: get_id()!=other.get_id()

Static member function sleep() DEPRECATED

void sleep(system_time const& abs_time);

Warning

DEPRECATED since 3.0.0.

Available only up to Boost 1.56.

Use this_thread::sleep_for() or this_thread::sleep_until().

Effects: Suspends the current thread until the specified time has been reached.

Throws: boost::thread_interrupted if the current thread of execution is interrupted.

Notes: sleep() is one of the predefined interruption points.

Static member function yield() DEPRECATED

void yield();

Warning

DEPRECATED since 3.0.0.

Available only up to Boost 1.56.

Use this_thread::yield().

Effects: See boost::this_thread::yield().

Member function swap()

void swap(thread& other) noexcept;

Effects: Exchanges the threads of execution associated with *this and other, so *this is associated with the
thread of execution associated with other prior to the call, and vice-versa.

Postconditions: this->get_id() returns the same value as other.get_id() prior to the call. other.get_id() returns
the same value as this->get_id() prior to the call.

Throws: Nothing.

38

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Non-member function swap()

#include <boost/thread/thread.hpp>

void swap(thread& lhs,thread& rhs) noexcept;

Effects: lhs.swap(rhs).

Class boost::thread::id

#include <boost/thread/thread.hpp>

class thread::id
{
public:

id() noexcept;

bool operator==(const id& y) const noexcept;
bool operator!=(const id& y) const noexcept;
bool operator<(const id& y) const noexcept;
bool operator>(const id& y) const noexcept;
bool operator<=(const id& y) const noexcept;
bool operator>=(const id& y) const noexcept;

template<class charT, class traits>
friend std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const id& x);

};

Default constructor

id() noexcept;

Effects: Constructs a boost::thread::id instance that represents Not-a-Thread.

Throws: Nothing

operator==

bool operator==(const id& y) const noexcept;

Returns: true if *this and y both represent the same thread of execution, or both represent Not-a-Thread, false otherwise.

Throws: Nothing

operator!=

bool operator!=(const id& y) const noexcept;

Returns: true if *this and y represent different threads of execution, or one represents a thread of execution, and the other
represent Not-a-Thread, false otherwise.

Throws: Nothing

39

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

operator<

bool operator<(const id& y) const noexcept;

Returns: true if *this!=y is true and the implementation-defined total order of boost::thread::id values places *this
before y, false otherwise.

Throws: Nothing

Note: A boost::thread::id instance representing Not-a-Thread will always compare less than an instance representing
a thread of execution.

operator>

bool operator>(const id& y) const noexcept;

Returns: y<*this

Throws: Nothing

operator<=

bool operator<=(const id& y) const noexcept;

Returns: !(y<*this)

Throws: Nothing

operator>=

bool operator>=(const id& y) const noexcept;

Returns: !(*this<y)

Throws: Nothing

Friend operator<<

template<class charT, class traits>
friend std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const id& x);

Effects: Writes a representation of the boost::thread::id instance x to the stream os, such that the representation of two
instances of boost::thread::id a and b is the same if a==b, and different if a!=b.

Returns: os

40

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class boost::thread::attributes EXTENSION

class thread::attributes {
public:

attributes() noexcept;
~ attributes()=default;
// stack
void set_stack_size(std::size_t size) noexcept;
std::size_t get_stack_size() const noexcept;

#if defined BOOST_THREAD_DEFINES_THREAD_ATTRIBUTES_NATIVE_HANDLE
typedef platform-specific-type native_handle_type;
native_handle_type* native_handle() noexcept;
const native_handle_type* native_handle() const noexcept;

#endif

};

Default constructor

thread_attributes() noexcept;

Effects: Constructs a thread atrributes instance with its default values.

Throws: Nothing

Member function set_stack_size()

void set_stack_size(std::size_t size) noexcept;

Effects: Stores the stack size to be used to create a thread. This is an hint that the implementation can choose a better
size if to small or too big or not aligned to a page.

Postconditions: this-> get_stack_size() returns the chosen stack size.

Throws: Nothing.

Member function get_stack_size()

std::size_t get_stack_size() const noexcept;

Returns: The stack size to be used on the creation of a thread. Note that this function can return 0 meaning the default.

Throws: Nothing.

Member function native_handle()

typedef platform-specific-type native_handle_type;
typedef platform-specific-type native_handle_type;
native_handle_type* native_handle() noexcept;
const native_handle_type* native_handle() const noexcept;

Effects: Returns an instance of native_handle_type that can be used with platform-specific APIs to manipulate the under-
lying thread attributes implementation. If no such instance exists, native_handle() and native_handle_type
are not present and BOOST_THREAD_DEFINES_THREAD_ATTRIBUTES_NATIVE_HANDLE is not defined.

41

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: Nothing.

Namespace this_thread

namespace boost {
namespace this_thread {
thread::id get_id() noexcept;
template<typename TimeDuration>
void yield() noexcept;
template <class Clock, class Duration>
void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);
template <class Rep, class Period>
void sleep_for(const chrono::duration<Rep, Period>& rel_time);

template<typename Callable>
void at_thread_exit(Callable func); // EXTENSION

void interruption_point(); // EXTENSION
bool interruption_requested() noexcept; // EXTENSION
bool interruption_enabled() noexcept; // EXTENSION
class disable_interruption; // EXTENSION
class restore_interruption; // EXTENSION

#if defined BOOST_THREAD_USES_DATETIME
void sleep(TimeDuration const& rel_time); // DEPRECATED
void sleep(system_time const& abs_time); // DEPRECATED

#endif
}

}

Non-member function get_id()

#include <boost/thread/thread.hpp>

namespace this_thread
{

thread::id get_id() noexcept;
}

Returns: An instance of boost::thread::id that represents that currently executing thread.

Throws: boost::thread_resource_error if an error occurs.

Non-member function interruption_point() EXTENSION

#include <boost/thread/thread.hpp>

namespace this_thread
{

void interruption_point();
}

Effects: Check to see if the current thread has been interrupted.

Throws: boost::thread_interrupted if boost::this_thread::interruption_enabled() and
boost::this_thread::interruption_requested() both return true.

42

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Non-member function interruption_requested() EXTENSION

#include <boost/thread/thread.hpp>

namespace this_thread
{

bool interruption_requested() noexcept;
}

Returns: true if interruption has been requested for the current thread, false otherwise.

Throws: Nothing.

Non-member function interruption_enabled() EXTENSION

#include <boost/thread/thread.hpp>

namespace this_thread
{

bool interruption_enabled() noexcept;
}

Returns: true if interruption has been enabled for the current thread, false otherwise.

Throws: Nothing.

Non-member function sleep() DEPRECATED

#include <boost/thread/thread.hpp>

namespace this_thread
{

template<typename TimeDuration>
void sleep(TimeDuration const& rel_time);
void sleep(system_time const& abs_time)

}

Warning

DEPRECATED since 3.0.0.

Available only up to Boost 1.56.

Use sleep_for() and sleep_until() instead.

Effects: Suspends the current thread until the time period specified by rel_time has elapsed or the time point specified by
abs_time has been reached.

Throws: boost::thread_interrupted if the current thread of execution is interrupted.

Notes: sleep() is one of the predefined interruption points.

43

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Non-member function sleep_until()

#include <boost/thread/thread.hpp>

namespace this_thread
{
template <class Clock, class Duration>
void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);

}

Effects: Suspends the current thread until the time point specified by abs_time has been reached.

Throws: Nothing if Clock satisfies the TrivialClock requirements and operations of Duration do not throw exceptions.
boost::thread_interrupted if the current thread of execution is interrupted.

Notes: sleep_until() is one of the predefined interruption points.

Non-member function sleep_for()

#include <boost/thread/thread.hpp>

namespace this_thread
{
template <class Rep, class Period>
void sleep_for(const chrono::duration<Rep, Period>& rel_time);

}

Effects: Suspends the current thread until the duration specified by by rel_time has elapsed.

Throws: Nothing if operations of chrono::duration<Rep, Period> do not throw exceptions. boost::thread_interrupted
if the current thread of execution is interrupted.

Notes: sleep_for() is one of the predefined interruption points.

Non-member function yield()

#include <boost/thread/thread.hpp>

namespace this_thread
{

void yield() noexcept;
}

Effects: Gives up the remainder of the current thread's time slice, to allow other threads to run.

Throws: Nothing.

44

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class disable_interruption EXTENSION

#include <boost/thread/thread.hpp>

namespace this_thread
{

class disable_interruption
{
public:

disable_interruption(const disable_interruption&) = delete;
disable_interruption& operator=(const disable_interruption&) = delete;
disable_interruption() noexcept;
~disable_interruption() noexcept;

};
}

boost::this_thread::disable_interruption disables interruption for the current thread on construction, and restores the
prior interruption state on destruction. Instances of disable_interruption cannot be copied or moved.

Constructor

disable_interruption() noexcept;

Effects: Stores the current state of boost::this_thread::interruption_enabled() and disables interruption
for the current thread.

Postconditions: boost::this_thread::interruption_enabled() returns false for the current thread.

Throws: Nothing.

Destructor

~disable_interruption() noexcept;

Preconditions: Must be called from the same thread from which *this was constructed.

Effects: Restores the current state of boost::this_thread::interruption_enabled() for the current thread
to that prior to the construction of *this.

Postconditions: boost::this_thread::interruption_enabled() for the current thread returns the value stored in
the constructor of *this.

Throws: Nothing.

45

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class restore_interruption EXTENSION

#include <boost/thread/thread.hpp>

namespace this_thread
{

class restore_interruption
{
public:

restore_interruption(const restore_interruption&) = delete;
restore_interruption& operator=(const restore_interruption&) = delete;
explicit restore_interruption(disable_interruption& disabler) noexcept;
~restore_interruption() noexcept;

};
}

On construction of an instance of boost::this_thread::restore_interruption, the interruption state for the current thread
is restored to the interruption state stored by the constructor of the supplied instance of boost::this_thread::disable_inter-
ruption. When the instance is destroyed, interruption is again disabled. Instances of restore_interruption cannot be copied
or moved.

Constructor

explicit restore_interruption(disable_interruption& disabler) noexcept;

Preconditions: Must be called from the same thread from which disabler was constructed.

Effects: Restores the current state of boost::this_thread::interruption_enabled() for the current thread
to that prior to the construction of disabler.

Postconditions: boost::this_thread::interruption_enabled() for the current thread returns the value stored in
the constructor of disabler.

Throws: Nothing.

Destructor

~restore_interruption() noexcept;

Preconditions: Must be called from the same thread from which *this was constructed.

Effects: Disables interruption for the current thread.

Postconditions: boost::this_thread::interruption_enabled() for the current thread returns false.

Throws: Nothing.

Non-member function template at_thread_exit() EXTENSION

#include <boost/thread/thread.hpp>

template<typename Callable>
void at_thread_exit(Callable func);

Effects: A copy of func is placed in thread-specific storage. This copy is invoked when the current thread exits
(even if the thread has been interrupted).

46

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Postconditions: A copy of func has been saved for invocation on thread exit.

Throws: std::bad_alloc if memory cannot be allocated for the copy of the function, boost::thread_re-
source_error if any other error occurs within the thread library. Any exception thrown whilst copying
func into internal storage.

Note: This function is not called if the thread was terminated forcefully using platform-specific APIs, or if the
thread is terminated due to a call to exit(), abort() or std::terminate(). In particular, returning
from main() is equivalent to call to exit(), so will not call any functions registered with
at_thread_exit()

Class thread_group EXTENSION

#include <boost/thread/thread.hpp>
#include <boost/thread/thread_group.hpp>

class thread_group
{
public:

thread_group(const thread_group&) = delete;
thread_group& operator=(const thread_group&) = delete;

thread_group();
~thread_group();

template<typename F>
thread* create_thread(F threadfunc);
void add_thread(thread* thrd);
void remove_thread(thread* thrd);
bool is_this_thread_in();
bool is_thread_in(thread* thrd);
void join_all();
void interrupt_all();
int size() const;

};

thread_group provides for a collection of threads that are related in some fashion. New threads can be added to the group with
add_thread and create_thread member functions. thread_group is not copyable or movable.

Constructor

thread_group();

Effects: Create a new thread group with no threads.

Destructor

~thread_group();

Effects: Destroy *this and delete all boost::thread objects in the group.

47

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member function create_thread()

template<typename F>
thread* create_thread(F threadfunc);

Effects: Create a new boost::thread object as-if by new thread(threadfunc) and add it to the group.

Postcondition: this->size() is increased by one, the new thread is running.

Returns: A pointer to the new boost::thread object.

Member function add_thread()

void add_thread(thread* thrd);

Precondition: The expression delete thrd is well-formed and will not result in undefined behaviour and
is_thread_in(thrd) == false.

Effects: Take ownership of the boost::thread object pointed to by thrd and add it to the group.

Postcondition: this->size() is increased by one.

Member function remove_thread()

void remove_thread(thread* thrd);

Effects: If thrd is a member of the group, remove it without calling delete.

Postcondition: If thrd was a member of the group, this->size() is decreased by one.

Member function join_all()

void join_all();

Requires: is_this_thread_in() == false.

Effects: Call join() on each boost::thread object in the group.

Postcondition: Every thread in the group has terminated.

Note: Since join() is one of the predefined interruption points, join_all() is also an interruption point.

Member function is_this_thread_in()

bool is_this_thread_in();

Returns: true if there is a thread th in the group such that th.get_id() == this_thread::get_id().

Member function is_thread_in()

bool is_thread_in(thread* thrd);

Returns: true if there is a thread th in the group such that th.get_id() == thrd->get_id().

48

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member function interrupt_all()

void interrupt_all();

Effects: Call interrupt() on each boost::thread object in the group.

Member function size()

int size();

Returns: The number of threads in the group.

Throws: Nothing.

49

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Scoped Threads
Synopsis

//#include <boost/thread/scoped_thread.hpp>

struct detach;
struct join_if_joinable;
struct interrupt_and_join_if_joinable;
template <class CallableThread = join_if_joinable>
class strict_scoped_thread;
template <class CallableThread = join_if_joinable>
class scoped_thread;
void swap(scoped_thread& lhs,scoped_thread& rhs) noexcept;

Motivation
Based on the scoped_thread class defined in C++ Concurrency in Action Boost.Thread defines a thread wrapper class that instead
of calling terminate if the thread is joinable on destruction, call a specific action given as template parameter.

While the scoped_thread class defined in C++ Concurrency in Action is closer to strict_scoped_thread class that doesn't allows any
change in the wrapped thread, Boost.Thread provides a class scoped_thread that provides the same non-deprecated interface than
thread.

Tutorial
Scoped Threads are wrappers around a thread that allows the user to state what to do at destruction time. One of the common uses
is to join the thread at destruction time so this is the default behavior. This is the single difference respect to a thread. While thread
call std::terminate() on the destructor is the thread is joinable, strict_scoped_thread<> or scoped_thread<> join the thread if joinable.

The difference between strict_scoped_thread and scoped_thread is that the strict_scoped_thread hides completely the owned thread
and so the user can do nothing with the owned thread other than the specific action given as parameter, while scoped_thread provide
the same interface than thread and forwards all the operations.

boost::strict_scoped_thread<> t1((boost::thread(F)));
boost::strict_scoped_thread<> t2((boost::thread(F)));
t2.interrupt();

Free Thread Functors

//#include <boost/thread/scoped_thread.hpp>

struct detach;
struct join_if_joinable;
struct interrupt_and_join_if_joinable;

50

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Functor detach

struct detach
{
void operator()(thread& t)
{
t.detach();

}
};

Functor join_if_joinable

struct join_if_joinable
{
void operator()(thread& t)
{
if (t.joinable())
{
t.join();

}
}

};

Functor interrupt_and_join_if_joinable

struct interrupt_and_join_if_joinable
{
void operator()(thread& t)
{
t.interrupt();
if (t.joinable())
{
t.join();

}
}

};

Class strict_scoped_thread

// #include <boost/thread/scoped_thread.hpp>

template <class CallableThread = join_if_joinable>
class strict_scoped_thread
{
thread t_; // for exposition purposes only

public:

strict_scoped_thread(strict_scoped_thread const&) = delete;
strict_scoped_thread& operator=(strict_scoped_thread const&) = delete;

explicit strict_scoped_thread(thread&& t) noexcept;

~strict_scoped_thread();

};

RAI thread wrapper adding a specific destroyer allowing to master what can be done at destruction time.

51

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

CallableThread: A callable void(thread&).

The default is a join_if_joinable.

std/boost::thread destructor terminates the program if the thread is not joinable. This wrapper can be used to join the thread
before destroying it seems a natural need.

Example

boost::strict_scoped_thread<> t((boost::thread(F)));

Default Constructor

explicit strict_scoped_thread(thread&& t) noexcept;

Effects: move the thread to own t_

Throws: Nothing

Destructor

~strict_scoped_thread();

Effects: Equivalent to CallableThread()(t_).

Throws: Nothing: The CallableThread()(t_) should not throw when joining the thread as the scoped variable is on a scope
outside the thread function.

52

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class scoped_thread

#include <boost/thread/scoped_thread.hpp>

class scoped_thread
{
thread t_; // for exposition purposes only

public:
scoped_thread() noexcept;
scoped_thread(const scoped_thread&) = delete;
scoped_thread& operator=(const scoped_thread&) = delete;

explicit scoped_thread(thread&& th) noexcept;

~scoped_thread();

// move support
scoped_thread(scoped_thread && x) noexcept;
scoped_thread& operator=(scoped_thread && x) noexcept;

void swap(scoped_thread& x) noexcept;

typedef thread::id id;

id get_id() const noexcept;

bool joinable() const noexcept;
void join();

#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
bool try_join_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_join_until(const chrono::time_point<Clock, Duration>& t);

#endif

void detach();

static unsigned hardware_concurrency() noexcept;

typedef thread::native_handle_type native_handle_type;
native_handle_type native_handle();

#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
void interrupt();
bool interruption_requested() const noexcept;

#endif

};

void swap(scoped_thread& lhs,scoped_thread& rhs) noexcept;

RAI thread wrapper adding a specific destroyer allowing to master what can be done at destruction time.

CallableThread: A callable void(thread&). The default is join_if_joinable.

thread std::thread destructor terminates the program if the thread is not joinable. Having a wrapper that can join the thread before
destroying it seems a natural need.

Remark: scoped_thread is not a thread as thread is not designed to be derived from as a polymorphic type.

53

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Anyway scoped_thread can be used in most of the contexts a thread could be used as it has the same non-deprecated interface
with the exception of the construction.

Example

boost::scoped_thread<> t((boost::thread(F)));
t.interrupt();

Default Constructor

scoped_thread() noexcept;

Effects: Constructs a scoped_thread instance that wraps to Not-a-Thread.

Postconditions: this->get_id()==thread::id()

Throws: Nothing

Move Constructor

scoped_thread(scoped_thread&& other) noexcept;

Effects: Transfers ownership of the scoped_thread managed by other (if any) to the newly constructed scoped_thread
instance.

Postconditions: other.get_id()==thread::id() and get_id() returns the value of other.get_id() prior to the
construction

Throws: Nothing

Move assignment operator

scoped_thread& operator=(scoped_thread&& other) noexcept;

Effects: Transfers ownership of the scoped_thread managed by other (if any) to *this.

- if defined BOOST_THREAD_DONT_PROVIDE_THREAD_MOVE_ASSIGN_CALLS_TERMINATE_IF_JOINABLE:
If there was a scoped_thread previously associated with *this then that scoped_thread is detached,
DEPRECATED

- if defined BOOST_THREAD_PROVIDES_THREAD_MOVE_ASSIGN_CALLS_TERMINATE_IF_JOINABLE: If
the scoped_thread is joinable calls to std::terminate.

Postconditions: other->get_id()==thread::id() and get_id() returns the value of other.get_id() prior to the
assignment.

Throws: Nothing

Move Constructor from a thread

scoped_thread(thread&& t);

Effects: move the thread to own t_.

Postconditions: *this.t_ refers to the newly created thread of execution and this->get_id()!=thread::id().

54

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: Nothing

Destructor

~scoped_thread();

Effects: Equivalent to CallableThread()(t_).

Throws: Nothing: The CallableThread()(t_) should not throw when joining the thread as the scoped variable is on a scope
outside the thread function.

Member function joinable()

bool joinable() const noexcept;

Returns: Equivalent to return t_.joinable().

Throws: Nothing

Member function join()

void join();

Effects: Equivalent to t_.join().

Member function try_join_for()

template <class Rep, class Period>
bool try_join_for(const chrono::duration<Rep, Period>& rel_time);

Effects: Equivalent to return t_.try_join_for(rel_time).

Member function try_join_until()

template <class Clock, class Duration>
bool try_join_until(const chrono::time_point<Clock, Duration>& abs_time);

Effects: Equivalent to return t_.try_join_until(abs_time).

Member function detach()

void detach();

Effects: Equivalent to t_.detach().

Member function get_id()

thread::id get_id() const noexcept;

Effects: Equivalent to return t_.get_id().

55

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member function interrupt()

void interrupt();

Effects: Equivalent to t_.interrupt().

Static member function hardware_concurrency()

unsigned hardware_concurrency() noexecpt;

Effects: Equivalent to return thread::hardware_concurrency().

Member function native_handle()

typedef thread::native_handle_type native_handle_type;
native_handle_type native_handle();

Effects: Equivalent to return t_.native_handle().

Member function swap()

void swap(scoped_thread& other) noexcept;

Effects: Equivalent t_.swap(other.t_).

Non-member function swap(scoped_thread&,scoped_thread&)

#include <boost/thread/scoped_thread.hpp>

void swap(scoped_thread& lhs,scoped_thread& rhs) noexcept;

Effects: lhs.swap(rhs).

56

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synchronization

Tutorial
Handling mutexes in C++ is an excellent tutorial. You need just replace std and ting by boost.

Mutex, Lock, Condition Variable Rationale adds rationale for the design decisions made for mutexes, locks and condition variables.

In addition to the C++11 standard locks, Boost.Thread provides other locks and some utilities that help the user to make their code
thread-safe.

Internal Locking

Note

This tutorial is an adaptation of chapter Concurrency of the Object-Oriented Programming in the BETA Programming
Language and of the paper of Andrei Alexandrescu "Multithreading and the C++ Type System" to the Boost library.

Concurrent threads of execution

Consider, for example, modeling a bank account class that supports simultaneous deposits and withdrawals from multiple locations
(arguably the "Hello, World" of multithreaded programming).

From here a component is a model of the Callable concept.

On C++11 (Boost) concurrent execution of a component is obtained by means of the std::thread(boost::thread):

boost::thread thread1(S);

where S is a model of Callable. The meaning of this expression is that execution of S() will take place concurrently with the
current thread of execution executing the expression.

The following example includes a bank account of a person (Joe) and two components, one corresponding to a bank agent depositing
money in Joe's account, and one representing Joe. Joe will only be withdrawing money from the account:

57

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://home.roadrunner.com/~hinnant/mutexes/locking.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2406.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class BankAccount;

BankAccount JoesAccount;

void bankAgent()
{

for (int i =10; i>0; --i) {
//...
JoesAccount.Deposit(500);
//...

}
}

void Joe() {
for (int i =10; i>0; --i) {

//...
int myPocket = JoesAccount.Withdraw(100);
std::cout << myPocket << std::endl;
//...

}
}

int main() {
//...
boost::thread thread1(bankAgent); // start concurrent execution of bankAgent
boost::thread thread2(Joe); // start concurrent execution of Joe
thread1.join();
thread2.join();
return 0;

}

From time to time, the bankAgent will deposit $500 in JoesAccount. Joe will similarly withdraw $100 from his account. These
sentences describe that the bankAgent and Joe are executed concurrently.

The above example works well as long as the bankAgent and Joe doesn't access JoesAccount at the same time. There is, however,
no guarantee that this will not happen. We may use a mutex to guarantee exclusive access to each bank.

class BankAccount {
boost::mutex mtx_;
int balance_;

public:
void Deposit(int amount) {

mtx_.lock();
balance_ += amount;
mtx_.unlock();

}
void Withdraw(int amount) {

mtx_.lock();
balance_ -= amount;
mtx_.unlock();

}
int GetBalance() {

mtx_.lock();
int b = balance_;
mtx_.unlock();
return balance_;

}
};

Execution of the Deposit and Withdraw operations will no longer be able to make simultaneous access to balance.

58

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mutex is a simple and basic mechanism for obtaining synchronization. In the above example it is relatively easy to be convinced
that the synchronization works correctly (in the absence of exception). In a system with several concurrent objects and several shared
objects, it may be difficult to describe synchronization by means of mutexes. Programs that make heavy use of mutexes may be
difficult to read and write. Instead, we shall introduce a number of generic classes for handling more complicated forms of synchron-
ization and communication.

With the RAII idiom we can simplify a lot this using the scoped locks. In the code below, guard's constructor locks the passed-in
object this, and guard's destructor unlocks this.

class BankAccount {
boost::mutex mtx_; // explicit mutex declaration
int balance_;

public:
void Deposit(int amount) {

boost::lock_guard<boost::mutex> guard(mtx_);
balance_ += amount;

}
void Withdraw(int amount) {

boost::lock_guard<boost::mutex> guard(mtx_);
balance_ -= amount;

}
int GetBalance() {

boost::lock_guard<boost::mutex> guard(mtx_);
return balance_;

}
};

The object-level locking idiom doesn't cover the entire richness of a threading model. For example, the model above is quite deadlock-
prone when you try to coordinate multi-object transactions. Nonetheless, object-level locking is useful in many cases, and in com-
bination with other mechanisms can provide a satisfactory solution to many threaded access problems in object-oriented programs.

The BankAccount class above uses internal locking. Basically, a class that uses internal locking guarantees that any concurrent calls
to its public member functions don't corrupt an instance of that class. This is typically ensured by having each public member function
acquire a lock on the object upon entry. This way, for any given object of that class, there can be only one member function call
active at any moment, so the operations are nicely serialized.

This approach is reasonably easy to implement and has an attractive simplicity. Unfortunately, "simple" might sometimes morph
into "simplistic."

Internal locking is insufficient for many real-world synchronization tasks. Imagine that you want to implement an ATM withdrawal
transaction with the BankAccount class. The requirements are simple. The ATM transaction consists of two withdrawals-one for
the actual money and one for the $2 commission. The two withdrawals must appear in strict sequence; that is, no other transaction
can exist between them.

The obvious implementation is erratic:

void ATMWithdrawal(BankAccount& acct, int sum) {
acct.Withdraw(sum);
// preemption possible
acct.Withdraw(2);

}

The problem is that between the two calls above, another thread can perform another operation on the account, thus breaking the
second design requirement.

In an attempt to solve this problem, let's lock the account from the outside during the two operations:

59

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void ATMWithdrawal(BankAccount& acct, int sum) {
boost::lock_guard<boost::mutex> guard(acct.mtx_); 1
acct.Withdraw(sum);
acct.Withdraw(2);

}

Notice that the code above doesn't compiles, the mtx_ field is private. We have two possibilities:

• make mtx_ public which seams odd

• make the BankAccount lockable by adding the lock/unlock functions

We can add these functions explicitly

class BankAccount {
boost::mutex mtx_;
int balance_;

public:
void Deposit(int amount) {

boost::lock_guard<boost::mutex> guard(mtx_);
balance_ += amount;

}
void Withdraw(int amount) {

boost::lock_guard<boost::mutex> guard(mtx_);
balance_ -= amount;

}
void lock() {

mtx_.lock();
}
void unlock() {

mtx_.unlock();
}

};

or inheriting from a class which add these lockable functions.

The basic_lockable_adapter class helps to define the BankAccount class as

class BankAccount
: public basic_lockable_adapter<mutex>
{

int balance_;
public:

void Deposit(int amount) {
boost::lock_guard<BankAccount> guard(*this);
balance_ += amount;

}
void Withdraw(int amount) {

boost::lock_guard<BankAccount> guard(*this);
balance_ -= amount;

}
int GetBalance() {

boost::lock_guard<BankAccount> guard(*this);
return balance_;

}
};

and the code that doesn't compiles becomes

60

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void ATMWithdrawal(BankAccount& acct, int sum) {
boost::lock_guard<BankAccount> guard(acct);
acct.Withdraw(sum);
acct.Withdraw(2);

}

Notice that now acct is being locked by Withdraw after it has already been locked by guard. When running such code, one of two
things happens.

• Your mutex implementation might support the so-called recursive mutex semantics. This means that the same thread can lock the
same mutex several times successfully. In this case, the implementation works but has a performance overhead due to unnecessary
locking. (The locking/unlocking sequence in the two Withdraw calls is not needed but performed anyway-and that costs time.)

• Your mutex implementation might not support recursive locking, which means that as soon as you try to acquire it the second
time, it blocks-so the ATMWithdrawal function enters the dreaded deadlock.

As boost::mutex is not recursive, we need to use its recursive version boost::recursive_mutex.

class BankAccount
: public basic_lockable_adapter<recursive_mutex>
{

// ...
};

Synchronized variables

External Locking -- strict_lock and externally_locked classes

Note

This tutorial is an adaptation of the paper of Andrei Alexandrescu "Multithreading and the C++ Type System" to
the Boost library.

Locks as Permits

So what to do? Ideally, the BankAccount class should do the following:

• Support both locking models (internal and external).

