
Efficient Non-Maximum Suppression

Alexander Neubeck
ETH Zurich, Switzerland

Computer Vision Lab
aneubeck@vision.ee.ethz.ch

Luc Van Gool
ETH Zurich, Switzerland

Computer Vision Lab
vangool@vision.ee.ethz.ch

Abstract

In this work we scrutinize a low level computer vision
task – non-maximum suppression (NMS) – which is a cru-
cial preprocessing step in many computer vision applica-
tions. Especially in real time scenarios, efficient algorithms
for such preprocessing algorithms, which operate on the
full image resolution, are important. In the case of NMS,
it seems that merely the straightforward implementation or
slight improvements are known. We show that these are far
from being optimal, and derive several algorithms ranging
from easy-to-implement to highly-efficient.

1. Introduction

Non-Maximum Suppression (NMS) can be positively
formulated as Local Maximum Search, where alocal maxi-
mumis greater than all its neighbors (excluding itself). For
a givenn, theneighborhoodof any pixel consists in the 1D
case of then pixels to its left and right side (referred to as
(2n+1)-neighborhood) and in the 2D case of the quadratic
(2n+ 1)× (2n+ 1) region centered around the pixel under
consideration. The same value may appear several times in
an image, such that the question arises, which pixel should
be suppressed in case of a tie. In practice, either all or all
but one are suppressed according to some ordering. Since
both variants can be easily integrated into the presented al-
gorithms, we didn’t clutter the pseudocode with these steps.

NMS is part of several computer vision algorithms. A
good recent example is the extraction of interest points
[3, 4, 2]. A point saliency measure is extracted throughout
the image, or even the whole scale space, and local maxima
are selected. Efficiency is crucial in many of their applica-
tions, e.g. tracking, data mining, 3D reconstruction, object
recognition, and texture analysis.

Closely related to NMS is the maximum filter which
computes the maximum value of each pixel’s neighborhood.
An efficient, mask-size independent algorithm for the maxi-
mum filter was proposed by Gil and Werman [1]. Given the

maximum filter response in each pixel, the NMS reduces to
an additional comparison of each pixel value with its max-
imum neighbor. Although this scheme can outperform a
straightforward implementation of NMS, it extracts more
information than needed by NMS.

We will present two concepts which enable the efficient
computation of NMS:partial maximum sequences(PMS)
and block-wise processing. The partial maximum sequence
is described in Section 2, whereas the idea of the block-
wise processing is given in Section 3. We print for both
algorithms pseudo-code in order to ease their implementa-
tion. In the second part of Section 3, the two concepts are
combined into an optimal algorithm. Since this algorithm is
merely of theoretical interest due to its complicated control
flow, this last part is merely sketched to provide the impor-
tant steps to an inclined reader. The analysis results of other
combinations are summarized in Fig. 3 without derivation.

In order to analyze the complexity of each algorithm, we
count the number of input dependent comparisons in the
worst case and average case. For the latter, assumptions
about the data distribution are needed. For simplicity, we
consider an image as a random permutation of unique val-
ues. This assumption approximates the data distribution for
small neighborhoods sufficiently well. Experimentally, we
got a deviation from the number of comparisons of at most
1% for a 21-neighborhood and at most10% for a 21× 21-
neighborhood between a random permutation of unique val-
ues and a random image with256 gray scales.

2. NMS in 1 Dimension

2.1. Straightforward Implementation

The straightforward implementation of NMS consists of
two nested loops, where the outer loop iterates over all pix-
els and the inner loop tests a candidate of the outer loop
against all its neighbors. As soon as a neighbor intensity
exceeds the current candidate, the inner loop is aborted.
Obviously, the algorithm needs2n comparisons per pixel
without the early abort. In the worst-case, the abort cannot

decrease the complexity. This can be seen by applying the
algorithm to an intensity trend. Since pixels on one side
are always smaller than the candidate pixel, the inner loop
aborts at the(n + 1)-th iteration leading to exactlyn + 1
comparisons per pixel. Hence, the worst-case number of
comparisons per pixels isO(n).

