
Boost.Unordered
Daniel James
Copyright © 2003, 2004 Jeremy B. Maitin-Shepard
Copyright © 2005-2008 Daniel James

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Introduction .. 2
The Data Structure ... 4
Equality Predicates and Hash Functions ... 7
Comparison with Associative Containers ... 10
C++11 Compliance ... 12
Implementation Rationale .. 14
Change Log ... 15
Reference ... 19
Bibliography ... 68

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Introduction
For accessing data based on key lookup, the C++ standard library offers std::set, std::map, std::multiset and std::multimap.
These are generally implemented using balanced binary trees so that lookup time has logarithmic complexity. That is generally okay,
but in many cases a hash table can perform better, as accessing data has constant complexity, on average. The worst case complexity
is linear, but that occurs rarely and with some care, can be avoided.

Also, the existing containers require a 'less than' comparison object to order their elements. For some data types this is impossible
to implement or isn't practical. In contrast, a hash table only needs an equality function and a hash function for the key.

With this in mind, unordered associative containers were added to the C++ standard. This is an implementation of the containers
described in C++11, with some deviations from the standard in order to work with non-C++11 compilers and libraries.

unordered_set and unordered_multiset are defined in the header <boost/unordered_set.hpp>

namespace boost {
template <

class Key,
class Hash = boost::hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<Key> >

class unordered_set;

template<
class Key,
class Hash = boost::hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<Key> >

class unordered_multiset;
}

unordered_map and unordered_multimap are defined in the header <boost/unordered_map.hpp>

namespace boost {
template <

class Key, class Mapped,
class Hash = boost::hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<Key> >

class unordered_map;

template<
class Key, class Mapped,
class Hash = boost::hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<Key> >

class unordered_multimap;
}

When using Boost.TR1, these classes are included from <unordered_set> and <unordered_map>, with the classes added to the
std::tr1 namespace.

The containers are used in a similar manner to the normal associative containers:

2

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Hash_table
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef boost::unordered_map<std::string, int> map;
map x;
x["one"] = 1;
x["two"] = 2;
x["three"] = 3;

assert(x.at("one") == 1);
assert(x.find("missing") == x.end());

But since the elements aren't ordered, the output of:

BOOST_FOREACH(map::value_type i, x) {
std::cout<<i.first<<","<<i.second<<"\n";

}

can be in any order. For example, it might be:

two,2
one,1
three,3

To store an object in an unordered associative container requires both an key equality function and a hash function. The default
function objects in the standard containers support a few basic types including integer types, floating point types, pointer types, and
the standard strings. Since Boost.Unordered uses boost::hash it also supports some other types, including standard containers.
To use any types not supported by these methods you have to extend Boost.Hash to support the type or use your own custom
equality predicates and hash functions. See the Equality Predicates and Hash Functions section for more details.

There are other differences, which are listed in the Comparison with Associative Containers section.

3

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The Data Structure
The containers are made up of a number of 'buckets', each of which can contain any number of elements. For example, the following
diagram shows an unordered_set with 7 buckets containing 5 elements, A, B, C, D and E (this is just for illustration, containers
will typically have more buckets).

Bucket 1 Bucket 2 Bucket 3 Bucket 4

Bucket 5 Bucket 6 Bucket 7

AB

C

D
E

In order to decide which bucket to place an element in, the container applies the hash function, Hash, to the element's key (for un-
ordered_set and unordered_multiset the key is the whole element, but is referred to as the key so that the same terminology
can be used for sets and maps). This returns a value of type std::size_t. std::size_t has a much greater range of values then
the number of buckets, so that container applies another transformation to that value to choose a bucket to place the element in.

Retrieving the elements for a given key is simple. The same process is applied to the key to find the correct bucket. Then the key is
compared with the elements in the bucket to find any elements that match (using the equality predicate Pred). If the hash function
has worked well the elements will be evenly distributed amongst the buckets so only a small number of elements will need to be
examined.

There is more information on hash functions and equality predicates in the next section.

You can see in the diagram that A & D have been placed in the same bucket. When looking for elements in this bucket up to 2 com-
parisons are made, making the search slower. This is known as a collision. To keep things fast we try to keep collisions to a minimum.

4

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 1. Methods for Accessing Buckets

DescriptionMethod

The number of buckets.size_type bucket_count() const

An upper bound on the number of buckets.size_type max_bucket_count() const

The number of elements in bucket n.size_type bucket_size(size_type n) const

Returns the index of the bucket which would contain ksize_type bucket(key_type const& k) const

Return begin and end iterators for bucket n.local_iterator begin(size_type n);

local_iterator end(size_type n);

const_local_iterator begin(size_type n) const;

const_local_iterator end(size_type n) const;

const_local_iterator cbegin(size_type n) const;

const_local_iterator cend(size_type n) const;

Controlling the number of buckets
As more elements are added to an unordered associative container, the number of elements in the buckets will increase causing
performance to degrade. To combat this the containers increase the bucket count as elements are inserted. You can also tell the
container to change the bucket count (if required) by calling rehash.

The standard leaves a lot of freedom to the implementer to decide how the number of buckets are chosen, but it does make some
requirements based on the container's 'load factor', the average number of elements per bucket. Containers also have a 'maximum
load factor' which they should try to keep the load factor below.

You can't control the bucket count directly but there are two ways to influence it:

• Specify the minimum number of buckets when constructing a container or when calling rehash.

• Suggest a maximum load factor by calling max_load_factor.

max_load_factor doesn't let you set the maximum load factor yourself, it just lets you give a hint. And even then, the draft
standard doesn't actually require the container to pay much attention to this value. The only time the load factor is required to be
less than the maximum is following a call to rehash. But most implementations will try to keep the number of elements below the
max load factor, and set the maximum load factor to be the same as or close to the hint - unless your hint is unreasonably small or
large.

5

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 2. Methods for Controlling Bucket Size

DescriptionMethod

Construct an empty container with at least n buckets (X is the
container type).

X(size_type n)

Construct an empty container with at least n buckets and insert
elements from the range [i, j) (X is the container type).

X(InputIterator i, InputIterator j, size_type

n)

The average number of elements per bucket.float load_factor() const

Returns the current maximum load factor.float max_load_factor() const

Changes the container's maximum load factor, using z as a hint.float max_load_factor(float z)

Changes the number of buckets so that there at least n buckets,
and so that the load factor is less than the maximum load factor.

void rehash(size_type n)

Iterator Invalidation
It is not specified how member functions other than rehash affect the bucket count, although insert is only allowed to invalidate
iterators when the insertion causes the load factor to be greater than or equal to the maximum load factor. For most implementations
this means that insert will only change the number of buckets when this happens. While iterators can be invalidated by calls to insert
and rehash, pointers and references to the container's elements are never invalidated.

In a similar manner to using reserve for vectors, it can be a good idea to call rehash before inserting a large number of elements.
This will get the expensive rehashing out of the way and let you store iterators, safe in the knowledge that they won't be invalidated.
If you are inserting n elements into container x, you could first call:

x.rehash((x.size() + n) / x.max_load_factor() + 1);

Note: rehash's argument is the minimum number of buckets, not the number of elements, which is why the new size is divided
by the maximum load factor. The + 1 guarantees there is no invalidation; without it, reallocation could occur if the number
of bucket exactly divides the target size, since the container is allowed to rehash when the load factor is equal to the maximum
load factor.

6

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Equality Predicates and Hash Functions
While the associative containers use an ordering relation to specify how the elements are stored, the unordered associative containers
use an equality predicate and a hash function. For example, boost::unordered_map is declared as:

template <
class Key, class Mapped,
class Hash = boost::hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<Key const, Mapped> > >

class unordered_map;

The hash function comes first as you might want to change the hash function but not the equality predicate. For example, if you
wanted to use the FNV-1 hash you could write:

boost::unordered_map<std::string, int, hash::fnv_1>
dictionary;

There is an implementation of FNV-1 in the examples directory.

If you wish to use a different equality function, you will also need to use a matching hash function. For example, to implement a
case insensitive dictionary you need to define a case insensitive equality predicate and hash function:

struct iequal_to
: std::binary_function<std::string, std::string, bool>

{
bool operator()(std::string const& x,

std::string const& y) const
{

return boost::algorithm::iequals(x, y, std::locale());
}

};

struct ihash
: std::unary_function<std::string, std::size_t>

{
std::size_t operator()(std::string const& x) const
{

std::size_t seed = 0;
std::locale locale;

for(std::string::const_iterator it = x.begin();
it != x.end(); ++it)

{
boost::hash_combine(seed, std::toupper(*it, locale));

}

return seed;
}

};

Which you can then use in a case insensitive dictionary:

boost::unordered_map<std::string, int, ihash, iequal_to>
idictionary;

This is a simplified version of the example at /libs/unordered/examples/case_insensitive.hpp which supports other locales and string
types.

7

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.isthe.com/chongo/tech/comp/fnv/
http://www.boost.org/doc/libs/release/libs/unordered/doc/html/../../libs/unordered/examples/fnv1.hpp
http://www.boost.org/doc/libs/release/libs/unordered/doc/html/../../libs/unordered/examples/case_insensitive.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Caution

Be careful when using the equality (==) operator with custom equality predicates, especially if you're using a function
pointer. If you compare two containers with different equality predicates then the result is undefined. For most
stateless function objects this is impossible - since you can only compare objects with the same equality predicate
you know the equality predicates must be equal. But if you're using function pointers or a stateful equality predicate
(e.g. boost::function) then you can get into trouble.

Custom Types
Similarly, a custom hash function can be used for custom types:

struct point {
int x;
int y;

};

bool operator==(point const& p1, point const& p2)
{

return p1.x == p2.x && p1.y == p2.y;
}

struct point_hash
: std::unary_function<point, std::size_t>

{
std::size_t operator()(point const& p) const
{

std::size_t seed = 0;
boost::hash_combine(seed, p.x);
boost::hash_combine(seed, p.y);
return seed;

}
};

boost::unordered_multiset<point, point_hash> points;

Since the default hash function is Boost.Hash, we can extend it to support the type so that the hash function doesn't need to be explicitly
given:

struct point {
int x;
int y;

};

bool operator==(point const& p1, point const& p2)
{

return p1.x == p2.x && p1.y == p2.y;
}

std::size_t hash_value(point const& p) {
std::size_t seed = 0;
boost::hash_combine(seed, p.x);
boost::hash_combine(seed, p.y);
return seed;

}

// Now the default function objects work.
boost::unordered_multiset<point> points;

8

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See the Boost.Hash documentation for more detail on how to do this. Remember that it relies on extensions to the draft standard -
so it won't work for other implementations of the unordered associative containers, you'll need to explicitly use Boost.Hash.

Table 3. Methods for accessing the hash and equality functions.

DescriptionMethod

Returns the container's hash function.hasher hash_function() const

Returns the container's key equality function.key_equal key_eq() const

9

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Comparison with Associative Containers
Table 4. Interface differences.

Unordered Associative ContainersAssociative Containers

Parameterized by a function object Hash and an equivalence
relation Pred

Parameterized by an ordering relation Compare

Keys can be hashed using hasher which is accessed by member
function hash_function(), and checked for equality using
key_equal which is accessed by member function key_eq().
There is no function object for compared or hashing values.

Keys can be compared using key_compare which is accessed
by member function key_comp(), values can be compared us-
ing value_compare which is accessed by member function
value_comp().

Constructors have optional extra parameters for the initial min-
imum number of buckets, a hash function and an equality object.

Constructors have optional extra parameters for the comparison
object.

Keys k1, k2 are considered equivalent if Pred(k1, k2)Keys k1, k2 are considered equivalent if !Compare(k1, k2)

&& !Compare(k2, k1)

No equivalent. Since the elements aren't ordered lower_bound
and upper_bound would be meaningless.

Member function lower_bound(k) and upper_bound(k)

equal_range(k) returns a range at the end of the container if
k isn't present in the container. It can't return a positioned range
as k could be inserted into multiple place. To find out the
bucket that k would be inserted into use bucket(k). But remem-
ber that an insert can cause the container to rehash - meaning
that the element can be inserted into a different bucket.

equal_range(k) returns an empty range at the position that
k would be inserted if k isn't present in the container.

iterator, const_iterator are of at least the forward cat-
egory.

iterator, const_iterator are of the bidirectional category.

Iterators can be invalidated by calls to insert or rehash. Pointers
and references to the container's elements are never invalidated.

Iterators, pointers and references to the container's elements are
never invalidated.

Iterators iterate through the container in an arbitrary order, that
can change as elements are inserted. Although, equivalent ele-
ments are always adjacent.

Iterators iterate through the container in the order defined by
the comparison object.

Local iterators can be used to iterate through individual buckets.
(The order of local iterators and iterators aren't required to have
any correspondence.)

No equivalent

Can be compared using the == and != operators.Can be compared using the ==, !=, <, <=, >, >= operators.

When inserting with a hint, implementations are permitted to
ignore the hint.

The containers' hash or predicate function can throw exceptions
from erase

erase never throws an exception

10

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 5. Complexity Guarantees

Unordered Associative ContainersAssociative ContainersOperation

O(n) where n is the minimum number of
buckets.

constantConstruction of empty container

Average case O(N), worst case O(N2)O(N log N), O(N) if the range is sorted
with value_comp()

Construction of container from a range of
N elements

Average case constant, worst case linearlogarithmicInsert a single element

Average case constant, worst case linear
(ie. the same as a normal insert).