• Be efficient; that is, use no unnecessary locking.

• Be safe; that is, BankAccount objects cannot be manipulated without appropriate locking.

Let's make a worthwhile observation: Whenever you lock a BankAccount, you do so by using a lock_guard<BankAccount> object.
Turning this statement around, wherever there's a lock_guard<BankAccount>, there's also a locked BankAccount somewhere.
Thus, you can think of-and use-a lock_guard<BankAccount> object as a permit. Owning a lock_guard<BankAccount> gives
you rights to do certain things. The lock_guard<BankAccount> object should not be copied or aliased (it's not a transmissible
permit).

1. As long as a permit is still alive, the BankAccount object stays locked.

2. When the lock_guard<BankAccount> is destroyed, the BankAccount's mutex is released.

The net effect is that at any point in your code, having access to a lock_guard<BankAccount> object guarantees that a BankAccount
is locked. (You don't know exactly which BankAccount is locked, however-an issue that we'll address soon.)

61

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

For now, let's make a couple of enhancements to the lock_guard class template defined in Boost.Thread. We'll call the enhanced
version strict_lock. Essentially, a strict_lock's role is only to live on the stack as an automatic variable. strict_lock must
adhere to a non-copy and non-alias policy. strict_lock disables copying by making the copy constructor and the assignment op-
erator private. While we're at it, let's disable operator new and operator delete; strict_lock are not intended to be allocated on
the heap. strict_lock avoids aliasing by using a slightly less orthodox and less well-known technique: disable address taking.

template <typename Lockable>
class strict_lock {
public:

typedef Lockable lockable_type;

explicit strict_lock(lockable_type& obj) : obj_(obj) {
obj.lock(); // locks on construction

}
strict_lock() = delete;
strict_lock(strict_lock const&) = delete;
strict_lock& operator=(strict_lock const&) = delete;

~strict_lock() { obj_.unlock(); } // unlocks on destruction

bool owns_lock(mutex_type const* l) const noexcept // strict lockers specific function
{
return l == &obj_;

}
private:

lockable_type& obj_;
};

Silence can be sometimes louder than words-what's forbidden to do with a strict_lock is as important as what you can do. Let's
see what you can and what you cannot do with a strict_lock instantiation:

• You can create a strict_lock<T> only starting from a valid T object. Notice that there is no other way you can create a
strict_lock<T>.

BankAccount myAccount("John Doe", "123-45-6789");
strict_locerk<BankAccount> myLock(myAccount); // ok

• You cannot copy strict_locks to one another. In particular, you cannot pass strict_locks by value to functions or have
them returned by functions:

extern strict_lock<BankAccount> Foo(); // compile-time error
extern void Bar(strict_lock<BankAccount>); // compile-time error

• However, you still can pass strict_locks by reference to and from functions:

// ok, Foo returns a reference to strict_lock<BankAccount>
extern strict_lock<BankAccount>& Foo();
// ok, Bar takes a reference to strict_lock<BankAccount>
extern void Bar(strict_lock<BankAccount>&);

• You cannot allocate a strict_lock on the heap. However, you still can put strict_locks on the heap if they're members of
a class.

62

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

strict_lock<BankAccount>* pL =
new strict_lock<BankAccount>(myAcount); //error!
// operator new is not accessible

class Wrapper {
strict_lock memberLock_;
...

};
Wrapper* pW = new Wrapper; // ok

(Making strict_lock a member variable of a class is not recommended. Fortunately, disabling copying and default construction
makes strict_lock quite an unfriendly member variable.)

• You cannot take the address of a strict_lock object. This interesting feature, implemented by disabling unary operator&, makes
it very unlikely to alias a strict_lock object. Aliasing is still possible by taking references to a strict_lock:

strict_lock<BankAccount> myLock(myAccount); // ok
strict_lock<BankAccount>* pAlias = &myLock; // error!

// strict_lock<BankAccount>::operator& is not accessible
strict_lock<BankAccount>& rAlias = myLock; // ok

Fortunately, references don't engender as bad aliasing as pointers because they're much less versatile (references cannot be copied
or reseated).

• You can even make strict_lock final; that is, impossible to derive from. This task is left in the form of an exercise to the
reader.

All these rules were put in place with one purpose-enforcing that owning a strict_lock<T> is a reasonably strong guarantee that

1. you locked a T object, and

2. that object will be unlocked at a later point.

Now that we have such a strict strict_lock, how do we harness its power in defining a safe, flexible interface for BankAccount?
The idea is as follows:

• Each of BankAccount's interface functions (in our case, Deposit and Withdraw) comes in two overloaded variants.

• One version keeps the same signature as before, and the other takes an additional argument of type strict_lock<BankAccount>.
The first version is internally locked; the second one requires external locking. External locking is enforced at compile time by
requiring client code to create a strict_lock<BankAccount> object.

• BankAccount avoids code bloating by having the internal locked functions forward to the external locked functions, which do the
actual job.

A little code is worth 1,000 words, a (hacked into) saying goes, so here's the new BankAccount class:

63

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class BankAccount
: public basic_lockable_adapter<boost:recursive_mutex>
{

int balance_;
public:

void Deposit(int amount, strict_lock<BankAccount>&) {
// Externally locked
balance_ += amount;

}
void Deposit(int amount) {

strict_lock<boost:mutex> guard(*this); // Internally locked
Deposit(amount, guard);

}
void Withdraw(int amount, strict_lock<BankAccount>&) {

// Externally locked
balance_ -= amount;

}
void Withdraw(int amount) {

strict_lock<boost:mutex> guard(*this); // Internally locked
Withdraw(amount, guard);

}
};

Now, if you want the benefit of internal locking, you simply call Deposit(int) and Withdraw(int). If you want to use external locking,
you lock the object by constructing a strict_lock<BankAccount> and then you call Deposit(int, strict_lock<BankAc-

count>&) and Withdraw(int, strict_lock<BankAccount>&). For example, here's the ATMWithdrawal function implemented
correctly:

void ATMWithdrawal(BankAccount& acct, int sum) {
strict_lock<BankAccount> guard(acct);
acct.Withdraw(sum, guard);
acct.Withdraw(2, guard);

}

This function has the best of both worlds-it's reasonably safe and efficient at the same time.

It's worth noting that strict_lock being a template gives extra safety compared to a straight polymorphic approach. In such a
design, BankAccount would derive from a Lockable interface. strict_lock would manipulate Lockable references so there's no
need for templates. This approach is sound; however, it provides fewer compile-time guarantees. Having a strict_lock object
would only tell that some object derived from Lockable is currently locked. In the templated approach, having a
strict_lock<BankAccount> gives a stronger guarantee-it's a BankAccount that stays locked.

There's a weasel word in there-I mentioned that ATMWithdrawal is reasonably safe. It's not really safe because there's no enforcement
that the strict_lock<BankAccount> object locks the appropriate BankAccount object. The type system only ensures that some
BankAccount object is locked. For example, consider the following phony implementation of ATMWithdrawal:

void ATMWithdrawal(BankAccount& acct, int sum) {
BankAccount fakeAcct("John Doe", "123-45-6789");
strict_lock<BankAccount> guard(fakeAcct);
acct.Withdraw(sum, guard);
acct.Withdraw(2, guard);

}

This code compiles warning-free but obviously doesn't do the right thing-it locks one account and uses another.

It's important to understand what can be enforced within the realm of the C++ type system and what needs to be enforced at runtime.
The mechanism we've put in place so far ensures that some BankAccount object is locked during the call to BankAccount::With-
draw(int, strict_lock<BankAccount>&). We must enforce at runtime exactly what object is locked.

64

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

If our scheme still needs runtime checks, how is it useful? An unwary or malicious programmer can easily lock the wrong object
and manipulate any BankAccount without actually locking it.

First, let's get the malice issue out of the way. C is a language that requires a lot of attention and discipline from the programmer.
C++ made some progress by asking a little less of those, while still fundamentally trusting the programmer. These languages are not
concerned with malice (as Java is, for example). After all, you can break any C/C++ design simply by using casts "appropriately"
(if appropriately is an, er, appropriate word in this context).

The scheme is useful because the likelihood of a programmer forgetting about any locking whatsoever is much greater than the
likelihood of a programmer who does remember about locking, but locks the wrong object.

Using strict_lock permits compile-time checking of the most common source of errors, and runtime checking of the less frequent
problem.

Let's see how to enforce that the appropriate BankAccount object is locked. First, we need to add a member function to the
strict_lock class template. The bool strict_lock<T>::owns_lock(Loclable*) function returns a reference to the locked
object.

template <class Lockable> class strict_lock {
... as before ...

public:
bool owns_lock(Lockable* mtx) const { return mtx==&obj_; }

};

Second, BankAccount needs to use this function compare the locked object against this:

class BankAccount {
: public basic_lockable_adapter<boost::recursive_mutex>

int balance_;
public:

void Deposit(int amount, strict_lock<BankAccount>& guard) {
// Externally locked
if (!guard.owns_lock(*this))

throw "Locking Error: Wrong Object Locked";
balance_ += amount;

}
// ...
};

The overhead incurred by the test above is much lower than locking a recursive mutex for the second time.

Improving External Locking

Now let's assume that BankAccount doesn't use its own locking at all, and has only a thread-neutral implementation:

class BankAccount {
int balance_;

public:
void Deposit(int amount) {

balance_ += amount;
}
void Withdraw(int amount) {

balance_ -= amount;
}

};

Now you can use BankAccount in single-threaded and multi-threaded applications alike, but you need to provide your own synchron-
ization in the latter case.

65

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Say we have an AccountManager class that holds and manipulates a BankAccount object:

class AccountManager
: public basic_lockable_adapter<boost::mutex>
{

BankAccount checkingAcct_;
BankAccount savingsAcct_;
...

};

Let's also assume that, by design, AccountManager must stay locked while accessing its BankAccount members. The question is,
how can we express this design constraint using the C++ type system? How can we state "You have access to this BankAccount
object only after locking its parent AccountManager object"?

The solution is to use a little bridge template externally_locked that controls access to a BankAccount.

template <typename T, typename Lockable>
class externally_locked {

BOOST_CONCEPT_ASSERT((LockableConcept<Lockable>));

public:
externally_locked(T& obj, Lockable& lockable)

: obj_(obj)
, lockable_(lockable)

{}

externally_locked(Lockable& lockable)
: obj_()
, lockable_(lockable)

{}

T& get(strict_lock<Lockable>& lock) {

#ifndef BOOST_THREAD_EXTERNALLY_LOCKED_DONT_CHECK_SAME // define BOOST_THREAD_EXTERN↵
ALLY_LOCKED_DONT_CHECK_SAME if you don't want to check locker check the same lockable

if (!lock.is_locking(&lockable_)) throw lock_er↵
ror(); run time check throw if not locks the same
#endif

return obj_;
}
void set(const T& obj, Lockable& lockable) {

obj_ = obj;
lockable_=lockable;

}
private:

T obj_;
Lockable& lockable_;

};

externally_locked cloaks an object of type T, and actually provides full access to that object through the get and set member
functions, provided you pass a reference to a strict_lock<Owner> object.

Instead of making checkingAcct_ and savingsAcct_ of type BankAccount, AccountManager holds objects of type extern-
ally_locked<BankAccount, AccountManager>:

66

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class AccountManager
: public basic_lockable_adapter<thread_mutex>

{
public:

typedef basic_lockable_adapter<thread_mutex> lockable_base_type;
AccountManager()

: checkingAcct_(*this)
, savingsAcct_(*this)

{}
inline void Checking2Savings(int amount);
inline void AMoreComplicatedChecking2Savings(int amount);

private:

externally_locked<BankAccount, AccountManager> checkingAcct_;
externally_locked<BankAccount, AccountManager> savingsAcct_;

};

The pattern is the same as before - to access the BankAccount object cloaked by checkingAcct_, you need to call get. To call
get, you need to pass it a strict_lock<AccountManager>. The one thing you have to take care of is to not hold pointers or
references you obtained by calling get. If you do that, make sure that you don't use them after the strict_lock has been destroyed.
That is, if you alias the cloaked objects, you're back from "the compiler takes care of that" mode to "you must pay attention" mode.

Typically, you use externally_locked as shown below. Suppose you want to execute an atomic transfer from your checking
account to your savings account:

void AccountManager::Checking2Savings(int amount) {
strict_lock<AccountManager> guard(*this);
checkingAcct_.get(guard).Withdraw(amount);
savingsAcct_.get(guard).Deposit(amount);

}

We achieved two important goals. First, the declaration of checkingAcct_ and savingsAcct_ makes it clear to the code reader
that that variable is protected by a lock on an AccountManager. Second, the design makes it impossible to manipulate the two accounts
without actually locking a BankAccount. externally_locked is what could be called active documentation.

Allowing other strict locks

Now imagine that the AccountManager function needs to take a unique_lock in order to reduce the critical regions. And at some
time it needs to access to the checkingAcct_. As unique_lock is not a strict lock the following code doesn't compiles:

void AccountManager::AMoreComplicatedChecking2Savings(int amount) {
unique_lock<AccountManager> guard(*this, defer_lock);
if (some_condition()) {

guard.lock();
}
checkingAcct_.get(guard).Withdraw(amount); // COMPILE ERROR
savingsAcct_.get(guard).Deposit(amount); // COMPILE ERROR
do_something_else();

}

We need a way to transfer the ownership from the unique_lock to a strict_lock the time we are working with savingsAcct_
and then restore the ownership on unique_lock.

67

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void AccountManager::AMoreComplicatedChecking2Savings(int amount) {
unique_lock<AccountManager> guard(*this, defer_lock);
if (some_condition()) {

guard1.lock();
}
{

strict_lock<AccountManager> guard(guard1);
checkingAcct_.get(guard).Withdraw(amount);
savingsAcct_.get(guard).Deposit(amount);

}
guard1.unlock();

}

In order to make this code compilable we need to store either a Lockable or a unique_lock<Lockable> reference depending on
the constructor. Store which kind of reference we have stored,and in the destructor call either to the Lockable unlock or restore the
ownership.

This seams too complicated to me. Another possibility is to define a nested strict lock class. The drawback is that instead of having
only one strict lock we have two and we need either to duplicate every function taking a strict_lock or make these function
templates functions. The problem with template functions is that we don't profit anymore of the C++ type system. We must add
some static metafunction that check that the Locker parameter is a strict lock. The problem is that we can not really check this or
can we?. The is_strict_lock metafunction must be specialized by the strict lock developer. We need to belive it "sur parolle".
The advantage is that now we can manage with more than two strict locks without changing our code. Ths is really nice.

Now we need to state that both classes are strict_locks.

template <typename Locker>
struct is_strict_lock : mpl::false_ {};

template <typename Lockable>
struct is_strict_lock<strict_lock<Lockable> > : mpl::true_ {}

template <typename Locker>
struct is_strict_lock<nested_strict_lock<Locker> > : mpl::true_ {}

Well let me show how this nested_strict_lock class looks like and the impacts on the externally_locked class and the
AccountManager::AMoreComplicatedFunction function.

First nested_strict_lock class will store on a temporary lock the Locker, and transfer the lock ownership on the constructor.
On destruction he will restore the ownership. Note also that the Locker needs to have already a reference to the mutex otherwise an
exception is thrown and the use of the lock_traits.

68

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Locker >
class nested_strict_lock

{
BOOST_CONCEPT_ASSERT((MovableLockerConcept<Locker>));

public:
typedef typename lockable_type<Locker>::type lockable_type;
typedef typename syntactic_lock_traits<lockable_type>::lock_error lock_error;

nested_strict_lock(Locker& lock)
: lock_(lock) // Store reference to locker
, tmp_lock_(lock.move()) // Move ownership to temporaty locker

{
#ifndef BOOST_THREAD_STRCIT_LOCKER_DONT_CHECK_OWNERSHIP // Define BOOST_THREAD_EXTERN↵

ALLY_LOCKED_DONT_CHECK_OWNERSHIP if you don't want to check locker ownership
if (tmp_lock_.mutex()==0) {

lock_=tmp_lock_.move(); // Rollback for coherency purposes
throw lock_error();

}
#endif
if (!tmp_lock_) tmp_lock_.lock(); // ensures it is locked

}
~nested_strict_lock() {

lock_=tmp_lock_.move(); // Move ownership to nesting locker
}
typedef bool (nested_strict_lock::*bool_type)() const;
operator bool_type() const { return &nested_strict_lock::owns_lock; }
bool operator!() const { return false; }
bool owns_lock() const { return true; }
const lockable_type* mutex() const { return tmp_lock_.mutex(); }
bool is_locking(lockable_type* l) const { return l==mutex(); }

BOOST_ADRESS_OF_DELETE(nested_strict_lock)
BOOST_HEAP_ALLOCATEION_DELETE(nested_strict_lock)
BOOST_DEFAULT_CONSTRUCTOR_DELETE(nested_strict_lock) 8
BOOST_COPY_CONSTRUCTOR_DELETE(nested_strict_lock) 9
BOOST_COPY_ASSIGNEMENT_DELETE(nested_strict_lock) 10

private:
Locker& lock_;
Locker tmp_lock_;

};

The externally_locked get function is now a template function taking a Locker as parameters instead of a strict_lock. We
can add test in debug mode that ensure that the Lockable object is locked.

69

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename T, typename Lockable>
class externally_locked {
public:

// ...
template <class Locker>
T& get(Locker& lock) {

BOOST_CONCEPT_ASSERT((StrictLockerConcept<Locker>));

BOOST_STATIC_ASSERT((is_strict_lock<Locker>::value)); // locker is a strict locker "sur ↵
parolle"

BOOST_STATIC_ASSERT((is_same<Lockable,
typename lockable_type<Locker>::type>::value)); // that locks the same type

#ifndef BOOST_THREAD_EXTERNALLY_LOCKED_DONT_CHECK_OWNERSHIP // define BOOST_THREAD_EXTERN↵
ALLY_LOCKED_NO_CHECK_OWNERSHIP if you don't want to check locker ownership

if (! lock) throw lock_error(); // run time check throw if no locked
#endif
#ifndef BOOST_THREAD_EXTERNALLY_LOCKED_DONT_CHECK_SAME

if (!lock.is_locking(&lockable_)) throw lock_error();
#endif

return obj_;
}

};

The AccountManager::AMoreComplicatedFunction function needs only to replace the strict_lock by a nes-
ted_strict_lock.

void AccountManager::AMoreComplicatedChecking2Savings(int amount) {
unique_lock<AccountManager> guard1(*this);
if (some_condition()) {

guard1.lock();
}
{

nested_strict_lock<unique_lock<AccountManager> > guard(guard1);
checkingAcct_.get(guard).Withdraw(amount);
savingsAcct_.get(guard).Deposit(amount);

}
guard1.unlock();

}

Executing Around a Function

In particular, the library provides some lock factories.

template <class Lockable, class Function>
auto with_lock_guard(Lockable& m, Function f) -> decltype(fn())
{
auto&& _ = boost::make_lock_guard(f);
f();

}

that can be used as

int i = with_lock_guard(mtx, {}() -> bool
{
// access the protected state
return true;

});

70

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mutex Concepts
A mutex object facilitates protection against data races and allows thread-safe synchronization of data between threads. A thread
obtains ownership of a mutex object by calling one of the lock functions and relinquishes ownership by calling the corresponding
unlock function. Mutexes may be either recursive or non-recursive, and may grant simultaneous ownership to one or many threads.
Boost.Thread supplies recursive and non-recursive mutexes with exclusive ownership semantics, along with a shared ownership
(multiple-reader / single-writer) mutex.

Boost.Thread supports four basic concepts for lockable objects: Lockable, TimedLockable, SharedLockable and Upgrade-
Lockable. Each mutex type implements one or more of these concepts, as do the various lock types.

BasicLockable Concept

// #include <boost/thread/lockable_concepts.hpp>

namespace boost
{

template<typename L>
class BasicLockable; // EXTENSION

}

The BasicLockable concept models exclusive ownership. A type L meets the BasicLockable requirements if the following ex-
pressions are well-formed and have the specified semantics (m denotes a value of type L):

• m.lock();

• m.unlock();

Lock ownership acquired through a call to lock() must be released through a call to unlock().

m.lock();

Effects: The current thread blocks until ownership can be obtained for the current thread.

Synchronization: Prior unlock() operations on the same object synchronizes with this operation.

Postcondition: The current thread owns m.

Return type: void.

Throws: lock_error if an error occurs.

Error Conditions: operation_not_permitted: if the thread does not have the privilege to perform the operation.

resource_deadlock_would_occur: if the implementation detects that a deadlock would occur.

device_or_resource_busy: if the mutex is already locked and blocking is not possible.

Thread safety: If an exception is thrown then a lock shall not have been acquired for the current thread.

m.unlock();

Requires: The current thread owns m.

Synchronization: This operation synchronizes with subsequent lock operations that obtain ownership on the same object.

Effects: Releases a lock on m by the current thread.

71

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return type: void.

Throws: Nothing.

is_basic_lockable trait -- EXTENSION

// #include <boost/thread/lockable_traits.hpp>

namespace boost
{
namespace sync
{
template<typename L>
class is_basic_lockable;// EXTENSION

}
}

Some of the algorithms on mutexes use this trait via SFINAE. If BOOST_THREAD_NO_AUTO_DETECT_MUTEX_TYPES is
defined you will need to specialize this traits for the models of BasicLockable you could build.

Lockable Concept

// #include <boost/thread/lockable_concepts.hpp>
namespace boost
{
template<typename L>
class Lockable;

}

A type L meets the Lockable requirements if it meets the BasicLockable requirements and the following expressions are well-
formed and have the specified semantics (m denotes a value of type L):

• m.try_lock()

Lock ownership acquired through a call to try_lock() must be released through a call to unlock().

m.try_lock()

Effects: Attempt to obtain ownership for the current thread without blocking.

Synchronization: If try_lock() returns true, prior unlock() operations on the same object synchronize with this operation.

Note: Since lock() does not synchronize with a failed subsequent try_lock(), the visibility rules are weak
enough that little would be known about the state after a failure, even in the absence of spurious failures.

Return type: bool.

Returns: true if ownership was obtained for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread owns the m.

Throws: Nothing.

72

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

is_lockable trait -- EXTENSION

// #include <boost/thread/lockable_traits.hpp>
namespace boost
{
namespace sync
{
template<typename L>
class is_lockable;// EXTENSION

}
}

Some of the algorithms on mutexes use this trait via SFINAE. If BOOST_THREAD_NO_AUTO_DETECT_MUTEX_TYPES is
defined you will need to specialize this traits for the models of Lockable you could build.

Recursive Lockable Concept

The user could require that the mutex passed to an algorithm is a recursive one. Whether a lockable is recursive or not can not be
checked using template meta-programming. This is the motivation for the following trait.

is_recursive_mutex_sur_parolle trait -- EXTENSION

// #include <boost/thread/lockable_traits.hpp>

namespace boost
{
namespace sync
{
template<typename L>
class is_recursive_mutex_sur_parolle: false_type; // EXTENSION
template<>
class is_recursive_mutex_sur_parolle<recursive_mutex>: true_type; // EXTENSION
template<>
class is_recursive_mutex_sur_parolle<timed_recursive_mutex>: true_type; // EXTENSION

}
}

The trait is_recursive_mutex_sur_parolle is false_type by default and is specialized for the provide recursive_mutex
and timed_recursive_mutex.

It should be specialized by the user providing other model of recursive lockable.

TimedLockable Concept

// #include <boost/thread/lockable_concepts.hpp>

namespace boost
{
template<typename L>
class TimedLockable; // EXTENSION

}

The TimedLockable concept refines the Lockable concept to add support for timeouts when trying to acquire the lock.

A type L meets the TimedLockable requirements if it meets the Lockable requirements and the following expressions are well-
formed and have the specified semantics.

Variables:

73

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• m denotes a value of type L,

• rel_time denotes a value of an instantiation of chrono::duration, and

• abs_time denotes a value of an instantiation of chrono::time_point:

Expressions:

• m.try_lock_for(rel_time)

• m.try_lock_until(abs_time)

Lock ownership acquired through a call to try_lock_for or try_lock_until must be released through a call to unlock.

m.try_lock_until(abs_time)

Effects: Attempt to obtain ownership for the current thread. Blocks until ownership can be obtained, or the specified
time is reached. If the specified time has already passed, behaves as try_lock().

Synchronization: If try_lock_until() returns true, prior unlock() operations on the same object synchronize with this
operation.

Return type: bool.

Returns: true if ownership was obtained for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread owns m.

Throws: Nothing.

m.try_lock_for(rel_time)

Effects: As-if try_lock_until(chrono::steady_clock::now() + rel_time).

Synchronization: If try_lock_for() returns true, prior unlock() operations on the same object synchronize with this
operation.

Warning

DEPRECATED since 4.00. The following expressions were required on version 2, but are now deprecated.

Available only up to Boost 1.58.

Use instead try_lock_for, try_lock_until.

Variables:

• rel_time denotes a value of an instantiation of an unspecified DurationType arithmetic compatible with boost::system_time,
and

• abs_time denotes a value of an instantiation of boost::system_time:

Expressions:

• m.timed_lock(rel_time)

• m.timed_lock(abs_time)

Lock ownership acquired through a call to timed_lock() must be released through a call to unlock().

74

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

m.timed_lock(abs_time)

Effects: Attempt to obtain ownership for the current thread. Blocks until ownership can be obtained, or the specified
time is reached. If the specified time has already passed, behaves as try_lock().

Returns: true if ownership was obtained for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread owns m.

Throws: lock_error if an error occurs.

m.timed_lock(rel_time)

Effects: As-if timed_lock(boost::get_system_time()+rel_time).

SharedLockable Concept -- EXTENSION

// #include <boost/thread/lockable_concepts.hpp>

namespace boost
{
template<typename L>
class SharedLockable; // EXTENSION

}

The SharedLockable concept is a refinement of the TimedLockable concept that allows for shared ownership as well as exclusive
ownership. This is the standard multiple-reader / single-write model: at most one thread can have exclusive ownership, and if any
thread does have exclusive ownership, no other threads can have shared or exclusive ownership. Alternatively, many threads may
have shared ownership.

A type L meets the SharedLockable requirements if it meets the TimedLockable requirements and the following expressions
are well-formed and have the specified semantics.

Variables:

• m denotes a value of type L,

• rel_time denotes a value of an instantiation of chrono::duration, and

• abs_time denotes a value of an instantiation of chrono::time_point:

Expressions:

• m.lock_shared()();

• m.try_lock_shared()

• m.try_lock_shared_for(rel_time)

• m.try_lock_shared_until(abs_time)

• m.unlock_shared()();

Lock ownership acquired through a call to lock_shared(), try_lock_shared(), try_lock_shared_for or
try_lock_shared_until must be released through a call to unlock_shared().

m.lock_shared()

Effects: The current thread blocks until shared ownership can be obtained for the current thread.

75

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Postcondition: The current thread has shared ownership of m.

Throws: lock_error if an error occurs.

m.try_lock_shared()

Effects: Attempt to obtain shared ownership for the current thread without blocking.

Returns: true if shared ownership was obtained for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has shared ownership of m.

Throws: lock_error if an error occurs.

m.try_lock_shared_for(rel_time)

Effects: Attempt to obtain shared ownership for the current thread. Blocks until shared ownership can be obtained,
or the specified duration is elapsed. If the specified duration is already elapsed, behaves as
try_lock_shared().

Returns: true if shared ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has shared ownership of m.

Throws: lock_error if an error occurs.

m.try_lock_shared_until(abs_time))

Effects: Attempt to obtain shared ownership for the current thread. Blocks until shared ownership can be obtained,
or the specified time is reached. If the specified time has already passed, behaves as try_lock_shared().

Returns: true if shared ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has shared ownership of m.

Throws: lock_error if an error occurs.

m.unlock_shared()

Precondition: The current thread has shared ownership of m.

Effects: Releases shared ownership of m by the current thread.

Postcondition: The current thread no longer has shared ownership of m.

Throws: Nothing

Warning

DEPRECATED since 3.00. The following expressions were required on version 2, but are now deprecated.

Available only up to Boost 1.56.

Use instead try_lock_shared_for, try_lock_shared_until.

Variables:

• abs_time denotes a value of an instantiation of boost::system_time:

76

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Expressions:

• m.timed_lock_shared(abs_time);

Lock ownership acquired through a call to timed_lock_shared() must be released through a call to unlock_shared().

m.timed_lock_shared(abs_time)

Effects: Attempt to obtain shared ownership for the current thread. Blocks until shared ownership can be obtained,
or the specified time is reached. If the specified time has already passed, behaves as try_lock_shared().

Returns: true if shared ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has shared ownership of m.

Throws: lock_error if an error occurs.

UpgradeLockable Concept -- EXTENSION

// #include <boost/thread/lockable_concepts.hpp>

namespace boost
{
template<typename L>
class UpgradeLockable; // EXTENSION

}

The UpgradeLockable concept is a refinement of the SharedLockable concept that allows for upgradable ownership as well as
shared ownership and exclusive ownership. This is an extension to the multiple-reader / single-write model provided by the
SharedLockable concept: a single thread may have upgradable ownership at the same time as others have shared ownership. The
thread with upgradable ownership may at any time attempt to upgrade that ownership to exclusive ownership. If no other threads
have shared ownership, the upgrade is completed immediately, and the thread now has exclusive ownership, which must be relinquished
by a call to unlock(), just as if it had been acquired by a call to lock().