In order to analyze the average case complexity, the
probabilityp(i) that the inner loop breaks at itsi-th iteration
is needed. For it, two conditions must be satisfied. First, the
i-th neighbor must be the largest among the firsti neighbors
plus the current candidate, which happens with probability

1
i+1 . Second, the loop must not have been aborted before
the i-th iteration, i.e. the current candidate must be larger
than the already tested neighbors, which happens with prob-
ability 1

i
. Altogether, we get:

p(i) =
1

(i + 1) · i
. (1)

In each iteration exactly one comparison between the
candidate pixel and thei-th neighbor takes place, which
sums up toi comparisons until thei-th iteration. Thus, the
expected number of comparisons per pixel (CpP) is

E(CpP) =
2n

2n + 1
+

2n
∑

i=1

p(i) · i (2)

=
2n

2n + 1
+

2n
∑

i=1

1

i + 1
≈ 1 + ln(2n), (3)

wheren is the number of left and right neighbors, and the
first term captures the case when the candidate pixel is a
local maximum.

2.2. 3-Neighborhood

In order to get a better insight into NMS, we consider
the smallest feasible neighborhood next, where the central
pixel needs only be compared to its direct neighbors.Algo-
rithm 1 reaches the theoretical optimum of1 comparison
per pixel in the worst case, whereas the straightforward so-
lution requires already1.5 comparisons per pixel on aver-
age. Amazingly, the expected number of comparisons per-
formed byAlgorithm 1 is with 0.815 less than1.

Algorithm 1 starts with the left-most candidate of the in-
put sequenceI[0], . . . , I[W −1] located ati = 1 (line 1). If
the current candidatei exceeds its right and left neighbors,
a local maximum has been found (lines 3–5). Since it is
already known that pixeli + 1 is smaller than its left neigh-
bor i, it cannot be an local maximum. Hence, processing
can directly continue with pixeli + 2 (line 12). If the cur-
rent candidatei fails to exceed its right neighbor, this right
neighbor stands in as candidate (line 7). By applying this
rule iteratively, the candidate climbs up a monotonically in-
creasing subsequence (line 8–9). When the top is reached,

i← 1;1

while i + 1 < W do2

if I[i] > I[i + 1] then3

if I[i] >= I[i− 1] then4

MaximumAt(i);5

else6

i← i + 1;7

while i + 1 < W AND I[i] ≤ I[i + 1] do8

i← i + 1;9

if i + 1 < W then10

MaximumAt(i);11

i← i + 2;12

Algorithm 1 : 1D NMS for3-Neighborhood

i.e. the right neighbor is even less than the candidatei, a
maximum is found (line 11). One should notice thati is
automatically greater than its left neighbor in this case.

The while-loop of Algorithm 1 partitions the input
sequence into subsequences. A subsequence begins with
the position to whichi points at the beginning of an itera-
tion and ends just before the beginning of the next subse-
quence. In order to analyze the complexity ofAlgorithm 1 ,
the probabilityp(B) that a subsequence of sizeB occurs
and the number of comparisonsc(B) performed in order
to find the local maximum within such a subsequence are
computed. In the first case (lines 3–5), the subsequence has
a fixed size of2 elements for which2 comparisons are per-
formed. In the other cases (lines 7–11), the algorithm in-
creasesi for each comparison (line 2&7 resp. 8&9). When
the last test fails,i is incremented by2 (line 8&12). Hence,
the number of comparisonsc(B) is

c(B) =

{

2 if B = 2

B − 1 if B > 2
. (4)

The worst-case occurs forB = 2, where one comparison
per pixel is performed. For the average case complexity, ad-
ditionally the probabilityp(B) is needed that a block of a
certain lengthB occurs. Since all occurring subsequences
are monotonically increasing until the element before the
end, the last element can take any value except the largest
one leading toB−1 possibilities. Since the remainingB−1
elements must be in ascending order, there is no choice left.
Thus,p(B) is the ratio of theseB − 1 occurring permuta-
tions and all possible permutations:

p(B) =
B − 1

B!
. (5)

Given the probability and the costs of each subsequence,
the expected number of comparisons per pixel can be com-
puted as the expected number of comparisons per subse-

quence divided by the expected subsequence length:

E(CpP) =

∑

∞

B=2 p(B)c(B)
∑

∞

B=2 p(B)B
=

1 +
∑

∞

B=3
(B−1)2

B!
∑

∞

B=2
(B−1)·B

B!