Amortized constant if t elements inserted
right after hint, logarithmic otherwise

Insert a single element with a hint

Average case O(N), worst case O(N *
size())

N log(size()+N)Inserting a range of N elements

Average case: O(count(k)), Worst case:
O(size())

O(log(size()) + count(k))Erase by key, k

Average case: O(1), Worst case:
O(size())

Amortized constantErase a single element by iterator

Average case: O(N), Worst case:
O(size())

O(log(size()) + N)Erase a range of N elements

O(size())O(size())Clearing the container

Average case: O(1), Worst case:
O(size())

logarithmicFind

Average case: O(1), Worst case:
O(size())

O(log(size()) + count(k))Count

Average case: O(count(k)), Worst case:
O(size())

logarithmicequal_range(k)

n/alogarithmiclower_bound,upper_bound

11

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

C++11 Compliance

Move emulation
Support for move semantics is implemented using Boost.Move. If rvalue references are available it will use them, but if not it uses
a close, but imperfect emulation. On such compilers you'll need to use Boost.Move to take advantage of using movable container
elements, also note that:

• Non-copyable objects can be stored in the containers, but without support for rvalue references the container will not be movable.

• Argument forwarding is not perfect.

Use of allocators
C++11 introduced a new allocator system. It's backwards compatible due to the lax requirements for allocators in the old standard,
but might need some changes for allocators which worked with the old versions of the unordered containers. It uses a traits class,
allocator_traits to handle the allocator adding extra functionality, and making some methods and types optional. During devel-
opment a stable release of allocator_traits wasn't available so an internal partial implementation is always used in this version.
Hopefully a future version will use the standard implementation where available.

The member functions construct, destroy and max_size are now optional, if they're not available a fallback is used. A full
implementation of allocator_traits requires sophisticated member function detection so that the fallback is used whenever the
member function call is not well formed. This requires support for SFINAE expressions, which are available on GCC from version
4.4 and Clang.

On other compilers, there's just a test to see if the allocator has a member, but no check that it can be called. So rather than using a
fallback there will just be a compile error.

propagate_on_container_copy_assignment, propagate_on_container_move_assignment, propagate_on_contain-
er_swap and select_on_container_copy_construction are also supported. Due to imperfect move emulation, some assign-
ments might check propagate_on_container_copy_assignment on some compilers and propagate_on_container_move_as-
signment on others.

The use of the allocator's construct and destruct methods might be a bit surprising. Nodes are constructed and destructed using the
allocator, but the elements are stored in aligned space within the node and constructed and destructed by calling the constructor and
destructor directly.

In C++11 the allocator's construct function has the signature:

template <class U, class... Args>
void construct(U* p, Args&&... args);

which supports calling construct for the contained object, but most existing allocators don't support this. If member function de-
tection was good enough then with old allocators it would fall back to calling the element's constructor directly but in general, detection
isn't good enough to do this which is why Boost.Unordered just calls the constructor directly every time. In most cases this will work
okay.

pointer_traits aren't used. Instead, pointer types are obtained from rebound allocators, this can cause problems if the allocator
can't be used with incomplete types. If const_pointer is not defined in the allocator, boost::pointer_to_other<pointer,
const value_type>::type is used to obtain a const pointer.

Pairs
Since the containers use std::pair they're limited to the version from the current standard library. But since C++11 std::pair's
piecewise_construct based constructor is very useful, emplace emulates it with a piecewise_construct in the
boost::unordered namespace. So for example, the following will work:

12

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::unordered_multimap<std::string, std::complex> x;

x.emplace(
boost::unordered::piecewise_construct,
boost::make_tuple("key"), boost::make_tuple(1, 2));

Older drafts of the standard also supported variadic constructors for std::pair, where the first argument would be used for the
first part of the pair, and the remaining for the second part.

Miscellaneous
When swapping, Pred and Hash are not currently swapped by calling swap, their copy constructors are used. As a consequence
when swapping an exception may be throw from their copy constructor.

Variadic constructor arguments for emplace are only used when both rvalue references and variadic template parameters are
available. Otherwise emplace can only take up to 10 constructors arguments.

13

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Implementation Rationale
The intent of this library is to implement the unordered containers in the draft standard, so the interface was fixed. But there are still
some implementation decisions to make. The priorities are conformance to the standard and portability.

The wikipedia article on hash tables has a good summary of the implementation issues for hash tables in general.

Data Structure
By specifying an interface for accessing the buckets of the container the standard pretty much requires that the hash table uses chained
addressing.

It would be conceivable to write a hash table that uses another method. For example, it could use open addressing, and use the
lookup chain to act as a bucket but there are a some serious problems with this:

• The draft standard requires that pointers to elements aren't invalidated, so the elements can't be stored in one array, but will need
a layer of indirection instead - losing the efficiency and most of the memory gain, the main advantages of open addressing.

• Local iterators would be very inefficient and may not be able to meet the complexity requirements.

• There are also the restrictions on when iterators can be invalidated. Since open addressing degrades badly when there are a high
number of collisions the restrictions could prevent a rehash when it's really needed. The maximum load factor could be set to a
fairly low value to work around this - but the standard requires that it is initially set to 1.0.

• And since the standard is written with a eye towards chained addressing, users will be surprised if the performance doesn't reflect
that.

So chained addressing is used.

Number of Buckets
There are two popular methods for choosing the number of buckets in a hash table. One is to have a prime number of buckets, another
is to use a power of 2.

Using a prime number of buckets, and choosing a bucket by using the modulus of the hash function's result will usually give a good
result. The downside is that the required modulus operation is fairly expensive.

Using a power of 2 allows for much quicker selection of the bucket to use, but at the expense of loosing the upper bits of the hash
value. For some specially designed hash functions it is possible to do this and still get a good result but as the containers can take
arbitrary hash functions this can't be relied on.

To avoid this a transformation could be applied to the hash function, for an example see Thomas Wang's article on integer hash
functions. Unfortunately, a transformation like Wang's requires knowledge of the number of bits in the hash value, so it isn't portable
enough. This leaves more expensive methods, such as Knuth's Multiplicative Method (mentioned in Wang's article). These don't
tend to work as well as taking the modulus of a prime, and the extra computation required might negate efficiency advantage of
power of 2 hash tables.

So, this implementation uses a prime number for the hash table size.

14

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Hash_table
http://www.concentric.net/~Ttwang/tech/inthash.htm
http://www.concentric.net/~Ttwang/tech/inthash.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Change Log

Review Version
Initial review version, for the review conducted from 7th December 2007 to 16th December 2007.

1.35.0 Add-on - 31st March 2008
Unofficial release uploaded to vault, to be used with Boost 1.35.0. Incorporated many of the suggestions from the review.

• Improved portability thanks to Boost regression testing.

• Fix lots of typos, and clearer text in the documentation.

• Fix floating point to std::size_t conversion when calculating sizes from the max load factor, and use double in the calculation
for greater accuracy.

• Fix some errors in the examples.

Boost 1.36.0
First official release.

• Rearrange the internals.

• Move semantics - full support when rvalue references are available, emulated using a cut down version of the Adobe move library
when they are not.

• Emplace support when rvalue references and variadic template are available.

• More efficient node allocation when rvalue references and variadic template are available.

• Added equality operators.

Boost 1.37.0
• Rename overload of emplace with hint, to emplace_hint as specified in n2691.

• Provide forwarding headers at <boost/unordered/unordered_map_fwd.hpp> and <boost/unordered/un-

ordered_set_fwd.hpp>.

• Move all the implementation inside boost/unordered, to assist modularization and hopefully make it easier to track changes
in subversion.

Boost 1.38.0
• Use boost::swap.

• Ticket 2237: Document that the equality and inequality operators are undefined for two objects if their equality predicates aren't
equivalent. Thanks to Daniel Krügler.

• Ticket 1710: Use a larger prime number list. Thanks to Thorsten Ottosen and Hervé Brönnimann.

• Use aligned storage to store the types. This changes the way the allocator is used to construct nodes. It used to construct the node
with two calls to the allocator's construct method - once for the pointers and once for the value. It now constructs the node with
a single call to construct and then constructs the value using in place construction.

15

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2691.pdf
http://www.boost.org/doc/libs/release/libs/unordered/doc/html/../../libs/utility/swap.html
https://svn.boost.org/trac/boost/ticket/2237
https://svn.boost.org/trac/boost/ticket/1710
http://www.boost.org/doc/libs/release/libs/unordered/doc/html/../../libs/type_traits/doc/html/boost_typetraits/category/alignment.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Add support for C++0x initializer lists where they're available (currently only g++ 4.4 in C++0x mode).

Boost 1.39.0
• Ticket 2756: Avoid a warning on Visual C++ 2009.

• Some other minor internal changes to the implementation, tests and documentation.

• Avoid an unnecessary copy in operator[].

• Ticket 2975: Fix length of prime number list.

Boost 1.40.0
• Ticket 2975: Store the prime list as a preprocessor sequence - so that it will always get the length right if it changes again in the

future.

• Ticket 1978: Implement emplace for all compilers.

• Ticket 2908, Ticket 3096: Some workarounds for old versions of borland, including adding explicit destructors to all containers.

• Ticket 3082: Disable incorrect Visual C++ warnings.

• Better configuration for C++0x features when the headers aren't available.

• Create less buckets by default.

Boost 1.41.0 - Major update
• The original version made heavy use of macros to sidestep some of the older compilers' poor template support. But since I no

longer support those compilers and the macro use was starting to become a maintenance burden it has been rewritten to use templates
instead of macros for the implementation classes.

• The container objcet is now smaller thanks to using boost::compressed_pair for EBO and a slightly different function buffer
- now using a bool instead of a member pointer.

• Buckets are allocated lazily which means that constructing an empty container will not allocate any memory.

Boost 1.42.0
• Support instantiating the containers with incomplete value types.

• Reduced the number of warnings (mostly in tests).

• Improved codegear compatibility.

• Ticket 3693: Add erase_return_void as a temporary workaround for the current erase which can be inefficient because it
has to find the next element to return an iterator.

• Add templated find overload for compatible keys.

• Ticket 3773: Add missing std qualifier to ptrdiff_t.

• Some code formatting changes to fit almost all lines into 80 characters.

16

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/2756
https://svn.boost.org/trac/boost/ticket/2975
https://svn.boost.org/trac/boost/ticket/2975
https://svn.boost.org/trac/boost/ticket/1978
https://svn.boost.org/trac/boost/ticket/2908
https://svn.boost.org/trac/boost/ticket/3096
https://svn.boost.org/trac/boost/ticket/3082
http://svn.boost.org/trac/boost/ticket/3693
http://svn.boost.org/trac/boost/ticket/3773
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost 1.43.0
• Ticket 3966: erase_return_void is now quick_erase, which is the current forerunner for resolving the slow erase by iterator,

although there's a strong possibility that this may change in the future. The old method name remains for backwards compatibility
but is considered deprecated and will be removed in a future release.

• Use Boost.Exception.

• Stop using deprecated BOOST_HAS_* macros.

Boost 1.45.0
• Fix a bug when inserting into an unordered_map or unordered_set using iterators which returns value_type by copy.

Boost 1.48.0 - Major update
This is major change which has been converted to use Boost.Move's move emulation, and be more compliant with the C++11
standard. See the compliance section for details.

The container now meets C++11's complexity requirements, but to do so uses a little more memory. This means that quick_erase
and erase_return_void are no longer required, they'll be removed in a future version.

C++11 support has resulted in some breaking changes:

• Equality comparison has been changed to the C++11 specification. In a container with equivalent keys, elements in a group with
equal keys used to have to be in the same order to be considered equal, now they can be a permutation of each other. To use the
old behavior define the macro BOOST_UNORDERED_DEPRECATED_EQUALITY.

• The behaviour of swap is different when the two containers to be swapped has unequal allocators. It used to allocate new nodes
using the appropriate allocators, it now swaps the allocators if the allocator has a member structure propagate_on_contain-
er_swap, such that propagate_on_container_swap::value is true.

• Allocator's construct and destroy functions are called with raw pointers, rather than the allocator's pointer type.

• emplace used to emulate the variadic pair constructors that appeared in early C++0x drafts. Since they were removed it no longer
does so. It does emulate the new piecewise_construct pair constructors - only you need to use boost::piecewise_con-
struct. To use the old emulation of the variadic consturctors define BOOST_UNORDERED_DEPRECATED_PAIR_CONSTRUCT.

Boost 1.49.0
• Fix warning due to accidental odd assignment.

• Slightly better error messages.

Boost 1.50.0
• Fix equality for unordered_multiset and unordered_multimap.

• Ticket 6857: Implement reserve.

• Ticket 6771: Avoid gcc's -Wfloat-equal warning.

• Ticket 6784: Fix some Sun specific code.

• Ticket 6190: Avoid gcc's -Wshadow warning.

• Ticket 6905: Make namespaces in macros compatible with bcp custom namespaces. Fixed by Luke Elliott.

17

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/3966
http://home.roadrunner.com/~hinnant/issue_review/lwg-active.html#579
https://svn.boost.org/trac/boost/ticket/6857
https://svn.boost.org/trac/boost/ticket/6771
https://svn.boost.org/trac/boost/ticket/6784
https://svn.boost.org/trac/boost/ticket/6190
https://svn.boost.org/trac/boost/ticket/6905
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Remove some of the smaller prime number of buckets, as they may make collisions quite probable (e.g. multiples of 5 are very
common because we used base 10).

• On old versions of Visual C++, use the container library's implementation of allocator_traits, as it's more likely to work.