If a thread with upgradable ownership tries to upgrade whilst other threads have shared ownership, the attempt will fail and the
thread will block until exclusive ownership can be acquired.

Ownership can also be downgraded as well as upgraded: exclusive ownership of an implementation of the UpgradeLockable
concept can be downgraded to upgradable ownership or shared ownership, and upgradable ownership can be downgraded to plain
shared ownership.

A type L meets the UpgradeLockable requirements if it meets the SharedLockable requirements and the following expressions
are well-formed and have the specified semantics.

Variables:

• m denotes a value of type L,

• rel_time denotes a value of an instantiation of chrono::duration, and

• abs_time denotes a value of an instantiation of chrono::time_point:

Expressions:

• m.lock_upgrade();

• m.unlock_upgrade()

• m.try_lock_upgrade()

77

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• m.try_lock_upgrade_for(rel_time)

• m.try_lock_upgrade_until(abs_time)

• m.unlock_and_lock_shared()

• m.unlock_and_lock_upgrade();

• m.unlock_upgrade_and_lock();

• m.try_unlock_upgrade_and_lock()

• m.try_unlock_upgrade_and_lock_for(rel_time)

• m.try_unlock_upgrade_and_lock_until(abs_time)

• m.unlock_upgrade_and_lock_shared();

If `BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION is defined the following expressions are
also required:

• m.try_unlock_shared_and_lock();

• m.try_unlock_shared_and_lock_for(rel_time);

• m.try_unlock_shared_and_lock_until(abs_time);

• m.try_unlock_shared_and_lock_upgrade();

• m.try_unlock_shared_and_lock_upgrade_for(rel_time);

• m.try_unlock_shared_and_lock_upgrade_until(abs_time);

Lock ownership acquired through a call to lock_upgrade() must be released through a call to unlock_upgrade(). If the own-
ership type is changed through a call to one of the unlock_xxx_and_lock_yyy() functions, ownership must be released through
a call to the unlock function corresponding to the new level of ownership.

m.lock_upgrade()

Precondition: The calling thread has no ownership of the mutex.

Effects: The current thread blocks until upgrade ownership can be obtained for the current thread.

Postcondition: The current thread has upgrade ownership of m.

Synchronization: Prior unlock_upgrade() operations on the same object synchronize with this operation.

Throws: lock_error if an error occurs.

m.unlock_upgrade()

Precondition: The current thread has upgrade ownership of m.

Effects: Releases upgrade ownership of m by the current thread.

Postcondition: The current thread no longer has upgrade ownership of m.

Synchronization: This operation synchronizes with subsequent lock operations that obtain ownership on the same object.

Throws: Nothing

78

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

m.try_lock_upgrade()

Precondition: The calling thread has no ownership of the mutex.

Effects: Attempts to obtain upgrade ownership of the mutex for the calling thread without blocking. If upgrade
ownership is not obtained, there is no effect and try_lock_upgrade() immediately returns.

Returns: true if upgrade ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has upgrade ownership of m.

Synchronization: If try_lock_upgrade() returns true, prior unlock_upgrade() operations on the same object synchron-
ize with this operation.

Throws: Nothing

m.try_lock_upgrade_for(rel_time)

Precondition: The calling thread has no ownership of the mutex.

Effects: If the tick period of rel_time is not exactly convertible to the native tick period, the duration shall be
rounded up to the nearest native tick period. Attempts to obtain upgrade lock ownership for the calling
thread within the relative timeout specified by rel_time. If the time specified by rel_time is less than
or equal to rel_time.zero(), the function attempts to obtain ownership without blocking (as if by
calling try_lock_upgrade()). The function returns within the timeout specified by rel_time only if
it has obtained upgrade ownership of the mutex object.

Returns: true if upgrade ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has upgrade ownership of m.

Synchronization: If try_lock_upgrade_for(rel_time) returns true, prior unlock_upgrade() operations on the same
object synchronize with this operation.

Throws: Nothing

Notes: Available only if BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows
platform

m.try_lock_upgrade_until(abs_time)

Precondition: The calling thread has no ownership of the mutex.

Effects: The function attempts to obtain upgrade ownership of the mutex. If abs_time has already passed, the
function attempts to obtain upgrade ownership without blocking (as if by calling try_lock_upgrade()).
The function returns before the absolute timeout specified by abs_time only if it has obtained upgrade
ownership of the mutex object.

Returns: true if upgrade ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has upgrade ownership of m.

Synchronization: If try_lock_upgrade_until(abs_time) returns true, prior unlock_upgrade() operations on the
same object synchronize with this operation.

Throws: Nothing

Notes: Available only if BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows
platform

79

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

m.try_unlock_shared_and_lock()

Precondition: The calling thread must hold a shared lock on the mutex.

Effects: The function attempts to atomically convert the ownership from shared to exclusive for the calling thread
without blocking. For this conversion to be successful, this thread must be the only thread holding any
ownership of the lock. If the conversion is not successful, the shared ownership of m is retained.

Returns: true if exclusive ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has exclusive ownership of m.

Synchronization: If try_unlock_shared_and_lock() returns true, prior unlock() and subsequent lock operations on
the same object synchronize with this operation.

Throws: Nothing

Notes: Available only if BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION and
BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows platform

m.try_unlock_shared_and_lock_for(rel_time)

Precondition: The calling thread shall hold a shared lock on the mutex.

Effects: If the tick period of rel_time is not exactly convertible to the native tick period, the duration shall be
rounded up to the nearest native tick period. The function attempts to atomically convert the ownership
from shared to exclusive for the calling thread within the relative timeout specified by rel_time. If the
time specified by rel_time is less than or equal to rel_time.zero(), the function attempts to obtain
exclusive ownership without blocking (as if by calling try_unlock_shared_and_lock()). The function
shall return within the timeout specified by rel_time only if it has obtained exclusive ownership of the
mutex object. For this conversion to be successful, this thread must be the only thread holding any ownership
of the lock at the moment of conversion. If the conversion is not successful, the shared ownership of the
mutex is retained.

Returns: true if exclusive ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has exclusive ownership of m.

Synchronization: If try_unlock_shared_and_lock_for(rel_time) returns true, prior unlock() and subsequent
lock operations on the same object synchronize with this operation.

Throws: Nothing

Notes: Available only if BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION and
BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows platform

m.try_unlock_shared_and_lock_until(abs_time)

Precondition: The calling thread shall hold a shared lock on the mutex.

Effects: The function attempts to atomically convert the ownership from shared to exclusive for the calling thread
within the absolute timeout specified by abs_time. If abs_time has already passed, the function attempts
to obtain exclusive ownership without blocking (as if by calling try_unlock_shared_and_lock()).
The function shall return before the absolute timeout specified by abs_time only if it has obtained ex-
clusive ownership of the mutex object. For this conversion to be successful, this thread must be the only
thread holding any ownership of the lock at the moment of conversion. If the conversion is not successful,
the shared ownership of the mutex is retained.

Returns: true if exclusive ownership was acquired for the current thread, false otherwise.

80

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Postcondition: If the call returns true, the current thread has exclusive ownership of m.

Synchronization: If try_unlock_shared_and_lock_until(rel_time) returns true, prior unlock() and subsequent
lock operations on the same object synchronize with this operation.

Throws: Nothing

Notes: Available only if BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION and
BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows platform

m.unlock_and_lock_shared()

Precondition: The calling thread shall hold an exclusive lock on m.

Effects: Atomically converts the ownership from exclusive to shared for the calling thread.

Postcondition: The current thread has shared ownership of m.

Synchronization: This operation synchronizes with subsequent lock operations that obtain ownership of the same object.

Throws: Nothing

m.try_unlock_shared_and_lock_upgrade()

Precondition: The calling thread shall hold a shared lock on the mutex.

Effects: The function attempts to atomically convert the ownership from shared to upgrade for the calling thread
without blocking. For this conversion to be successful, there must be no thread holding upgrade ownership
of this object. If the conversion is not successful, the shared ownership of the mutex is retained.

Returns: true if upgrade ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has upgrade ownership of m.

Synchronization: If try_unlock_shared_and_lock_upgrade() returns true, prior unlock_upgrade() and subsequent
lock operations on the same object synchronize with this operation.

Throws: Nothing

Notes: Available only if BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION and
BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows platform

m.try_unlock_shared_and_lock_upgrade_for(rel_time)

Precondition: The calling thread shall hold a shared lock on the mutex.

Effects: If the tick period of rel_time is not exactly convertible to the native tick period, the duration shall be
rounded up to the nearest native tick period. The function attempts to atomically convert the ownership
from shared to upgrade for the calling thread within the relative timeout specified by rel_time. If the
time specified by rel_time is less than or equal to rel_time.zero(), the function attempts to obtain
upgrade ownership without blocking (as if by calling try_unlock_shared_and_lock_upgrade()).
The function shall return within the timeout specified by rel_time only if it has obtained exclusive
ownership of the mutex object. For this conversion to be successful, there must be no thread holding upgrade
ownership of this object at the moment of conversion. If the conversion is not successful, the shared
ownership of m is retained.

Returns: true if upgrade ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has upgrade ownership of m.

81

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synchronization: If try_unlock_shared_and_lock_upgrade_for(rel_time) returns true, prior unlock_upgrade()
and subsequent lock operations on the same object synchronize with this operation.

Throws: Nothing

Notes: Available only if BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION and
BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows platform

m.try_unlock_shared_and_lock_upgrade_until(abs_time)

Precondition: The calling thread shall hold a shared lock on the mutex.

Effects: The function attempts to atomically convert the ownership from shared to upgrade for the calling thread
within the absolute timeout specified by abs_time. If abs_time has already passed, the function attempts
to obtain upgrade ownership without blocking (as if by calling try_unlock_shared_and_lock_up-
grade()). The function shall return before the absolute timeout specified by abs_time only if it has
obtained upgrade ownership of the mutex object. For this conversion to be successful, there must be no
thread holding upgrade ownership of this object at the moment of conversion. If the conversion is not
successful, the shared ownership of the mutex is retained.

Returns: true if upgrade ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has upgrade ownership of m.

Synchronization: If try_unlock_shared_and_lock_upgrade_until(rel_time) returns true, prior unlock_up-
grade() and subsequent lock operations on the same object synchronize with this operation.

Throws: Nothing

Notes: Available only if BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION and
BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows platform

m.unlock_and_lock_upgrade()

Precondition: The current thread has exclusive ownership of m.

Effects: Atomically releases exclusive ownership of m by the current thread and acquires upgrade ownership of m
without blocking.

Postcondition: The current thread has upgrade ownership of m.

Synchronization: This operation synchronizes with subsequent lock operations that obtain ownership of the same object.

Throws: Nothing

m.unlock_upgrade_and_lock()

Precondition: The current thread has upgrade ownership of m.

Effects: Atomically releases upgrade ownership of m by the current thread and acquires exclusive ownership of m.
If any other threads have shared ownership, blocks until exclusive ownership can be acquired.

Postcondition: The current thread has exclusive ownership of m.

Synchronization: This operation synchronizes with prior unlock_shared()() and subsequent lock operations that obtain
ownership of the same object.

Throws: Nothing

82

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

m.try_unlock_upgrade_and_lock()

Precondition: The calling thread shall hold a upgrade lock on the mutex.

Effects: The function attempts to atomically convert the ownership from upgrade to exclusive for the calling thread
without blocking. For this conversion to be successful, this thread must be the only thread holding any
ownership of the lock. If the conversion is not successful, the upgrade ownership of m is retained.

Returns: true if exclusive ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has exclusive ownership of m.

Synchronization: If try_unlock_upgrade_and_lock() returns true, prior unlock() and subsequent lock operations
on the same object synchronize with this operation.

Throws: Nothing

Notes: Available only if BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows
platform

m.try_unlock_upgrade_and_lock_for(rel_time)

Precondition: The calling thread shall hold a upgrade lock on the mutex.

Effects: If the tick period of rel_time is not exactly convertible to the native tick period, the duration shall be
rounded up to the nearest native tick period. The function attempts to atomically convert the ownership
from upgrade to exclusive for the calling thread within the relative timeout specified by rel_time. If the
time specified by rel_time is less than or equal to rel_time.zero(), the function attempts to obtain
exclusive ownership without blocking (as if by calling try_unlock_upgrade_and_lock()). The
function shall return within the timeout specified by rel_time only if it has obtained exclusive ownership
of the mutex object. For this conversion to be successful, this thread shall be the only thread holding any
ownership of the lock at the moment of conversion. If the conversion is not successful, the upgrade own-
ership of m is retained.

Returns: true if exclusive ownership was acquired for the current thread, false otherwise.

Postcondition: If the call returns true, the current thread has exclusive ownership of m.

Synchronization: If try_unlock_upgrade_and_lock_for(rel_time) returns true, prior unlock() and subsequent
lock operations on the same object synchronize with this operation.

Throws: Nothing

Notes: Available only if BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows
platform

m.try_unlock_upgrade_and_lock_until(abs_time)

Precondition: The calling thread shall hold a upgrade lock on the mutex.

Effects: The function attempts to atomically convert the ownership from upgrade to exclusive for the calling thread
within the absolute timeout specified by abs_time. If abs_time has already passed, the function attempts
to obtain exclusive ownership without blocking (as if by calling try_unlock_upgrade_and_lock()).
The function shall return before the absolute timeout specified by abs_time only if it has obtained ex-
clusive ownership of the mutex object. For this conversion to be successful, this thread shall be the only
thread holding any ownership of the lock at the moment of conversion. If the conversion is not successful,
the upgrade ownership of m is retained.

Returns: true if exclusive ownership was acquired for the current thread, false otherwise.

83

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Postcondition: If the call returns true, the current thread has exclusive ownership of m.

Synchronization: If try_unlock_upgrade_and_lock_for(rel_time) returns true, prior unlock() and subsequent
lock operations on the same object synchronize with this operation.

Throws: Nothing

Notes: Available only if BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows
platform

m.unlock_upgrade_and_lock_shared()

Precondition: The current thread has upgrade ownership of m.

Effects: Atomically releases upgrade ownership of m by the current thread and acquires shared ownership of m
without blocking.

Postcondition: The current thread has shared ownership of m.

Synchronization: This operation synchronizes with prior unlock_shared() and subsequent lock operations that obtain
ownership of the same object.

Throws: Nothing

Lock Options

// #include <boost/thread/locks.hpp>
// #include <boost/thread/locks_options.hpp>

namespace boost
{
struct defer_lock_t {};
struct try_to_lock_t {};
struct adopt_lock_t {};
constexpr defer_lock_t defer_lock;
constexpr try_to_lock_t try_to_lock;
constexpr adopt_lock_t adopt_lock;

Lock option tags

#include <boost/thread/locks.hpp>
#include <boost/thread/locks_options.hpp>

struct defer_lock_t {};
struct try_to_lock_t {};
struct adopt_lock_t {};
const defer_lock_t defer_lock;
const try_to_lock_t try_to_lock;
const adopt_lock_t adopt_lock;

These tags are used in scoped locks constructors to specify a specific behavior.

• defer_lock_t: is used to construct the scoped lock without locking it.

• try_to_lock_t: is used to construct the scoped lock trying to lock it.

• adopt_lock_t: is used to construct the scoped lock without locking it but adopting ownership.

84

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Lock Guard

// #include <boost/thread/locks.hpp>
// #include <boost/thread/lock_guard.hpp>

namespace boost
{

template<typename Lockable>
class lock_guard

#if ! defined BOOST_THREAD_NO_MAKE_LOCK_GUARD
template <typename Lockable>
lock_guard<Lockable> make_lock_guard(Lockable& mtx); // EXTENSION
template <typename Lockable>
lock_guard<Lockable> make_lock_guard(Lockable& mtx, adopt_lock_t); // EXTENSION

#endif
}

Class template lock_guard

// #include <boost/thread/locks.hpp>
// #include <boost/thread/lock_guard.hpp>

template<typename Lockable>
class lock_guard
{
public:

explicit lock_guard(Lockable& m_);
lock_guard(Lockable& m_,boost::adopt_lock_t);

~lock_guard();
};

boost::lock_guard is very simple: on construction it acquires ownership of the implementation of the Lockable concept supplied
as the constructor parameter. On destruction, the ownership is released. This provides simple RAII-style locking of a Lockable
object, to facilitate exception-safe locking and unlocking. In addition, the lock_guard(Lockable & m,boost::adopt_lock_t)

constructor allows the boost::lock_guard object to take ownership of a lock already held by the current thread.

lock_guard(Lockable & m)

Effects: Stores a reference to m. Invokes m.lock().

Throws: Any exception thrown by the call to m.lock().

lock_guard(Lockable & m,boost::adopt_lock_t)

Precondition: The current thread owns a lock on m equivalent to one obtained by a call to m.lock().

Effects: Stores a reference to m. Takes ownership of the lock state of m.

Throws: Nothing.

~lock_guard()

Effects: Invokes m.unlock() on the Lockable object passed to the constructor.

Throws: Nothing.

85

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Non Member Function make_lock_guard

template <typename Lockable>
lock_guard<Lockable> make_lock_guard(Lockable& m); // EXTENSION

Returns: a lock_guard as if initialized with {m}.

Throws: Any exception thrown by the call to m.lock().

Non Member Function make_lock_guard

template <typename Lockable>
lock_guard<Lockable> make_lock_guard(Lockable& m, adopt_lock_t); // EXTENSION

Returns: a lock_guard as if initialized with {m, adopt_lock}.

Throws: Any exception thrown by the call to m.lock().

Lock Concepts

StrictLock -- EXTENSION

// #include <boost/thread/lock_concepts.hpp>

namespace boost
{

template<typename Lock>
class StrictLock;

}

A StrictLock is a lock that ensures that the associated mutex is locked during the lifetime if the lock.

A type L meets the StrictLock requirements if the following expressions are well-formed and have the specified semantics

• L::mutex_type

• is_strict_lock<L>

• cl.owns_lock(m);

and BasicLockable<L::mutex_type>

where

• cl denotes a value of type L const&,

• m denotes a value of type L::mutex_type const*,

L::mutex_type

The type L::mutex_type denotes the mutex that is locked by this lock.

86

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

is_strict_lock_sur_parolle<L>

As the semantic "ensures that the associated mutex is locked during the lifetime if the lock. " can not be described by syntactic re-
quirements a is_strict_lock_sur_parolle trait must be specialized by the user defining the lock so that the following assertion
is true:

is_strict_lock_sur_parolle<L>::value == true

cl.owns_lock(m);

Return Type: bool

Returns: Whether the strict lock is locking the mutex m

Throws: Nothing.

Models

The following classes are models of StrictLock:

• strict_lock: ensured by construction,

• nested_strict_lock: ensured by construction,

• boost::lock_guard: "sur parolle" as the user could use adopt_lock_t constructor overload without having locked the mutex.

Lock Types

// #include <boost/thread/locks.hpp>
// #include <boost/thread/lock_types.hpp>

namespace boost
{

template<typename Lockable>
class unique_lock;
template<typename Mutex>
void swap(unique_lock <Mutex>& lhs, unique_lock <Mutex>& rhs);
template<typename Lockable>
class shared_lock; // EXTENSION
template<typename Mutex>
void swap(shared_lock<Mutex>& lhs,shared_lock<Mutex>& rhs); // EXTENSION
template<typename Lockable>
class upgrade_lock; // EXTENSION
template<typename Mutex>
void swap(upgrade_lock <Mutex>& lhs, upgrade_lock <Mutex>& rhs); // EXTENSION
template <class Mutex>
class upgrade_to_unique_lock; // EXTENSION

}

87

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template unique_lock

// #include <boost/thread/locks.hpp>
// #include <boost/thread/lock_types.hpp>

template<typename Lockable>
class unique_lock
{
public:

typedef Lockable mutex_type;
unique_lock() noexcept;
explicit unique_lock(Lockable& m_);
unique_lock(Lockable& m_,adopt_lock_t);
unique_lock(Lockable& m_,defer_lock_t) noexcept;
unique_lock(Lockable& m_,try_to_lock_t);

#ifdef BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION
unique_lock(shared_lock<mutex_type>&& sl, try_to_lock_t)
template <class Clock, class Duration>
unique_lock(shared_lock<mutex_type>&& sl,

const chrono::time_point<Clock, Duration>& abs_time);
template <class Rep, class Period>
unique_lock(shared_lock<mutex_type>&& sl,

const chrono::duration<Rep, Period>& rel_time)
#endif

template <class Clock, class Duration>
unique_lock(Mutex& mtx, const chrono::time_point<Clock, Duration>& t);
template <class Rep, class Period>
unique_lock(Mutex& mtx, const chrono::duration<Rep, Period>& d);
~unique_lock();

unique_lock(unique_lock const&) = delete;
unique_lock& operator=(unique_lock const&) = delete;
unique_lock(unique_lock<Lockable>&& other) noexcept;
explicit unique_lock(upgrade_lock<Lockable>&& other) noexcept;

unique_lock& operator=(unique_lock<Lockable>&& other) noexcept;

void swap(unique_lock& other) noexcept;
Lockable* release() noexcept;

void lock();
bool try_lock();

template <class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

void unlock();

explicit operator bool() const noexcept;
bool owns_lock() const noexcept;

Lockable* mutex() const noexcept;

#if defined BOOST_THREAD_USE_DATE_TIME || defined BOOST_THREAD_DONT_USE_CHRONO
unique_lock(Lockable& m_,system_time const& target_time);

88

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<typename TimeDuration>
bool timed_lock(TimeDuration const& relative_time);
bool timed_lock(::boost::system_time const& absolute_time);

#endif

};

boost::unique_lock is more complex than boost::lock_guard: not only does it provide for RAII-style locking, it also allows
for deferring acquiring the lock until the lock() member function is called explicitly, or trying to acquire the lock in a non-blocking
fashion, or with a timeout. Consequently, unlock() is only called in the destructor if the lock object has locked the Lockable object,
or otherwise adopted a lock on the Lockable object.

Specializations of boost::unique_lock model the TimedLockable concept if the supplied Lockable type itself models
TimedLockable concept (e.g. boost::unique_lock<boost::timed_mutex>), or the Lockable concept if the supplied
Lockable type itself models Lockable concept (e.g. boost::unique_lock<boost::mutex>), or the BasicLockable concept
if the supplied Lockable type itself models BasicLockable concept.

An instance of boost::unique_lock is said to own the lock state of a Lockable m if mutex() returns a pointer to m and
owns_lock() returns true. If an object that owns the lock state of a Lockable object is destroyed, then the destructor will invoke
mutex()->unlock().

The member functions of boost::unique_lock are not thread-safe. In particular, boost::unique_lock is intended to model
the ownership of a Lockable object by a particular thread, and the member functions that release ownership of the lock state (in-
cluding the destructor) must be called by the same thread that acquired ownership of the lock state.

unique_lock()

Effects: Creates a lock object with no associated mutex.

Postcondition: owns_lock() returns false. mutex() returns NULL.

Throws: Nothing.

unique_lock(Lockable & m)

Effects: Stores a reference to m. Invokes m.lock().

Postcondition: owns_lock() returns true. mutex() returns &m.

Throws: Any exception thrown by the call to m.lock().

unique_lock(Lockable & m,boost::adopt_lock_t)

Precondition: The current thread owns an exclusive lock on m.

Effects: Stores a reference to m. Takes ownership of the lock state of m.

Postcondition: owns_lock() returns true. mutex() returns &m.

Throws: Nothing.

unique_lock(Lockable & m,boost::defer_lock_t)

Effects: Stores a reference to m.

Postcondition: owns_lock() returns false. mutex() returns &m.

Throws: Nothing.

89

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unique_lock(Lockable & m,boost::try_to_lock_t)

Effects: Stores a reference to m. Invokes m.try_lock(), and takes ownership of the lock state if the call returns
true.

Postcondition: mutex() returns &m. If the call to try_lock() returned true, then owns_lock() returns true, otherwise
owns_lock() returns false.

Throws: Nothing.

unique_lock(shared_lock<mutex_type>&& sl, try_to_lock_t)

Requires: The supplied Mutex type must implement try_unlock_shared_and_lock().

Effects: Constructs an object of type boost::unique_lock. Let pm be the pointer to the mutex and owns the ownership
state. Initializes pm with nullptr and owns with false. If sl. owns_lock()() returns false, sets pm to the return
value of sl.release(). Else sl. owns_lock()() returns true, and in this case if sl.mutex()->try_un-
lock_shared_and_lock() returns true, sets pm to the value returned by sl.release() and sets owns to true.

Note: If sl.owns_lock() returns true and sl.mutex()->try_unlock_shared_and_lock() returns false, sl is
not modified.

Throws: Nothing.

Notes: Available only if BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION and
BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows platform

unique_lock(shared_lock<mutex_type>&&, const chrono::time_point<Clock, Duration>&)

template <class Clock, class Duration>
unique_lock(shared_lock<mutex_type>&& sl,

const chrono::time_point<Clock, Duration>& abs_time);

Requires: The supplied Mutex type shall implement try_unlock_shared_and_lock_until(abs_time).

Effects: Constructs an object of type boost::unique_lock, initializing pm with nullptr and owns with false. If sl.
owns_lock()() returns false, sets pm to the return value of sl.release(). Else sl. owns_lock()() returns
true, and in this case if sl.mutex()->try_unlock_shared_and_lock_until(abs_time) returns true, sets
pm to the value returned by sl.release() and sets owns to true.

Note: If sl.owns_lock() returns true and sl.mutex()-> try_unlock_shared_and_lock_until(abs_time)

returns false, sl is not modified.

Throws: Nothing.

Notes: Available only if BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION and
BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows platform

unique_lock(shared_lock<mutex_type>&&, const chrono::duration<Rep, Period>&)

template <class Rep, class Period>
unique_lock(shared_lock<mutex_type>&& sl,

const chrono::duration<Rep, Period>& rel_time)

Requires: The supplied Mutex type shall implement try_unlock_shared_and_lock_for(rel_time).

Effects: Constructs an object of type boost::unique_lock, initializing pm with nullptr and owns with false.
If sl. owns_lock()() returns false, sets pm to the return value of sl.release(). Else sl.owns_lock()

90

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

returns true, and in this case if sl.mutex()-> try_unlock_shared_and_lock_for(rel_time) returns
true, sets pm to the value returned by sl.release() and sets owns to true.

Note: If sl.owns_lock() returns true and sl.mutex()-> try_unlock_shared_and_lock_for(rel_time)

returns false, sl is not modified.

Postcondition: .

Throws: Nothing.

Notes: Available only if BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION and
BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN is defined on Windows platform

unique_lock(Lockable & m,boost::system_time const& abs_time)

Effects: Stores a reference to m. Invokes m.timed_lock(abs_time), and takes ownership of the lock state if the
call returns true.

Postcondition: mutex() returns &m. If the call to timed_lock() returned true, then owns_lock() returns true, otherwise
owns_lock() returns false.

Throws: Any exceptions thrown by the call to m.timed_lock(abs_time).

template <class Clock, class Duration> unique_lock(Lockable & m,const chrono::time_point<Clock,

Duration>& abs_time)

Effects: Stores a reference to m. Invokes m.try_lock_until(abs_time), and takes ownership of the lock state if
the call returns true.

Postcondition: mutex() returns &m. If the call to try_lock_until returned true, then owns_lock() returns true, oth-
erwise owns_lock() returns false.

Throws: Any exceptions thrown by the call to m.try_lock_until(abs_time).

template <class Rep, class Period> unique_lock(Lockable & m,const chrono::duration<Rep, Period>&

abs_time)

Effects: Stores a reference to m. Invokes m.try_lock_for(rel_time), and takes ownership of the lock state if the
call returns true.

Postcondition: mutex() returns &m. If the call to try_lock_for returned true, then owns_lock() returns true, otherwise
owns_lock() returns false.

Throws: Any exceptions thrown by the call to m.try_lock_for(rel_time).

~unique_lock()

Effects: Invokes mutex()-> unlock() if owns_lock() returns true.

Throws: Nothing.

bool owns_lock() const

Returns: true if the *this owns the lock on the Lockable object associated with *this.

Throws: Nothing.

91

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Lockable* mutex() const

Returns: A pointer to the Lockable object associated with *this, or NULL if there is no such object.

Throws: Nothing.

explicit operator bool() const

Returns: owns_lock()().

Throws: Nothing.

Lockable* release()

Effects: The association between *this and the Lockable object is removed, without affecting the lock state of the
Lockable object. If owns_lock() would have returned true, it is the responsibility of the calling code to
ensure that the Lockable is correctly unlocked.

Returns: A pointer to the Lockable object associated with *this at the point of the call, or NULL if there is no such
object.

Throws: Nothing.

Postcondition: *this is no longer associated with any Lockable object. mutex() returns NULL and owns_lock() returns
false.