(6)

=
1 +

∑

∞

B=3
B

2

B! − 2 B

B! + 1
B!

e
= 1−

1

2e
≈ 0.816. (7)

2.3. Dynamic Block Algorithm

The generalization of Algorithm 1 to the n-
neighborhood is printed inAlgorithm 3 . As before,
the while-loop partitions the input sequence into subse-
quences – referred to asdynamic blocks. At each time of
the construction, a block satisfies the following invariance:
within a block there is exactly one local maximumi
where only neighbors within the block are considered and,
consequently, neighbors outside the block are ignored. The
algorithm keeps track of this truncated local maximumi
within the current block and extends the block to the right,
until the block contains the full right neighborhood ofi.
Each time the block grows, further neighbors ofi have to
be tested. Thereby, eitheri passes all the tests – and the
block stops growing – ori’s largest neighbor exceedsi and
becomes the block’s new local maximum.

If a full-grown block, ranging froma to b, contains the
left neighborhood of its local maximumi (i.e. a ≤ i − n),
theni is obviously a local maximum of the whole sequence
without further testing. Otherwise (a > i − n), it must
be tested against the partially excluded left neighborhood
ranging fromi−n to a− 1. Instead of testing each of these
elements one by one, we present a way, where the already
performed comparisons of the previous block can be used,
to get the testing to the left done with at most two additional
comparisons, i.e. independent on the neighborhood size.

CompPartialMax(from, to)1

pmax[to]← I[to];2

best← to;3

while to > from do4

to← to− 1;5

if I[to] ≤ I[best] then6

pmax[to]← I[best];7

else8

pmax[to]← I[to];9

best← to;10

return best;11

12

Algorithm 2 : Compute Partial Maximum

To achieve this goal, we introduce the concept of thepar-
tial maximum sequence(pmax), which we define for a sub-

sequenceI[l], · · · , I[r] of the input imageI as:

pmax[i] = max{I[i], I[i + 1], · · · , I[r − 1], I[r]}. (8)

It is straightforward to see that the partial maximum se-
quence can be computed withr − l comparisons from right
to left (seeAlgorithm 2). This kind of query is what we
need to efficiently get the maximum of the excluded left
neighborhood. However, the block size is not known in ad-
vance and therefore, the partial maximum sequence for the
whole block can not be incrementally computed while the
block grows. Instead, the partial maximum sequence of the
appendix by which a block grows is computed. Since each
appendix ranges from the old block endb plus1 to i’s right-
most neighbori + n, it is guaranteed that two consecutive
appendices span at leastn+1 elements. Since the left neigh-
borhood of any element of the next block extends into the
previous block by at mostn elements, the partial maximum
sequences of the last two appendices enable the left testing
with at most two comparisons. The separator of the two ap-
pendices is traced in the variablechkpt of the pseudocode.

i← n;1

CompPartialMax(0, i− 1);2

chkpt← −1;3

while i < W − 2n do4

j ← CompPartialMax(i, i + n);5

k ← CompPartialMax(i + n + 1, j + n);6

if i == j ORI[j] > I[k] then7

if (chkpt ≤ j − n ORI[j] ≥ pmax[chkpt])8

AND (j −n = i ORI[j] ≥ pmax[j −n]) then
MaximumAt(j);9

if i < j then10

chkpt← i + n + 1;11

i← j + n + 1;12

else13

i← k;14

chkpt← j + n + 1;15

while i < W − n do16

j ← CompPartialMax(chkpt, i + n);17

if I[i] > I[j] then18

MaximumAt(i);19

i← i + n− 1;20

break;21

else22

chkpt← i + n− 1;23

i = j;24

Algorithm 3 : 1D NMS for (2n + 1)-Neighborhood

The cost functionc(B) counts the comparisons within
a block of sizeB and the eventual comparisons into the
previous block. The local maximum of a full-grown block
is locatedn elements before the block’s end, such that the
left neighborhood of the local maximum sharesmax{2n +