• On machines with 64 bit std::size_t, use power of 2 buckets, with Thomas Wang's hash function to pick which one to use. As
modulus is very slow for 64 bit values.

• Some internal changes.

Boost 1.51.0
• Fix construction/destruction issue when using a C++11 compiler with a C++03 allocator (#7100).

• Remove a try..catch to support compiling without exceptions.

• Adjust SFINAE use to try to supprt g++ 3.4 (#7175).

• Updated to use the new config macros.

Boost 1.52.0
• Faster assign, which assigns to existing nodes where possible, rather than creating entirely new nodes and copy constructing.

• Fixed bug in erase_range (#7471).

• Reverted some of the internal changes to how nodes are created, especially for C++11 compilers. 'construct' and 'destroy' should
work a little better for C++11 allocators.

• Simplified the implementation a bit. Hopefully more robust.

Boost 1.53.0
• Remove support for the old pre-standard variadic pair constructors, and equality implementation. Both have been deprecated since

Boost 1.48.

• Remove use of deprecated config macros.

• More internal implementation changes, including a much simpler implementation of erase.

18

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/7100
https://svn.boost.org/trac/boost/ticket/7175
https://svn.boost.org/trac/boost/ticket/7471
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

Header <boost/unordered_set.hpp>

namespace boost {
template<typename Value, typename Hash = boost::hash<Value>,

typename Pred = std::equal_to<Value>,
typename Alloc = std::allocator<Value> >

class unordered_set;
template<typename Value, typename Hash, typename Pred, typename Alloc>
bool operator==(unordered_set<Value, Hash, Pred, Alloc> const&,

unordered_set<Value, Hash, Pred, Alloc> const&);
template<typename Value, typename Hash, typename Pred, typename Alloc>
bool operator!=(unordered_set<Value, Hash, Pred, Alloc> const&,

unordered_set<Value, Hash, Pred, Alloc> const&);
template<typename Value, typename Hash, typename Pred, typename Alloc>
void swap(unordered_set<Value, Hash, Pred, Alloc>&,

unordered_set<Value, Hash, Pred, Alloc>&);
template<typename Value, typename Hash = boost::hash<Value>,

typename Pred = std::equal_to<Value>,
typename Alloc = std::allocator<Value> >

class unordered_multiset;
template<typename Value, typename Hash, typename Pred, typename Alloc>
bool operator==(unordered_multiset<Value, Hash, Pred, Alloc> const&,

unordered_multiset<Value, Hash, Pred, Alloc> const&);
template<typename Value, typename Hash, typename Pred, typename Alloc>
bool operator!=(unordered_multiset<Value, Hash, Pred, Alloc> const&,

unordered_multiset<Value, Hash, Pred, Alloc> const&);
template<typename Value, typename Hash, typename Pred, typename Alloc>
void swap(unordered_multiset<Value, Hash, Pred, Alloc>&,

unordered_multiset<Value, Hash, Pred, Alloc>&);
}

Class template unordered_set

boost::unordered_set — An unordered associative container that stores unique values.

19

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/unordered/doc/html/../../boost/unordered_set.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/unordered_set.hpp>

template<typename Value, typename Hash = boost::hash<Value>,
typename Pred = std::equal_to<Value>,
typename Alloc = std::allocator<Value> >

class unordered_set {
public:
// types
typedef Value key_type;
typedef Value value_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef implementation-defined size_type;
typedef implementation-defined difference_type;
typedef implementation-defined iterator;
typedef implementation-defined const_iterator;
typedef implementation-defined local_iterator;
typedef implementation-defined const_local_iterator;

// construct/copy/destruct
explicit unordered_set(size_type = implementation-defined,

hasher const& = hasher(),
key_equal const& = key_equal(),
allocator_type const& = allocator_type());

template<typename InputIterator>
unordered_set(InputIterator, InputIterator,

size_type = implementation-defined,
hasher const& = hasher(), key_equal const& = key_equal(),
allocator_type const& = allocator_type());

unordered_set(unordered_set const&);
unordered_set(unordered_set &&);
explicit unordered_set(Allocator const&);
unordered_set(unordered_set const&, Allocator const&);
~unordered_set();
unordered_set& operator=(unordered_set const&);
unordered_set& operator=(unordered_set &&);
allocator_type get_allocator() const;

// size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// iterators
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;

// modifiers
template<typename... Args> std::pair<iterator, bool> emplace(Args&&...);
template<typename... Args> iterator emplace_hint(const_iterator, Args&&...);
std::pair<iterator, bool> insert(value_type const&);

20

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::pair<iterator, bool> insert(value_type&&);
iterator insert(const_iterator, value_type const&);
iterator insert(const_iterator, value_type&&);
template<typename InputIterator> void insert(InputIterator, InputIterator);
iterator erase(const_iterator);
size_type erase(key_type const&);
iterator erase(const_iterator, const_iterator);
void quick_erase(const_iterator);
void erase_return_void(const_iterator);
void clear();
void swap(unordered_set&);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// lookup
iterator find(key_type const&);
const_iterator find(key_type const&) const;
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
iterator find(CompatibleKey const&, CompatibleHash const&,

CompatiblePredicate const&);
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
const_iterator
find(CompatibleKey const&, CompatibleHash const&,

CompatiblePredicate const&) const;
size_type count(key_type const&) const;
std::pair<iterator, iterator> equal_range(key_type const&);
std::pair<const_iterator, const_iterator> equal_range(key_type const&) const;

// bucket interface
size_type bucket_count() const;
size_type max_bucket_count() const;
size_type bucket_size(size_type) const;
size_type bucket(key_type const&) const;
local_iterator begin(size_type);
const_local_iterator begin(size_type) const;
local_iterator end(size_type);
const_local_iterator end(size_type) const;
const_local_iterator cbegin(size_type) const;
const_local_iterator cend(size_type);

// hash policy
float load_factor() const;
float max_load_factor() const;
void max_load_factor(float);
void rehash(size_type);
void reserve(size_type);

};

// Equality Comparisons
template<typename Value, typename Hash, typename Pred, typename Alloc>
bool operator==(unordered_set<Value, Hash, Pred, Alloc> const&,

unordered_set<Value, Hash, Pred, Alloc> const&);
template<typename Value, typename Hash, typename Pred, typename Alloc>
bool operator!=(unordered_set<Value, Hash, Pred, Alloc> const&,

21

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unordered_set<Value, Hash, Pred, Alloc> const&);

// swap
template<typename Value, typename Hash, typename Pred, typename Alloc>
void swap(unordered_set<Value, Hash, Pred, Alloc>&,

unordered_set<Value, Hash, Pred, Alloc>&);

Description

Template Parameters

Value must be Erasable from the container (i.e. allocat-
or_traits can destroy it).

Value

A unary function object type that acts a hash function for a
Value. It takes a single argument of type Value and returns a
value of type std::size_t.

Hash

A binary function object that implements an equivalence relation
on values of type Value. A binary function object that induces
an equivalence relation on values of type Value. It takes two
arguments of type Value and returns a value of type bool.

Pred

An allocator whose value type is the same as the container's
value type.

Alloc

The elements are organized into buckets. Keys with the same hash code are stored in the same bucket.

The number of buckets can be automatically increased by a call to insert, or as the result of calling rehash.

unordered_set public types

1. typedef Value key_type;

2. typedef Value value_type;

3. typedef Hash hasher;

4. typedef Pred key_equal;

5. typedef Alloc allocator_type;

6. typedef typename allocator_type::pointer pointer;

value_type* if allocator_type::pointer is not defined.

7. typedef typename allocator_type::const_pointer const_pointer;

boost::pointer_to_other<pointer, value_type>::type if allocator_type::const_pointer is not defined.

8. typedef value_type& reference;

9. typedef value_type const& const_reference;

10. typedef implementation-defined size_type;

An unsigned integral type.

size_type can represent any non-negative value of difference_type.

22

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

11. typedef implementation-defined difference_type;

A signed integral type.

Is identical to the difference type of iterator and const_iterator.

12. typedef implementation-defined iterator;

A constant iterator whose value type is value_type.

The iterator category is at least a forward iterator.

Convertible to const_iterator.

13. typedef implementation-defined const_iterator;

A constant iterator whose value type is value_type.

The iterator category is at least a forward iterator.

14. typedef implementation-defined local_iterator;

An iterator with the same value type, difference type and pointer and reference type as iterator.

A local_iterator object can be used to iterate through a single bucket.

15. typedef implementation-defined const_local_iterator;

A constant iterator with the same value type, difference type and pointer and reference type as const_iterator.

A const_local_iterator object can be used to iterate through a single bucket.

unordered_set public construct/copy/destruct

1.
explicit unordered_set(size_type n = implementation-defined,

hasher const& hf = hasher(),
key_equal const& eq = key_equal(),
allocator_type const& a = allocator_type());

Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-
locator and a maximum load factor of 1.0.
Postconditions: size() == 0

Requires: If the defaults are used, hasher, key_equal and allocator_type need to be DefaultConstruct-
ible.

2.
template<typename InputIterator>
unordered_set(InputIterator f, InputIterator l,

size_type n = implementation-defined,
hasher const& hf = hasher(),
key_equal const& eq = key_equal(),
allocator_type const& a = allocator_type());

Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-
locator and a maximum load factor of 1.0 and inserts the elements from [f, l) into it.
Requires: If the defaults are used, hasher, key_equal and allocator_type need to be DefaultConstructible.

3.
unordered_set(unordered_set const&);

The copy constructor. Copies the contained elements, hash function, predicate, maximum load factor and allocator.

23

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

If Allocator::select_on_container_copy_construction exists and has the right signature, the allocator will be con-
structed from its result.
Requires: value_type is copy constructible

4.
unordered_set(unordered_set &&);

The move constructor.
Notes: This is implemented using Boost.Move.
Requires: value_type is move constructible.

On compilers without rvalue reference support the emulation does not support moving without calling
boost::move if value_type is not copyable. So, for example, you can't return the container from a function.

5.
explicit unordered_set(Allocator const& a);

Constructs an empty container, using allocator a.

6.
unordered_set(unordered_set const& x, Allocator const& a);

Constructs an container, copying x's contained elements, hash function, predicate, maximum load factor, but using allocator a.

7.
~unordered_set();

Notes: The destructor is applied to every element, and all memory is deallocated

unordered_set& operator=(unordered_set const&);

The assignment operator. Copies the contained elements, hash function, predicate and maximum load factor but not the allocator.

If Alloc::propagate_on_container_copy_assignment exists and Alloc::propagate_on_container_copy_assign-
ment::value is true, the allocator is overwritten, if not the copied elements are created using the existing allocator.

Requires: value_type is copy constructible

unordered_set& operator=(unordered_set &&);

The move assignment operator.

If Alloc::propagate_on_container_move_assignment exists and Alloc::propagate_on_container_move_assign-
ment::value is true, the allocator is overwritten, if not the moved elements are created using the existing allocator.

Notes: On compilers without rvalue references, this is emulated using Boost.Move. Note that on some compilers the copy
assignment operator may be used in some circumstances.

Requires: value_type is move constructible.

allocator_type get_allocator() const;

unordered_set size and capacity

1.
bool empty() const;

Returns: size() == 0

24

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.
size_type size() const;

Returns: std::distance(begin(), end())

3.
size_type max_size() const;

Returns: size() of the largest possible container.

unordered_set iterators

1.
iterator begin();
const_iterator begin() const;

Returns: An iterator referring to the first element of the container, or if the container is empty the past-the-end value for the
container.

2.
iterator end();
const_iterator end() const;

Returns: An iterator which refers to the past-the-end value for the container.

3.
const_iterator cbegin() const;

Returns: A constant iterator referring to the first element of the container, or if the container is empty the past-the-end value
for the container.

4.
const_iterator cend() const;

Returns: A constant iterator which refers to the past-the-end value for the container.

unordered_set modifiers

1.
template<typename... Args> std::pair<iterator, bool> emplace(Args&&... args);

Inserts an object, constructed with the arguments args, in the container if and only if there is no element in the container with
an equivalent value.
Requires: value_type is EmplaceConstructible into X from args.
Returns: The bool component of the return type is true if an insert took place.

If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element
with equivalent value.

Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10
arguments, with no support for rvalue references or move semantics.

Since existing std::pair implementations don't support std::piecewise_construct this emulates it, but
using boost::unordered::piecewise_construct.

25

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.
template<typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Inserts an object, constructed with the arguments args, in the container if and only if there is no element in the container with
an equivalent value.

hint is a suggestion to where the element should be inserted.
Requires: value_type is EmplaceConstructible into X from args.
Returns: If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element

with equivalent value.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way

that Boost.Unordered supports is to point to an existing element with the same value.

Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
factor.

Pointers and references to elements are never invalidated.

If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10
arguments, with no support for rvalue references or move semantics.

Since existing std::pair implementations don't support std::piecewise_construct this emulates it, but
using boost::unordered::piecewise_construct.

3.
std::pair<iterator, bool> insert(value_type const& obj);

Inserts obj in the container if and only if there is no element in the container with an equivalent value.
Requires: value_type is CopyInsertable.
Returns: The bool component of the return type is true if an insert took place.

If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element
with equivalent value.

Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

4.
std::pair<iterator, bool> insert(value_type&& obj);

Inserts obj in the container if and only if there is no element in the container with an equivalent value.
Requires: value_type is MoveInsertable.
Returns: The bool component of the return type is true if an insert took place.

If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element
with equivalent value.

Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

5.
iterator insert(const_iterator hint, value_type const& obj);

Inserts obj in the container if and only if there is no element in the container with an equivalent value.

26

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

hint is a suggestion to where the element should be inserted.
Requires: value_type is CopyInsertable.
Returns: If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element

with equivalent value.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way

that Boost.Unordered supports is to point to an existing element with the same value.

Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
factor.

Pointers and references to elements are never invalidated.

6.
iterator insert(const_iterator hint, value_type&& obj);

Inserts obj in the container if and only if there is no element in the container with an equivalent value.

hint is a suggestion to where the element should be inserted.
Requires: value_type is MoveInsertable.
Returns: If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element

with equivalent value.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way

that Boost.Unordered supports is to point to an existing element with the same value.

Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
factor.

Pointers and references to elements are never invalidated.

7.
template<typename InputIterator>
void insert(InputIterator first, InputIterator last);

Inserts a range of elements into the container. Elements are inserted if and only if there is no element in the container with an
equivalent value.
Requires: value_type is EmplaceConstructible into X from *first.
Throws: When inserting a single element, if an exception is thrown by an operation other than a call to hasher the function

has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

8.
iterator erase(const_iterator position);

Erase the element pointed to by position.
Returns: The iterator following position before the erasure.
Throws: Only throws an exception if it is thrown by hasher or key_equal.
Notes: In older versions this could be inefficient because it had to search through several buckets to find the position of

the returned iterator. The data structure has been changed so that this is no longer the case, and the alternative erase
methods have been deprecated.

9.
size_type erase(key_type const& k);

Erase all elements with key equivalent to k.
Returns: The number of elements erased.

27

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: Only throws an exception if it is thrown by hasher or key_equal.

10.
iterator erase(const_iterator first, const_iterator last);

Erases the elements in the range from first to last.
Returns: The iterator following the erased elements - i.e. last.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
not be true in other implementations.

11.
void quick_erase(const_iterator position);

Erase the element pointed to by position.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
not be true in other implementations.

Notes: This method was implemented because returning an iterator to the next element from erase was expensive, but the
container has been redesigned so that is no longer the case. So this method is now deprecated.

12.
void erase_return_void(const_iterator position);

Erase the element pointed to by position.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
not be true in other implementations.

Notes: This method was implemented because returning an iterator to the next element from erase was expensive, but the
container has been redesigned so that is no longer the case. So this method is now deprecated.

13.
void clear();

Erases all elements in the container.
Postconditions: size() == 0

Throws: Never throws an exception.

14.
void swap(unordered_set&);

Swaps the contents of the container with the parameter.

If Allocator::propagate_on_container_swap is declared and Allocator::propagate_on_container_swap::value
is true then the containers' allocators are swapped. Otherwise, swapping with unequal allocators results in undefined behavior.
Throws: Doesn't throw an exception unless it is thrown by the copy constructor or copy assignment operator of key_equal

or hasher.
Notes: The exception specifications aren't quite the same as the C++11 standard, as the equality predieate and hash function

are swapped using their copy constructors.

unordered_set observers

1.
hasher hash_function() const;

Returns: The container's hash function.

28

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.
key_equal key_eq() const;

Returns: The container's key equality predicate.

unordered_set lookup

1.
iterator find(key_type const& k);
const_iterator find(key_type const& k) const;
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
iterator find(CompatibleKey const& k, CompatibleHash const& hash,

CompatiblePredicate const& eq);
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
const_iterator
find(CompatibleKey const& k, CompatibleHash const& hash,

CompatiblePredicate const& eq) const;

Returns: An iterator pointing to an element with key equivalent to k, or b.end() if no such element exists.
Notes: The templated overloads are a non-standard extensions which allows you to use a compatible hash function and

equality predicate for a key of a different type in order to avoid an expensive type cast. In general, its use is not
encouraged.

2.
size_type count(key_type const& k) const;

Returns: The number of elements with key equivalent to k.

3.
std::pair<iterator, iterator> equal_range(key_type const& k);
std::pair<const_iterator, const_iterator> equal_range(key_type const& k) const;

Returns: A range containing all elements with key equivalent to k. If the container doesn't container any such elements, returns
std::make_pair(b.end(),b.end()).

unordered_set bucket interface

1.
size_type bucket_count() const;

Returns: The number of buckets.

2.
size_type max_bucket_count() const;

Returns: An upper bound on the number of buckets.

3.
size_type bucket_size(size_type n) const;

Requires: n < bucket_count()

Returns: The number of elements in bucket n.

4.
size_type bucket(key_type const& k) const;

Returns: The index of the bucket which would contain an element with key k.
Postconditions: The return value is less than bucket_count()

29

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

5.
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;

Requires: n shall be in the range [0, bucket_count()).
Returns: A local iterator pointing the first element in the bucket with index n.

6.
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;

Requires: n shall be in the range [0, bucket_count()).
Returns: A local iterator pointing the 'one past the end' element in the bucket with index n.

7.
const_local_iterator cbegin(size_type n) const;

Requires: n shall be in the range [0, bucket_count()).
Returns: A constant local iterator pointing the first element in the bucket with index n.

8.
const_local_iterator cend(size_type n);

Requires: n shall be in the range [0, bucket_count()).
Returns: A constant local iterator pointing the 'one past the end' element in the bucket with index n.

unordered_set hash policy

1.
float load_factor() const;

Returns: The average number of elements per bucket.

2.
float max_load_factor() const;

Returns: Returns the current maximum load factor.

3.
void max_load_factor(float z);

Effects: Changes the container's maximum load factor, using z as a hint.

4.
void rehash(size_type n);

Changes the number of buckets so that there at least n buckets, and so that the load factor is less than the maximum load factor.

Invalidates iterators, and changes the order of elements. Pointers and references to elements are not invalidated.
Throws: The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or compar-

ison function.

5.
void reserve(size_type n);

Invalidates iterators, and changes the order of elements. Pointers and references to elements are not invalidated.
Throws: The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or compar-

ison function.

30

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unordered_set Equality Comparisons

1.
template<typename Value, typename Hash, typename Pred, typename Alloc>
bool operator==(unordered_set<Value, Hash, Pred, Alloc> const& x,

unordered_set<Value, Hash, Pred, Alloc> const& y);

Return true if x.size() == y.size and for every element in x, there is an element in y with the same for the same key, with
an equal value (using operator== to compare the value types).
Notes: The behavior of this function was changed to match the C++11 standard in Boost 1.48.

Behavior is undefined if the two containers don't have equivalent equality predicates.

2.
template<typename Value, typename Hash, typename Pred, typename Alloc>
bool operator!=(unordered_set<Value, Hash, Pred, Alloc> const& x,

unordered_set<Value, Hash, Pred, Alloc> const& y);

Return false if x.size() == y.size and for every element in x, there is an element in y with the same for the same key,
with an equal value (using operator== to compare the value types).
Notes: The behavior of this function was changed to match the C++11 standard in Boost 1.48.

Behavior is undefined if the two containers don't have equivalent equality predicates.

unordered_set swap

1.
template<typename Value, typename Hash, typename Pred, typename Alloc>
void swap(unordered_set<Value, Hash, Pred, Alloc>& x,

unordered_set<Value, Hash, Pred, Alloc>& y);

Swaps the contents of x and y.

If Allocator::propagate_on_container_swap is declared and Allocator::propagate_on_container_swap::value
is true then the containers' allocators are swapped. Otherwise, swapping with unequal allocators results in undefined behavior.
Effects: x.swap(y)

Throws: Doesn't throw an exception unless it is thrown by the copy constructor or copy assignment operator of key_equal
or hasher.

Notes: The exception specifications aren't quite the same as the C++11 standard, as the equality predieate and hash function
are swapped using their copy constructors.

Class template unordered_multiset

boost::unordered_multiset — An unordered associative container that stores values. The same key can be stored multiple times.

31

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/unordered_set.hpp>

template<typename Value, typename Hash = boost::hash<Value>,
typename Pred = std::equal_to<Value>,
typename Alloc = std::allocator<Value> >

class unordered_multiset {
public:
// types
typedef Value key_type;
typedef Value value_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef implementation-defined size_type;
typedef implementation-defined difference_type;
typedef implementation-defined iterator;
typedef implementation-defined const_iterator;
typedef implementation-defined local_iterator;
typedef implementation-defined const_local_iterator;

// construct/copy/destruct
explicit unordered_multiset(size_type = implementation-defined,

hasher const& = hasher(),
key_equal const& = key_equal(),
allocator_type const& = allocator_type());

template<typename InputIterator>
unordered_multiset(InputIterator, InputIterator,

size_type = implementation-defined,
hasher const& = hasher(),
key_equal const& = key_equal(),
allocator_type const& = allocator_type());

unordered_multiset(unordered_multiset const&);
unordered_multiset(unordered_multiset &&);
explicit unordered_multiset(Allocator const&);
unordered_multiset(unordered_multiset const&, Allocator const&);
~unordered_multiset();
unordered_multiset& operator=(unordered_multiset const&);
unordered_multiset& operator=(unordered_multiset &&);
allocator_type get_allocator() const;

// size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// iterators
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;

// modifiers
template<typename... Args> iterator emplace(Args&&...);
template<typename... Args> iterator emplace_hint(const_iterator, Args&&...);

32

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

iterator insert(value_type const&);
iterator insert(value_type&&);
iterator insert(const_iterator, value_type const&);
iterator insert(const_iterator, value_type&&);
template<typename InputIterator> void insert(InputIterator, InputIterator);
iterator erase(const_iterator);
size_type erase(key_type const&);
iterator erase(const_iterator, const_iterator);
void quick_erase(const_iterator);
void erase_return_void(const_iterator);
void clear();
void swap(unordered_multiset&);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// lookup
iterator find(key_type const&);
const_iterator find(key_type const&) const;
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
iterator find(CompatibleKey const&, CompatibleHash const&,

CompatiblePredicate const&);
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
const_iterator
find(CompatibleKey const&, CompatibleHash const&,

CompatiblePredicate const&) const;
size_type count(key_type const&) const;
std::pair<iterator, iterator> equal_range(key_type const&);
std::pair<const_iterator, const_iterator> equal_range(key_type const&) const;

// bucket interface
size_type bucket_count() const;
size_type max_bucket_count() const;
size_type bucket_size(size_type) const;
size_type bucket(key_type const&) const;
local_iterator begin(size_type);
const_local_iterator begin(size_type) const;
local_iterator end(size_type);
const_local_iterator end(size_type) const;
const_local_iterator cbegin(size_type) const;
const_local_iterator cend(size_type);

// hash policy
float load_factor() const;
float max_load_factor() const;
void max_load_factor(float);
void rehash(size_type);
void reserve(size_type);

};

// Equality Comparisons
template<typename Value, typename Hash, typename Pred, typename Alloc>
bool operator==(unordered_multiset<Value, Hash, Pred, Alloc> const&,

unordered_multiset<Value, Hash, Pred, Alloc> const&);
template<typename Value, typename Hash, typename Pred, typename Alloc>
bool operator!=(unordered_multiset<Value, Hash, Pred, Alloc> const&,

33

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unordered_multiset<Value, Hash, Pred, Alloc> const&);

// swap
template<typename Value, typename Hash, typename Pred, typename Alloc>
void swap(unordered_multiset<Value, Hash, Pred, Alloc>&,

unordered_multiset<Value, Hash, Pred, Alloc>&);

Description

Template Parameters

Value must be Erasable from the container (i.e. allocat-
or_traits can destroy it).

Value

A unary function object type that acts a hash function for a
Value. It takes a single argument of type Value and returns a
value of type std::size_t.

Hash

A binary function object that implements an equivalence relation
on values of type Value. A binary function object that induces
an equivalence relation on values of type Value. It takes two
arguments of type Value and returns a value of type bool.

Pred

An allocator whose value type is the same as the container's
value type.

Alloc

The elements are organized into buckets. Keys with the same hash code are stored in the same bucket and elements with equivalent
keys are stored next to each other.

The number of buckets can be automatically increased by a call to insert, or as the result of calling rehash.

unordered_multiset public types

1. typedef Value key_type;

2. typedef Value value_type;

3. typedef Hash hasher;

4. typedef Pred key_equal;

5. typedef Alloc allocator_type;

6. typedef typename allocator_type::pointer pointer;

value_type* if allocator_type::pointer is not defined.

7. typedef typename allocator_type::const_pointer const_pointer;

boost::pointer_to_other<pointer, value_type>::type if allocator_type::const_pointer is not defined.

8. typedef value_type& reference;

9. typedef value_type const& const_reference;

10. typedef implementation-defined size_type;

An unsigned integral type.

34

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

size_type can represent any non-negative value of difference_type.

11. typedef implementation-defined difference_type;

A signed integral type.

Is identical to the difference type of iterator and const_iterator.

12. typedef implementation-defined iterator;

A constant iterator whose value type is value_type.

The iterator category is at least a forward iterator.

Convertible to const_iterator.

13. typedef implementation-defined const_iterator;

A constant iterator whose value type is value_type.

The iterator category is at least a forward iterator.

14. typedef implementation-defined local_iterator;

An iterator with the same value type, difference type and pointer and reference type as iterator.

A local_iterator object can be used to iterate through a single bucket.

15. typedef implementation-defined const_local_iterator;

A constant iterator with the same value type, difference type and pointer and reference type as const_iterator.