92

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template shared_lock - EXTENSION

// #include <boost/thread/locks.hpp>
// #include <boost/thread/lock_types.hpp>

template<typename Lockable>
class shared_lock
{
public:

typedef Lockable mutex_type;

// Shared locking
shared_lock();
explicit shared_lock(Lockable& m_);
shared_lock(Lockable& m_,adopt_lock_t);
shared_lock(Lockable& m_,defer_lock_t);
shared_lock(Lockable& m_,try_to_lock_t);
template <class Clock, class Duration>
shared_lock(Mutex& mtx, const chrono::time_point<Clock, Duration>& t);
template <class Rep, class Period>
shared_lock(Mutex& mtx, const chrono::duration<Rep, Period>& d);
~shared_lock();

shared_lock(shared_lock const&) = delete;
shared_lock& operator=(shared_lock const&) = delete;

shared_lock(shared_lock<Lockable> && other);
shared_lock& operator=(shared_lock<Lockable> && other);

void lock();
bool try_lock();
template <class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

// Conversion from upgrade locking
explicit shared_lock(upgrade_lock<Lockable> && other);

// Conversion from exclusive locking
explicit shared_lock(unique_lock<Lockable> && other);

// Setters
void swap(shared_lock& other);
mutex_type* release() noexcept;

// Getters
explicit operator bool() const;
bool owns_lock() const;
mutex_type mutex() const;

#if defined BOOST_THREAD_USE_DATE_TIME || defined BOOST_THREAD_DONT_USE_CHRONO
shared_lock(Lockable& m_,system_time const& target_time);
bool timed_lock(boost::system_time const& target_time);

#endif
};

Like boost::unique_lock, boost::shared_lock models the Lockable concept, but rather than acquiring unique ownership
of the supplied Lockable object, locking an instance of boost::shared_lock acquires shared ownership.

93

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Like boost::unique_lock, not only does it provide for RAII-style locking, it also allows for deferring acquiring the lock until
the lock() member function is called explicitly, or trying to acquire the lock in a non-blocking fashion, or with a timeout. Con-
sequently, unlock() is only called in the destructor if the lock object has locked the Lockable object, or otherwise adopted a lock
on the Lockable object.

An instance of boost::shared_lock is said to own the lock state of a Lockable m if mutex() returns a pointer to m and
owns_lock() returns true. If an object that owns the lock state of a Lockable object is destroyed, then the destructor will invoke
mutex()->unlock_shared().

The member functions of boost::shared_lock are not thread-safe. In particular, boost::shared_lock is intended to model
the shared ownership of a Lockable object by a particular thread, and the member functions that release ownership of the lock state
(including the destructor) must be called by the same thread that acquired ownership of the lock state.

shared_lock()

Effects: Creates a lock object with no associated mutex.

Postcondition: owns_lock() returns false. mutex() returns NULL.

Throws: Nothing.

shared_lock(Lockable & m)

Effects: Stores a reference to m. Invokes m.lock_shared().

Postcondition: owns_lock() returns true. mutex() returns &m.

Throws: Any exception thrown by the call to m.lock_shared().

shared_lock(Lockable & m,boost::adopt_lock_t)

Precondition: The current thread owns an exclusive lock on m.

Effects: Stores a reference to m. Takes ownership of the lock state of m.

Postcondition: owns_lock() returns true. mutex() returns &m.

Throws: Nothing.

shared_lock(Lockable & m,boost::defer_lock_t)

Effects: Stores a reference to m.

Postcondition: owns_lock() returns false. mutex() returns &m.

Throws: Nothing.

shared_lock(Lockable & m,boost::try_to_lock_t)

Effects: Stores a reference to m. Invokes m.try_lock_shared(), and takes ownership of the lock state if the call
returns true.

Postcondition: mutex() returns &m. If the call to try_lock_shared() returned true, then owns_lock() returns true,
otherwise owns_lock() returns false.

Throws: Nothing.

94

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

shared_lock(Lockable & m,boost::system_time const& abs_time)

Effects: Stores a reference to m. Invokes m.timed_lock(abs_time), and takes ownership of the lock state if the
call returns true.

Postcondition: mutex() returns &m. If the call to timed_lock_shared() returned true, then owns_lock() returns true,
otherwise owns_lock() returns false.

Throws: Any exceptions thrown by the call to m.timed_lock(abs_time).

~shared_lock()

Effects: Invokes mutex()-> unlock_shared() if owns_lock() returns true.

Throws: Nothing.

bool owns_lock() const

Returns: true if the *this owns the lock on the Lockable object associated with *this.

Throws: Nothing.

Lockable* mutex() const

Returns: A pointer to the Lockable object associated with *this, or NULL if there is no such object.

Throws: Nothing.

explicit operator bool() const

Returns: owns_lock().

Throws: Nothing.

Lockable* release()

Effects: The association between *this and the Lockable object is removed, without affecting the lock state of the
Lockable object. If owns_lock() would have returned true, it is the responsibility of the calling code to
ensure that the Lockable is correctly unlocked.

Returns: A pointer to the Lockable object associated with *this at the point of the call, or NULL if there is no such
object.

Throws: Nothing.

Postcondition: *this is no longer associated with any Lockable object. mutex() returns NULL and owns_lock() returns
false.

95

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class template upgrade_lock - EXTENSION

// #include <boost/thread/locks.hpp>
// #include <boost/thread/lock_types.hpp>

template<typename Lockable>
class upgrade_lock
{
public:

typedef Lockable mutex_type;

// Upgrade locking

upgrade_lock();
explicit upgrade_lock(mutex_type& m_);
upgrade_lock(mutex_type& m, defer_lock_t) noexcept;
upgrade_lock(mutex_type& m, try_to_lock_t);
upgrade_lock(mutex_type& m, adopt_lock_t);
template <class Clock, class Duration>
upgrade_lock(mutex_type& m,

const chrono::time_point<Clock, Duration>& abs_time);
template <class Rep, class Period>
upgrade_lock(mutex_type& m,

const chrono::duration<Rep, Period>& rel_time);
~upgrade_lock();

upgrade_lock(const upgrade_lock& other) = delete;
upgrade_lock& operator=(const upgrade_lock<Lockable> & other) = delete;

upgrade_lock(upgrade_lock<Lockable> && other);
upgrade_lock& operator=(upgrade_lock<Lockable> && other);

void lock();
bool try_lock();
template <class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

#ifdef BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSION
// Conversion from shared locking
upgrade_lock(shared_lock<mutex_type>&& sl, try_to_lock_t);
template <class Clock, class Duration>
upgrade_lock(shared_lock<mutex_type>&& sl,

const chrono::time_point<Clock, Duration>& abs_time);
template <class Rep, class Period>
upgrade_lock(shared_lock<mutex_type>&& sl,

const chrono::duration<Rep, Period>& rel_time);
#endif

// Conversion from exclusive locking
explicit upgrade_lock(unique_lock<Lockable> && other);

// Setters
void swap(upgrade_lock& other);
mutex_type* release() noexcept;

// Getters
explicit operator bool() const;
bool owns_lock() const;
mutex_type mutex() const;

};

96

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Like boost::unique_lock, boost::upgrade_lock models the Lockable concept, but rather than acquiring unique ownership
of the supplied Lockable object, locking an instance of boost::upgrade_lock acquires upgrade ownership.

Like boost::unique_lock, not only does it provide for RAII-style locking, it also allows for deferring acquiring the lock until
the lock() member function is called explicitly, or trying to acquire the lock in a non-blocking fashion, or with a timeout. Con-
sequently, unlock() is only called in the destructor if the lock object has locked the Lockable object, or otherwise adopted a lock
on the Lockable object.

An instance of boost::upgrade_lock is said to own the lock state of a Lockable m if mutex() returns a pointer to m and
owns_lock() returns true. If an object that owns the lock state of a Lockable object is destroyed, then the destructor will invoke
mutex()->unlock_upgrade().

The member functions of boost::upgrade_lock are not thread-safe. In particular, boost::upgrade_lock is intended to model
the upgrade ownership of a UpgradeLockable object by a particular thread, and the member functions that release ownership of
the lock state (including the destructor) must be called by the same thread that acquired ownership of the lock state.

Class template upgrade_to_unique_lock

// #include <boost/thread/locks.hpp>
// #include <boost/thread/lock_types.hpp>

template <class Lockable>
class upgrade_to_unique_lock
{
public:

typedef Lockable mutex_type;
explicit upgrade_to_unique_lock(upgrade_lock<Lockable>& m_);
~upgrade_to_unique_lock();

upgrade_to_unique_lock(upgrade_to_unique_lock const& other) = delete;
upgrade_to_unique_lock& operator=(upgrade_to_unique_lock<Lockable> const& other) = delete;

upgrade_to_unique_lock(upgrade_to_unique_lock<Lockable> && other);
upgrade_to_unique_lock& operator=(upgrade_to_unique_lock<Lockable> && other);

void swap(upgrade_to_unique_lock& other);

explicit operator bool() const;
bool owns_lock() const;

};

boost::upgrade_to_unique_lock allows for a temporary upgrade of an boost::upgrade_lock to exclusive ownership.
When constructed with a reference to an instance of boost::upgrade_lock, if that instance has upgrade ownership on some
Lockable object, that ownership is upgraded to exclusive ownership. When the boost::upgrade_to_unique_lock instance is
destroyed, the ownership of the Lockable is downgraded back to upgrade ownership.

97

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mutex-specific class scoped_try_lock

class MutexType::scoped_try_lock
{
private:

MutexType::scoped_try_lock(MutexType::scoped_try_lock<MutexType>& other);
MutexType::scoped_try_lock& operator=(MutexType::scoped_try_lock<MutexType>& other);

public:
MutexType::scoped_try_lock();
explicit MutexType::scoped_try_lock(MutexType& m);
MutexType::scoped_try_lock(MutexType& m_,adopt_lock_t);
MutexType::scoped_try_lock(MutexType& m_,defer_lock_t);
MutexType::scoped_try_lock(MutexType& m_,try_to_lock_t);

MutexType::scoped_try_lock(MutexType::scoped_try_lock<MutexType>&& other);
MutexType::scoped_try_lock& operator=(MutexType::scoped_try_lock<MutexType>&& other);

void swap(MutexType::scoped_try_lock&& other);

void lock();
bool try_lock();
void unlock();

MutexType* mutex() const;
MutexType* release();

explicit operator bool() const;
bool owns_lock() const;

};

The member typedef scoped_try_lock is provided for each distinct MutexType as a typedef to a class with the preceding definition.
The semantics of each constructor and member function are identical to those of boost::unique_lock<MutexType> for the same
MutexType, except that the constructor that takes a single reference to a mutex will call m.try_lock() rather than m.lock().

98

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Other Lock Types - EXTENSION

Strict Locks

// #include <boost/thread/locks.hpp>
// #include <boost/thread/strict_lock.hpp>

namespace boost
{

template<typename Lockable>
class strict_lock;
template <typename Lock>
class nested_strict_lock;
template <typename Lockable>
struct is_strict_lock_sur_parolle<strict_lock<Lockable> >;
template <typename Lock>
struct is_strict_lock_sur_parolle<nested_strict_lock<Lock> >;

#if ! defined BOOST_THREAD_NO_MAKE_STRICT_LOCK
template <typename Lockable>
strict_lock<Lockable> make_strict_lock(Lockable& mtx);

#endif
#if ! defined BOOST_THREAD_NO_MAKE_NESTED_STRICT_LOCK
template <typename Lock>
nested_strict_lock<Lock> make_nested_strict_lock(Lock& lk);

#endif

}

Class template strict_lock

// #include <boost/thread/locks.hpp>
// #include <boost/thread/strict_lock.hpp>

template<typename BasicLockable>
class strict_lock
{
public:

typedef BasicLockable mutex_type;
explicit strict_lock(mutex_type& m_);
~strict_lock();

bool owns_lock(mutex_type const* l) const noexcept;
};

strict_lock is a model of StrictLock.

strict_lock is the simplest StrictLock: on construction it acquires ownership of the implementation of the BasicLockable
concept supplied as the constructor parameter. On destruction, the ownership is released. This provides simple RAII-style locking
of a BasicLockable object, to facilitate exception-safe locking and unlocking.

See also boost::lock_guard

strict_lock(Lockable & m)

Effects: Stores a reference to m. Invokes m.lock().

Throws: Any exception thrown by the call to m.lock().

99

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

~strict_lock()

Effects: Invokes m.unlock() on the Lockable object passed to the constructor.

Throws: Nothing.

Class template nested_strict_lock

// #include <boost/thread/locks.hpp>
// #include <boost/thread/strict_lock.hpp>

template<typename Lock>
class nested_strict_lock
{
public:

typedef BasicLockable mutex_type;
explicit nested_strict_lock(Lock& lk),
~nested_strict_lock() noexcept;

bool owns_lock(mutex_type const* l) const noexcept;
};

nested_strict_lock is a model of StrictLock.

A nested strict lock is a scoped lock guard ensuring a mutex is locked on its scope, by taking ownership of an nesting lock, locking
the mutex on construction if not already locked and restoring the ownership to the nesting lock on destruction.

See also strict_lock, boost::unique_lock

nested_strict_lock(Lock & lk)

Requires: lk.mutex() != null_ptr.

Effects: Stores the reference to the lock parameter lk and takes ownership on it. If the lock doesn't owns the mutex
lock it.

Postcondition: owns_lock(lk.mutex()).

Throws: - lock_error when BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED is defined and
lk.mutex() == null_ptr

- Any exception that @c lk.lock() can throw.

~nested_strict_lock() noexcept

Effects: Restores ownership to the nesting lock.

bool owns_lock(mutex_type const* l) const noexcept

Return: Whether if this lock is locking that mutex.

Non Member Function make_strict_lock

template <typename Lockable>
strict_lock<Lockable> make_strict_lock(Lockable& m); // EXTENSION

Returns: a strict_lock as if initialized with {m}.

Throws: Any exception thrown by the call to m.lock().

100

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Non Member Function make_nested_strict_lock

template <typename Lock>
nested_strict_lock<Lock> make_nested_strict_lock(Lock& lk); // EXTENSION

Returns: a nested_strict_lock as if initialized with {lk}.

Throws: Any exception thrown by the call to lk.lock().

Externally Locked

// #include <boost/thread/externally_locked.hpp>
template <class T, typename MutexType = boost::mutex>
class externally_locked;
template <typename T, typename MutexType>
void swap(externally_locked<T, MutexType> & lhs, externally_locked<T, MutexType> & rhs);

Template Class externally_locked

// #include <boost/thread/externally_locked.hpp>

template <class T, typename MutexType>
class externally_locked
{
//BOOST_CONCEPT_ASSERT((CopyConstructible<T>));
BOOST_CONCEPT_ASSERT((BasicLockable<MutexType>));

public:
typedef MutexType mutex_type;

externally_locked(mutex_type& mtx, const T& obj);
externally_locked(mutex_type& mtx,T&& obj);
explicit externally_locked(mutex_type& mtx);
externally_locked(externally_locked&& rhs);

// observers
T& get(strict_lock<mutex_type>& lk);
const T& get(strict_lock<mutex_type>& lk) const;

template <class Lock>
T& get(nested_strict_lock<Lock>& lk);
template <class Lock>
const T& get(nested_strict_lock<Lock>& lk) const;

template <class Lock>
T& get(Lock& lk);
template <class Lock>
T const& get(Lock& lk) const;

mutex_type* mutex();

// modifiers
void lock();
void unlock();
bool try_lock();
void swap(externally_locked&);

};

externally_locked is a model of Lockable, it cloaks an object of type T, and actually provides full access to that object through
the get and set member functions, provided you pass a reference to a strict lock object.

101

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Only the specificities respect to Lockable are described here.

externally_locked(mutex_type&, const T&)

externally_locked(mutex_type& mtx, const T& obj);

Requires: T is a model of CopyConstructible.

Effects: Constructs an externally locked object copying the cloaked type.

Throws: Any exception thrown by the call to T(obj).

externally_locked(mutex_type&, T&&)

externally_locked(mutex_type& mtx,T&& obj);

Requires: T is a model of Movable.

Effects: Constructs an externally locked object by moving the cloaked type.

Throws: Any exception thrown by the call to T(obj).

externally_locked(mutex_type&)

externally_locked(mutex_type& mtx);

Requires: T is a model of DefaultConstructible.

Effects: Constructs an externally locked object by default constructing the cloaked type.

Throws: Any exception thrown by the call to T().

externally_locked(externally_locked&)

externally_locked(externally_locked&& rhs);

Requires: T is a model of Movable.

Effects: Moves an externally locked object by moving the the cloaked type and copying the mutex reference

Throws: Any exception thrown by the call to T(T&&).

get(strict_lock<mutex_type>&)

T& get(strict_lock<mutex_type>& lk);
const T& get(strict_lock<mutex_type>& lk) const;

Requires: The lk parameter must be locking the associated mutex.

Returns: A reference to the cloaked object

Throws: lock_error if BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED is defined and the run-time precon-
ditions are not satisfied .

102

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

get(strict_lock<nested_strict_lock<Lock>>&)

template <class Lock>
T& get(nested_strict_lock<Lock>& lk);
template <class Lock>
const T& get(nested_strict_lock<Lock>& lk) const;

Requires: is_same<mutex_type, typename Lock::mutex_type> and the lk parameter must be locking the associated
mutex.

Returns: A reference to the cloaked object

Throws: lock_error if BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED is defined and the run-time precon-
ditions are not satisfied .

get(strict_lock<nested_strict_lock<Lock>>&)

template <class Lock>
T& get(Lock& lk);
template <class Lock>
T const& get(Lock& lk) const;

Requires: Lock is a model of StrictLock, is_same<mutex_type, typename Lock::mutex_type> and the lk parameter
must be locking the associated mutex.

Returns: A reference to the cloaked object

Throws: lock_error if BOOST_THREAD_THROW_IF_PRECONDITION_NOT_SATISFIED is defined and the run-time precon-
ditions are not satisfied .

swap(externally_locked, externally_locked&)

template <typename T, typename MutexType>
void swap(externally_locked<T, MutexType> & lhs, externally_locked<T, MutexType> & rhs)

Class template shared_lock_guard

// #include <boost/thread/shared_lock_guard.hpp>
namespace boost
{
template<typename SharedLockable>
class shared_lock_guard
{
public:

shared_lock_guard(shared_lock_guard const&) = delete;
shared_lock_guard& operator=(shared_lock_guard const&) = delete;

explicit shared_lock_guard(SharedLockable& m_);
shared_lock_guard(SharedLockable& m_,boost::adopt_lock_t);

~shared_lock_guard();
};

}

shared_lock_guard is very simple: on construction it acquires shared ownership of the implementation of the SharedLockable
concept supplied as the constructor parameter. On destruction, the ownership is released. This provides simple RAII-style locking
of a SharedLockable object, to facilitate exception-safe shared locking and unlocking. In addition, the

103

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

shared_lock_guard(SharedLockable &m, boost::adopt_lock_t) constructor allows the shared_lock_guard object
to take shared ownership of a lock already held by the current thread.

shared_lock_guard(SharedLockable & m)

Effects: Stores a reference to m. Invokes m.lock_shared()().

Throws: Any exception thrown by the call to m.lock_shared()().

shared_lock_guard(SharedLockable & m,boost::adopt_lock_t)

Precondition: The current thread owns a lock on m equivalent to one obtained by a call to m.lock_shared()().

Effects: Stores a reference to m. Takes ownership of the lock state of m.

Throws: Nothing.

~shared_lock_guard()

Effects: Invokes m.unlock_shared()() on the SharedLockable object passed to the constructor.

Throws: Nothing.

Class template reverse_lock

// #include <boost/thread/reverse_lock.hpp>
namespace boost
{

template<typename Lock>
class reverse_lock
{
public:

reverse_lock(reverse_lock const&) = delete;
reverse_lock& operator=(reverse_lock const&) = delete;

explicit reverse_lock(Lock& m_);
~reverse_lock();

};
}

reverse_lock reverse the operations of a lock: it provide for RAII-style, that unlocks the lock at construction time and lock it at
destruction time. In addition, it transfer ownership temporarily, so that the mutex can not be locked using the Lock.

An instance of reverse_lock doesn't own the lock never.

reverse_lock(Lock & m)

Effects: Stores a reference to m. Invokes m.unlock() if m owns his lock and then stores the mutex by calling m.re-
lease().

Postcondition: !m. owns_lock()() && m.mutex()==0.

Throws: Any exception thrown by the call to m.unlock().

~reverse_lock()

Effects: Let be mtx the stored mutex*. If not 0 Invokes mtx->lock() and gives again the mtx to the Lock using the ad-
opt_lock_t overload.

104

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: Any exception thrown by mtx->lock().

Remarks: Note that if mtx->lock() throws an exception while unwinding the program will terminate, so don't use reverse_lock
if an exception can be thrown.

Lock functions

Non-member function lock(Lockable1,Lockable2,...)

// #include <boost/thread/locks.hpp>
// #include <boost/thread/lock_algorithms.hpp>
namespace boost
{

template<typename Lockable1,typename Lockable2>
void lock(Lockable1& l1,Lockable2& l2);

template<typename Lockable1,typename Lockable2,typename Lockable3>
void lock(Lockable1& l1,Lockable2& l2,Lockable3& l3);

template<typename Lockable1,typename Lockable2,typename Lockable3,typename Lockable4>
void lock(Lockable1& l1,Lockable2& l2,Lockable3& l3,Lockable4& l4);

template<typename Lockable1,typename Lockable2,typename Lockable3,typename Lockable4,type↵
name Lockable5>
void lock(Lockable1& l1,Lockable2& l2,Lockable3& l3,Lockable4& l4,Lockable5& l5);

}

Effects: Locks the Lockable objects supplied as arguments in an unspecified and indeterminate order in a way that
avoids deadlock. It is safe to call this function concurrently from multiple threads with the same mutexes (or
other lockable objects) in different orders without risk of deadlock. If any of the lock() or try_lock()
operations on the supplied Lockable objects throws an exception any locks acquired by the function will
be released before the function exits.

Throws: Any exceptions thrown by calling lock() or try_lock() on the supplied Lockable objects.

Postcondition: All the supplied Lockable objects are locked by the calling thread.

Non-member function lock(begin,end) // EXTENSION

template<typename ForwardIterator>
void lock(ForwardIterator begin,ForwardIterator end);

Preconditions: The value_type of ForwardIterator must implement the Lockable concept

Effects: Locks all the Lockable objects in the supplied range in an unspecified and indeterminate order in a way
that avoids deadlock. It is safe to call this function concurrently from multiple threads with the same mutexes
(or other lockable objects) in different orders without risk of deadlock. If any of the lock() or try_lock()
operations on the Lockable objects in the supplied range throws an exception any locks acquired by the
function will be released before the function exits.

Throws: Any exceptions thrown by calling lock() or try_lock() on the supplied Lockable objects.

Postcondition: All the Lockable objects in the supplied range are locked by the calling thread.

105

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Non-member function try_lock(Lockable1,Lockable2,...)

template<typename Lockable1,typename Lockable2>
int try_lock(Lockable1& l1,Lockable2& l2);

template<typename Lockable1,typename Lockable2,typename Lockable3>
int try_lock(Lockable1& l1,Lockable2& l2,Lockable3& l3);

template<typename Lockable1,typename Lockable2,typename Lockable3,typename Lockable4>
int try_lock(Lockable1& l1,Lockable2& l2,Lockable3& l3,Lockable4& l4);

template<typename Lockable1,typename Lockable2,typename Lockable3,typename Lockable4,typename Lock↵
able5>
int try_lock(Lockable1& l1,Lockable2& l2,Lockable3& l3,Lockable4& l4,Lockable5& l5);

Effects: Calls try_lock() on each of the Lockable objects supplied as arguments. If any of the calls to try_lock()
returns false then all locks acquired are released and the zero-based index of the failed lock is returned.

If any of the try_lock() operations on the supplied Lockable objects throws an exception any locks acquired
by the function will be released before the function exits.

Returns: -1 if all the supplied Lockable objects are now locked by the calling thread, the zero-based index of the
object which could not be locked otherwise.

Throws: Any exceptions thrown by calling try_lock() on the supplied Lockable objects.

Postcondition: If the function returns -1, all the supplied Lockable objects are locked by the calling thread. Otherwise any
locks acquired by this function will have been released.

Non-member function try_lock(begin,end) // EXTENSION

template<typename ForwardIterator>
ForwardIterator try_lock(ForwardIterator begin,ForwardIterator end);

Preconditions: The value_type of ForwardIterator must implement the Lockable concept

Effects: Calls try_lock() on each of the Lockable objects in the supplied range. If any of the calls to try_lock()
returns false then all locks acquired are released and an iterator referencing the failed lock is returned.

If any of the try_lock() operations on the supplied Lockable objects throws an exception any locks acquired
by the function will be released before the function exits.

Returns: end if all the supplied Lockable objects are now locked by the calling thread, an iterator referencing the
object which could not be locked otherwise.

Throws: Any exceptions thrown by calling try_lock() on the supplied Lockable objects.

Postcondition: If the function returns end then all the Lockable objects in the supplied range are locked by the calling
thread, otherwise all locks acquired by the function have been released.

106

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Lock Factories - EXTENSION

namespace boost
{

template <typename Lockable>
unique_lock<Lockable> make_unique_lock(Lockable& mtx); // EXTENSION

template <typename Lockable>
unique_lock<Lockable> make_unique_lock(Lockable& mtx, adopt_lock_t); // EXTENSION
template <typename Lockable>
unique_lock<Lockable> make_unique_lock(Lockable& mtx, defer_lock_t); // EXTENSION
template <typename Lockable>
unique_lock<Lockable> make_unique_lock(Lockable& mtx, try_to_lock_t); // EXTENSION

#if ! defined(BOOST_THREAD_NO_MAKE_UNIQUE_LOCKS)
template <typename ...Lockable>
std::tuple<unique_lock<Lockable> ...> make_unique_locks(Lockable& ...mtx); // EXTENSION

#endif
}

Non Member Function make_unique_lock(Lockable&)

template <typename Lockable>
unique_lock<Lockable> make_unique_lock(Lockable& mtx); // EXTENSION

Returns: a boost::unique_lock as if initialized with unique_lock<Lockable>(mtx).

Throws: Any exception thrown by the call to boost::unique_lock<Lockable>(mtx).

Non Member Function make_unique_lock(Lockable&,tag)

template <typename Lockable>
unique_lock<Lockable> make_unique_lock(Lockable& mtx, adopt_lock_t tag); // EXTENSION

template <typename Lockable>
unique_lock<Lockable> make_unique_lock(Lockable& mtx, defer_lock_t tag); // EXTENSION

template <typename Lockable>
unique_lock<Lockable> make_unique_lock(Lockable& mtx, try_to_lock_t tag); // EXTENSION

Returns: a boost::unique_lock as if initialized with unique_lock<Lockable>(mtx, tag).

Throws: Any exception thrown by the call to boost::unique_lock<Lockable>(mtx, tag).

Non Member Function make_unique_locks(Lockable& ...)

template <typename ...Lockable>
std::tuple<unique_lock<Lockable> ...> make_unique_locks(Lockable& ...mtx); // EXTENSION

Effect: Locks all the mutexes.

Returns: a std::tuple of unique boost::unique_lock owning each one of the mutex.

Throws: Any exception thrown by boost::lock(mtx...).

107

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mutex Types

Class mutex

#include <boost/thread/mutex.hpp>

class mutex:
boost::noncopyable

{
public:

mutex();
~mutex();

void lock();
bool try_lock();
void unlock();

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

typedef unique_lock<mutex> scoped_lock;
typedef unspecified-type scoped_try_lock;

};

boost::mutex implements the Lockable concept to provide an exclusive-ownership mutex. At most one thread can own the lock
on a given instance of boost::mutex at any time. Multiple concurrent calls to lock(), try_lock() and unlock() shall be per-
mitted.

Member function native_handle()

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

Effects: Returns an instance of native_handle_type that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, native_handle() and native_handle_type are not present.

Throws: Nothing.

Typedef try_mutex

#include <boost/thread/mutex.hpp>

typedef mutex try_mutex;

boost::try_mutex is a typedef to boost::mutex, provided for backwards compatibility with previous releases of boost.

108

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class timed_mutex

#include <boost/thread/mutex.hpp>

class timed_mutex:
boost::noncopyable

{
public:

timed_mutex();
~timed_mutex();

void lock();
void unlock();
bool try_lock();

template <class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& t);

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

typedef unique_lock<timed_mutex> scoped_timed_lock;
typedef unspecified-type scoped_try_lock;
typedef scoped_timed_lock scoped_lock;

#if defined BOOST_THREAD_PROVIDES_DATE_TIME || defined BOOST_THREAD_DONT_USE_CHRONO
bool timed_lock(system_time const & abs_time);
template<typename TimeDuration>
bool timed_lock(TimeDuration const & relative_time);

#endif

};

boost::timed_mutex implements the TimedLockable concept to provide an exclusive-ownership mutex. At most one thread
can own the lock on a given instance of boost::timed_mutex at any time. Multiple concurrent calls to lock(), try_lock(),
timed_lock(), timed_lock() and unlock() shall be permitted.

Member function native_handle()

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

Effects: Returns an instance of native_handle_type that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, native_handle() and native_handle_type are not present.

Throws: Nothing.