1−B, 0} elements with the previous block. Exploiting the
partial maximum sequences, at most 2 of these elements
need to be compared with the local maximum. Together
with the B − 1 comparisons, to find the local maximum
within a block, the worst-case costs are:

c(B) = min{max{2n + 1−B, 0}, 2}+ B − 1. (9)

The costs per pixel decrease down to1 in the range
n + 1 ≤ B ≤ 2n and stays below1 for greaterB.
Thus, splitting the input sequence in blocks of minimal size
(B = n + 1) seems to be the worst-case. However, a block
of sizen + 1 has only a single partial maximum sequence,
reducing the worst-case costs of the next block by one. With
blocks of sizen + 2 (n > 2) this behavior can be avoided
and a corresponding sequence (which exists) requires the
worst-case per pixel cost of1 + 1

n+2 .

3. NMS in 2 Dimensions

The difficulty of 2D NMS is its non-separability. There-
fore, another concept is needed to get an efficient solution.
We start with the introduction of such a concept and its re-
alization and then fill in ideas of the 1D case until we end
up with a highly efficient solution.

3.1. (2n + 1)× (2n + 1)-Block Algorithm

We observe that two local maxima are at leastn + 1 pix-
els in each direction apart. Vice versa, within each block of
size(n + 1)× (n + 1) there can be at most one local max-
imum. Thus, the algorithm partitions the input image into
such blocks and searches within each block for the greatest
element, which is its only possible local maximum candi-
date. Then, the full neighborhood of this candidate is tested.
Hereby, elements of the block itself can be skipped, because
they are by construction already smaller than the candidate.
The pseudocode is shown inAlgorithm 4 .

forall1

(i, j) ∈ {n, 2n+1, . . .}2 ∩ [0, W −n]× [0, H−n] do
(mi, mj)← (i, j);2

forall (i2, j2) ∈ [i, i + n]× [j, j + n] do3

if img(i2, j2) > img(mi, mj) then4

(mi, mj)← (i2, j2);5

forall (i2, j2) ∈ [mi− n, mi + n]× [mj −6

n, mj + n]− [i, i + n]× [j, j + n] do
if img(i2, j2) > img(mi, mj) then7

goto failed;8

MaximumAt (mi,mj);9

failed:10

Algorithm 4 : 2D (n + 1)× (n + 1)-Block NMS

The worst-case occurs, when a block’s candidate is in
fact a local maximum of the input image, in which case all
the neighbors have to be tested. The algorithm does this
with (2n + 1)2− 1 comparisons per block, which limits the
number of comparisons per pixel by

CpP ≤
(2n + 1)2 − 1

(n + 1)2
= 4−

4

n + 1
. (10)

The average case analysis is similar to the one of the
straightforward implementation, except that the maximum
can be positioned anywhere within the block and that the
testing starts with the(n + 1)2-th neighbor instead of the
first:

E(CpP) =
(2n + 1)2 − 1

(2n + 1)2
+

(2n+1)2
∑

i=(n+1)2+1

1

i
(11)

≈ 1−
1

(2n + 1)2
+ 2 ln

(

2−
1

n + 1

)

≤ 1 + ln 4. (12)

Thus, the algorithm easily outperforms the straightforward
implementation because the asymptotic behavior is already
independent of the neighborhood size: in the average case
the number of comparisons per pixel is limited by2.39 and
in the worst-case by4. Although this is still far from being
optimal, the algorithm requires no additional memory and
each block can be processed independently.

3.2. Partial Maxima in 2D

The main disadvantage of this first 2D NMS algorithm is
that no information between blocks is shared. By incorpo-
rating the previously introduced concept of partial maxima,
the worst-case complexity can be improved to2 + O(1/n).