A const_local_iterator object can be used to iterate through a single bucket.

unordered_multiset public construct/copy/destruct

1.
explicit unordered_multiset(size_type n = implementation-defined,

hasher const& hf = hasher(),
key_equal const& eq = key_equal(),
allocator_type const& a = allocator_type());

Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-
locator and a maximum load factor of 1.0.
Postconditions: size() == 0

Requires: If the defaults are used, hasher, key_equal and allocator_type need to be DefaultConstruct-
ible.

2.
template<typename InputIterator>
unordered_multiset(InputIterator f, InputIterator l,

size_type n = implementation-defined,
hasher const& hf = hasher(),
key_equal const& eq = key_equal(),
allocator_type const& a = allocator_type());

Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-
locator and a maximum load factor of 1.0 and inserts the elements from [f, l) into it.
Requires: If the defaults are used, hasher, key_equal and allocator_type need to be DefaultConstructible.

3.
unordered_multiset(unordered_multiset const&);

35

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The copy constructor. Copies the contained elements, hash function, predicate, maximum load factor and allocator.

If Allocator::select_on_container_copy_construction exists and has the right signature, the allocator will be con-
structed from its result.
Requires: value_type is copy constructible

4.
unordered_multiset(unordered_multiset &&);

The move constructor.
Notes: This is implemented using Boost.Move.
Requires: value_type is move constructible.

On compilers without rvalue reference support the emulation does not support moving without calling
boost::move if value_type is not copyable. So, for example, you can't return the container from a function.

5.
explicit unordered_multiset(Allocator const& a);

Constructs an empty container, using allocator a.

6.
unordered_multiset(unordered_multiset const& x, Allocator const& a);

Constructs an container, copying x's contained elements, hash function, predicate, maximum load factor, but using allocator a.

7.
~unordered_multiset();

Notes: The destructor is applied to every element, and all memory is deallocated

unordered_multiset& operator=(unordered_multiset const&);

The assignment operator. Copies the contained elements, hash function, predicate and maximum load factor but not the allocator.

If Alloc::propagate_on_container_copy_assignment exists and Alloc::propagate_on_container_copy_assign-
ment::value is true, the allocator is overwritten, if not the copied elements are created using the existing allocator.

Requires: value_type is copy constructible

unordered_multiset& operator=(unordered_multiset &&);

The move assignment operator.

If Alloc::propagate_on_container_move_assignment exists and Alloc::propagate_on_container_move_assign-
ment::value is true, the allocator is overwritten, if not the moved elements are created using the existing allocator.

Notes: On compilers without rvalue references, this is emulated using Boost.Move. Note that on some compilers the copy
assignment operator may be used in some circumstances.

Requires: value_type is move constructible.

allocator_type get_allocator() const;

unordered_multiset size and capacity

1.
bool empty() const;

Returns: size() == 0

36

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.
size_type size() const;

Returns: std::distance(begin(), end())

3.
size_type max_size() const;

Returns: size() of the largest possible container.

unordered_multiset iterators

1.
iterator begin();
const_iterator begin() const;

Returns: An iterator referring to the first element of the container, or if the container is empty the past-the-end value for the
container.

2.
iterator end();
const_iterator end() const;

Returns: An iterator which refers to the past-the-end value for the container.

3.
const_iterator cbegin() const;

Returns: A constant iterator referring to the first element of the container, or if the container is empty the past-the-end value
for the container.

4.
const_iterator cend() const;

Returns: A constant iterator which refers to the past-the-end value for the container.

unordered_multiset modifiers

1.
template<typename... Args> iterator emplace(Args&&... args);

Inserts an object, constructed with the arguments args, in the container.
Requires: value_type is EmplaceConstructible into X from args.
Returns: An iterator pointing to the inserted element.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10
arguments, with no support for rvalue references or move semantics.

Since existing std::pair implementations don't support std::piecewise_construct this emulates it, but
using boost::unordered::piecewise_construct.

2.
template<typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Inserts an object, constructed with the arguments args, in the container.

37

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

hint is a suggestion to where the element should be inserted.
Requires: value_type is EmplaceConstructible into X from args.
Returns: An iterator pointing to the inserted element.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way

that Boost.Unordered supports is to point to an existing element with the same value.

Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
factor.

Pointers and references to elements are never invalidated.

If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10
arguments, with no support for rvalue references or move semantics.

Since existing std::pair implementations don't support std::piecewise_construct this emulates it, but
using boost::unordered::piecewise_construct.

3.
iterator insert(value_type const& obj);

Inserts obj in the container.
Requires: value_type is CopyInsertable.
Returns: An iterator pointing to the inserted element.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

4.
iterator insert(value_type&& obj);

Inserts obj in the container.
Requires: value_type is MoveInsertable.
Returns: An iterator pointing to the inserted element.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

5.
iterator insert(const_iterator hint, value_type const& obj);

Inserts obj in the container.

hint is a suggestion to where the element should be inserted.
Requires: value_type is CopyInsertable.
Returns: An iterator pointing to the inserted element.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way

that Boost.Unordered supports is to point to an existing element with the same value.

Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
factor.

Pointers and references to elements are never invalidated.

6.
iterator insert(const_iterator hint, value_type&& obj);

38

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Inserts obj in the container.

hint is a suggestion to where the element should be inserted.
Requires: value_type is MoveInsertable.
Returns: An iterator pointing to the inserted element.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way

that Boost.Unordered supports is to point to an existing element with the same value.

Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
factor.

Pointers and references to elements are never invalidated.

7.
template<typename InputIterator>
void insert(InputIterator first, InputIterator last);

Inserts a range of elements into the container. Elements are inserted if and only if there is no element in the container with an
equivalent value.
Requires: value_type is EmplaceConstructible into X from *first.
Throws: When inserting a single element, if an exception is thrown by an operation other than a call to hasher the function

has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

8.
iterator erase(const_iterator position);

Erase the element pointed to by position.
Returns: The iterator following position before the erasure.
Throws: Only throws an exception if it is thrown by hasher or key_equal.
Notes: In older versions this could be inefficient because it had to search through several buckets to find the position of

the returned iterator. The data structure has been changed so that this is no longer the case, and the alternative erase
methods have been deprecated.

9.
size_type erase(key_type const& k);

Erase all elements with key equivalent to k.
Returns: The number of elements erased.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

10.
iterator erase(const_iterator first, const_iterator last);

Erases the elements in the range from first to last.
Returns: The iterator following the erased elements - i.e. last.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
not be true in other implementations.

11.
void quick_erase(const_iterator position);

Erase the element pointed to by position.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

39

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
not be true in other implementations.

Notes: This method was implemented because returning an iterator to the next element from erase was expensive, but the
container has been redesigned so that is no longer the case. So this method is now deprecated.

12.
void erase_return_void(const_iterator position);

Erase the element pointed to by position.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
not be true in other implementations.

Notes: This method was implemented because returning an iterator to the next element from erase was expensive, but the
container has been redesigned so that is no longer the case. So this method is now deprecated.

13.
void clear();

Erases all elements in the container.
Postconditions: size() == 0

Throws: Never throws an exception.

14.
void swap(unordered_multiset&);

Swaps the contents of the container with the parameter.

If Allocator::propagate_on_container_swap is declared and Allocator::propagate_on_container_swap::value
is true then the containers' allocators are swapped. Otherwise, swapping with unequal allocators results in undefined behavior.
Throws: Doesn't throw an exception unless it is thrown by the copy constructor or copy assignment operator of key_equal

or hasher.
Notes: The exception specifications aren't quite the same as the C++11 standard, as the equality predieate and hash function

are swapped using their copy constructors.

unordered_multiset observers

1.
hasher hash_function() const;

Returns: The container's hash function.

2.
key_equal key_eq() const;

Returns: The container's key equality predicate.

unordered_multiset lookup

1.
iterator find(key_type const& k);
const_iterator find(key_type const& k) const;
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
iterator find(CompatibleKey const& k, CompatibleHash const& hash,

CompatiblePredicate const& eq);
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
const_iterator
find(CompatibleKey const& k, CompatibleHash const& hash,

CompatiblePredicate const& eq) const;

40

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Returns: An iterator pointing to an element with key equivalent to k, or b.end() if no such element exists.
Notes: The templated overloads are a non-standard extensions which allows you to use a compatible hash function and

equality predicate for a key of a different type in order to avoid an expensive type cast. In general, its use is not
encouraged.

2.
size_type count(key_type const& k) const;

Returns: The number of elements with key equivalent to k.

3.
std::pair<iterator, iterator> equal_range(key_type const& k);
std::pair<const_iterator, const_iterator> equal_range(key_type const& k) const;

Returns: A range containing all elements with key equivalent to k. If the container doesn't container any such elements, returns
std::make_pair(b.end(),b.end()).

unordered_multiset bucket interface

1.
size_type bucket_count() const;

Returns: The number of buckets.

2.
size_type max_bucket_count() const;

Returns: An upper bound on the number of buckets.

3.
size_type bucket_size(size_type n) const;

Requires: n < bucket_count()

Returns: The number of elements in bucket n.

4.
size_type bucket(key_type const& k) const;

Returns: The index of the bucket which would contain an element with key k.
Postconditions: The return value is less than bucket_count()

5.
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;

Requires: n shall be in the range [0, bucket_count()).
Returns: A local iterator pointing the first element in the bucket with index n.

6.
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;

Requires: n shall be in the range [0, bucket_count()).
Returns: A local iterator pointing the 'one past the end' element in the bucket with index n.

7.
const_local_iterator cbegin(size_type n) const;

Requires: n shall be in the range [0, bucket_count()).
Returns: A constant local iterator pointing the first element in the bucket with index n.

8.
const_local_iterator cend(size_type n);

41

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requires: n shall be in the range [0, bucket_count()).
Returns: A constant local iterator pointing the 'one past the end' element in the bucket with index n.

unordered_multiset hash policy

1.
float load_factor() const;

Returns: The average number of elements per bucket.

2.
float max_load_factor() const;

Returns: Returns the current maximum load factor.

3.
void max_load_factor(float z);

Effects: Changes the container's maximum load factor, using z as a hint.

4.
void rehash(size_type n);

Changes the number of buckets so that there at least n buckets, and so that the load factor is less than the maximum load factor.

Invalidates iterators, and changes the order of elements. Pointers and references to elements are not invalidated.
Throws: The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or compar-

ison function.

5.
void reserve(size_type n);

Invalidates iterators, and changes the order of elements. Pointers and references to elements are not invalidated.
Throws: The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or compar-

ison function.

unordered_multiset Equality Comparisons

1.
template<typename Value, typename Hash, typename Pred, typename Alloc>
bool operator==(unordered_multiset<Value, Hash, Pred, Alloc> const& x,

unordered_multiset<Value, Hash, Pred, Alloc> const& y);

Return true if x.size() == y.size and for every equivalent key group in x, there is a group in y for the same key, which is
a permutation (using operator== to compare the value types).
Notes: The behavior of this function was changed to match the C++11 standard in Boost 1.48.

Behavior is undefined if the two containers don't have equivalent equality predicates.

2.
template<typename Value, typename Hash, typename Pred, typename Alloc>
bool operator!=(unordered_multiset<Value, Hash, Pred, Alloc> const& x,

unordered_multiset<Value, Hash, Pred, Alloc> const& y);

Return false if x.size() == y.size and for every equivalent key group in x, there is a group in y for the same key, which
is a permutation (using operator== to compare the value types).
Notes: The behavior of this function was changed to match the C++11 standard in Boost 1.48.

Behavior is undefined if the two containers don't have equivalent equality predicates.

42

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unordered_multiset swap

1.
template<typename Value, typename Hash, typename Pred, typename Alloc>
void swap(unordered_multiset<Value, Hash, Pred, Alloc>& x,

unordered_multiset<Value, Hash, Pred, Alloc>& y);

Swaps the contents of x and y.

If Allocator::propagate_on_container_swap is declared and Allocator::propagate_on_container_swap::value
is true then the containers' allocators are swapped. Otherwise, swapping with unequal allocators results in undefined behavior.
Effects: x.swap(y)

Throws: Doesn't throw an exception unless it is thrown by the copy constructor or copy assignment operator of key_equal
or hasher.

Notes: The exception specifications aren't quite the same as the C++11 standard, as the equality predieate and hash function
are swapped using their copy constructors.

Header <boost/unordered_map.hpp>

namespace boost {
template<typename Key, typename Mapped, typename Hash = boost::hash<Key>,

typename Pred = std::equal_to<Key>,
typename Alloc = std::allocator<std::pair<Key const, Mapped>> >

class unordered_map;
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
bool operator==(unordered_map<Key, Mapped, Hash, Pred, Alloc> const&,

unordered_map<Key, Mapped, Hash, Pred, Alloc> const&);
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
bool operator!=(unordered_map<Key, Mapped, Hash, Pred, Alloc> const&,

unordered_map<Key, Mapped, Hash, Pred, Alloc> const&);
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
void swap(unordered_map<Key, Mapped, Hash, Pred, Alloc>&,

unordered_map<Key, Mapped, Hash, Pred, Alloc>&);
template<typename Key, typename Mapped, typename Hash = boost::hash<Key>,

typename Pred = std::equal_to<Key>,
typename Alloc = std::allocator<std::pair<Key const, Mapped>> >

class unordered_multimap;
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
bool operator==(unordered_multimap<Key, Mapped, Hash, Pred, Alloc> const&,

unordered_multimap<Key, Mapped, Hash, Pred, Alloc> const&);
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
bool operator!=(unordered_multimap<Key, Mapped, Hash, Pred, Alloc> const&,

unordered_multimap<Key, Mapped, Hash, Pred, Alloc> const&);
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
void swap(unordered_multimap<Key, Mapped, Hash, Pred, Alloc>&,

unordered_multimap<Key, Mapped, Hash, Pred, Alloc>&);
}

Class template unordered_map

boost::unordered_map — An unordered associative container that associates unique keys with another value.