109

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class recursive_mutex

#include <boost/thread/recursive_mutex.hpp>

class recursive_mutex:
boost::noncopyable

{
public:

recursive_mutex();
~recursive_mutex();

void lock();
bool try_lock() noexcept;
void unlock();

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

typedef unique_lock<recursive_mutex> scoped_lock;
typedef unspecified-type scoped_try_lock;

};

boost::recursive_mutex implements the Lockable concept to provide an exclusive-ownership recursive mutex. At most one
thread can own the lock on a given instance of boost::recursive_mutex at any time. Multiple concurrent calls to lock(),
try_lock() and unlock() shall be permitted. A thread that already has exclusive ownership of a given boost::recursive_mutex
instance can call lock() or try_lock() to acquire an additional level of ownership of the mutex. unlock() must be called once
for each level of ownership acquired by a single thread before ownership can be acquired by another thread.

Member function native_handle()

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

Effects: Returns an instance of native_handle_type that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, native_handle() and native_handle_type are not present.

Throws: Nothing.

Typedef recursive_try_mutex

#include <boost/thread/recursive_mutex.hpp>

typedef recursive_mutex recursive_try_mutex;

boost::recursive_try_mutex is a typedef to boost::recursive_mutex, provided for backwards compatibility with pre-
vious releases of boost.

110

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class recursive_timed_mutex

#include <boost/thread/recursive_mutex.hpp>

class recursive_timed_mutex:
boost::noncopyable

{
public:

recursive_timed_mutex();
~recursive_timed_mutex();

void lock();
bool try_lock() noexcept;
void unlock();

template <class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& t);

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

typedef unique_lock<recursive_timed_mutex> scoped_lock;
typedef unspecified-type scoped_try_lock;
typedef scoped_lock scoped_timed_lock;

#if defined BOOST_THREAD_PROVIDES_DATE_TIME || defined BOOST_THREAD_DONT_USE_CHRONO
bool timed_lock(system_time const & abs_time);
template<typename TimeDuration>
bool timed_lock(TimeDuration const & relative_time);

#endif

};

boost::recursive_timed_mutex implements the TimedLockable concept to provide an exclusive-ownership recursive mutex.
At most one thread can own the lock on a given instance of boost::recursive_timed_mutex at any time. Multiple concurrent
calls to lock(), try_lock(), timed_lock(), timed_lock() and unlock() shall be permitted. A thread that already has ex-
clusive ownership of a given boost::recursive_timed_mutex instance can call lock(), timed_lock(), timed_lock() or
try_lock() to acquire an additional level of ownership of the mutex. unlock() must be called once for each level of ownership
acquired by a single thread before ownership can be acquired by another thread.

Member function native_handle()

typedef platform-specific-type native_handle_type;
native_handle_type native_handle();

Effects: Returns an instance of native_handle_type that can be used with platform-specific APIs to manipulate the under-
lying implementation. If no such instance exists, native_handle() and native_handle_type are not present.

Throws: Nothing.

111

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class shared_mutex -- EXTENSION

#include <boost/thread/shared_mutex.hpp>

class shared_mutex
{
public:

shared_mutex(shared_mutex const&) = delete;
shared_mutex& operator=(shared_mutex const&) = delete;

shared_mutex();
~shared_mutex();

void lock_shared();
bool try_lock_shared();
template <class Rep, class Period>
bool try_lock_shared_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_lock_shared_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock_shared();

void lock();
bool try_lock();
template <class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

#if defined BOOST_THREAD_PROVIDES_DEPRECATED_FEATURES_SINCE_V3_0_0
// use upgrade_mutex instead.
void lock_upgrade();
void unlock_upgrade();

void unlock_upgrade_and_lock();
void unlock_and_lock_upgrade();
void unlock_and_lock_shared();
void unlock_upgrade_and_lock_shared();

#endif

#if defined BOOST_THREAD_USES_DATETIME
bool timed_lock_shared(system_time const& timeout);
bool timed_lock(system_time const& timeout);

#endif

};

The class boost::shared_mutex provides an implementation of a multiple-reader / single-writer mutex. It implements the
SharedLockable concept.

Multiple concurrent calls to lock(), try_lock(), try_lock_for(), try_lock_until(), timed_lock(), lock_shared(),
try_lock_shared_for(), try_lock_shared_until(), try_lock_shared() and timed_lock_shared() are permitted.

Note the the lack of reader-writer priority policies in shared_mutex. This is due to an algorithm credited to Alexander Terekhov
which lets the OS decide which thread is the next to get the lock without caring whether a unique lock or shared lock is being sought.
This results in a complete lack of reader or writer starvation. It is simply fair.

112

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class upgrade_mutex -- EXTENSION

#include <boost/thread/shared_mutex.hpp>

class upgrade_mutex
{
public:

upgrade_mutex(upgrade_mutex const&) = delete;
upgrade_mutex& operator=(upgrade_mutex const&) = delete;

upgrade_mutex();
~upgrade_mutex();

void lock_shared();
bool try_lock_shared();
template <class Rep, class Period>
bool try_lock_shared_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_lock_shared_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock_shared();

void lock();
bool try_lock();
template <class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock();

void lock_upgrade();
template <class Rep, class Period>
bool try_lock_upgrade_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_lock_upgrade_until(const chrono::time_point<Clock, Duration>& abs_time);
void unlock_upgrade();

// Shared <-> Exclusive

#ifdef BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSIONS
bool try_unlock_shared_and_lock();
template <class Rep, class Period>
bool try_unlock_shared_and_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_unlock_shared_and_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

#endif
void unlock_and_lock_shared();

// Shared <-> Upgrade

#ifdef BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSIONS
bool try_unlock_shared_and_lock_upgrade();
template <class Rep, class Period>
bool try_unlock_shared_and_lock_upgrade_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_unlock_shared_and_lock_upgrade_until(const chrono::time_point<Clock, Dura↵

tion>& abs_time);
#endif

void unlock_upgrade_and_lock_shared();

// Upgrade <-> Exclusive

void unlock_upgrade_and_lock();
#if defined(BOOST_THREAD_PLATFORM_PTHREAD)

113

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

|| defined(BOOST_THREAD_PROVIDES_GENERIC_SHARED_MUTEX_ON_WIN)
bool try_unlock_upgrade_and_lock();
template <class Rep, class Period>
bool try_unlock_upgrade_and_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_unlock_upgrade_and_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

#endif
void unlock_and_lock_upgrade();

};

The class boost::upgrade_mutex provides an implementation of a multiple-reader / single-writer mutex. It implements the Up-
gradeLockable concept.

Multiple concurrent calls to lock(), try_lock(), try_lock_for(), try_lock_until(), timed_lock(), lock_shared(),
try_lock_shared_for(), try_lock_shared_until(), try_lock_shared() and timed_lock_shared() are permitted.

Class null_mutex -- EXTENSION

#include <boost/thread/null_mutex.hpp>

class null_mutex
{
public:

null_mutex(null_mutex const&) = delete;
null_mutex& operator=(null_mutex const&) = delete;

null_mutex();
~null_mutex();

void lock_shared();
bool try_lock_shared();

#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
bool try_lock_shared_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_lock_shared_until(const chrono::time_point<Clock, Duration>& abs_time);

#endif
void unlock_shared();

void lock();
bool try_lock();

#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

#endif
void unlock();

void lock_upgrade();
#ifdef BOOST_THREAD_USES_CHRONO

template <class Rep, class Period>
bool try_lock_upgrade_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_lock_upgrade_until(const chrono::time_point<Clock, Duration>& abs_time);

#endif
void unlock_upgrade();

// Shared <-> Exclusive

bool try_unlock_shared_and_lock();

114

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
bool try_unlock_shared_and_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_unlock_shared_and_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

#endif
void unlock_and_lock_shared();

// Shared <-> Upgrade

bool try_unlock_shared_and_lock_upgrade();
#ifdef BOOST_THREAD_USES_CHRONO

template <class Rep, class Period>
bool try_unlock_shared_and_lock_upgrade_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_unlock_shared_and_lock_upgrade_until(const chrono::time_point<Clock, Dura↵

tion>& abs_time);
#endif

void unlock_upgrade_and_lock_shared();

// Upgrade <-> Exclusive

void unlock_upgrade_and_lock();
bool try_unlock_upgrade_and_lock();

#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
bool try_unlock_upgrade_and_lock_for(const chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool try_unlock_upgrade_and_lock_until(const chrono::time_point<Clock, Duration>& abs_time);

#endif
void unlock_and_lock_upgrade();

};

The class boost::null_mutex provides a no-op implementation of a multiple-reader / single-writer mutex. It is a model of the
UpgradeLockable concept.

Condition Variables

Synopsis

namespace boost
{
enum class cv_status;
{
no_timeout,
timeout

};
class condition_variable;
class condition_variable_any;
void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);

}

The classes condition_variable and condition_variable_any provide a mechanism for one thread to wait for notification
from another thread that a particular condition has become true. The general usage pattern is that one thread locks a mutex and then
calls wait on an instance of condition_variable or condition_variable_any. When the thread is woken from the wait,
then it checks to see if the appropriate condition is now true, and continues if so. If the condition is not true, then the thread then
calls wait again to resume waiting. In the simplest case, this condition is just a boolean variable:

115

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::condition_variable cond;
boost::mutex mut;
bool data_ready;

void process_data();

void wait_for_data_to_process()
{

boost::unique_lock<boost::mutex> lock(mut);
while(!data_ready)
{

cond.wait(lock);
}
process_data();

}

Notice that the lock is passed to wait: wait will atomically add the thread to the set of threads waiting on the condition variable,
and unlock the mutex. When the thread is woken, the mutex will be locked again before the call to wait returns. This allows other
threads to acquire the mutex in order to update the shared data, and ensures that the data associated with the condition is correctly
synchronized.

In the mean time, another thread sets the condition to true, and then calls either notify_one or notify_all on the condition
variable to wake one waiting thread or all the waiting threads respectively.

void retrieve_data();
void prepare_data();

void prepare_data_for_processing()
{

retrieve_data();
prepare_data();
{

boost::lock_guard<boost::mutex> lock(mut);
data_ready=true;

}
cond.notify_one();

}

Note that the same mutex is locked before the shared data is updated, but that the mutex does not have to be locked across the call
to notify_one.

This example uses an object of type condition_variable, but would work just as well with an object of type condition_vari-
able_any: condition_variable_any is more general, and will work with any kind of lock or mutex, whereas condition_vari-
able requires that the lock passed to wait is an instance of boost::unique_lock<boost::mutex>. This enables condi-
tion_variable to make optimizations in some cases, based on the knowledge of the mutex type; condition_variable_any
typically has a more complex implementation than condition_variable.

116

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class condition_variable

//#include <boost/thread/condition_variable.hpp>

namespace boost
{

class condition_variable
{
public:

condition_variable();
~condition_variable();

void notify_one() noexcept;
void notify_all() noexcept;

void wait(boost::unique_lock<boost::mutex>& lock);

template<typename predicate_type>
void wait(boost::unique_lock<boost::mutex>& lock,predicate_type predicate);

template <class Clock, class Duration>
typename cv_status::type
wait_until(

unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& t);

template <class Clock, class Duration, class Predicate>
bool
wait_until(

unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& t,
Predicate pred);

template <class Rep, class Period>
typename cv_status::type
wait_for(

unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& d);

template <class Rep, class Period, class Predicate>
bool
wait_for(

unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& d,
Predicate pred);

#if defined BOOST_THREAD_USES_DATETIME
bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time);
template<typename duration_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time);
template<typename predicate_type>
bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::sys↵

tem_time const& abs_time,predicate_type predicate);
template<typename duration_type,typename predicate_type>

bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time,pre↵
dicate_type predicate);

bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::xtime const& abs_time);

template<typename predicate_type>

117

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::xtime const& abs_time,pre↵
dicate_type predicate);

#endif

};
}

condition_variable()

Effects: Constructs an object of class condition_variable.

Throws: boost::thread_resource_error if an error occurs.

~condition_variable()

Precondition: All threads waiting on *this have been notified by a call to notify_one or notify_all (though the respective
calls to wait or timed_wait need not have returned).

Effects: Destroys the object.

Throws: Nothing.

void notify_one()

Effects: If any threads are currently blocked waiting on *this in a call to wait or timed_wait, unblocks one of those threads.

Throws: Nothing.

void notify_all()

Effects: If any threads are currently blocked waiting on *this in a call to wait or timed_wait, unblocks all of those threads.

Throws: Nothing.

void wait(boost::unique_lock<boost::mutex>& lock)

Precondition: lock is locked by the current thread, and either no other thread is currently waiting on *this, or the execution
of the mutex() member function on the lock objects supplied in the calls to wait or timed_wait in all
the threads currently waiting on *this would return the same value as lock->mutex() for this call to wait.

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), or spuriously. When the thread is unblocked (for
whatever reason), the lock is reacquired by invoking lock.lock() before the call to wait returns. The lock
is also reacquired by invoking lock.lock() if the function exits with an exception.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

template<typename predicate_type> void wait(boost::unique_lock<boost::mutex>& lock, predicate_type

pred)

Effects: As-if

118

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

while(!pred())
{

wait(lock);
}

bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time)

Precondition: lock is locked by the current thread, and either no other thread is currently waiting on *this, or the execution
of the mutex() member function on the lock objects supplied in the calls to wait or timed_wait in all
the threads currently waiting on *this would return the same value as lock->mutex() for this call to wait.

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), when the time as reported by
boost::get_system_time() would be equal to or later than the specified abs_time, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by invoking lock.lock() before the
call to wait returns. The lock is also reacquired by invoking lock.lock() if the function exits with an ex-
ception.

Returns: false if the call is returning because the time specified by abs_time was reached, true otherwise.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

template<typename duration_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type

const& rel_time)

Precondition: lock is locked by the current thread, and either no other thread is currently waiting on *this, or the execution
of the mutex() member function on the lock objects supplied in the calls to wait or timed_wait in all
the threads currently waiting on *this would return the same value as lock->mutex() for this call to wait.

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), after the period of time indicated by the rel_time
argument has elapsed, or spuriously. When the thread is unblocked (for whatever reason), the lock is reacquired
by invoking lock.lock() before the call to wait returns. The lock is also reacquired by invoking
lock.lock() if the function exits with an exception.

Returns: false if the call is returning because the time period specified by rel_time has elapsed, true otherwise.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

Note

The duration overload of timed_wait is difficult to use correctly. The overload taking a predicate should be preferred
in most cases.

template<typename predicate_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock,

boost::system_time const& abs_time, predicate_type pred)

Effects: As-if

119

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

while(!pred())
{

if(!timed_wait(lock,abs_time))
{

return pred();
}

}
return true;

template <class Clock, class Duration> cv_status wait_until(boost::unique_lock<boost::mutex>& lock,

const chrono::time_point<Clock, Duration>& abs_time)

Precondition: lock is locked by the current thread, and either no other thread is currently waiting on *this, or the execution
of the mutex() member function on the lock objects supplied in the calls to wait or wait_for or
wait_until in all the threads currently waiting on *this would return the same value as lock->mutex()
for this call to wait.

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), when the time as reported by Clock::now()
would be equal to or later than the specified abs_time, or spuriously. When the thread is unblocked (for
whatever reason), the lock is reacquired by invoking lock.lock() before the call to wait returns. The lock
is also reacquired by invoking lock.lock() if the function exits with an exception.

Returns: cv_status::timeout if the call is returning because the time specified by abs_time was reached,
cv_status::no_timeout otherwise.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

template <class Rep, class Period> cv_status wait_for(boost::unique_lock<boost::mutex>& lock, const

chrono::duration<Rep, Period>& rel_time)

Precondition: lock is locked by the current thread, and either no other thread is currently waiting on *this, or the execution
of the mutex() member function on the lock objects supplied in the calls to wait or wait_until or
wait_for in all the threads currently waiting on *this would return the same value as lock->mutex()
for this call to wait.

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), after the period of time indicated by the rel_time
argument has elapsed, or spuriously. When the thread is unblocked (for whatever reason), the lock is reacquired
by invoking lock.lock() before the call to wait returns. The lock is also reacquired by invoking
lock.lock() if the function exits with an exception.

Returns: cv_status::timeout if the call is returning because the time period specified by rel_time has elapsed,
cv_status::no_timeout otherwise.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

120

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

The duration overload of timed_wait is difficult to use correctly. The overload taking a predicate should be preferred
in most cases.

template <class Clock, class Duration, class Predicate> bool wait_until(boost::unique_lock<boost::mu-

tex>& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred)

Effects: As-if

while(!pred())
{

if(!wait_until(lock,abs_time))
{

return pred();
}

}
return true;

template <class Rep, class Period, class Predicate> bool wait_for(boost::unique_lock<boost::mutex>&

lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred)

Effects: As-if

return wait_until(lock, chrono::steady_clock::now() + d, boost::move(pred));

121

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class condition_variable_any

//#include <boost/thread/condition_variable.hpp>

namespace boost
{

class condition_variable_any
{
public:

condition_variable_any();
~condition_variable_any();

void notify_one();
void notify_all();

template<typename lock_type>
void wait(lock_type& lock);

template<typename lock_type,typename predicate_type>
void wait(lock_type& lock,predicate_type predicate);

template <class lock_type, class Clock, class Duration>
cv_status wait_until(

lock_type& lock,
const chrono::time_point<Clock, Duration>& t);

template <class lock_type, class Clock, class Duration, class Predicate>
bool wait_until(

lock_type& lock,
const chrono::time_point<Clock, Duration>& t,
Predicate pred);

template <class lock_type, class Rep, class Period>
cv_status wait_for(

lock_type& lock,
const chrono::duration<Rep, Period>& d);

template <class lock_type, class Rep, class Period, class Predicate>
bool wait_for(

lock_type& lock,
const chrono::duration<Rep, Period>& d,
Predicate pred);

#if defined BOOST_THREAD_USES_DATETIME
template<typename lock_type>
bool timed_wait(lock_type& lock,boost::system_time const& abs_time);
template<typename lock_type,typename duration_type>
bool timed_wait(lock_type& lock,duration_type const& rel_time);
template<typename lock_type,typename predicate_type>

bool timed_wait(lock_type& lock,boost::system_time const& abs_time,predicate_type predic↵
ate);

template<typename lock_type,typename duration_type,typename predicate_type>
bool timed_wait(lock_type& lock,duration_type const& rel_time,predicate_type predicate);
template<typename lock_type>
bool timed_wait(lock_type>& lock,boost::xtime const& abs_time);
template<typename lock_type,typename predicate_type>
bool timed_wait(lock_type& lock,boost::xtime const& abs_time,predicate_type predicate);

#endif
};

}

122

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

condition_variable_any()

Effects: Constructs an object of class condition_variable_any.

Throws: boost::thread_resource_error if an error occurs.

~condition_variable_any()

Precondition: All threads waiting on *this have been notified by a call to notify_one or notify_all (though the respective
calls to wait or timed_wait need not have returned).

Effects: Destroys the object.

Throws: Nothing.

void notify_one()

Effects: If any threads are currently blocked waiting on *this in a call to wait or timed_wait, unblocks one of those threads.

Throws: Nothing.

void notify_all()

Effects: If any threads are currently blocked waiting on *this in a call to wait or timed_wait, unblocks all of those threads.

Throws: Nothing.

template<typename lock_type> void wait(lock_type& lock)

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), or spuriously. When the thread is unblocked (for
whatever reason), the lock is reacquired by invoking lock.lock() before the call to wait returns. The lock
is also reacquired by invoking lock.lock() if the function exits with an exception.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

template<typename lock_type,typename predicate_type> void wait(lock_type& lock, predicate_type

pred)

Effects: As-if

while(!pred())
{

wait(lock);
}

template<typename lock_type> bool timed_wait(lock_type& lock,boost::system_time const& abs_time)

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), when the time as reported by
boost::get_system_time() would be equal to or later than the specified abs_time, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by invoking lock.lock() before the

123

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

call to wait returns. The lock is also reacquired by invoking lock.lock() if the function exits with an ex-
ception.

Returns: false if the call is returning because the time specified by abs_time was reached, true otherwise.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

template<typename lock_type,typename duration_type> bool timed_wait(lock_type& lock,duration_type

const& rel_time)

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), after the period of time indicated by the rel_time
argument has elapsed, or spuriously. When the thread is unblocked (for whatever reason), the lock is reacquired
by invoking lock.lock() before the call to wait returns. The lock is also reacquired by invoking
lock.lock() if the function exits with an exception.

Returns: false if the call is returning because the time period specified by rel_time has elapsed, true otherwise.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

Note

The duration overload of timed_wait is difficult to use correctly. The overload taking a predicate should be preferred
in most cases.

template<typename lock_type,typename predicate_type> bool timed_wait(lock_type& lock, boost::sys-

tem_time const& abs_time, predicate_type pred)

Effects: As-if

while(!pred())
{

if(!timed_wait(lock,abs_time))
{

return pred();
}

}
return true;

template <class lock_type, class Clock, class Duration> cv_status wait_until(lock_type& lock, const

chrono::time_point<Clock, Duration>& abs_time)

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), when the time as reported by Clock::now()
would be equal to or later than the specified abs_time, or spuriously. When the thread is unblocked (for
whatever reason), the lock is reacquired by invoking lock.lock() before the call to wait returns. The lock
is also reacquired by invoking lock.lock() if the function exits with an exception.

124

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Returns: cv_status::timeout if the call is returning because the time specified by abs_time was reached,
cv_status::no_timeout otherwise.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

template <class lock_type, class Rep, class Period> cv_status wait_for(lock_type& lock, const

chrono::duration<Rep, Period>& rel_time)

Effects: Atomically call lock.unlock() and blocks the current thread. The thread will unblock when notified by a
call to this->notify_one() or this->notify_all(), after the period of time indicated by the rel_time
argument has elapsed, or spuriously. When the thread is unblocked (for whatever reason), the lock is reacquired
by invoking lock.lock() before the call to wait returns. The lock is also reacquired by invoking
lock.lock() if the function exits with an exception.

Returns: cv_status::timeout if the call is returning because the time specified by abs_time was reached,
cv_status::no_timeout otherwise.

Postcondition: lock is locked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost::thread_interrupted if the wait was
interrupted by a call to interrupt() on the boost::thread object associated with the current thread of
execution.

Note

The duration overload of timed_wait is difficult to use correctly. The overload taking a predicate should be preferred
in most cases.

template <class lock_type, class Clock, class Duration, class Predicate> bool wait_until(lock_type&

lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred)

Effects: As-if

while(!pred())
{

if(!wait_until(lock,abs_time))
{

return pred();
}

}
return true;

template <class lock_type, class Rep, class Period, class Predicate> bool wait_for(lock_type& lock,

const chrono::duration<Rep, Period>& rel_time, Predicate pred)

Effects: As-if

return wait_until(lock, chrono::steady_clock::now() + d, boost::move(pred));

125

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Typedef condition DEPRECATED V3

// #include <boost/thread/condition.hpp>
namespace boost
{

typedef condition_variable_any condition;

}

The typedef condition is provided for backwards compatibility with previous boost releases.

Non-member Function notify_all_at_thread_exit()

// #include <boost/thread/condition_variable.hpp>

namespace boost
{
void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);

}

Requires: lk is locked by the calling thread and either no other thread is waiting on cond, or lk.mutex() returns the same
value for each of the lock arguments supplied by all concurrently waiting (via wait, wait_for, or wait_until)
threads.

Effects: transfers ownership of the lock associated with lk into internal storage and schedules cond to be notified when the
current thread exits, after all objects of thread storage duration associated with the current thread have been destroyed.
This notification shall be as if

lk.unlock();
cond.notify_all();

One-time Initialization

#include <boost/thread/once.hpp>

namespace boost
{
struct once_flag;
template<typename Callable>
void call_once(once_flag& flag,Callable func);

#if defined BOOST_THREAD_PROVIDES_DEPRECATED_FEATURES_SINCE_V3_0_0
void call_once(void (*func)(),once_flag& flag);

#endif

}

boost::call_once provides a mechanism for ensuring that an initialization routine is run exactly once without data races or
deadlocks.

126

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Typedef once_flag

#ifdef BOOST_THREAD_PROVIDES_ONCE_CXX11
struct once_flag
{
constexprr once_flag() noexcept;
once_flag(const once_flag&) = delete;
once_flag& operator=(const once_flag&) = delete;

};
#else
typedef platform-specific-type once_flag;
#define BOOST_ONCE_INIT platform-specific-initializer
#endif

Objects of type boost::once_flag shall be initialized with BOOST_ONCE_INIT if BOOST_THREAD_PROVIDES_ONCE_CXX11
is not defined

boost::once_flag f=BOOST_ONCE_INIT;

Non-member function call_once

template<typename Callable>
void call_once(once_flag& flag,Callable func);

Requires: Callable is CopyConstructible. Copying func shall have no side effects, and the effect of calling
the copy shall be equivalent to calling the original.

Effects: Calls to call_once on the same once_flag object are serialized. If there has been no prior effective
call_once on the same once_flag object, the argument func (or a copy thereof) is called as-if by in-
voking func(), and the invocation of call_once is effective if and only if func() returns without ex-
ception. If an exception is thrown, the exception is propagated to the caller. If there has been a prior effective
call_once on the same once_flag object, the call_once returns without invoking func.

Synchronization: The completion of an effective call_once invocation on a once_flag object, synchronizes with all
subsequent call_once invocations on the same once_flag object.

Throws: thread_resource_error when the effects cannot be achieved. or any exception propagated from func.

Note: The function passed to call_once must not also call call_once passing the same once_flag object.
This may cause deadlock, or invoking the passed function a second time. The alternative is to allow the
second call to return immediately, but that assumes the code knows it has been called recursively, and can
proceed even though the call to call_once didn't actually call the function, in which case it could also
avoid calling call_once recursively.

void call_once(void (*func)(),once_flag& flag);

This second overload is provided for backwards compatibility. The effects of call_once(func,flag) shall be the same as those
of call_once(flag,func).

Barriers
A barrier is a simple concept. Also known as a rendezvous, it is a synchronization point between multiple threads. The barrier is
configured for a particular number of threads (n), and as threads reach the barrier they must wait until all n threads have arrived.
Once the n-th thread has reached the barrier, all the waiting threads can proceed, and the barrier is reset.

127

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class barrier

#include <boost/thread/barrier.hpp>

class barrier
{
public:

barrier(unsigned int count);
~barrier();

bool wait();
};

Instances of boost::barrier are not copyable or movable.

Constructor

barrier(unsigned int count);

Effects: Construct a barrier for count threads.

Throws: boost::thread_resource_error if an error occurs.

Destructor

~barrier();

Precondition: No threads are waiting on *this.

Effects: Destroys *this.

Throws: Nothing.

Member function wait

bool wait();

Effects: Block until count threads have called wait on *this. When the count-th thread calls wait, all waiting threads are
unblocked, and the barrier is reset.

Returns: true for exactly one thread from each batch of waiting threads, false otherwise.

Throws: boost::thread_resource_error if an error occurs.

Futures

Overview

The futures library provides a means of handling synchronous future values, whether those values are generated by another thread,
or on a single thread in response to external stimuli, or on-demand.

This is done through the provision of four class templates: future and boost::shared_future which are used to retrieve the
asynchronous results, and boost::promise and boost::packaged_task which are used to generate the asynchronous results.

An instance of future holds the one and only reference to a result. Ownership can be transferred between instances using the move
constructor or move-assignment operator, but at most one instance holds a reference to a given asynchronous result. When the result

128

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

is ready, it is returned from boost::future<R>::get() by rvalue-reference to allow the result to be moved or copied as appro-
priate for the type.

On the other hand, many instances of boost::shared_future may reference the same result. Instances can be freely copied and
assigned, and boost::shared_future<R>::get() returns a non const reference so that multiple calls to
boost::shared_future<R>::get() are safe. You can move an instance of future into an instance of boost::shared_future,
thus transferring ownership of the associated asynchronous result, but not vice-versa.

boost::async is a simple way of running asynchronous tasks. A call to boost::async returns a future that will contain the
result of the task.

You can wait for futures either individually or with one of the boost::wait_for_any() and boost::wait_for_all() functions.

Creating asynchronous values

You can set the value in a future with either a boost::promise or a boost::packaged_task. A boost::packaged_task is
a callable object that wraps a function or callable object. When the packaged task is invoked, it invokes the contained function in
turn, and populates a future with the return value. This is an answer to the perennial question: "how do I return a value from a thread?":
package the function you wish to run as a boost::packaged_task and pass the packaged task to the thread constructor. The future
retrieved from the packaged task can then be used to obtain the return value. If the function throws an exception, that is stored in the
future in place of the return value.

int calculate_the_answer_to_life_the_universe_and_everything()
{

return 42;
}

boost::packaged_task<int> pt(calculate_the_answer_to_life_the_universe_and_everything);
boost:: future<int> fi=pt.get_future();

boost::thread task(boost::move(pt)); // launch task on a thread

fi.wait(); // wait for it to finish

assert(fi.is_ready());
assert(fi.has_value());
assert(!fi.has_exception());
assert(fi.get_state()==boost::future_state::ready);
assert(fi.get()==42);

A boost::promise is a bit more low level: it just provides explicit functions to store a value or an exception in the associated future.
A promise can therefore be used where the value may come from more than one possible source, or where a single operation may
produce multiple values.

boost::promise<int> pi;
boost:: future<int> fi;
fi=pi.get_future();

pi.set_value(42);

assert(fi.is_ready());
assert(fi.has_value());
assert(!fi.has_exception());
assert(fi.get_state()==boost::future_state::ready);
assert(fi.get()==42);

129

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Wait Callbacks and Lazy Futures

Both boost::promise and boost::packaged_task support wait callbacks that are invoked when a thread blocks in a call to
wait() or timed_wait() on a future that is waiting for the result from the boost::promise or boost::packaged_task, in
the thread that is doing the waiting. These can be set using the set_wait_callback() member function on the boost::promise
or boost::packaged_task in question.