Since the algorithm can compute the maximum within
each block in arbitrary order, one can first compute the max-
imum of each column within a block and then compute the
maximum over all column maxima. These column max-
ima can then be reused in the testing phase, when the left
and right parts of the full neighborhood must be tested (see
black regions in Fig. 1). As a consequence, the total number
of comparisons is reduced by almost one quarter.

Furthermore, the maximum of the upper half of a column
can be computed with a partial maximum sequence from
top to bottom and the maximum of the lower half with a
partial maximum sequence from bottom to top (indicated
by the arrows in Fig. 1). This allows to reuse computations
also for the upper and lower neighborhood regions (see dark
gray regions). In the worst-case, there is either an upper or
a lower region, such that only half of this region is covered
by reusable partial maximum sequences.

The number of comparisons for the block itself, the

*

Figure 1. Neighborhood Partitioning of a Lo-
cal Maximum Candidate.

left/right and top/bottom regions sums up to at most

CpP ≤
[(n + 1)2 − 1] + [2(n + 1)] + [(2n + 1)⌊n

2 + 1⌋]

(n + 1)2

(13)

≤ 2 +
2.5

n + 1
+

0.5

(n + 1)2
. (14)

3.3. Stripe Algorithm

With a fully sequential algorithm, it is possible to drop
the worst-case complexity even down to1 + O(1

n
). How-

ever, due to its complicated control flow, this algorithm is
more of theoretical than of practical interest.

Instead of the block processing of the two previous 2D
NMS algorithms, this algorithm partitions the input image
into stripes of heightn + 1. The stripes are processed from
top to bottom. As before, for each column of such a stripe
the maximum is computed withn

n+1 comparisons per pixel.
The 1D NMS algorithm can be applied to the resulting 1D
sequence of maxima. Since the 1D sequence contains only

1
n+1 many elements compared to the full stripe, the maxi-
mum computation of the 1D sequence has at most1

n+1 ·
n+3
n+2

comparisons per pixel.
By construction, the local maxima returned by the 1D

NMS algorithm passed already the(2n + 1) × (n + 1) el-
ements of their neighborhood within the stripe. In a second
step, they are tested against the remainingn× (n + 1) ele-
ments above and below the stripe. For the part below, par-
tial maximum sequences are columnwise computed and the
largest element of each column is tested against the local
maximum candidate. When the algorithm moves on to the
next stripe, it only needs to compute the partial maximum
sequence for the remainder of each column, such that the
anticipated partial maximum computations are for free.

Unfortunately, it is slightly more complicated. The bot-
tom neighborhood regions of two consecutive local max-
ima can overlap (see Fig. 2), such that the corresponding
columns need to be split into three partial maximum se-
quences instead of two. In practice, one would process the

*
*

Figure 2. Stripe Algorithm: bottom neighbor-
hoods overlap leading to at most 3 partial
maximum sequences per column.

partial maxima within a stripe from top to bottom and re-
member the already processed part of each column.

For the neighborhood elements above the stripe, the par-
tial maximum sequences are already computed. Since a col-
umn is split into at most three such sequences, at most three
comparisons are needed to test the local maximum against
a column of the upper neighborhood. In total, the upper
bound of per pixel comparisons is

CpP < 1 +
8

n + 1
−

3

(n + 1)2
. (15)

4. Results

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

Straight-Forward 2D Block-Algorithm 2D Straight-Forward 1D Dynamic Block 1D

n

tim
e

[m
se

c]

Figure 4. Computation Time in Milliseconds
for one Million Pixels.

In Fig. 4, the running time of the straightforward imple-
mentation of 2D NMS andAlgorithm 4 are shown. We
have run both algorithms on a Pentium 4 with 3.0 GHz. We
experienced thatgcc-3.4.1 could not fully optimize the
generic algorithms, although they were written with C++
templates. For instance a handcrafted version for the3 × 3

Algorithm #Processors Memory Worst-Case Complexity Avg.-Case Complexity
per Pixel per Pixel per Pixel