43

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/unordered/doc/html/../../boost/unordered_map.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/unordered_map.hpp>

template<typename Key, typename Mapped, typename Hash = boost::hash<Key>,
typename Pred = std::equal_to<Key>,
typename Alloc = std::allocator<std::pair<Key const, Mapped>> >

class unordered_map {
public:
// types
typedef Key key_type;
typedef std::pair<Key const, Mapped> value_type;
typedef Mapped mapped_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef implementation-defined size_type;
typedef implementation-defined difference_type;
typedef implementation-defined iterator;
typedef implementation-defined const_iterator;
typedef implementation-defined local_iterator;
typedef implementation-defined const_local_iterator;

// construct/copy/destruct
explicit unordered_map(size_type = implementation-defined,

hasher const& = hasher(),
key_equal const& = key_equal(),
allocator_type const& = allocator_type());

template<typename InputIterator>
unordered_map(InputIterator, InputIterator,

size_type = implementation-defined,
hasher const& = hasher(), key_equal const& = key_equal(),
allocator_type const& = allocator_type());

unordered_map(unordered_map const&);
unordered_map(unordered_map &&);
explicit unordered_map(Allocator const&);
unordered_map(unordered_map const&, Allocator const&);
~unordered_map();
unordered_map& operator=(unordered_map const&);
unordered_map& operator=(unordered_map &&);
allocator_type get_allocator() const;

// size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// iterators
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;

// modifiers
template<typename... Args> std::pair<iterator, bool> emplace(Args&&...);
template<typename... Args> iterator emplace_hint(const_iterator, Args&&...);

44

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::pair<iterator, bool> insert(value_type const&);
std::pair<iterator, bool> insert(value_type&&);
iterator insert(const_iterator, value_type const&);
iterator insert(const_iterator, value_type&&);
template<typename InputIterator> void insert(InputIterator, InputIterator);
iterator erase(const_iterator);
size_type erase(key_type const&);
iterator erase(const_iterator, const_iterator);
void quick_erase(const_iterator);
void erase_return_void(const_iterator);
void clear();
void swap(unordered_map&);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// lookup
iterator find(key_type const&);
const_iterator find(key_type const&) const;
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
iterator find(CompatibleKey const&, CompatibleHash const&,

CompatiblePredicate const&);
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
const_iterator
find(CompatibleKey const&, CompatibleHash const&,

CompatiblePredicate const&) const;
size_type count(key_type const&) const;
std::pair<iterator, iterator> equal_range(key_type const&);
std::pair<const_iterator, const_iterator> equal_range(key_type const&) const;
mapped_type& operator[](key_type const&);
Mapped& at(key_type const&);
Mapped const& at(key_type const&) const;

// bucket interface
size_type bucket_count() const;
size_type max_bucket_count() const;
size_type bucket_size(size_type) const;
size_type bucket(key_type const&) const;
local_iterator begin(size_type);
const_local_iterator begin(size_type) const;
local_iterator end(size_type);
const_local_iterator end(size_type) const;
const_local_iterator cbegin(size_type) const;
const_local_iterator cend(size_type);

// hash policy
float load_factor() const;
float max_load_factor() const;
void max_load_factor(float);
void rehash(size_type);
void reserve(size_type);

};

// Equality Comparisons
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
bool operator==(unordered_map<Key, Mapped, Hash, Pred, Alloc> const&,

unordered_map<Key, Mapped, Hash, Pred, Alloc> const&);
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>

45

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool operator!=(unordered_map<Key, Mapped, Hash, Pred, Alloc> const&,
unordered_map<Key, Mapped, Hash, Pred, Alloc> const&);

// swap
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
void swap(unordered_map<Key, Mapped, Hash, Pred, Alloc>&,

unordered_map<Key, Mapped, Hash, Pred, Alloc>&);

Description

Template Parameters

Key must be Erasable from the container (i.e. allocat-
or_traits can destroy it).

Key

Mapped must be Erasable from the container (i.e. allocat-
or_traits can destroy it).

Mapped

A unary function object type that acts a hash function for a Key.
It takes a single argument of type Key and returns a value of
type std::size_t.

Hash

A binary function object that implements an equivalence relation
on values of type Key. A binary function object that induces an
equivalence relation on values of type Key. It takes two argu-
ments of type Key and returns a value of type bool.

Pred

An allocator whose value type is the same as the container's
value type.

Alloc

The elements are organized into buckets. Keys with the same hash code are stored in the same bucket.

The number of buckets can be automatically increased by a call to insert, or as the result of calling rehash.

unordered_map public types

1. typedef Key key_type;

2. typedef std::pair<Key const, Mapped> value_type;

3. typedef Mapped mapped_type;

4. typedef Hash hasher;

5. typedef Pred key_equal;

6. typedef Alloc allocator_type;

7. typedef typename allocator_type::pointer pointer;

value_type* if allocator_type::pointer is not defined.

8. typedef typename allocator_type::const_pointer const_pointer;

boost::pointer_to_other<pointer, value_type>::type if allocator_type::const_pointer is not defined.

9. typedef value_type& reference;

46

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

10. typedef value_type const& const_reference;

11. typedef implementation-defined size_type;

An unsigned integral type.

size_type can represent any non-negative value of difference_type.

12. typedef implementation-defined difference_type;

A signed integral type.

Is identical to the difference type of iterator and const_iterator.

13. typedef implementation-defined iterator;

An iterator whose value type is value_type.

The iterator category is at least a forward iterator.

Convertible to const_iterator.

14. typedef implementation-defined const_iterator;

A constant iterator whose value type is value_type.

The iterator category is at least a forward iterator.

15. typedef implementation-defined local_iterator;

An iterator with the same value type, difference type and pointer and reference type as iterator.

A local_iterator object can be used to iterate through a single bucket.

16. typedef implementation-defined const_local_iterator;

A constant iterator with the same value type, difference type and pointer and reference type as const_iterator.

A const_local_iterator object can be used to iterate through a single bucket.

unordered_map public construct/copy/destruct

1.
explicit unordered_map(size_type n = implementation-defined,

hasher const& hf = hasher(),
key_equal const& eq = key_equal(),
allocator_type const& a = allocator_type());

Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-
locator and a maximum load factor of 1.0.
Postconditions: size() == 0

Requires: If the defaults are used, hasher, key_equal and allocator_type need to be DefaultConstruct-
ible.

2.
template<typename InputIterator>
unordered_map(InputIterator f, InputIterator l,

size_type n = implementation-defined,
hasher const& hf = hasher(),
key_equal const& eq = key_equal(),
allocator_type const& a = allocator_type());

47

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-
locator and a maximum load factor of 1.0 and inserts the elements from [f, l) into it.
Requires: If the defaults are used, hasher, key_equal and allocator_type need to be DefaultConstructible.

3.
unordered_map(unordered_map const&);

The copy constructor. Copies the contained elements, hash function, predicate, maximum load factor and allocator.

If Allocator::select_on_container_copy_construction exists and has the right signature, the allocator will be con-
structed from its result.
Requires: value_type is copy constructible

4.
unordered_map(unordered_map &&);

The move constructor.
Notes: This is implemented using Boost.Move.
Requires: value_type is move constructible.

On compilers without rvalue reference support the emulation does not support moving without calling
boost::move if value_type is not copyable. So, for example, you can't return the container from a function.

5.
explicit unordered_map(Allocator const& a);

Constructs an empty container, using allocator a.

6.
unordered_map(unordered_map const& x, Allocator const& a);

Constructs an container, copying x's contained elements, hash function, predicate, maximum load factor, but using allocator a.

7.
~unordered_map();

Notes: The destructor is applied to every element, and all memory is deallocated

unordered_map& operator=(unordered_map const&);

The assignment operator. Copies the contained elements, hash function, predicate and maximum load factor but not the allocator.

If Alloc::propagate_on_container_copy_assignment exists and Alloc::propagate_on_container_copy_assign-
ment::value is true, the allocator is overwritten, if not the copied elements are created using the existing allocator.

Requires: value_type is copy constructible

unordered_map& operator=(unordered_map &&);

The move assignment operator.

If Alloc::propagate_on_container_move_assignment exists and Alloc::propagate_on_container_move_assign-
ment::value is true, the allocator is overwritten, if not the moved elements are created using the existing allocator.

Notes: On compilers without rvalue references, this is emulated using Boost.Move. Note that on some compilers the copy
assignment operator may be used in some circumstances.

Requires: value_type is move constructible.

allocator_type get_allocator() const;

48

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unordered_map size and capacity

1.
bool empty() const;

Returns: size() == 0

2.
size_type size() const;

Returns: std::distance(begin(), end())

3.
size_type max_size() const;

Returns: size() of the largest possible container.

unordered_map iterators

1.
iterator begin();
const_iterator begin() const;

Returns: An iterator referring to the first element of the container, or if the container is empty the past-the-end value for the
container.

2.
iterator end();
const_iterator end() const;

Returns: An iterator which refers to the past-the-end value for the container.

3.
const_iterator cbegin() const;

Returns: A constant iterator referring to the first element of the container, or if the container is empty the past-the-end value
for the container.

4.
const_iterator cend() const;

Returns: A constant iterator which refers to the past-the-end value for the container.

unordered_map modifiers

1.
template<typename... Args> std::pair<iterator, bool> emplace(Args&&... args);

Inserts an object, constructed with the arguments args, in the container if and only if there is no element in the container with
an equivalent key.
Requires: value_type is EmplaceConstructible into X from args.
Returns: The bool component of the return type is true if an insert took place.

If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element
with equivalent key.

Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

49

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10
arguments, with no support for rvalue references or move semantics.

Since existing std::pair implementations don't support std::piecewise_construct this emulates it, but
using boost::unordered::piecewise_construct.

2.
template<typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Inserts an object, constructed with the arguments args, in the container if and only if there is no element in the container with
an equivalent key.

hint is a suggestion to where the element should be inserted.
Requires: value_type is EmplaceConstructible into X from args.
Returns: If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element

with equivalent key.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way

that Boost.Unordered supports is to point to an existing element with the same key.

Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
factor.

Pointers and references to elements are never invalidated.

If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10
arguments, with no support for rvalue references or move semantics.

Since existing std::pair implementations don't support std::piecewise_construct this emulates it, but
using boost::unordered::piecewise_construct.

3.
std::pair<iterator, bool> insert(value_type const& obj);

Inserts obj in the container if and only if there is no element in the container with an equivalent key.
Requires: value_type is CopyInsertable.
Returns: The bool component of the return type is true if an insert took place.

If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element
with equivalent key.

Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

4.
std::pair<iterator, bool> insert(value_type&& obj);

Inserts obj in the container if and only if there is no element in the container with an equivalent key.
Requires: value_type is MoveInsertable.
Returns: The bool component of the return type is true if an insert took place.

If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element
with equivalent key.

Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

50

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

5.
iterator insert(const_iterator hint, value_type const& obj);

Inserts obj in the container if and only if there is no element in the container with an equivalent key.

hint is a suggestion to where the element should be inserted.
Requires: value_type is CopyInsertable.
Returns: If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element

with equivalent key.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way

that Boost.Unordered supports is to point to an existing element with the same key.

Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
factor.

Pointers and references to elements are never invalidated.

6.
iterator insert(const_iterator hint, value_type&& obj);

Inserts obj in the container if and only if there is no element in the container with an equivalent key.

hint is a suggestion to where the element should be inserted.
Requires: value_type is MoveInsertable.
Returns: If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element

with equivalent key.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way

that Boost.Unordered supports is to point to an existing element with the same key.

Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
factor.

Pointers and references to elements are never invalidated.

7.
template<typename InputIterator>
void insert(InputIterator first, InputIterator last);

Inserts a range of elements into the container. Elements are inserted if and only if there is no element in the container with an
equivalent key.
Requires: value_type is EmplaceConstructible into X from *first.
Throws: When inserting a single element, if an exception is thrown by an operation other than a call to hasher the function

has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

8.
iterator erase(const_iterator position);

Erase the element pointed to by position.
Returns: The iterator following position before the erasure.
Throws: Only throws an exception if it is thrown by hasher or key_equal.
Notes: In older versions this could be inefficient because it had to search through several buckets to find the position of

the returned iterator. The data structure has been changed so that this is no longer the case, and the alternative erase
methods have been deprecated.

51

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

9.
size_type erase(key_type const& k);

Erase all elements with key equivalent to k.
Returns: The number of elements erased.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

10.
iterator erase(const_iterator first, const_iterator last);

Erases the elements in the range from first to last.
Returns: The iterator following the erased elements - i.e. last.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
not be true in other implementations.

11.
void quick_erase(const_iterator position);

Erase the element pointed to by position.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
not be true in other implementations.

Notes: This method was implemented because returning an iterator to the next element from erase was expensive, but the
container has been redesigned so that is no longer the case. So this method is now deprecated.

12.
void erase_return_void(const_iterator position);

Erase the element pointed to by position.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
not be true in other implementations.

Notes: This method was implemented because returning an iterator to the next element from erase was expensive, but the
container has been redesigned so that is no longer the case. So this method is now deprecated.

13.
void clear();

Erases all elements in the container.
Postconditions: size() == 0

Throws: Never throws an exception.

14.
void swap(unordered_map&);

Swaps the contents of the container with the parameter.