This allows lazy futures where the result is not actually computed until it is needed by some thread. In the example below, the call
to f.get() invokes the callback invoke_lazy_task, which runs the task to set the value. If you remove the call to f.get(), the
task is not ever run.

int calculate_the_answer_to_life_the_universe_and_everything()
{

return 42;
}

void invoke_lazy_task(boost::packaged_task<int>& task)
{

try
{

task();
}
catch(boost::task_already_started&)
{}

}

int main()
{

boost::packaged_task<int> task(calculate_the_answer_to_life_the_universe_and_everything);
task.set_wait_callback(invoke_lazy_task);
boost:: future<int> f(task.get_future());

assert(f.get()==42);
}

Handling Detached Threads and Thread Specific Variables

Detached threads pose a problem for objects with thread storage duration. If we use a mechanism other than thread::__join to
wait for a thread to complete its work - such as waiting for a future to be ready - then the destructors of thread specific variables
will still be running after the waiting thread has resumed. This section explain how the standard mechanism can be used to make
such synchronization safe by ensuring that the objects with thread storage duration are destroyed prior to the future being made
ready. e.g.

int find_the_answer(); // uses thread specific objects
void thread_func(boost::promise<int>&& p)
{

p.set_value_at_thread_exit(find_the_answer());
}

int main()
{

boost::promise<int> p;
boost::thread t(thread_func,boost::move(p));
t.detach(); // we're going to wait on the future
std::cout<<p.get_future().get()<<std::endl;

}

When the call to get() returns, we know that not only is the future value ready, but the thread specific variables on the other thread
have also been destroyed.

130

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Such mechanisms are provided for boost::condition_variable, boost::promise and boost::packaged_task. e.g.

void task_executor(boost::packaged_task<void(int)> task,int param)
{

task.make_ready_at_thread_exit(param); // execute stored task
} // destroy thread specific and wake threads waiting on futures from task

Other threads can wait on a future obtained from the task without having to worry about races due to the execution of destructors of
the thread specific objects from the task's thread.

boost::condition_variable cv;
boost::mutex m;
complex_type the_data;
bool data_ready;

void thread_func()
{

boost::unique_lock<std::mutex> lk(m);
the_data=find_the_answer();
data_ready=true;
boost::notify_all_at_thread_exit(cv,boost::move(lk));

} // destroy thread specific objects, notify cv, unlock mutex

void waiting_thread()
{

boost::unique_lock<std::mutex> lk(m);
while(!data_ready)
{

cv.wait(lk);
}
process(the_data);

}

The waiting thread is guaranteed that the thread specific objects used by thread_func() have been destroyed by the time pro-
cess(the_data) is called. If the lock on m is released and re-acquired after setting data_ready and before calling boost::no-
tify_all_at_thread_exit() then this does NOT hold, since the thread may return from the wait due to a spurious wake-up.

Executing asynchronously

boost::async is a simple way of running asynchronous tasks to make use of the available hardware concurrency. A call to
boost::async returns a boost::future that will contain the result of the task. Depending on the launch policy, the task is either
run asynchronously on its own thread or synchronously on whichever thread calls the wait() or get() member functions on that
future.

A launch policy of either boost::launch::async, which asks the runtime to create an asynchronous thread, or boost::launch::deferred,
which indicates you simply want to defer the function call until a later time (lazy evaluation). This argument is optional - if you omit
it your function will use the default policy.

For example, consider computing the sum of a very large array. The first task is to not compute asynchronously when the overhead
would be significant. The second task is to split the work into two pieces, one executed by the host thread and one executed asyn-
chronously.

131

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int parallel_sum(int* data, int size)
{
int sum = 0;
if (size < 1000)
for (int i = 0; i < size; ++i)
sum += data[i];

else {
auto handle = boost::async(parallel_sum, data+size/2, size-size/2);
sum += parallel_sum(data, size/2);
sum += handle.get();

}
return sum;

}

Shared Futures

shared_future is designed to be shared between threads, that is to allow multiple concurrent get operations.

Multiple get

The second get() call in the following example future

void bad_second_use(type arg) {

auto ftr = async([=]{ return work(arg); });
if (cond1)
{

use1(ftr.get());
} else
{

use2(ftr.get());
}
use3(ftr.get()); // second use is undefined

}

Using a shared_mutex solves the issue

void good_second_use(type arg) {

shared_future<type> ftr = async([=]{ return work(arg); });
if (cond1)
{

use1(ftr.get());
} else
{

use2(ftr.get());
}
use3(ftr.get()); // second use is defined

}

share()

Namming the return type when declaring the shared_future is needed; auto is not available within template argument lists. Here
share() could be used to simplify the code

132

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void better_second_use(type arg) {

auto ftr = async([=]{ return work(arg); }).share();
if (cond1)
{

use1(ftr.get());
} else
{

use2(ftr.get());
}
use3(ftr.get()); // second use is defined

}

Writting on get()

The user can either read or write the future avariable.

void write_to_get(type arg) {

auto ftr = async([=]{ return work(arg); }).share();
if (cond1)
{

use1(ftr.get());
} else
{
if (cond2)

use2(ftr.get());
else

ftr.get() = something(); // assign to non-const reference.
}
use3(ftr.get()); // second use is defined

}

This works because the shared_future<>::get() function returns a non-const reference to the appropriate storage. Of course
the access to this storage must be ensured by the user. The library doesn't ensure the access to the internal storage is thread safe.

There has been some work by the C++ standard committe on an atomic_future that behaves as an atomic variable, that is is
thread_safe, and a shared_future that can be shared between several threads, but there were not enough consensus and time to
get it ready for C++11.

Making immediate futures easier

Some functions may know the value at the point of construction. In these cases the value is immediately available, but needs to be
returned as a future or shared_future. By using make_future (make_shared_future) a future (shared_future) can be created which
holds a pre-computed result in its shared state.

Without these features it is non-trivial to create a future directly from a value. First a promise must be created, then the promise is
set, and lastly the future is retrieved from the promise. This can now be done with one operation.

make_future / make_shared_future

This function creates a future for a given value. If no value is given then a future<void> is returned. This function is primarily useful
in cases where sometimes, the return value is immediately available, but sometimes it is not. The example below illustrates, that in
an error path the value is known immediately, however in other paths the function must return an eventual value represented as a
future.

133

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::future<int> compute(int x)
{
if (x == 0) return boost::make_future(0);
if (x < 0) return boost::make_future(-1);
boost::future<int> f1 = boost::async([]() { return x+1; });
return f1;

}

There are two variations of this function. The first takes a value of any type, and returns a future of that type. The input value is
passed to the shared state of the returned future. The second version takes no input and returns a future<void>. make_shared_future
has the same functionality as make_future, except has a return type of shared_future.

Associating future continuations

In asynchronous programming, it is very common for one asynchronous operation, on completion, to invoke a second operation and
pass data to it. The current C++ standard does not allow one to register a continuation to a future. With .then, instead of waiting for
the result, a continuation is "attached" to the asynchronous operation, which is invoked when the result is ready. Continuations registered
using the .then function will help to avoid blocking waits or wasting threads on polling, greatly improving the responsiveness and
scalability of an application.

future.then provides the ability to sequentially compose two futures by declaring one to be the continuation of another. With .then
the antecedent future is ready (has a value or exception stored in the shared state) before the continuation starts as instructed by the
lambda function.

In the example below the future<int> f2 is registered to be a continuation of future<int> f1 using the .then member function. This
operation takes a lambda function which describes how f2 should proceed after f1 is ready.

#include <boost/thread/future.hpp>
using namespace boost;
int main()
{
future<int> f1 = async([]() { return 123; });
future<string> f2 = f1.then([](future<int> f) { return f.get().to_string(); // here .get() ↵

won't block });
}

One key feature of this function is the ability to chain multiple asynchronous operations. In asynchronous programming, it's common
to define a sequence of operations, in which each continuation executes only when the previous one completes. In some cases, the
antecedent future produces a value that the continuation accepts as input. By using future.then, creating a chain of continuations
becomes straightforward and intuitive:

myFuture.then(...).then(...).then(...).

Some points to note are:

• Each continuation will not begin until the preceding has completed.

• If an exception is thrown, the following continuation can handle it in a try-catch block

Input Parameters:

• Lambda function2: One option which was considered was to follow JavaScript's approach and take two functions, one for success
and one for error handling. However this option is not viable in C++ as there is no single base type for exceptions as there is in
JavaScript. The lambda function takes a future as its input which carries the exception through. This makes propagating exceptions
straightforward. This approach also simplifies the chaining of continuations.

134

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Scheduler: Providing an overload to .then, to take a scheduler reference places great flexibility over the execution of the future in
the programmer's hand. As described above, often taking a launch policy is not sufficient for powerful asynchronous operations.
The lifetime of the scheduler must outlive the continuation.

• Launch policy: if the additional flexibility that the scheduler provides is not required.

Return values: The decision to return a future was based primarily on the ability to chain multiple continuations using .then. This
benefit of composability gives the programmer incredible control and flexibility over their code. Returning a future object rather
than a shared_future is also a much cheaper operation thereby improving performance. A shared_future object is not necessary to
take advantage of the chaining feature. It is also easy to go from a future to a shared_future when needed using future::share().

Futures Reference

//#include <boost/thread/futures.hpp>

namespace boost
{
namespace future_state // EXTENSION
{
enum state {uninitialized, waiting, ready, moved};

}

enum class future_errc
{
broken_promise,
future_already_retrieved,
promise_already_satisfied,
no_state

};

enum class launch
{
async = unspecified,
deferred = unspecified,
any = async | deferred

};

enum class future_status {
ready, timeout, deferred

};

namespace system
{
template <>
struct is_error_code_enum<future_errc> : public true_type {};

error_code make_error_code(future_errc e);

error_condition make_error_condition(future_errc e);
}

const system::error_category& future_category();

class future_error;

template <typename R>
class promise;

template <typename R>
void swap(promise<R>& x, promise<R>& y) noexcept;

namespace container {

135

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class R, class Alloc>
struct uses_allocator<promise<R>, Alloc>:: true_type;

}

template <typename R>
class future;

template <typename R>
class shared_future;

template <typename S>
class packaged_task;
template <class S> void swap(packaged_task<S>&, packaged_task<S>&) noexcept;

template <class S, class Alloc>
struct uses_allocator<packaged_task <S>, Alloc>;

template <class F>
future<typename result_of<typename decay<F>::type()>::type>
async(F f);
template <class F>
future<typename result_of<typename decay<F>::type()>::type>
async(launch policy, F f);

template <class F, class... Args>
future<typename result_of<typename decay<F>::type(typename decay<Args>::type...)>::type>
async(F&& f, Args&&... args);
template <class F, class... Args>
future<typename result_of<typename decay<F>::type(typename decay<Args>::type...)>::type>
async(launch policy, F&& f, Args&&... args);

template<typename Iterator>
void wait_for_all(Iterator begin,Iterator end); // EXTENSION
template<typename F1,typename... FS>
void wait_for_all(F1& f1,Fs&... fs); // EXTENSION

template<typename Iterator>
Iterator wait_for_any(Iterator begin,Iterator end);
template<typename F1,typename... Fs>
unsigned wait_for_any(F1& f1,Fs&... fs);

template <typename T>
future<typename decay<T>::type> make_future(T&& value); // EXTENSION
future<void> make_future(); // EXTENSION

template <typename T>
shared_future<typename decay<T>::type> make_shared_future(T&& value); // EXTENSION
shared_future<void> make_shared_future(); // EXTENSION

Enumeration state

namespace future_state
{
enum state {uninitialized, waiting, ready, moved};

}

136

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Enumeration future_errc

enum class future_errc
{

broken_promise = implementation defined,
future_already_retrieved = implementation defined,
promise_already_satisfied = implementation defined,
no_state = implementation defined

}

The enum values of future_errc are distinct and not zero.

Enumeration launch

enum class launch
{
async = unspecified,
deferred = unspecified,
any = async | deferred

};

The enum type launch is a bitmask type with launch::async and launch::deferred denoting individual bits.

Specialization is_error_code_enum<future_errc>

namespace system
{
template <>
struct is_error_code_enum<future_errc> : public true_type {};

}

Non-member function make_error_code()

namespace system
{
error_code make_error_code(future_errc e);

}

Returns: error_code(static_cast<int>(e), future_category()).

Non-member function make_error_condition()

namespace system
{
error_condition make_error_condition(future_errc e);

}

Returns: error_condition(static_cast<int>(e), future_category()).

Non-member function future_category()

const system::error_category& future_category();

Returns: A reference to an object of a type derived from class error_category.

137

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Notes: The object's default_error_condition and equivalent virtual functions behave as specified for the class sys-
tem::error_category. The object's name virtual function returns a pointer to the string "future".

Class future_error

class future_error
: public std::logic_error

{
public:

future_error(system::error_code ec);

const system::error_code& code() const no_except;
};

Constructor

future_error(system::error_code ec);

Effects: Constructs a future_error.

Postconditions: code()==ec

Throws: Nothing.

Member function code()

const system::error_code& code() const no_except;

Returns: The value of ec that was passed to the object's constructor.

Enumeration future_status

enum class future_status {
ready, timeout, deferred

};

138

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

future class template

template <typename R>
class future
{

public:
future(future & rhs);// = delete;
future& operator=(future& rhs);// = delete;

future() noexcept;
~ future();

// move support
future(future && other) noexcept;
future& operator=(future && other) noexcept;

shared_future<R> share();
template<typename F>
future<typename boost::result_of<F(future&)>::type>

then(F&& func); // EXTENSION
template<typename S, typename F>
future<typename boost::result_of<F(future&)>::type>

then(S& scheduler, F&& func); // EXTENSION NOT_YET_IMPLEMENTED
template<typename F>
future<typename boost::result_of<F(future&)>::type>

then(launch policy, F&& func); // EXTENSION NOT_YET_IMPLEMENTED

void swap(future& other) noexcept; // EXTENSION

// retrieving the value
R&& get();

// functions to check state
bool valid() const noexcept;
bool is_ready() const; // EXTENSION
bool has_exception() const; // EXTENSION
bool has_value() const; // EXTENSION

// waiting for the result to be ready
void wait() const;
template <class Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>
future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;

#if defined BOOST_THREAD_USES_DATE_TIME || defined BOOST_THREAD_DONT_USE_CHRONO
template<typename Duration>
bool timed_wait(Duration const& rel_time) const; // DEPRECATED SINCE V3.0.0
bool timed_wait_until(boost::system_time const& abs_time) const; // DEPRECATED SINCE V3.0.0

#endif
typedef future_state::state state; // EXTENSION
state get_state() const; // EXTENSION

};

Default Constructor

future();

Effects: Constructs an uninitialized future.

139

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Postconditions: this->is_ready returns false. this->get_state() returns boost::future_state::uninitial-
ized.

Throws: Nothing.

Destructor

~ future();

Effects: Destroys *this.

Throws: Nothing.

Move Constructor

future(future && other);

Effects: Constructs a new future, and transfers ownership of the asynchronous result associated with other to
*this.

Postconditions: this->get_state() returns the value of other->get_state() prior to the call. other->get_state()
returns boost::future_state::uninitialized. If other was associated with an asynchronous result,
that result is now associated with *this. other is not associated with any asynchronous result.

Throws: Nothing.

Notes: If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.

Move Assignment Operator

future& operator=(future && other);

Effects: Transfers ownership of the asynchronous result associated with other to *this.

Postconditions: this->get_state() returns the value of other->get_state() prior to the call. other->get_state()
returns boost::future_state::uninitialized. If other was associated with an asynchronous result,
that result is now associated with *this. other is not associated with any asynchronous result. If *this
was associated with an asynchronous result prior to the call, that result no longer has an associated future
instance.

Throws: Nothing.

Notes: If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.

Member function swap()

void swap(future & other) no_except;

Effects: Swaps ownership of the asynchronous results associated with other and *this.

Postconditions: this->get_state() returns the value of other->get_state() prior to the call. other->get_state()
returns the value of this->get_state() prior to the call. If other was associated with an asynchronous
result, that result is now associated with *this, otherwise *this has no associated result. If *this was
associated with an asynchronous result, that result is now associated with other, otherwise other has no
associated result.

Throws: Nothing.

140

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member function get()

R&& get();
R& future<R&>::get();
void future<void>::get();

Effects: If *this is associated with an asynchronous result, waits until the result is ready as-if by a call to
boost::future<R>::wait(), and retrieves the result (whether that is a value or an exception).

Returns: If the result type R is a reference, returns the stored reference. If R is void, there is no return value. Otherwise,
returns an rvalue-reference to the value stored in the asynchronous result.

Postconditions: this->is_ready() returns true. this->get_state() returns boost::future_state::ready.

Throws: - boost::future_uninitialized if *this is not associated with an asynchronous result.

- boost::thread_interrupted if the result associated with *this is not ready at the point of the call,
and the current thread is interrupted.

- Any exception stored in the asynchronous result in place of a value.

Notes: get() is an interruption point.

Member function wait()

void wait() const;

Effects: If *this is associated with an asynchronous result, waits until the result is ready. If the result is not ready
on entry, and the result has a wait callback set, that callback is invoked prior to waiting.

Throws: - boost::future_uninitialized if *this is not associated with an asynchronous result.

- boost::thread_interrupted if the result associated with *this is not ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

Postconditions: this->is_ready() returns true. this->get_state() returns boost::future_state::ready.

Notes: wait() is an interruption point.

Member function timed_wait() DEPRECATED SINCE V3.0.0

template<typename Duration>
bool timed_wait(Duration const& wait_duration);

Warning

DEPRECATED since 3.00.

Available only up to Boost 1.56.

Use instead wait_for.

Effects: If *this is associated with an asynchronous result, waits until the result is ready, or the time specified by
wait_duration has elapsed. If the result is not ready on entry, and the result has a wait callback set, that
callback is invoked prior to waiting.

141

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Returns: true if *this is associated with an asynchronous result, and that result is ready before the specified time
has elapsed, false otherwise.

Throws: - boost::future_uninitialized if *this is not associated with an asynchronous result.

- boost::thread_interrupted if the result associated with *this is not ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

Postconditions: If this call returned true, then this->is_ready() returns true and this->get_state() returns
boost::future_state::ready.

Notes: timed_wait() is an interruption point. Duration must be a type that meets the Boost.DateTime time
duration requirements.

Member function timed_wait() DEPRECATED SINCE V3.0.0

bool timed_wait(boost::system_time const& wait_timeout);

Warning

DEPRECATED since 3.00.

Available only up to Boost 1.56.

Use instead wait_until.

Effects: If *this is associated with an asynchronous result, waits until the result is ready, or the time point specified
by wait_timeout has passed. If the result is not ready on entry, and the result has a wait callback set, that
callback is invoked prior to waiting.

Returns: true if *this is associated with an asynchronous result, and that result is ready before the specified time
has passed, false otherwise.

Throws: - boost::future_uninitialized if *this is not associated with an asynchronous result.

- boost::thread_interrupted if the result associated with *this is not ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

Postconditions: If this call returned true, then this->is_ready() returns true and this->get_state() returns
boost::future_state::ready.

Notes: timed_wait() is an interruption point.

Member function wait_for()

template <class Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;

Effects: If *this is associated with an asynchronous result, waits until the result is ready, or the time specified by
wait_duration has elapsed. If the result is not ready on entry, and the result has a wait callback set, that
callback is invoked prior to waiting.

Returns: - future_status::deferred if the shared state contains a deferred function. (Not implemented yet)

142

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

- future_status::ready if the shared state is ready.

- future_status::timeout if the function is returning because the relative timeout specified by rel_time
has expired.

Throws: - boost::future_uninitialized if *this is not associated with an asynchronous result.

- boost::thread_interrupted if the result associated with *this is not ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

Postconditions: If this call returned true, then this->is_ready() returns true and this->get_state() returns
boost::future_state::ready.

Notes: wait_for() is an interruption point. Duration must be a type that meets the Boost.DateTime time duration
requirements.

Member function wait_until()

template <class Clock, class Duration>
future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;

Effects: If *this is associated with an asynchronous result, waits until the result is ready, or the time point specified
by wait_timeout has passed. If the result is not ready on entry, and the result has a wait callback set, that
callback is invoked prior to waiting.

Returns: - future_status::deferred if the shared state contains a deferred function. (Not implemented yet)

- future_status::ready if the shared state is ready.

- future_status::timeout if the function is returning because the absolute timeout specified by
absl_time has reached.

Throws: - boost::future_uninitialized if *this is not associated with an asynchronous result.

- boost::thread_interrupted if the result associated with *this is not ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

Postconditions: If this call returned true, then this->is_ready() returns true and this->get_state() returns
boost::future_state::ready.

Notes: wait_until() is an interruption point.

Member function valid()

bool valid() const noexcept;

Returns: true if *this is associated with an asynchronous result, false otherwise.

Throws: Nothing.

Member function is_ready() EXTENSION

bool is_ready() const;

Returns: true if *this is associated with an asynchronous result and that result is ready for retrieval, false otherwise.

143

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: Nothing.

Member function has_value() EXTENSION

bool has_value() const;

Returns: true if *this is associated with an asynchronous result, that result is ready for retrieval, and the result is a stored
value, false otherwise.

Throws: Nothing.

Member function has_exception() EXTENSION

bool has_exception() const;

Returns: true if *this is associated with an asynchronous result, that result is ready for retrieval, and the result is a stored
exception, false otherwise.

Throws: Nothing.

Member function get_state()

future_state::state get_state();

Effects: Determine the state of the asynchronous result associated with *this, if any.

Returns: boost::future_state::uninitialized if *this is not associated with an asynchronous result. boost::fu-
ture_state::ready if the asynchronous result associated with *this is ready for retrieval, boost::fu-
ture_state::waiting otherwise.

Throws: Nothing.

Member function then()

template<typename F>
future<typename boost::result_of<F(future&)>::type>
then(F&& func); // EXTENSION
template<typename S, typename F>
future<typename boost::result_of<F(future&)>::type>
then(S& scheduler, F&& func); // EXTENSION
template<typename F>
future<typename boost::result_of<F(future&)>::type>
then(launch policy, F&& func); // EXTENSION

Notes: The three functions differ only by input parameters. The first only takes a callable object which accepts a
future object as a parameter. The second function takes a scheduler as the first parameter and a callable
object as the second parameter. The third function takes a launch policy as the first parameter and a callable
object as the second parameter.

Effects: - The continuation is called when the object's shared state is ready (has a value or exception stored).

- The continuation launches according to the specified policy or scheduler.

- When the scheduler or launch policy is not provided the continuation inherits the parent's launch policy
or scheduler.

144

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

- If the parent was created with std::promise or with a packaged_task (has no associated launch policy), the
continuation behaves the same as the third overload with a policy argument of launch::async | launch::deferred
and the same argument for func.

- If the parent has a policy of launch::deferred and the continuation does not have a specified launch policy
or scheduler, then the parent is filled by immediately calling .wait(), and the policy of the antecedent is
launch::deferred

Returns: An object of type future<decltype(func(*this))> that refers to the shared state created by the continuation.

Postconditions: - The future object is moved to the parameter of the continuation function .

- valid() == false on original future object immediately after it returns.

shared_future class template

template <typename R>
class shared_future
{
public:
typedef future_state::state state; // EXTENSION

shared_future() noexcept;
~shared_future();

// copy support
shared_future(shared_future const& other);
shared_future& operator=(shared_future const& other);

// move support
shared_future(shared_future && other) noexcept;
shared_future(future<R> && other) noexcept;
shared_future& operator=(shared_future && other) noexcept;
shared_future& operator=(future<R> && other) noexcept;

void swap(shared_future& other);

// retrieving the value
R get();

// functions to check state, and wait for ready
bool valid() const noexcept;
bool is_ready() const noexcept; // EXTENSION
bool has_exception() const noexcept; // EXTENSION
bool has_value() const noexcept; // EXTENSION

// waiting for the result to be ready
void wait() const;
template <class Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template <class Clock, class Duration>
future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;

#if defined BOOST_THREAD_USES_DATE_TIME || defined BOOST_THREAD_DONT_USE_CHRONO
template<typename Duration>
bool timed_wait(Duration const& rel_time) const; // DEPRECATED SINCE V3.0.0
bool timed_wait_until(boost::system_time const& abs_time) const; // DEPRECATED SINCE V3.0.0

#endif
state get_state() const noexcept; // EXTENSION

};

145

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Default Constructor

shared_future();

Effects: Constructs an uninitialized shared_future.

Postconditions: this->is_ready returns false. this->get_state() returns boost::future_state::uninitial-
ized.

Throws: Nothing.

Member function get()

const R& get();

Effects: If *this is associated with an asynchronous result, waits until the result is ready as-if by a call to
boost::shared_future<R>::wait(), and returns a const reference to the result.

Returns: If the result type R is a reference, returns the stored reference. If R is void, there is no return value. Otherwise, returns
a const reference to the value stored in the asynchronous result.

Throws: - boost::future_uninitialized if *this is not associated with an asynchronous result.

- boost::thread_interrupted if the result associated with *this is not ready at the point of the call, and the
current thread is interrupted.

Notes: get() is an interruption point.

Member function wait()

void wait() const;

Effects: If *this is associated with an asynchronous result, waits until the result is ready. If the result is not ready
on entry, and the result has a wait callback set, that callback is invoked prior to waiting.

Throws: - boost::future_uninitialized if *this is not associated with an asynchronous result.

- boost::thread_interrupted if the result associated with *this is not ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

Postconditions: this->is_ready() returns true. this->get_state() returns boost::future_state::ready.

Notes: wait() is an interruption point.

Member function timed_wait()

template<typename Duration>
bool timed_wait(Duration const& wait_duration);

Effects: If *this is associated with an asynchronous result, waits until the result is ready, or the time specified by
wait_duration has elapsed. If the result is not ready on entry, and the result has a wait callback set, that
callback is invoked prior to waiting.

Returns: true if *this is associated with an asynchronous result, and that result is ready before the specified time
has elapsed, false otherwise.

146

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: - boost::future_uninitialized if *this is not associated with an asynchronous result.

- boost::thread_interrupted if the result associated with *this is not ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

Postconditions: If this call returned true, then this->is_ready() returns true and this->get_state() returns
boost::future_state::ready.

Notes: timed_wait() is an interruption point. Duration must be a type that meets the Boost.DateTime time
duration requirements.

Member function timed_wait()

bool timed_wait(boost::system_time const& wait_timeout);

Effects: If *this is associated with an asynchronous result, waits until the result is ready, or the time point specified
by wait_timeout has passed. If the result is not ready on entry, and the result has a wait callback set, that
callback is invoked prior to waiting.

Returns: true if *this is associated with an asynchronous result, and that result is ready before the specified time
has passed, false otherwise.

Throws: - boost::future_uninitialized if *this is not associated with an asynchronous result.

- boost::thread_interrupted if the result associated with *this is not ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

Postconditions: If this call returned true, then this->is_ready() returns true and this->get_state() returns
boost::future_state::ready.

Notes: timed_wait() is an interruption point.

Member function wait_for()

template <class Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;

Effects: If *this is associated with an asynchronous result, waits until the result is ready, or the time specified by
wait_duration has elapsed. If the result is not ready on entry, and the result has a wait callback set, that
callback is invoked prior to waiting.

Returns: - future_status::deferred if the shared state contains a deferred function. (Not implemented yet)

- future_status::ready if the shared state is ready.

- future_status::timeout if the function is returning because the relative timeout specified by rel_time
has expired.

Throws: - boost::future_uninitialized if *this is not associated with an asynchronous result.

- boost::thread_interrupted if the result associated with *this is not ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

147

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Postconditions: If this call returned true, then this->is_ready() returns true and this->get_state() returns
boost::future_state::ready.

Notes: timed_wait() is an interruption point. Duration must be a type that meets the Boost.DateTime time
duration requirements.

Member function wait_until()

template <class Clock, class Duration>
future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;

Effects: If *this is associated with an asynchronous result, waits until the result is ready, or the time point specified
by wait_timeout has passed. If the result is not ready on entry, and the result has a wait callback set, that
callback is invoked prior to waiting.

Returns: - future_status::deferred if the shared state contains a deferred function. (Not implemented yet)

- future_status::ready if the shared state is ready.

- future_status::timeout if the function is returning because the absolute timeout specified by
absl_time has reached.

Throws: - boost::future_uninitialized if *this is not associated with an asynchronous result.

- boost::thread_interrupted if the result associated with *this is not ready at the point of the call,
and the current thread is interrupted.

- Any exception thrown by the wait callback if such a callback is called.

Postconditions: If this call returned true, then this->is_ready() returns true and this->get_state() returns
boost::future_state::ready.

Notes: timed_wait() is an interruption point.

Member function valid()

bool valid() const noexcept;

Returns: true if *this is associated with an asynchronous result, false otherwise.

Throws: Nothing.