1D Straightforward 1 O(1) O(n) ∼ 1 + ln(n) + ln(2)
1D (n + 1)-Block 1

n+1 O(1) 2− 1
n+1 ∼ 1 + ln(2 − 1

n+1) < 1.69

1D Dynamic Block 0 O(n) 1 + 1
n+2 ∼ 1

2D Straightforward 1 O(1) O(n2) ∼ 1 + 2 ln(n) + ln(2)
2D (n + 1)× (n + 1)-Block 1

n2 O(1) 4− 4
n+1 ∼ 1 + 2 ln(2− 1

n+1) < 2.39

2D (n + 1)-Stripe 1
n·width

O(n) 3−O(1
n+1) ∼ 1.5 + 3

4n+2 + ln(2 + 1
n
)

2D (n + 1)× (n + 1)-Block
+ Partial-Max

1
n2 O(pixels) 2 + O(1

n+1) —

2D (n + 1)-Stripe + Partial-
Max

0 O(width) 1 + O(1
n+1) ∼ 1

Figure 3. Summary of Possible Variations for 1D/2D NMS.

neighborhoodoutperformed the generic template version by
a factor of 2. The straightforward implementation is about
4 to 5 times slower than the proposed method.

The dramatically increasing speed of GPUs and their
parallel processing structure make them an interesting plat-
form for computer vision algorithms. Thus, we have
adoptedAlgorithm 4 for the GPU, where each fragment
unit processes one(n + 1) × (n + 1)-block, writing either
the position of the local maximum or an invalid position to
the output buffer. Due to the block structure, only a size of
W

n+1 ×
H

n+1 is required for the output buffer reducing the
data transfer back to the CPU significantly. On an NVidia
6800 graphics card, we measured for the3×3 neighborhood
size 2.2 milliseconds pure processing time, when applied to
a 1000× 1000 image. The back-transfer of the quarter im-
age took about 1 millisecond. Compared to the 5.6 millisec-
onds of the CPU implementation, the GPU can outperform
the CPU by a factor of about 2.5, if subsequent processing
stages can also be performed on the graphics card.

We also tested a variation ofAlgorithm 4 , where the
columnwise maxima of left and right blocks are utilized.
To share the maximum information between blocks, a two
pass algorithm is needed for the GPU. The first pass,
which computes the column maxima, takes about 1 mil-
lisecond, whereas the second pass takes about 2 millisec-
onds. Although this variation performs the NMS computa-
tions with one comparison less, it does not compensate for
the more complicated control flow, at least for the small3-
neighborhood. We observe a similar behavior on the CPU,
where this variation takes about 6.6 milliseconds.

In Fig. 4, the performance ofAlgorithm 3 and the
straightforward implementation of 1D NMS are drawn.
Again, the proposed method is about 3 to 4 times faster than
the straightforward implementation.

5. Conclusions

We have proposed several ways to speed up 1D and 2D
NMS. Thereby, it was not only possible to get rid of the de-
pendency on the neighborhood size, but to push the number
of comparisons down to almost 1 comparison per pixel in
the worst-case. It is also remarkable that the average-case
complexity can drop below 1 comparison for small neigh-
borhood sizes.

In some applications NMS of higher dimensional input
data is needed. Since the presented concepts generalize to
higher dimensions, also these applications benefit from the
presented work.

Fig. 3 summarizes the different possible variations for
1D/2D NMS. There, we also give the degree of parallelism
and memory requirements. The former is expressed by the
number of processors per pixel, where1 means that all pix-
els can be processed in parallel and0 means that no paral-
lelization can take place.
Acknowledgment: Support by the EC Network of Excel-
lence PASCAL and the Swiss SNF NCCR project IM2 is
gratefully acknowledged.

References

[1] J. Gil and M. Werman. Computing 2-d min, median, and max
filters. IEEE Trans. Pattern Anal. Mach. Intell., 15(5):504–
507, 1993.

[2] D. G. Lowe. Distinctive image features from scale-invariant
keypoints.IJCV, 60(2):91–110, 2004.

[3] K. Mikolajczyk and C. Schmid. Scale & affine invariant in-
terest point detectors.IJCV, 60(1):63–86, 2004.

[4] T. Tuytelaars and L. V. Gool. Matching widely separated
views based on affine invariant regions.IJCV, 59(1):61–85,
2004.