If Allocator::propagate_on_container_swap is declared and Allocator::propagate_on_container_swap::value
is true then the containers' allocators are swapped. Otherwise, swapping with unequal allocators results in undefined behavior.
Throws: Doesn't throw an exception unless it is thrown by the copy constructor or copy assignment operator of key_equal

or hasher.
Notes: The exception specifications aren't quite the same as the C++11 standard, as the equality predieate and hash function

are swapped using their copy constructors.

52

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unordered_map observers

1.
hasher hash_function() const;

Returns: The container's hash function.

2.
key_equal key_eq() const;

Returns: The container's key equality predicate.

unordered_map lookup

1.
iterator find(key_type const& k);
const_iterator find(key_type const& k) const;
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
iterator find(CompatibleKey const& k, CompatibleHash const& hash,

CompatiblePredicate const& eq);
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
const_iterator
find(CompatibleKey const& k, CompatibleHash const& hash,

CompatiblePredicate const& eq) const;

Returns: An iterator pointing to an element with key equivalent to k, or b.end() if no such element exists.
Notes: The templated overloads are a non-standard extensions which allows you to use a compatible hash function and

equality predicate for a key of a different type in order to avoid an expensive type cast. In general, its use is not
encouraged.

2.
size_type count(key_type const& k) const;

Returns: The number of elements with key equivalent to k.

3.
std::pair<iterator, iterator> equal_range(key_type const& k);
std::pair<const_iterator, const_iterator> equal_range(key_type const& k) const;

Returns: A range containing all elements with key equivalent to k. If the container doesn't container any such elements, returns
std::make_pair(b.end(),b.end()).

4.
mapped_type& operator[](key_type const& k);

Effects: If the container does not already contain an elements with a key equivalent to k, inserts the value
std::pair<key_type const, mapped_type>(k, mapped_type())

Returns: A reference to x.second where x is the element already in the container, or the newly inserted element with a key
equivalent to k

Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

5.
Mapped& at(key_type const& k);
Mapped const& at(key_type const& k) const;

Returns: A reference to x.second where x is the (unique) element whose key is equivalent to k.

53

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: An exception object of type std::out_of_range if no such element is present.

unordered_map bucket interface

1.
size_type bucket_count() const;

Returns: The number of buckets.

2.
size_type max_bucket_count() const;

Returns: An upper bound on the number of buckets.

3.
size_type bucket_size(size_type n) const;

Requires: n < bucket_count()

Returns: The number of elements in bucket n.

4.
size_type bucket(key_type const& k) const;

Returns: The index of the bucket which would contain an element with key k.
Postconditions: The return value is less than bucket_count()

5.
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;

Requires: n shall be in the range [0, bucket_count()).
Returns: A local iterator pointing the first element in the bucket with index n.

6.
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;

Requires: n shall be in the range [0, bucket_count()).
Returns: A local iterator pointing the 'one past the end' element in the bucket with index n.

7.
const_local_iterator cbegin(size_type n) const;

Requires: n shall be in the range [0, bucket_count()).
Returns: A constant local iterator pointing the first element in the bucket with index n.

8.
const_local_iterator cend(size_type n);

Requires: n shall be in the range [0, bucket_count()).
Returns: A constant local iterator pointing the 'one past the end' element in the bucket with index n.

unordered_map hash policy

1.
float load_factor() const;

Returns: The average number of elements per bucket.

2.
float max_load_factor() const;

Returns: Returns the current maximum load factor.

54

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3.
void max_load_factor(float z);

Effects: Changes the container's maximum load factor, using z as a hint.

4.
void rehash(size_type n);

Changes the number of buckets so that there at least n buckets, and so that the load factor is less than the maximum load factor.

Invalidates iterators, and changes the order of elements. Pointers and references to elements are not invalidated.
Throws: The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or compar-

ison function.

5.
void reserve(size_type n);

Invalidates iterators, and changes the order of elements. Pointers and references to elements are not invalidated.
Throws: The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or compar-

ison function.

unordered_map Equality Comparisons

1.
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
bool operator==(unordered_map<Key, Mapped, Hash, Pred, Alloc> const& x,

unordered_map<Key, Mapped, Hash, Pred, Alloc> const& y);

Return true if x.size() == y.size and for every element in x, there is an element in y with the same for the same key, with
an equal value (using operator== to compare the value types).
Notes: The behavior of this function was changed to match the C++11 standard in Boost 1.48.

Behavior is undefined if the two containers don't have equivalent equality predicates.

2.
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
bool operator!=(unordered_map<Key, Mapped, Hash, Pred, Alloc> const& x,

unordered_map<Key, Mapped, Hash, Pred, Alloc> const& y);

Return false if x.size() == y.size and for every element in x, there is an element in y with the same for the same key,
with an equal value (using operator== to compare the value types).
Notes: The behavior of this function was changed to match the C++11 standard in Boost 1.48.

Behavior is undefined if the two containers don't have equivalent equality predicates.

unordered_map swap

1.
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
void swap(unordered_map<Key, Mapped, Hash, Pred, Alloc>& x,

unordered_map<Key, Mapped, Hash, Pred, Alloc>& y);

Swaps the contents of x and y.

If Allocator::propagate_on_container_swap is declared and Allocator::propagate_on_container_swap::value
is true then the containers' allocators are swapped. Otherwise, swapping with unequal allocators results in undefined behavior.
Effects: x.swap(y)

Throws: Doesn't throw an exception unless it is thrown by the copy constructor or copy assignment operator of key_equal
or hasher.

55

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Notes: The exception specifications aren't quite the same as the C++11 standard, as the equality predieate and hash function
are swapped using their copy constructors.

Class template unordered_multimap

boost::unordered_multimap — An unordered associative container that associates keys with another value. The same key can be
stored multiple times.

Synopsis

// In header: <boost/unordered_map.hpp>

template<typename Key, typename Mapped, typename Hash = boost::hash<Key>,
typename Pred = std::equal_to<Key>,
typename Alloc = std::allocator<std::pair<Key const, Mapped>> >

class unordered_multimap {
public:
// types
typedef Key key_type;
typedef std::pair<Key const, Mapped> value_type;
typedef Mapped mapped_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef implementation-defined size_type;
typedef implementation-defined difference_type;
typedef implementation-defined iterator;
typedef implementation-defined const_iterator;
typedef implementation-defined local_iterator;
typedef implementation-defined const_local_iterator;

// construct/copy/destruct
explicit unordered_multimap(size_type = implementation-defined,

hasher const& = hasher(),
key_equal const& = key_equal(),
allocator_type const& = allocator_type());

template<typename InputIterator>
unordered_multimap(InputIterator, InputIterator,

size_type = implementation-defined,
hasher const& = hasher(),
key_equal const& = key_equal(),
allocator_type const& = allocator_type());

unordered_multimap(unordered_multimap const&);
unordered_multimap(unordered_multimap &&);
explicit unordered_multimap(Allocator const&);
unordered_multimap(unordered_multimap const&, Allocator const&);
~unordered_multimap();
unordered_multimap& operator=(unordered_multimap const&);
unordered_multimap& operator=(unordered_multimap &&);
allocator_type get_allocator() const;

// size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// iterators

56

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;

// modifiers
template<typename... Args> iterator emplace(Args&&...);
template<typename... Args> iterator emplace_hint(const_iterator, Args&&...);
iterator insert(value_type const&);
iterator insert(value_type&&);
iterator insert(const_iterator, value_type const&);
iterator insert(const_iterator, value_type&&);
template<typename InputIterator> void insert(InputIterator, InputIterator);
iterator erase(const_iterator);
size_type erase(key_type const&);
iterator erase(const_iterator, const_iterator);
void quick_erase(const_iterator);
void erase_return_void(const_iterator);
void clear();
void swap(unordered_multimap&);

// observers
hasher hash_function() const;
key_equal key_eq() const;

// lookup
iterator find(key_type const&);
const_iterator find(key_type const&) const;
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
iterator find(CompatibleKey const&, CompatibleHash const&,

CompatiblePredicate const&);
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
const_iterator
find(CompatibleKey const&, CompatibleHash const&,

CompatiblePredicate const&) const;
size_type count(key_type const&) const;
std::pair<iterator, iterator> equal_range(key_type const&);
std::pair<const_iterator, const_iterator> equal_range(key_type const&) const;

// bucket interface
size_type bucket_count() const;
size_type max_bucket_count() const;
size_type bucket_size(size_type) const;
size_type bucket(key_type const&) const;
local_iterator begin(size_type);
const_local_iterator begin(size_type) const;
local_iterator end(size_type);
const_local_iterator end(size_type) const;
const_local_iterator cbegin(size_type) const;
const_local_iterator cend(size_type);

// hash policy
float load_factor() const;
float max_load_factor() const;
void max_load_factor(float);
void rehash(size_type);
void reserve(size_type);

};

57

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// Equality Comparisons
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
bool operator==(unordered_multimap<Key, Mapped, Hash, Pred, Alloc> const&,

unordered_multimap<Key, Mapped, Hash, Pred, Alloc> const&);
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
bool operator!=(unordered_multimap<Key, Mapped, Hash, Pred, Alloc> const&,

unordered_multimap<Key, Mapped, Hash, Pred, Alloc> const&);

// swap
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
void swap(unordered_multimap<Key, Mapped, Hash, Pred, Alloc>&,

unordered_multimap<Key, Mapped, Hash, Pred, Alloc>&);

Description

Template Parameters

Key must be Erasable from the container (i.e. allocat-
or_traits can destroy it).

Key

Mapped must be Erasable from the container (i.e. allocat-
or_traits can destroy it).

Mapped

A unary function object type that acts a hash function for a Key.
It takes a single argument of type Key and returns a value of
type std::size_t.

Hash

A binary function object that implements an equivalence relation
on values of type Key. A binary function object that induces an
equivalence relation on values of type Key. It takes two argu-
ments of type Key and returns a value of type bool.

Pred

An allocator whose value type is the same as the container's
value type.

Alloc

The elements are organized into buckets. Keys with the same hash code are stored in the same bucket and elements with equivalent
keys are stored next to each other.

The number of buckets can be automatically increased by a call to insert, or as the result of calling rehash.

unordered_multimap public types

1. typedef Key key_type;

2. typedef std::pair<Key const, Mapped> value_type;

3. typedef Mapped mapped_type;

4. typedef Hash hasher;

5. typedef Pred key_equal;

6. typedef Alloc allocator_type;

7. typedef typename allocator_type::pointer pointer;

58

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

value_type* if allocator_type::pointer is not defined.

8. typedef typename allocator_type::const_pointer const_pointer;

boost::pointer_to_other<pointer, value_type>::type if allocator_type::const_pointer is not defined.

9. typedef value_type& reference;

10. typedef value_type const& const_reference;

11. typedef implementation-defined size_type;

An unsigned integral type.

size_type can represent any non-negative value of difference_type.

12. typedef implementation-defined difference_type;

A signed integral type.

Is identical to the difference type of iterator and const_iterator.

13. typedef implementation-defined iterator;

An iterator whose value type is value_type.

The iterator category is at least a forward iterator.

Convertible to const_iterator.

14. typedef implementation-defined const_iterator;

A constant iterator whose value type is value_type.

The iterator category is at least a forward iterator.

15. typedef implementation-defined local_iterator;

An iterator with the same value type, difference type and pointer and reference type as iterator.

A local_iterator object can be used to iterate through a single bucket.

16. typedef implementation-defined const_local_iterator;

A constant iterator with the same value type, difference type and pointer and reference type as const_iterator.

A const_local_iterator object can be used to iterate through a single bucket.

unordered_multimap public construct/copy/destruct

1.
explicit unordered_multimap(size_type n = implementation-defined,

hasher const& hf = hasher(),
key_equal const& eq = key_equal(),
allocator_type const& a = allocator_type());

Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-
locator and a maximum load factor of 1.0.
Postconditions: size() == 0

Requires: If the defaults are used, hasher, key_equal and allocator_type need to be DefaultConstruct-
ible.

59

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.
template<typename InputIterator>
unordered_multimap(InputIterator f, InputIterator l,

size_type n = implementation-defined,
hasher const& hf = hasher(),
key_equal const& eq = key_equal(),
allocator_type const& a = allocator_type());

Constructs an empty container with at least n buckets, using hf as the hash function, eq as the key equality predicate, a as the al-
locator and a maximum load factor of 1.0 and inserts the elements from [f, l) into it.
Requires: If the defaults are used, hasher, key_equal and allocator_type need to be DefaultConstructible.

3.
unordered_multimap(unordered_multimap const&);

The copy constructor. Copies the contained elements, hash function, predicate, maximum load factor and allocator.

If Allocator::select_on_container_copy_construction exists and has the right signature, the allocator will be con-
structed from its result.
Requires: value_type is copy constructible

4.
unordered_multimap(unordered_multimap &&);

The move constructor.
Notes: This is implemented using Boost.Move.
Requires: value_type is move constructible.

On compilers without rvalue reference support the emulation does not support moving without calling
boost::move if value_type is not copyable. So, for example, you can't return the container from a function.

5.
explicit unordered_multimap(Allocator const& a);

Constructs an empty container, using allocator a.

6.
unordered_multimap(unordered_multimap const& x, Allocator const& a);

Constructs an container, copying x's contained elements, hash function, predicate, maximum load factor, but using allocator a.

7.
~unordered_multimap();

Notes: The destructor is applied to every element, and all memory is deallocated

unordered_multimap& operator=(unordered_multimap const&);

The assignment operator. Copies the contained elements, hash function, predicate and maximum load factor but not the allocator.