Member function is_ready() EXTENSION

bool is_ready() const;

Returns: true if *this is associated with an asynchronous result, and that result is ready for retrieval, false otherwise.

Throws: Nothing.

Member function has_value() EXTENSION

bool has_value() const;

Returns: true if *this is associated with an asynchronous result, that result is ready for retrieval, and the result is a stored
value, false otherwise.

Throws: Nothing.

148

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member function has_exception() EXTENSION

bool has_exception() const;

Returns: true if *this is associated with an asynchronous result, that result is ready for retrieval, and the result is a stored
exception, false otherwise.

Throws: Nothing.

Member function get_state()

future_state::state get_state();

Effects: Determine the state of the asynchronous result associated with *this, if any.

Returns: boost::future_state::uninitialized if *this is not associated with an asynchronous result. boost::fu-
ture_state::ready if the asynchronous result associated with *this is ready for retrieval, boost::fu-
ture_state::waiting otherwise.

Throws: Nothing.

promise class template

template <typename R>
class promise
{
public:

promise();
template <class Allocator>
promise(allocator_arg_t, Allocator a);
promise & operator=(const promise & rhs);// = delete;
promise(const promise & rhs);// = delete;
~promise();

// Move support
promise(promise && rhs) noexcept;;
promise & operator=(promise&& rhs) noexcept;;

void swap(promise& other) noexcept;
// Result retrieval
future<R> get_future();

// Set the value
void set_value(see below);
void set_exception(boost::exception_ptr e);

// setting the result with deferred notification
void set_value_at_thread_exit(see below);
void set_exception_at_thread_exit(exception_ptr p);

template<typename F>
void set_wait_callback(F f); // EXTENSION

};

149

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Default Constructor

promise();

Effects: Constructs a new boost::promise with no associated result.

Throws: Nothing.

Allocator Constructor

template <class Allocator>
promise(allocator_arg_t, Allocator a);

Effects: Constructs a new boost::promise with no associated result using the allocator a.

Throws: Nothing.

Notes: Available only if BOOST_THREAD_FUTURE_USES_ALLOCATORS is defined.

Move Constructor

promise(promise && other);

Effects: Constructs a new boost::promise, and transfers ownership of the result associated with other to *this, leaving
other with no associated result.

Throws: Nothing.

Notes: If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.

Move Assignment Operator

promise& operator=(promise && other);

Effects: Transfers ownership of the result associated with other to *this, leaving other with no associated result. If there
was already a result associated with *this, and that result was not ready, sets any futures associated with that result
to ready with a boost::broken_promise exception as the result.

Throws: Nothing.

Notes: If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.

Destructor

~promise();

Effects: Destroys *this. If there was a result associated with *this, and that result is not ready, sets any futures associated
with that task to ready with a boost::broken_promise exception as the result.

Throws: Nothing.

150

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Function get_future()

future<R> get_future();

Effects: If *this was not associated with a result, allocate storage for a new asynchronous result and associate it with *this.
Returns a future associated with the result associated with *this.

Throws: boost::future_already_retrieved if the future associated with the task has already been retrieved.
std::bad_alloc if any memory necessary could not be allocated.

Member Function set_value()

void set_value(R&& r);
void set_value(const R& r);
void promise<R&>::set_value(R& r);
void promise<void>::set_value();

Effects: - If BOOST_THREAD_PROVIDES_PROMISE_LAZY is defined and if *this was not associated with
a result, allocate storage for a new asynchronous result and associate it with *this.

- Store the value r in the asynchronous result associated with *this. Any threads blocked waiting for the
asynchronous result are woken.

Postconditions: All futures waiting on the asynchronous result are ready and boost::future<R>::has_value() or
boost::shared_future<R>::has_value() for those futures shall return true.

Throws: - boost::promise_already_satisfied if the result associated with *this is already ready.

- boost::broken_promise if *this has no shared state.

- std::bad_alloc if the memory required for storage of the result cannot be allocated.

- Any exception thrown by the copy or move-constructor of R.

Member Function set_exception()

void set_exception(boost::exception_ptr e);

Effects: - If BOOST_THREAD_PROVIDES_PROMISE_LAZY is defined and if *this was not associated with
a result, allocate storage for a new asynchronous result and associate it with *this.

- Store the exception e in the asynchronous result associated with *this. Any threads blocked waiting for
the asynchronous result are woken.

Postconditions: All futures waiting on the asynchronous result are ready and boost::future<R>::has_exception()
or boost::shared_future<R>::has_exception() for those futures shall return true.

Throws: - boost::promise_already_satisfied if the result associated with *this is already ready.

- boost::broken_promise if *this has no shared state.

- std::bad_alloc if the memory required for storage of the result cannot be allocated.

151

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Function set_value_at_thread_exit()

void set_value_at_thread_exit(R&& r);
void set_value_at_thread_exit(const R& r);
void promise<R&>::set_value_at_thread_exit(R& r);
void promise<void>::set_value_at_thread_exit();

Effects: Stores the value r in the shared state without making that state ready immediately. Schedules that state to be made
ready when the current thread exits, after all objects of thread storage duration associated with the current thread have
been destroyed.

Throws: - boost::promise_already_satisfied if the result associated with *this is already ready.

- boost::broken_promise if *this has no shared state.

- std::bad_alloc if the memory required for storage of the result cannot be allocated.

- Any exception thrown by the copy or move-constructor of R.

Member Function set_exception_at_thread_exit()

void set_exception_at_thread_exit(boost::exception_ptr e);

Effects: Stores the exception pointer p in the shared state without making that state ready immediately. Schedules
that state to be made ready when the current thread exits, after all objects of thread storage duration associated
with the current thread have been destroyed.

Postconditions: All futures waiting on the asynchronous result are ready and boost::future<R>::has_exception()
or boost::shared_future<R>::has_exception() for those futures shall return true.

Throws: - boost::promise_already_satisfied if the result associated with *this is already ready.

- boost::broken_promise if *this has no shared state.

- std::bad_alloc if the memory required for storage of the result cannot be allocated.

Member Function set_wait_callback() EXTENSION

template<typename F>
void set_wait_callback(F f);

Preconditions: The expression f(t) where t is a lvalue of type boost::promise shall be well-formed. Invoking a copy
of f shall have the same effect as invoking f

Effects: Store a copy of f with the asynchronous result associated with *this as a wait callback. This will replace
any existing wait callback store alongside that result. If a thread subsequently calls one of the wait functions
on a future or boost::shared_future associated with this result, and the result is not ready, f(*this)
shall be invoked.

Throws: std::bad_alloc if memory cannot be allocated for the required storage.

152

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

packaged_task class template

template<typename S>
class packaged_task;
template<typename R
, class... ArgTypes

>
class packaged_task<R(ArgTypes)>
{
public:
packaged_task(packaged_task&);// = delete;
packaged_task& operator=(packaged_task&);// = delete;

// construction and destruction
packaged_task() noexcept;

explicit packaged_task(R(*f)(ArgTypes...));

template <class F>
explicit packaged_task(F&& f);

template <class Allocator>
packaged_task(allocator_arg_t, Allocator a, R(*f)(ArgTypes...));
template <class F, class Allocator>
packaged_task(allocator_arg_t, Allocator a, F&& f);

~packaged_task()
{}

// move support
packaged_task(packaged_task&& other) noexcept;
packaged_task& operator=(packaged_task&& other) noexcept;

void swap(packaged_task& other) noexcept;

bool valid() const noexcept;
// result retrieval
future<R> get_future();

// execution
void operator()(ArgTypes...);
void make_ready_at_thread_exit(ArgTypes...);

void reset();
template<typename F>
void set_wait_callback(F f); // EXTENSION

};

Task Constructor

packaged_task(R(*f)(ArgTypes...));

template<typename F>
packaged_task(F&&f);

Preconditions: f() is a valid expression with a return type convertible to R. Invoking a copy of f must behave the same as
invoking f.

Effects: Constructs a new boost::packaged_task with boost::forward<F>(f) stored as the associated task.

Throws: - Any exceptions thrown by the copy (or move) constructor of f.

153

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

- std::bad_alloc if memory for the internal data structures could not be allocated.

Notes: The R(*f)(ArgTypes...)) overload to allow passing a function without needing to use &.

Remark: This constructor doesn't participate in overload resolution if decay<F>::type is the same type as
boost::packaged_task<R>.

Allocator Constructor

template <class Allocator>
packaged_task(allocator_arg_t, Allocator a, R(*f)(ArgTypes...));
template <class F, class Allocator>
packaged_task(allocator_arg_t, Allocator a, F&& f);

Preconditions: f() is a valid expression with a return type convertible to R. Invoking a copy of f shall behave the same as
invoking f.

Effects: Constructs a new boost::packaged_task with boost::forward<F>(f) stored as the associated task
using the allocator a.

Throws: Any exceptions thrown by the copy (or move) constructor of f. std::bad_alloc if memory for the internal
data structures could not be allocated.

Notes: Available only if BOOST_THREAD_FUTURE_USES_ALLOCATORS is defined.

Notes: The R(*f)(ArgTypes...)) overload to allow passing a function without needing to use &.

Move Constructor

packaged_task(packaged_task && other);

Effects: Constructs a new boost::packaged_task, and transfers ownership of the task associated with other to *this,
leaving other with no associated task.

Throws: Nothing.

Notes: If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.

Move Assignment Operator

packaged_task& operator=(packaged_task && other);

Effects: Transfers ownership of the task associated with other to *this, leaving other with no associated task. If there was
already a task associated with *this, and that task has not been invoked, sets any futures associated with that task to
ready with a boost::broken_promise exception as the result.

Throws: Nothing.

Notes: If the compiler does not support rvalue-references, this is implemented using the boost.thread move emulation.

Destructor

~packaged_task();

Effects: Destroys *this. If there was a task associated with *this, and that task has not been invoked, sets any futures asso-
ciated with that task to ready with a boost::broken_promise exception as the result.

Throws: Nothing.

154

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Function get_future()

future<R> get_future();

Effects: Returns a future associated with the result of the task associated with *this.

Throws: boost::task_moved if ownership of the task associated with *this has been moved to another instance of
boost::packaged_task. boost::future_already_retrieved if the future associated with the task has already
been retrieved.

Member Function operator()()

void operator()();

Effects: Invoke the task associated with *this and store the result in the corresponding future. If the task returns
normally, the return value is stored as the asynchronous result, otherwise the exception thrown is stored.
Any threads blocked waiting for the asynchronous result associated with this task are woken.

Postconditions: All futures waiting on the asynchronous result are ready

Throws: - boost::task_moved if ownership of the task associated with *this has been moved to another instance
of boost::packaged_task.

- boost::task_already_started if the task has already been invoked.

Member Function make_ready_at_thread_exit()

void make_ready_at_thread_exit(ArgTypes...);

Effects: Invoke the task associated with *this and store the result in the corresponding future. If the task returns normally,
the return value is stored as the asynchronous result, otherwise the exception thrown is stored. In either case, this is
done without making that state ready immediately. Schedules the shared state to be made ready when the current
thread exits, after all objects of thread storage duration associated with the current thread have been destroyed.

Throws: - boost::task_moved if ownership of the task associated with *this has been moved to another instance of
boost::packaged_task.

- boost::task_already_started if the task has already been invoked.

Member Function reset()

void reset();

Effects: Reset the state of the packaged_task so that it can be called again.

Throws: boost::task_moved if ownership of the task associated with *this has been moved to another instance of
boost::packaged_task.

Member Function set_wait_callback() EXTENSION

template<typename F>
void set_wait_callback(F f);

Preconditions: The expression f(t) where t is a lvalue of type boost::packaged_task shall be well-formed. Invoking
a copy of f shall have the same effect as invoking f

155

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Effects: Store a copy of f with the task associated with *this as a wait callback. This will replace any existing wait
callback store alongside that task. If a thread subsequently calls one of the wait functions on a future or
boost::shared_future associated with this task, and the result of the task is not ready, f(*this) shall
be invoked.

Throws: boost::task_moved if ownership of the task associated with *this has been moved to another instance
of boost::packaged_task.

Non-member function decay_copy()

template <class T>
typename decay<T>::type decay_copy(T&& v)
{
return boost::forward<T>(v);

}

Non-member function async()

template <class F>
future<typename result_of<typename decay<F>::type()>::type>
async(F&& f);
template <class F>
future<typename result_of<typename decay<F>::type()>::type>
async(launch policy, F&& f);

template <class F, class... Args>
future<typename result_of<typename decay<F>::type(typename decay<Args>::type...)>::type>
async(F&& f, Args&&... args);
template <class F, class... Args>
future<typename result_of<typename decay<F>::type(typename decay<Args>::type...)>::type>
async(launch policy, F&& f, Args&&... args);

The function template async provides a mechanism to launch a function potentially in a new thread and provides the result of the
function in a future object with which it shares a shared state.

Warning

async(launch::deferred, F) is NOT YET IMPLEMENTED!

Warning

the variadic prototype is provided only on C++11 compilers supporting rvalue references, variadic templates, decltype
and a standard library providing <tuple>, and BOOST_THREAD_PROVIDES_SIGNATURE_PACKAGED_TASK
is defined.

Non-Variadic variant

Requires:
decay_copy(boost::forward<F>(f))()

shall be a valid expression.

Effects The first function behaves the same as a call to the second function with a policy argument of
launch::async | launch::deferred and the same arguments for F. The second function creates
a shared state that is associated with the returned future object.

156

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The further behavior of the second function depends on the policy argument as follows (if more than
one of these conditions applies, the implementation may choose any of the corresponding policies):

- if policy & launch::async is non-zero - calls decay_copy(boost::forward<F>(f))() as if
in a new thread of execution represented by a thread object with the calls to decay_copy() being
evaluated in the thread that called async. Any return value is stored as the result in the shared state.
Any exception propagated from the execution of decay_copy(boost::forward<F>(f))() is stored
as the exceptional result in the shared state. The thread object is stored in the shared state and affects the
behavior of any asynchronous return objects that reference that state.

- if policy & launch::deferred is non-zero - Stores decay_copy(boost::forward<F>(f))
in the shared state. This copy of f constitute a deferred function. Invocation of the deferred function
evaluates boost::move(g)() where g is the stored value of decay_copy(boost::forward<F>(f)).
The shared state is not made ready until the function has completed. The first call to a non-timed waiting
function on an asynchronous return object referring to this shared state shall invoke the deferred function
in the thread that called the waiting function. Once evaluation of boost::move(g)() begins, the
function is no longer considered deferred. (Note: If this policy is specified together with other policies,
such as when using a policy value of launch::async | launch::deferred, implementations should
defer invocation or the selection of the policy when no more concurrency can be effectively exploited.)

Returns: An object of type future<typename result_of<typename decay<F>::type()>::type> that
refers to the shared state created by this call to async.

Synchronization: Regardless of the provided policy argument,

- the invocation of async synchronizes with the invocation of f. (Note: This statement applies even
when the corresponding future object is moved to another thread.); and

- the completion of the function f is sequenced before the shared state is made ready. (Note: f might
not be called at all, so its completion might never happen.)

If the implementation chooses the launch::async policy,

- a call to a non-timed waiting function on an asynchronous return object that shares the shared state
created by this async call shall block until the associated thread has completed, as if joined;

- the associated thread completion synchronizes with the return from the first function that successfully
detects the ready status of the shared state or with the return from the last function that releases the shared
state, whichever happens first.

Throws: system_error if policy is launch::async and the implementation is unable to start a new thread.

Error conditions: - resource_unavailable_try_again - if policy is launch::async and the system is unable to
start a new thread.

Remarks: The first signature shall not participate in overload resolution if decay<F>::type is boost::launch.

Variadic variant

Requires: F and each Ti in Args shall satisfy the MoveConstructible requirements.

invoke (decay_copy (boost::forward<F>(f)), decay_copy (boost::forward<Args>(args))...)

shall be a valid expression.

Effects: - The first function behaves the same as a call to the second function with a policy argument of
launch::async | launch::deferred and the same arguments for F and Args.

157

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

- The second function creates a shared state that is associated with the returned future object. The further
behavior of the second function depends on the policy argument as follows (if more than one of these
conditions applies, the implementation may choose any of the corresponding policies):

- if policy & launch::async is non-zero - calls invoke(decay_copy(forward<F>(f)), de-

cay_copy (forward<Args>(args))...) as if in a new thread of execution represented by a thread
object with the calls to decay_copy() being evaluated in the thread that called async. Any return value
is stored as the result in the shared state. Any exception propagated from the execution of invoke(de-
cay_copy(boost::forward<F>(f)), decay_copy (boost::forward<Args>(args))...) is
stored as the exceptional result in the shared state. The thread object is stored in the shared state and affects
the behavior of any asynchronous return objects that reference that state.

- if policy & launch::deferred is non-zero - Stores decay_copy(forward<F>(f)) and de-
cay_copy(forward<Args>(args))... in the shared state. These copies of f and args constitute a
deferred function. Invocation of the deferred function evaluates invoke(move(g), move(xyz))

where g is the stored value of decay_copy(forward<F>(f)) and xyz is the stored copy of de-
cay_copy(forward<Args>(args)).... The shared state is not made ready until the function has
completed. The first call to a non-timed waiting function on an asynchronous return object referring to
this shared state shall invoke the deferred function in the thread that called the waiting function. Once
evaluation of invoke(move(g), move(xyz)) begins, the function is no longer considered deferred.

Note: If this policy is specified together with other policies, such as when using a policy value of
launch::async | launch::deferred, implementations should defer invocation or the selection
of the policy when no more concurrency can be effectively exploited.

Returns: An object of type future<typename result_of<typename decay<F>::type(typename de-

cay<Args>::type...)>::type> that refers to the shared state created by this call to async.

Synchronization: Regardless of the provided policy argument,

- the invocation of async synchronizes with the invocation of f. (Note: This statement applies even when
the corresponding future object is moved to another thread.); and

- the completion of the function f is sequenced before the shared state is made ready. (Note: f might not
be called at all, so its completion might never happen.) If the implementation chooses the launch::async
policy,

- a call to a waiting function on an asynchronous return object that shares the shared state created by this
async call shall block until the associated thread has completed, as if joined;

- the associated thread completion synchronizes with the return from the first function that successfully
detects the ready status of the shared state or with the return from the last function that releases the shared
state, whichever happens first.

Throws: system_error if policy is launch::async and the implementation is unable to start a new thread.

Error conditions: - resource_unavailable_try_again - if policy is launch::async and the system is unable to
start a new thread.

Remarks: The first signature shall not participate in overload resolution if decay<F>::type is boost::launch.

158

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Non-member function wait_for_any()

template<typename Iterator>
Iterator wait_for_any(Iterator begin,Iterator end);

template<typename F1,typename F2>
unsigned wait_for_any(F1& f1,F2& f2);

template<typename F1,typename F2,typename F3>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3);

template<typename F1,typename F2,typename F3,typename F4>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3,F4& f4);

template<typename F1,typename F2,typename F3,typename F4,typename F5>
unsigned wait_for_any(F1& f1,F2& f2,F3& f3,F4& f4,F5& f5);

Preconditions: The types Fn shall be specializations of future or boost::shared_future, and Iterator shall be a
forward iterator with a value_type which is a specialization of future or boost::shared_future.

Effects: Waits until at least one of the specified futures is ready.

Returns: The range-based overload returns an Iterator identifying the first future in the range that was detected as
ready. The remaining overloads return the zero-based index of the first future that was detected as ready
(first parameter => 0, second parameter => 1, etc.).

Throws: boost::thread_interrupted if the current thread is interrupted. Any exception thrown by the wait
callback associated with any of the futures being waited for. std::bad_alloc if memory could not be al-
located for the internal wait structures.

Notes: wait_for_any() is an interruption point.

Non-member function wait_for_all()

template<typename Iterator>
void wait_for_all(Iterator begin,Iterator end);

template<typename F1,typename F2>
void wait_for_all(F1& f1,F2& f2);

template<typename F1,typename F2,typename F3>
void wait_for_all(F1& f1,F2& f2,F3& f3);

template<typename F1,typename F2,typename F3,typename F4>
void wait_for_all(F1& f1,F2& f2,F3& f3,F4& f4);

template<typename F1,typename F2,typename F3,typename F4,typename F5>
void wait_for_all(F1& f1,F2& f2,F3& f3,F4& f4,F5& f5);

Preconditions: The types Fn shall be specializations of future or boost::shared_future, and Iterator shall be a
forward iterator with a value_type which is a specialization of future or boost::shared_future.

Effects: Waits until all of the specified futures are ready.

Throws: Any exceptions thrown by a call to wait() on the specified futures.

Notes: wait_for_all() is an interruption point.

159

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Non-member function make_future()

template <typename T>
future<typename decay<T>::type> make_future(T&& value); // EXTENSION
future<void> make_future(); // EXTENSION

Effects: The value that is passed in to the function is moved to the shared state of the returned function if it is an
rvalue. Otherwise the value is copied to the shared state of the returned function. .

Returns: - future<T>, if function is given a value of type T

- future<void>, if the function is not given any inputs.

Postcondition: - Returned future<T>, valid() == true

- Returned future<T>, is_ready() = true

Non-member function make_shared_future()

template <typename T>
shared_future<typename decay<T>::type> make_shared_future(T&& value); // EXTENSION
shared_future<void> make_shared_future(); // EXTENSION

Effects: The value that is passed in to the function is moved to the shared state of the returned function if it is an
rvalue. Otherwise the value is copied to the shared state of the returned function. .

Returns: - shared_future<T>, if function is given a value of type T

- shared_future<void>, if the function is not given any inputs.

Postcondition: - Returned shared_future<T>, valid() == true

- Returned shared_future<T>, is_ready() = true

160

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Local Storage
Synopsis

Thread local storage allows multi-threaded applications to have a separate instance of a given data item for each thread. Where a
single-threaded application would use static or global data, this could lead to contention, deadlock or data corruption in a multi-
threaded application. One example is the C errno variable, used for storing the error code related to functions from the Standard C
library. It is common practice (and required by POSIX) for compilers that support multi-threaded applications to provide a separate
instance of errno for each thread, in order to avoid different threads competing to read or update the value.

Though compilers often provide this facility in the form of extensions to the declaration syntax (such as __declspec(thread) or
thread annotations on static or namespace-scope variable declarations), such support is non-portable, and is often limited in
some way, such as only supporting POD types.

Portable thread-local storage with boost::thread_specific_ptr

boost::thread_specific_ptr provides a portable mechanism for thread-local storage that works on all compilers supported
by Boost.Thread. Each instance of boost::thread_specific_ptr represents a pointer to an object (such as errno) where each
thread must have a distinct value. The value for the current thread can be obtained using the get() member function, or by using
the * and -> pointer deference operators. Initially the pointer has a value of NULL in each thread, but the value for the current thread
can be set using the reset() member function.

If the value of the pointer for the current thread is changed using reset(), then the previous value is destroyed by calling the cleanup
routine. Alternatively, the stored value can be reset to NULL and the prior value returned by calling the release() member function,
allowing the application to take back responsibility for destroying the object.

Cleanup at thread exit

When a thread exits, the objects associated with each boost::thread_specific_ptr instance are destroyed. By default, the
object pointed to by a pointer p is destroyed by invoking delete p, but this can be overridden for a specific instance of
boost::thread_specific_ptr by providing a cleanup routine to the constructor. In this case, the object is destroyed by invoking
func(p) where func is the cleanup routine supplied to the constructor. The cleanup functions are called in an unspecified order.
If a cleanup routine sets the value of associated with an instance of boost::thread_specific_ptr that has already been cleaned
up, that value is added to the cleanup list. Cleanup finishes when there are no outstanding instances of boost::thread_specif-
ic_ptr with values.

Note: on some platforms, cleanup of thread-specific data is not performed for threads created with the platform's native API. On
those platforms such cleanup is only done for threads that are started with boost::thread unless boost::on_thread_exit()
is called manually from that thread.

Rationale about the nature of the key

Boost.Thread uses the address of the thread_specific_ptr instance as key of the thread specific pointers. This avoids to cre-
ate/destroy a key which will need a lock to protect from race conditions. This has a little performance liability, as the access must
be done using an associative container.

161

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class thread_specific_ptr

// #include <boost/thread/tss.hpp>

namespace boost
{
template <typename T>
class thread_specific_ptr
{
public:

thread_specific_ptr();
explicit thread_specific_ptr(void (*cleanup_function)(T*));
~thread_specific_ptr();

T* get() const;
T* operator->() const;
T& operator*() const;

T* release();
void reset(T* new_value=0);

};
}

thread_specific_ptr();

Requires: delete this->get() is well-formed.

Effects: Construct a thread_specific_ptr object for storing a pointer to an object of type T specific to each thread. The
default delete-based cleanup function will be used to destroy any thread-local objects when reset() is called, or
the thread exits.

Throws: boost::thread_resource_error if an error occurs.

explicit thread_specific_ptr(void (*cleanup_function)(T*));

Requires: cleanup_function(this->get()) does not throw any exceptions.

Effects: Construct a thread_specific_ptr object for storing a pointer to an object of type T specific to each thread. The
supplied cleanup_function will be used to destroy any thread-local objects when reset() is called, or the thread
exits.

Throws: boost::thread_resource_error if an error occurs.

~thread_specific_ptr();

Requires: All the thread specific instances associated to this thread_specific_ptr (except maybe the one associated to this thread)
must be null.

Effects: Calls this->reset() to clean up the associated value for the current thread, and destroys *this.

Throws: Nothing.

Remarks: The requirement is due to the fact that in order to delete all these instances, the implementation should be forced to
maintain a list of all the threads having an associated specific ptr, which is against the goal of thread specific data.

162

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note

Care needs to be taken to ensure that any threads still running after an instance of boost::thread_specific_ptr
has been destroyed do not call any member functions on that instance.

T* get() const;

Returns: The pointer associated with the current thread.

Throws: Nothing.

Note

The initial value associated with an instance of boost::thread_specific_ptr is NULL for each thread.

T* operator->() const;

Returns: this->get()

Throws: Nothing.

T& operator*() const;

Requires: this->get is not NULL.

Returns: *(this->get())

Throws: Nothing.

void reset(T* new_value=0);

Effects: If this->get()!=new_value and this->get() is non-NULL, invoke delete this->get() or
cleanup_function(this->get()) as appropriate. Store new_value as the pointer associated with the
current thread.

Postcondition: this->get()==new_value

Throws: boost::thread_resource_error if an error occurs.

T* release();

Effects: Return this->get() and store NULL as the pointer associated with the current thread without invoking the
cleanup function.

Postcondition: this->get()==0

Throws: Nothing.

163

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Time Requirements
As of Boost 1.50.0, the Boost.Thread library uses Boost.Chrono library for all operations that require a time out as defined in the
standard c++11. These include (but are not limited to):

• boost::this_thread::sleep_for

• boost::this_thread::sleep_until

• boost::thread::try_join_for

• boost::thread::try_join_until

• boost::condition_variable::wait_for

• boost::condition_variable::wait_until

• boost::condition_variable_any::wait_for

• boost::condition_variable_any::wait_until

• TimedLockable::try_lock_for

• TimedLockable::try_lock_until

Deprecated
The time related functions introduced in Boost 1.35.0, using the Boost.Date_Time library are deprecated. These include (but are not
limited to):

• boost::this_thread::sleep()

• timed_join()

• timed_wait()

• timed_lock()

For the overloads that accept an absolute time parameter, an object of type boost::system_time is required. Typically, this will
be obtained by adding a duration to the current time, obtained with a call to boost::get_system_time(). e.g.

boost::system_time const timeout=boost::get_system_time() + boost::posix_time::milliseconds(500);

extern bool done;
extern boost::mutex m;
extern boost::condition_variable cond;

boost::unique_lock<boost::mutex> lk(m);
while(!done)
{

if(!cond.timed_wait(lk,timeout))
{

throw "timed out";
}

}

For the overloads that accept a TimeDuration parameter, an object of any type that meets the Boost.Date_Time Time Duration re-
quirements can be used, e.g.

164

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::this_thread::sleep(boost::posix_time::milliseconds(25));

boost::mutex m;
if(m.timed_lock(boost::posix_time::nanoseconds(100)))
{

// ...
}

Typedef system_time

#include <boost/thread/thread_time.hpp>

typedef boost::posix_time::ptime system_time;

See the documentation for boost::posix_time::ptime in the Boost.Date_Time library.

Non-member function get_system_time()

#include <boost/thread/thread_time.hpp>

system_time get_system_time();

Returns: The current time.

Throws: Nothing.

165

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Emulations

=delete emulation
C++11 allows to delete some implicitly generated functions as constructors and assignment using '= delete' as in

public:
thread(thread const&) = delete;

On compilers not supporting this feature, Boost.Thread relays on a partial simulation, it declares the function as private without
definition.

private:
thread(thread &);

The emulation is partial as the private function can be used for overload resolution for some compilers and prefer it to other overloads
that need a conversion. See below the consequences on the move semantic emulation.

Move semantics
In order to implement Movable classes, move parameters and return types Boost.Thread uses the rvalue reference when the compiler
support it. On compilers not supporting it Boost.Thread uses either the emulation provided by Boost.Move or the emulation provided
by the previous versions of Boost.Thread depending whether BOOST_THREAD_USES_MOVE is defined or not. This macros is unset
by default when BOOST_THREAD_VERSION is 2. Since BOOST_THREAD_VERSION 3, BOOST_THREAD_USES_MOVE is defined.