If Alloc::propagate_on_container_copy_assignment exists and Alloc::propagate_on_container_copy_assign-
ment::value is true, the allocator is overwritten, if not the copied elements are created using the existing allocator.

Requires: value_type is copy constructible

unordered_multimap& operator=(unordered_multimap &&);

The move assignment operator.

60

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

If Alloc::propagate_on_container_move_assignment exists and Alloc::propagate_on_container_move_assign-
ment::value is true, the allocator is overwritten, if not the moved elements are created using the existing allocator.

Notes: On compilers without rvalue references, this is emulated using Boost.Move. Note that on some compilers the copy
assignment operator may be used in some circumstances.

Requires: value_type is move constructible.

allocator_type get_allocator() const;

unordered_multimap size and capacity

1.
bool empty() const;

Returns: size() == 0

2.
size_type size() const;

Returns: std::distance(begin(), end())

3.
size_type max_size() const;

Returns: size() of the largest possible container.

unordered_multimap iterators

1.
iterator begin();
const_iterator begin() const;

Returns: An iterator referring to the first element of the container, or if the container is empty the past-the-end value for the
container.

2.
iterator end();
const_iterator end() const;

Returns: An iterator which refers to the past-the-end value for the container.

3.
const_iterator cbegin() const;

Returns: A constant iterator referring to the first element of the container, or if the container is empty the past-the-end value
for the container.

4.
const_iterator cend() const;

Returns: A constant iterator which refers to the past-the-end value for the container.

unordered_multimap modifiers

1.
template<typename... Args> iterator emplace(Args&&... args);

Inserts an object, constructed with the arguments args, in the container.
Requires: value_type is EmplaceConstructible into X from args.
Returns: An iterator pointing to the inserted element.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.

61

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
factor.

Pointers and references to elements are never invalidated.

If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10
arguments, with no support for rvalue references or move semantics.

Since existing std::pair implementations don't support std::piecewise_construct this emulates it, but
using boost::unordered::piecewise_construct.

2.
template<typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Inserts an object, constructed with the arguments args, in the container.

hint is a suggestion to where the element should be inserted.
Requires: value_type is EmplaceConstructible into X from args.
Returns: An iterator pointing to the inserted element.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way

that Boost.Unordered supports is to point to an existing element with the same key.

Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
factor.

Pointers and references to elements are never invalidated.

If the compiler doesn't support variadic template arguments or rvalue references, this is emulated for up to 10
arguments, with no support for rvalue references or move semantics.

Since existing std::pair implementations don't support std::piecewise_construct this emulates it, but
using boost::unordered::piecewise_construct.

3.
iterator insert(value_type const& obj);

Inserts obj in the container.
Requires: value_type is CopyInsertable.
Returns: An iterator pointing to the inserted element.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

4.
iterator insert(value_type&& obj);

Inserts obj in the container.
Requires: value_type is MoveInsertable.
Returns: An iterator pointing to the inserted element.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

5.
iterator insert(const_iterator hint, value_type const& obj);

62

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Inserts obj in the container.

hint is a suggestion to where the element should be inserted.
Requires: value_type is CopyInsertable.
Returns: An iterator pointing to the inserted element.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way

that Boost.Unordered supports is to point to an existing element with the same key.

Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
factor.

Pointers and references to elements are never invalidated.

6.
iterator insert(const_iterator hint, value_type&& obj);

Inserts obj in the container.

hint is a suggestion to where the element should be inserted.
Requires: value_type is MoveInsertable.
Returns: An iterator pointing to the inserted element.
Throws: If an exception is thrown by an operation other than a call to hasher the function has no effect.
Notes: The standard is fairly vague on the meaning of the hint. But the only practical way to use it, and the only way

that Boost.Unordered supports is to point to an existing element with the same key.

Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load
factor.

Pointers and references to elements are never invalidated.

7.
template<typename InputIterator>
void insert(InputIterator first, InputIterator last);

Inserts a range of elements into the container. Elements are inserted if and only if there is no element in the container with an
equivalent key.
Requires: value_type is EmplaceConstructible into X from *first.
Throws: When inserting a single element, if an exception is thrown by an operation other than a call to hasher the function

has no effect.
Notes: Can invalidate iterators, but only if the insert causes the load factor to be greater to or equal to the maximum load

factor.

Pointers and references to elements are never invalidated.

8.
iterator erase(const_iterator position);

Erase the element pointed to by position.
Returns: The iterator following position before the erasure.
Throws: Only throws an exception if it is thrown by hasher or key_equal.
Notes: In older versions this could be inefficient because it had to search through several buckets to find the position of

the returned iterator. The data structure has been changed so that this is no longer the case, and the alternative erase
methods have been deprecated.

9.
size_type erase(key_type const& k);

Erase all elements with key equivalent to k.
Returns: The number of elements erased.

63

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: Only throws an exception if it is thrown by hasher or key_equal.

10.
iterator erase(const_iterator first, const_iterator last);

Erases the elements in the range from first to last.
Returns: The iterator following the erased elements - i.e. last.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
not be true in other implementations.

11.
void quick_erase(const_iterator position);

Erase the element pointed to by position.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
not be true in other implementations.

Notes: This method was implemented because returning an iterator to the next element from erase was expensive, but the
container has been redesigned so that is no longer the case. So this method is now deprecated.

12.
void erase_return_void(const_iterator position);

Erase the element pointed to by position.
Throws: Only throws an exception if it is thrown by hasher or key_equal.

In this implementation, this overload doesn't call either function object's methods so it is no throw, but this might
not be true in other implementations.

Notes: This method was implemented because returning an iterator to the next element from erase was expensive, but the
container has been redesigned so that is no longer the case. So this method is now deprecated.

13.
void clear();

Erases all elements in the container.
Postconditions: size() == 0

Throws: Never throws an exception.

14.
void swap(unordered_multimap&);

Swaps the contents of the container with the parameter.

If Allocator::propagate_on_container_swap is declared and Allocator::propagate_on_container_swap::value
is true then the containers' allocators are swapped. Otherwise, swapping with unequal allocators results in undefined behavior.
Throws: Doesn't throw an exception unless it is thrown by the copy constructor or copy assignment operator of key_equal

or hasher.
Notes: The exception specifications aren't quite the same as the C++11 standard, as the equality predieate and hash function

are swapped using their copy constructors.

unordered_multimap observers

1.
hasher hash_function() const;

Returns: The container's hash function.

64

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2.
key_equal key_eq() const;

Returns: The container's key equality predicate.

unordered_multimap lookup

1.
iterator find(key_type const& k);
const_iterator find(key_type const& k) const;
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
iterator find(CompatibleKey const& k, CompatibleHash const& hash,

CompatiblePredicate const& eq);
template<typename CompatibleKey, typename CompatibleHash,

typename CompatiblePredicate>
const_iterator
find(CompatibleKey const& k, CompatibleHash const& hash,

CompatiblePredicate const& eq) const;

Returns: An iterator pointing to an element with key equivalent to k, or b.end() if no such element exists.
Notes: The templated overloads are a non-standard extensions which allows you to use a compatible hash function and

equality predicate for a key of a different type in order to avoid an expensive type cast. In general, its use is not
encouraged.

2.
size_type count(key_type const& k) const;

Returns: The number of elements with key equivalent to k.

3.
std::pair<iterator, iterator> equal_range(key_type const& k);
std::pair<const_iterator, const_iterator> equal_range(key_type const& k) const;

Returns: A range containing all elements with key equivalent to k. If the container doesn't container any such elements, returns
std::make_pair(b.end(),b.end()).

unordered_multimap bucket interface

1.
size_type bucket_count() const;

Returns: The number of buckets.

2.
size_type max_bucket_count() const;

Returns: An upper bound on the number of buckets.

3.
size_type bucket_size(size_type n) const;

Requires: n < bucket_count()

Returns: The number of elements in bucket n.

4.
size_type bucket(key_type const& k) const;

Returns: The index of the bucket which would contain an element with key k.
Postconditions: The return value is less than bucket_count()

65

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

5.
local_iterator begin(size_type n);
const_local_iterator begin(size_type n) const;

Requires: n shall be in the range [0, bucket_count()).
Returns: A local iterator pointing the first element in the bucket with index n.

6.
local_iterator end(size_type n);
const_local_iterator end(size_type n) const;

Requires: n shall be in the range [0, bucket_count()).
Returns: A local iterator pointing the 'one past the end' element in the bucket with index n.

7.
const_local_iterator cbegin(size_type n) const;

Requires: n shall be in the range [0, bucket_count()).
Returns: A constant local iterator pointing the first element in the bucket with index n.

8.
const_local_iterator cend(size_type n);

Requires: n shall be in the range [0, bucket_count()).
Returns: A constant local iterator pointing the 'one past the end' element in the bucket with index n.

unordered_multimap hash policy

1.
float load_factor() const;

Returns: The average number of elements per bucket.

2.
float max_load_factor() const;

Returns: Returns the current maximum load factor.

3.
void max_load_factor(float z);

Effects: Changes the container's maximum load factor, using z as a hint.

4.
void rehash(size_type n);

Changes the number of buckets so that there at least n buckets, and so that the load factor is less than the maximum load factor.

Invalidates iterators, and changes the order of elements. Pointers and references to elements are not invalidated.
Throws: The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or compar-

ison function.

5.
void reserve(size_type n);

Invalidates iterators, and changes the order of elements. Pointers and references to elements are not invalidated.
Throws: The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or compar-

ison function.

66

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unordered_multimap Equality Comparisons

1.
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
bool operator==(unordered_multimap<Key, Mapped, Hash, Pred, Alloc> const& x,

unordered_multimap<Key, Mapped, Hash, Pred, Alloc> const& y);

Return true if x.size() == y.size and for every equivalent key group in x, there is a group in y for the same key, which is
a permutation (using operator== to compare the value types).
Notes: The behavior of this function was changed to match the C++11 standard in Boost 1.48.

Behavior is undefined if the two containers don't have equivalent equality predicates.

2.
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
bool operator!=(unordered_multimap<Key, Mapped, Hash, Pred, Alloc> const& x,

unordered_multimap<Key, Mapped, Hash, Pred, Alloc> const& y);

Return false if x.size() == y.size and for every equivalent key group in x, there is a group in y for the same key, which
is a permutation (using operator== to compare the value types).
Notes: The behavior of this function was changed to match the C++11 standard in Boost 1.48.

Behavior is undefined if the two containers don't have equivalent equality predicates.

unordered_multimap swap

1.
template<typename Key, typename Mapped, typename Hash, typename Pred,

typename Alloc>
void swap(unordered_multimap<Key, Mapped, Hash, Pred, Alloc>& x,

unordered_multimap<Key, Mapped, Hash, Pred, Alloc>& y);

Swaps the contents of x and y.

If Allocator::propagate_on_container_swap is declared and Allocator::propagate_on_container_swap::value
is true then the containers' allocators are swapped. Otherwise, swapping with unequal allocators results in undefined behavior.
Effects: x.swap(y)

Throws: Doesn't throw an exception unless it is thrown by the copy constructor or copy assignment operator of key_equal
or hasher.

Notes: The exception specifications aren't quite the same as the C++11 standard, as the equality predieate and hash function
are swapped using their copy constructors.

67

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bibliography

Bibliography
C/C++ Users Journal. February, 2006. Pete Becker. “STL and TR1: Part III - Unordered containers”.

An introducation to the standard unordered containers.

68

Boost.Unordered

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.ddj.com/cpp/184402066
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Unordered
	Table of Contents
	Introduction
	The Data Structure
	Equality Predicates and Hash Functions
	Comparison with Associative Containers
	C++11 Compliance
	Move emulation
	Use of allocators
	Pairs
	Miscellaneous

	Implementation Rationale
	Change Log
	Reference
	Header <boost/unordered_set.hpp>
	Class template unordered_set
	Synopsis
	Description
	unordered_set public types
	unordered_set public construct/copy/destruct
	unordered_set size and capacity
	unordered_set iterators
	unordered_set modifiers
	unordered_set observers
	unordered_set lookup
	unordered_set bucket interface
	unordered_set hash policy
	unordered_set Equality Comparisons
	unordered_set swap

	Class template unordered_multiset
	Synopsis
	Description
	unordered_multiset public types
	unordered_multiset public construct/copy/destruct
	unordered_multiset size and capacity
	unordered_multiset iterators
	unordered_multiset modifiers
	unordered_multiset observers
	unordered_multiset lookup
	unordered_multiset bucket interface
	unordered_multiset hash policy
	unordered_multiset Equality Comparisons
	unordered_multiset swap

	Header <boost/unordered_map.hpp>
	Class template unordered_map
	Synopsis
	Description
	unordered_map public types
	unordered_map public construct/copy/destruct
	unordered_map size and capacity
	unordered_map iterators
	unordered_map modifiers
	unordered_map observers
	unordered_map lookup
	unordered_map bucket interface
	unordered_map hash policy
	unordered_map Equality Comparisons
	unordered_map swap

	Class template unordered_multimap
	Synopsis
	Description
	unordered_multimap public types
	unordered_multimap public construct/copy/destruct
	unordered_multimap size and capacity
	unordered_multimap iterators
	unordered_multimap modifiers
	unordered_multimap observers
	unordered_multimap lookup
	unordered_multimap bucket interface
	unordered_multimap hash policy
	unordered_multimap Equality Comparisons
	unordered_multimap swap

	Bibliography
	Bibliography