Deprecated Version 2 interface

Previous to version 1.50, Boost.Thread make use of its own move semantic emulation which had more limitations than the provided
by Boost.Move. In addition, it is of interest of the whole Boost community that Boost.Thread uses Boost.Move so that boost::thread
can be stored on Movable aware containers.

To preserve backward compatibility at least during some releases, Boost.Thread allows the user to use the deprecated move semantic
emulation defining BOOST_THREAD_DONT_USE_MOVE.

Many aspects of move semantics can be emulated for compilers not supporting rvalue references and Boost.Thread legacy offers
tools for that purpose.

Helpers class and function

Next follows the interface of the legacy move semantic helper class and function.

166

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost
{
namespace detail
{

template<typename T>
struct thread_move_t
{

explicit thread_move_t(T& t_);
T& operator*() const;
T* operator->() const;

private:
void operator=(thread_move_t&);

};
}
template<typename T>
boost::detail::thread_move_t<T> move(boost::detail::thread_move_t<T> t);

}

Movable emulation

We can write a MovableOny class as follows. You just need to follow these simple steps:

• Add a conversion to the detail::thread_move_t<classname>

• Make the copy constructor private.

• Write a constructor taking the parameter as detail::thread_move_t<classname>

• Write an assignment taking the parameter as detail::thread_move_t<classname>

For example the thread class defines the following:

167

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class thread
{
// ...

private:
thread(thread&);
thread& operator=(thread&);

public:
detail::thread_move_t<thread> move()
{

detail::thread_move_t<thread> x(*this);
return x;

}
operator detail::thread_move_t<thread>()
{

return move();
}
thread(detail::thread_move_t<thread> x)
{

thread_info=x->thread_info;
x->thread_info.reset();

}
thread& operator=(detail::thread_move_t<thread> x)
{

thread new_thread(x);
swap(new_thread);
return *this;

}
// ...

};

Portable interface

In order to make the library code portable Boost.Thread uses some macros that will use either the ones provided by Boost.Move or
the deprecated move semantics provided by previous versions of Boost.Thread.

See the Boost.Move documentation for a complete description on how to declare new Movable classes and its limitations.

• BOOST_THREAD_RV_REF(TYPE) is the equivalent of BOOST_RV_REF(TYPE)

• BOOST_THREAD_RV_REF_BEG is the equivalent of BOOST_RV_REF_BEG(TYPE)

• BOOST_THREAD_RV_REF_END is the equivalent of BOOST_RV_REF_END(TYPE)

• BOOST_THREAD_FWD_REF(TYPE) is the equivalent of `BOOST_FWD_REF(TYPE)

In addition the following macros are needed to make the code portable:

• BOOST_THREAD_RV(V) macro to access the rvalue from a BOOST_THREAD_RV_REF(TYPE),

• BOOST_THREAD_MAKE_RV_REF(RVALUE) makes a rvalue.

• BOOST_THREAD_DCL_MOVABLE(CLASS) to avoid conflicts with Boost.Move

• BOOST_THREAD_DCL_MOVABLE_BEG(T1) and BOOST_THREAD_DCL_MOVABLE_END are variant of BOOST_THREAD_DCL_MOVABLE
when the parameter is a template instantiation.

Other macros are provided and must be included on the public section:

• BOOST_THREAD_NO_COPYABLE declares a class no-copyable either deleting the copy constructors and copy assignment or moving
them to the private section.

168

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• BOOST_THREAD_MOVABLE(CLASS) declares all the implicit conversions to an rvalue-reference.

• BOOST_THREAD_MOVABLE_ONLY(CLASS) is the equivalent of BOOST_MOVABLE_BUT_NOT_COPYABLE(CLASS)

• BOOST_THREAD_COPYABLE_AND_MOVABLE(CLASS) is the equivalent of BOOST_COPYABLE_AND_MOVABLE(CLASS)

BOOST_THREAD_NO_COPYABLE(CLASS)

This macro marks a class as no copyable, disabling copy construction and assignment.

BOOST_THREAD_MOVABLE(CLASS)

This macro marks a class as movable, declaring all the implicit conversions to an rvalue-reference.

BOOST_THREAD_MOVABLE_ONLY(CLASS)

This macro marks a type as movable but not copyable, disabling copy construction and assignment. The user will need to write a
move constructor/assignment to fully write a movable but not copyable class.

BOOST_THREAD_COPYABLE_AND_MOVABLE(CLASS)

This macro marks a type as copyable and movable. The user will need to write a move constructor/assignment and a copy assignment
to fully write a copyable and movable class.

BOOST_THREAD_RV_REF(TYPE), BOOST_THREAD_RV_REF_BEG and BOOST_THREAD_RV_REF_END

This macro is used to achieve portable syntax in move constructors and assignments for classes marked as BOOST_THREAD_COPY-
ABLE_AND_MOVABLE or BOOST_THREAD_MOVABLE_ONLY.

BOOST_THREAD_RV_REF_BEG and BOOST_THREAD_RV_REF_END are used when the parameter end with a > to avoid the compiler
error.

BOOST_THREAD_RV(V)

While Boost.Move emulation allows to access an rvalue reference BOOST_THREAD_RV_REF(TYPE) using the dot operator, the
legacy defines the operator->. We need then a macro BOOST_THREAD_RV that mask this difference. E.g.

thread(BOOST_THREAD_RV_REF(thread) x)
{

thread_info=BOOST_THREAD_RV(x).thread_info;
BOOST_THREAD_RV(x).thread_info.reset();

}

The use of this macros has reduced considerably the size of the Boost.Thread move related code.

BOOST_THREAD_MAKE_RV_REF(RVALUE)

While Boost.Move is the best C++03 move emulation there are some limitations that impact the way the library can be used. For
example, with the following declarations

class thread {
// ...

private:
thread(thread &);

public:
thread(rv<thread>&);
// ...

};

169

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This could not work on some compilers even if thread is convertible to rv<thread> because the compiler prefers the private copy
constructor.

thread mkth()
{
return thread(f);

}

On these compilers we need to use instead an explicit conversion. The library provides a move member function that allows to
workaround the issue.

thread mkth()
{
return thread(f).move();

}

Note that ::boost::move can not be used in this case as thread is not implicitly convertible to thread&.

thread mkth()
{
return ::boost::move(thread(f));

}

To make the code portable Boost.Thread the user needs to use a macro BOOST_THREAD_MAKE_RV_REF that can be used as in

thread mkth()
{
return BOOST_THREAD_MAKE_RV_REF(thread(f));

}

Note that this limitation is shared also by the legacy Boost.Thread move emulation.

BOOST_THREAD_DCL_MOVABLE, BOOST_THREAD_DCL_MOVABLE_BEG(T1) and BOOST_THREAD_DCL_MOVABLE_END

As Boost.Move defines also the boost::move function we need to specialize the has_move_emulation_enabled_aux
metafunction.

template <>
struct has_move_emulation_enabled_aux<thread>
: BOOST_MOVE_BOOST_NS::integral_constant<bool, true>

{};

so that the following Boost.Move overload is disabled

template <class T>
inline typename BOOST_MOVE_BOOST_NS::disable_if<has_move_emulation_en↵
abled_aux<T>, T&>::type move(T& x);

The macros BOOST_THREAD_DCL_MOVABLE(CLASS), BOOST_THREAD_DCL_MOVABLE_BEG(T1) and BOOST_THREAD_DCL_MOV-
ABLE_END are used for this purpose. E.g.

BOOST_THREAD_DCL_MOVABLE(thread)

and

170

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

BOOST_THREAD_DCL_MOVABLE_BEG(T) promise<T> BOOST_THREAD_DCL_MOVABLE_END

Bool explicit conversion
Locks provide an explicit bool conversion operator when the compiler provides them.

explicit operator bool() const;

The library provides un implicit conversion to an undefined type that can be used as a conditional expression.

#if defined(BOOST_NO_EXPLICIT_CONVERSION_OPERATORS)
operator unspecified-bool-type() const;
bool operator!() const;

#else
explicit operator bool() const;

#endif

The user should use the lock.owns_lock() when a explicit conversion is required.

operator unspecified-bool-type() const

Returns: If owns_lock() would return true, a value that evaluates to true in boolean contexts, otherwise a value that eval-
uates to false in boolean contexts.

Throws: Nothing.

bool operator!() const

Returns: ! owns_lock().

Throws: Nothing.

Scoped Enums
Some of the enumerations defined in the standard library are scoped enums.

On compilers that don't support them, the library uses a class to wrap the underlying type. Instead of

enum class future_errc
{

broken_promise,
future_already_retrieved,
promise_already_satisfied,
no_state

};

the library declare these types as

171

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

BOOST_SCOPED_ENUM_DECLARE_BEGIN(future_errc)
{

broken_promise,
future_already_retrieved,
promise_already_satisfied,
no_state

}
BOOST_SCOPED_ENUM_DECLARE_END(future_errc)

These macros allows to use 'future_errc' in almost all the cases as an scoped enum.

There are however some limitations:

• The type is not a C++ enum, so 'is_enum<future_errc>' will be false_type.

• The emulated scoped enum can not be used in switch nor in template arguments. For these cases the user needs to use some
macros.

Instead of

switch (ev)
{
case future_errc::broken_promise:

// ...

use

switch (boost::native_value(ev))
{
case future_errc::broken_promise:

And instead of

#ifdef BOOST_NO_SCOPED_ENUMS
template <>
struct BOOST_SYMBOL_VISIBLE is_error_code_enum<future_errc> : public true_type { };
#endif

use

#ifdef BOOST_NO_SCOPED_ENUMS
template <>
struct BOOST_SYMBOL_VISIBLE is_error_code_enum<future_errc::enum_type> : public true_type { };
#endif

172

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Acknowledgments
The original implementation of Boost.Thread was written by William Kempf, with contributions from numerous others. This new
version initially grew out of an attempt to rewrite Boost.Thread to William Kempf's design with fresh code that could be released
under the Boost Software License. However, as the C++ Standards committee have been actively discussing standardizing a thread
library for C++, this library has evolved to reflect the proposals, whilst retaining as much backwards-compatibility as possible.

Particular thanks must be given to Roland Schwarz, who contributed a lot of time and code to the original Boost.Thread library,
and who has been actively involved with the rewrite. The scheme for dividing the platform-specific implementations into separate
directories was devised by Roland, and his input has contributed greatly to improving the quality of the current implementation.

Thanks also must go to Peter Dimov, Howard Hinnant, Alexander Terekhov, Chris Thomasson and others for their comments on
the implementation details of the code.

173

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Conformance and Extension

C++11 standard Thread library

174

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 2. C++11 standard Conformance

TicketCommentsStatusDescriptionSection

--PartialThread support library30

---General30.1

---Requirements30.2

---Template parameter
names

30.2.1

--YesExceptions30.2.2

--YesNative handles30.2.3

--YesTiming specifications30.2.4

--YesRequirements for Lock-
able types

30.2.5

---In general30.2.5.1

--YesBasicLockable require-
ments

30.2.5.2

--yesLockable requirements30.2.5.3

--YesTimedLockable require-
ments

30.2.5.4

---decay_copy30.2.6

--YesThreads30.3

--YesClass thread30.3.1

--YesClass thread::id30.3.1.1

--Partialthread constructors30.3.1.2

--Yesthread destructor30.3.1.3

--Yesthread assignment30.3.1.4

--Yesthread members30.3.1.5

--Yesthread static members30.3.1.6

--Yesthread specialized al-
gorithms

30.3.1.7

--YesNamespace this_thread30.3.2

--PartialMutual exclusion30.4

--YesMutex requirements30.4.1

175

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

TicketCommentsStatusDescriptionSection

--YesIn general30.4.1.1

--YesMutex types30.4.1.2

--YesClass mutex30.4.1.2.1

--YesClass recursive_mutex30.4.1.2.2

--YesTimed mutex types30.4.1.3

--YesClass timed_mutex30.4.1.3.1

--YesC l a s s r e c u r s -
ive_timed_mutex

30.4.1.3.1

--YesLocks30.4.2

--YesClass template
lock_guard

30.4.2.1

--YesClass template
unique_lock

30.4.2.2

--Yesunique_lock construct-
ors, destructor, and as-
signment

30.4.2.2.1

--Yesunique_lock locking30.4.2.2.2

--Yesunique_lock modifiers30.4.2.2.3

-Yesunique_lock observers30.4.2.2.4

#6227variadicPartialGeneric locking al-
gorithms

30.4.3

#7285call_oncePartialCall once30.4.4

--YesStruct once_flag30.4.4.1

#7285interfacePartialFunction call_once30.4.4.2

--YesCondition variables30.5

--YesClass condition_vari-
able

30.5.1

--YesClass condition_vari-
able_any

30.5.2

#7279noexceptPartialFutures30.6

--PartialOverview30.6.1

--YesError handling30.6.2

176

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

TicketCommentsStatusDescriptionSection

#7279noexceptPartialClass future_error30.6.3

---Shared state30.6.4

--YesClass template promise30.6.5

--YesClass template future30.6.6

--YesClass template
shared_future

30.6.7

--YesFunction template
async

30.6.8

--YesClass template pack-
aged_task

30.6.9

Shared Locking extensions

Table 3. Howard's Shared Locking Proposal Conformance

CommentsStatusDescriptionSection

N e e d s
B̀OOST_THREAD_PROVIDES_SHARED_MU-
TEX_UPWARDS_CONVER-
SION

YesShared LockingX

-YesShared Lockables ConceptsX.1

-YesSharedLockable conceptX.1.1

-YesUpgradeLockable conceptX.1.2

-YesShared Mutex TypesX.2

-Yesshared_mutex classX.2.1

-Yesupgrade_mutex classX.2.2

-YesLocksX.3

-Yesunique_lock class adaptationsX.3.1

-Yesshared_lock classX.3.2

-Yesupgrade_lock classX.3.3

177

Thread 4.0.0

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Thread 4.0.0
	Table of Contents
	Overview
	Using and building the library
	Configuration
	Boost.Chrono
	Boost.Move
	Boost.DateTime
	boost::thread::oprator== deprecated
	boost::condition deprecated
	Mutex nested lock types deprecated
	thread::id
	Shared Locking Generic
	Shared Locking Upwards Conversion
	Explicit Lock Conversion
	unique_future versus future
	promise lazy initialization
	promise Allocator constructor
	Call to terminate if joinable
	once_flag
	Signature parameter for packaged_task
	-var thread constructor with variadic rvalue parameters
	future<>::get() invalidates the future
	Interruptions
	Version

	Limitations
	SunPro
	VACPP
	WCE

	History
	Future
	Thread Management
	Synopsis
	Tutorial
	Launching threads
	Thread attributes
	Exceptions in thread functions
	Detaching thread
	Joining a thread
	Destructor V1
	Destructor V2
	Interruption
	Thread IDs
	Using native interfaces with Boost.Thread resources
	Using Boost.Thread interfaces in a native thread

	Class thread
	Default Constructor
	Move Constructor
	Move assignment operator
	Thread Constructor
	Thread Attributes Constructor EXTENSION
	Thread Callable Move Constructor
	Thread Attributes Move Constructor EXTENSION
	Thread Constructor with arguments
	Thread Destructor
	Member function joinable()
	Member function join()
	Member function timed_join() DEPRECATED
	Member function try_join_for() EXTENSION
	Member function try_join_until() EXTENSION
	Member function detach()
	Member function get_id()
	Member function interrupt() EXTENSION
	Static member function hardware_concurrency()
	Member function native_handle()
	operator== DEPRECATED
	operator!= DEPRECATED
	Static member function sleep() DEPRECATED
	Static member function yield() DEPRECATED
	Member function swap()
	Non-member function swap()
	Class boost::thread::id
	Default constructor
	operator==
	operator!=
	operator<
	operator>
	operator<=
	operator>=
	Friend operator<<

	Class boost::thread::attributes EXTENSION
	Default constructor
	Member function set_stack_size()
	Member function get_stack_size()
	Member function native_handle()

	Namespace this_thread
	Non-member function get_id()
	Non-member function interruption_point() EXTENSION
	Non-member function interruption_requested() EXTENSION
	Non-member function interruption_enabled() EXTENSION
	Non-member function sleep() DEPRECATED
	Non-member function sleep_until()
	Non-member function sleep_for()
	Non-member function yield()
	Class disable_interruption EXTENSION
	Constructor
	Destructor

	Class restore_interruption EXTENSION
	Constructor
	Destructor

	Non-member function template at_thread_exit() EXTENSION

	Class thread_group EXTENSION
	Constructor
	Destructor
	Member function create_thread()
	Member function add_thread()
	Member function remove_thread()
	Member function join_all()
	Member function is_this_thread_in()
	Member function is_thread_in()
	Member function interrupt_all()
	Member function size()

	Scoped Threads
	Motivation
	Tutorial
	Free Thread Functors
	Functor detach
	Functor join_if_joinable
	Functor interrupt_and_join_if_joinable

	Class strict_scoped_thread
	Default Constructor
	Destructor

	Class scoped_thread
	Default Constructor
	Move Constructor
	Move assignment operator
	Move Constructor from a thread
	Destructor
	Member function joinable()
	Member function join()
	Member function try_join_for()
	Member function try_join_until()
	Member function detach()
	Member function get_id()
	Member function interrupt()
	Static member function hardware_concurrency()
	Member function native_handle()
	Member function swap()

	Non-member function swap(scoped_thread&,scoped_thread&)

	Synchronization
	Tutorial
	Internal Locking
	Concurrent threads of execution
	Synchronized variables

	External Locking -- strict_lock and externally_locked classes
	Locks as Permits
	Improving External Locking
	Allowing other strict locks

	Executing Around a Function

	Mutex Concepts
	BasicLockable Concept
	m.lock();
	m.unlock();
	is_basic_lockable trait -- EXTENSION

	Lockable Concept
	m.try_lock()
	is_lockable trait -- EXTENSION

	Recursive Lockable Concept
	is_recursive_mutex_sur_parolle trait -- EXTENSION

	TimedLockable Concept
	m.try_lock_until(abs_time)
	m.try_lock_for(rel_time)
	m.timed_lock(abs_time)
	m.timed_lock(rel_time)

	SharedLockable Concept -- EXTENSION
	m.lock_shared()
	m.try_lock_shared()
	m.try_lock_shared_for(rel_time)
	m.try_lock_shared_until(abs_time))
	m.unlock_shared()
	m.timed_lock_shared(abs_time)

	UpgradeLockable Concept -- EXTENSION
	m.lock_upgrade()
	m.unlock_upgrade()
	m.try_lock_upgrade()
	m.try_lock_upgrade_for(rel_time)
	m.try_lock_upgrade_until(abs_time)
	m.try_unlock_shared_and_lock()
	m.try_unlock_shared_and_lock_for(rel_time)
	m.try_unlock_shared_and_lock_until(abs_time)
	m.unlock_and_lock_shared()
	m.try_unlock_shared_and_lock_upgrade()
	m.try_unlock_shared_and_lock_upgrade_for(rel_time)
	m.try_unlock_shared_and_lock_upgrade_until(abs_time)
	m.unlock_and_lock_upgrade()
	m.unlock_upgrade_and_lock()
	m.try_unlock_upgrade_and_lock()
	m.try_unlock_upgrade_and_lock_for(rel_time)
	m.try_unlock_upgrade_and_lock_until(abs_time)
	m.unlock_upgrade_and_lock_shared()

	Lock Options
	Lock option tags

	Lock Guard
	Class template lock_guard
	lock_guard(Lockable & m)
	lock_guard(Lockable & m,boost::adopt_lock_t)
	~lock_guard()

	Non Member Function make_lock_guard
	Non Member Function make_lock_guard

	Lock Concepts
	StrictLock -- EXTENSION
	L::mutex_type
	is_strict_lock_sur_parolle<L>
	cl.owns_lock(m);
	Models

	Lock Types
	Class template unique_lock
	unique_lock()
	unique_lock(Lockable & m)
	unique_lock(Lockable & m,boost::adopt_lock_t)
	unique_lock(Lockable & m,boost::defer_lock_t)
	unique_lock(Lockable & m,boost::try_to_lock_t)
	unique_lock(shared_lock<mutex_type>&& sl, try_to_lock_t)
	unique_lock(shared_lock<mutex_type>&&, const chrono::time_point<Clock, Duration>&)
	unique_lock(shared_lock<mutex_type>&&, const chrono::duration<Rep, Period>&)
	unique_lock(Lockable & m,boost::system_time const& abs_time)
	template <class Clock, class Duration> unique_lock(Lockable & m,const chrono::time_point<Clock, Duration>& abs_time)
	template <class Rep, class Period> unique_lock(Lockable & m,const chrono::duration<Rep, Period>& abs_time)
	~unique_lock()
	bool owns_lock() const
	Lockable* mutex() const
	explicit operator bool() const
	Lockable* release()

	Class template shared_lock - EXTENSION
	shared_lock()
	shared_lock(Lockable & m)
	shared_lock(Lockable & m,boost::adopt_lock_t)
	shared_lock(Lockable & m,boost::defer_lock_t)
	shared_lock(Lockable & m,boost::try_to_lock_t)
	shared_lock(Lockable & m,boost::system_time const& abs_time)
	~shared_lock()
	bool owns_lock() const
	Lockable* mutex() const
	explicit operator bool() const
	Lockable* release()

	Class template upgrade_lock - EXTENSION
	Class template upgrade_to_unique_lock
	Mutex-specific class scoped_try_lock

	Other Lock Types - EXTENSION
	Strict Locks
	Class template strict_lock
	strict_lock(Lockable & m)
	~strict_lock()

	Class template nested_strict_lock
	nested_strict_lock(Lock & lk)
	~nested_strict_lock() noexcept
	bool owns_lock(mutex_type const* l) const noexcept

	Non Member Function make_strict_lock
	Non Member Function make_nested_strict_lock

	Externally Locked
	Template Class externally_locked
	externally_locked(mutex_type&, const T&)
	externally_locked(mutex_type&, T&&)
	externally_locked(mutex_type&)
	externally_locked(externally_locked&)
	get(strict_lock<mutex_type>&)
	get(strict_lock<nested_strict_lock<Lock>>&)
	get(strict_lock<nested_strict_lock<Lock>>&)

	swap(externally_locked, externally_locked&)

	Class template shared_lock_guard
	shared_lock_guard(SharedLockable & m)
	shared_lock_guard(SharedLockable & m,boost::adopt_lock_t)
	~shared_lock_guard()

	Class template reverse_lock
	reverse_lock(Lock & m)
	~reverse_lock()

	Lock functions
	Non-member function lock(Lockable1,Lockable2,...)
	Non-member function lock(begin,end) // EXTENSION
	Non-member function try_lock(Lockable1,Lockable2,...)
	Non-member function try_lock(begin,end) // EXTENSION

	Lock Factories - EXTENSION
	Non Member Function make_unique_lock(Lockable&)
	Non Member Function make_unique_lock(Lockable&,tag)
	Non Member Function make_unique_locks(Lockable& ...)

	Mutex Types
	Class mutex
	Member function native_handle()

	Typedef try_mutex
	Class timed_mutex
	Member function native_handle()

	Class recursive_mutex
	Member function native_handle()

	Typedef recursive_try_mutex
	Class recursive_timed_mutex
	Member function native_handle()

	Class shared_mutex -- EXTENSION
	Class upgrade_mutex -- EXTENSION
	Class null_mutex -- EXTENSION

	Condition Variables
	Class condition_variable
	condition_variable()
	~condition_variable()
	void notify_one()
	void notify_all()
	void wait(boost::unique_lock<boost::mutex>& lock)
	template<typename predicate_type> void wait(boost::unique_lock<boost::mutex>& lock, predicate_type pred)
	bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time)
	template<typename duration_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time)
	template<typename predicate_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock, boost::system_time const& abs_time, predicate_type pred)
	template <class Clock, class Duration> cv_status wait_until(boost::unique_lock<boost::mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time)
	template <class Rep, class Period> cv_status wait_for(boost::unique_lock<boost::mutex>& lock, const chrono::duration<Rep, Period>& rel_time)
	template <class Clock, class Duration, class Predicate> bool wait_until(boost::unique_lock<boost::mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred)
	template <class Rep, class Period, class Predicate> bool wait_for(boost::unique_lock<boost::mutex>& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred)

	Class condition_variable_any
	condition_variable_any()
	~condition_variable_any()
	void notify_one()
	void notify_all()
	template<typename lock_type> void wait(lock_type& lock)
	template<typename lock_type,typename predicate_type> void wait(lock_type& lock, predicate_type pred)
	template<typename lock_type> bool timed_wait(lock_type& lock,boost::system_time const& abs_time)
	template<typename lock_type,typename duration_type> bool timed_wait(lock_type& lock,duration_type const& rel_time)
	template<typename lock_type,typename predicate_type> bool timed_wait(lock_type& lock, boost::system_time const& abs_time, predicate_type pred)
	template <class lock_type, class Clock, class Duration> cv_status wait_until(lock_type& lock, const chrono::time_point<Clock, Duration>& abs_time)
	template <class lock_type, class Rep, class Period> cv_status wait_for(lock_type& lock, const chrono::duration<Rep, Period>& rel_time)
	template <class lock_type, class Clock, class Duration, class Predicate> bool wait_until(lock_type& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred)
	template <class lock_type, class Rep, class Period, class Predicate> bool wait_for(lock_type& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred)

	Typedef condition DEPRECATED V3
	Non-member Function notify_all_at_thread_exit()

	One-time Initialization
	Typedef once_flag
	Non-member function call_once

	Barriers
	Class barrier

	Futures
	Overview
	Creating asynchronous values
	Wait Callbacks and Lazy Futures
	Handling Detached Threads and Thread Specific Variables
	Executing asynchronously
	Shared Futures
	Making immediate futures easier
	Associating future continuations
	Futures Reference
	Enumeration state
	Enumeration future_errc
	Enumeration launch
	Specialization is_error_code_enum<future_errc>
	Non-member function make_error_code()
	Non-member function make_error_condition()
	Non-member function future_category()
	Class future_error
	Constructor
	Member function code()

	Enumeration future_status
	future class template
	Default Constructor
	Destructor
	Move Constructor
	Move Assignment Operator
	Member function swap()
	Member function get()
	Member function wait()
	Member function timed_wait() DEPRECATED SINCE V3.0.0
	Member function timed_wait() DEPRECATED SINCE V3.0.0
	Member function wait_for()
	Member function wait_until()
	Member function valid()
	Member function is_ready() EXTENSION
	Member function has_value() EXTENSION
	Member function has_exception() EXTENSION
	Member function get_state()
	Member function then()

	shared_future class template
	Default Constructor
	Member function get()
	Member function wait()
	Member function timed_wait()
	Member function timed_wait()
	Member function wait_for()
	Member function wait_until()
	Member function valid()
	Member function is_ready() EXTENSION
	Member function has_value() EXTENSION
	Member function has_exception() EXTENSION
	Member function get_state()

	promise class template
	Default Constructor
	Allocator Constructor
	Move Constructor
	Move Assignment Operator
	Destructor
	Member Function get_future()
	Member Function set_value()
	Member Function set_exception()
	Member Function set_value_at_thread_exit()
	Member Function set_exception_at_thread_exit()
	Member Function set_wait_callback() EXTENSION

	packaged_task class template
	Task Constructor
	Allocator Constructor
	Move Constructor
	Move Assignment Operator
	Destructor
	Member Function get_future()
	Member Function operator()()
	Member Function make_ready_at_thread_exit()
	Member Function reset()
	Member Function set_wait_callback() EXTENSION

	Non-member function decay_copy()
	Non-member function async()
	Non-member function wait_for_any()
	Non-member function wait_for_all()
	Non-member function make_future()
	Non-member function make_shared_future()

	Thread Local Storage
	Class thread_specific_ptr
	thread_specific_ptr();
	explicit thread_specific_ptr(void (*cleanup_function)(T*));
	~thread_specific_ptr();
	T* get() const;
	T* operator->() const;
	T& operator*() const;
	void reset(T* new_value=0);
	T* release();

	Time Requirements
	Deprecated
	Typedef system_time
	Non-member function get_system_time()

	Emulations
	=delete emulation
	Move semantics
	Deprecated Version 2 interface
	Helpers class and function
	Movable emulation

	Portable interface
	BOOST_THREAD_NO_COPYABLE(CLASS)
	BOOST_THREAD_MOVABLE(CLASS)
	BOOST_THREAD_MOVABLE_ONLY(CLASS)
	BOOST_THREAD_COPYABLE_AND_MOVABLE(CLASS)
	BOOST_THREAD_RV_REF(TYPE), BOOST_THREAD_RV_REF_BEG and BOOST_THREAD_RV_REF_END
	BOOST_THREAD_RV(V)
	BOOST_THREAD_MAKE_RV_REF(RVALUE)
	BOOST_THREAD_DCL_MOVABLE, BOOST_THREAD_DCL_MOVABLE_BEG(T1) and BOOST_THREAD_DCL_MOVABLE_END

	Bool explicit conversion
	operator unspecified-bool-type() const
	bool operator!() const

	Scoped Enums

	Acknowledgments
	Conformance and Extension
	C++11 standard Thread library
	Shared Locking extensions

