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Abstract. Over the years a number of powerful people detectors have
been proposed. While it is standard to test complete detectors on publicly
available datasets, it is often unclear how the different components (e.g.
features and classifiers) of the respective detectors compare. Therefore,
this paper contributes a systematic comparison of the most prominent
and successful people detectors. Based on this evaluation we also propose
a new detector that outperforms the state-of-art on the INRIA person
dataset by combining multiple features.

1 Introduction

People are one of the most challenging classes for object detection, mainly due
to large variations caused by articulation and appearance. Recently, several re-
searchers have reported impressive results [1,2,3] for this task. Broadly speaking
there are two types of approaches. Sliding-window methods exhaustively scan
the input images over position and scale independently classifying each sliding
window, while other methods generate hypotheses by evidence aggregation (e.g.
[3,4,5,6,7]). To the best of our knowledge there exist only two comparative stud-
ies on people detection methods. [8] compares local features and interest point
detectors and [9] compares various sliding window techniques. However, [9] is
focused on automotive applications and their database only consists of cropped
gray scale image windows. While the evaluation on single image windows is in-
teresting, it does not allow to assess the detection performance in real-world
scenes where many false positive detections may arise from body parts or at
wrong scales. This paper therefore contributes a systematic evaluation of var-
ious features and classifiers proposed for sliding-window approaches where we
assess the performance of the different components and the overall detectors on
entire real-world images rather than on cropped image windows.

As a complete review on people detection is beyond the scope of this work,
we focus on most related work. An early approach [1] used Haar wavelets and
a polynomial SVM while [10] used Haar-like wavelets and a cascade of Ada-
Boost classifiers. Gavrila [11] employs a hierarchical Chamfer matching strategy
to detect people. Recent work often employs statistics on image gradients for
people detection. [12] uses edge orientation histograms in conjunction with SVMs

G. Rigoll (Ed.): DAGM 2008, LNCS 5096, pp. 82–91, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Performance Evaluation of Single and Multi-feature People Detection 83

while [2] uses an object description based on overlapping histograms of gradients.
[13] employs locally learned features in an AdaBoost framework and Tuzel [14]
presents a system that exploits covariance statistics on gradients in a boosting
classification setting. Interestingly, most approaches use discriminant classifiers
such as AdaBoost or SVMs while the underlying object descriptors use a diverse
set of features.

This work contributes a systematic evaluation of different feature represen-
tations for general people detection in combination with discriminant classifiers
on full size images. We also introduce a new feature based on dense sampling of
the Shape Context [15]. Additionally, several feature combination schemes are
evaluated and show an improvement to state-of-the-art [2] people detection.

The remainder of this paper is structured as follows. Section 2 reviews the
evaluated features and classifiers. Section 3 introduces the experimental protocol,
and section 4.1 gives results for single cue detection. Results for cue combination
are discussed in section 4.2 and section 4.3 analyzes failure cases.

2 Features and Classifiers

Sliding window object detection systems for static images usually consist of two
major components which we evaluate separately in this work. The feature com-
ponent encodes the visual appearance of the object to be detected, whereas the
classifier determines for each sliding window independently whether it contains
the object or not.

Table 1. Original combination of features and
classifiers

Linear
SVM

Kernel
SVM

Ada-
Boost

OtherCriterion

Haar wavelet [1] poly-
nomial

ROC

Haar-like
wavelet [10] cascaded ROC

HOG [2] ✓ RBF FPPW
Shapelets [13] ✓ FPPW
Shape Context [8] ISM RPC

Table 1 gives an overview
of the feature/classifier com-
binations proposed in the
literature. As can be seen
from this table, many pos-
sible feature/classifier combi-
nations are left unexplored
therefore making it difficult to
assess the respective contribu-
tion of different features and
classifiers to the overall detec-
tor performance. To enable a comprehensive evaluation using all possible fea-
ture/classifier combinations, we reimplemented the respective methods. Com-
parisons with published binaries (whenever available) verifies that our reimple-
mentations perform at least as good as the originally proposed feature/classifier
combinations (cf. Figure 1(h)). The remainder of this section reviews the evalu-
ated features and classifiers.

2.1 Features

Haar Wavelets have first been proposed by Papageorgiou and Poggio [1]. They
introduce a dense overcomplete representation using wavelets at the scale of 16
and 32 pixel with an overlap of 75%. Three different types are used, which allow
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to encode low frequency changes in contrast: vertical, horizontal and diagonal.
Thus, the overall length of the feature vector for a 64 × 128 pixel detection
window is 1326 dimensions. In order to cope with lighting differences, for each
color channel only the maximum response is kept and normalization is performed
according to the window’s mean response for each direction. Additionally, the
original authors report that for the class of people the wavelet coefficient’s sign
is not carrying information due to the variety in clothing. Hence, only the ab-
solute values for each coefficient is kept. During our experiments we found that
an additional L2 length normalization with regularization of the feature vector
improves performance.

Haar-Like Features have been proposed by Viola and Jones [10] as a gen-
eralization of Haar wavelets with arbitrary dimensions and different orientations
(efficiently computed by integral images). They suggest to exhaustively use all
possible features that can be sampled from a sliding window and let AdaBoost
select the most discriminative ones. Thus, their approach is computationally
limited to rather small detection window sizes. For our evaluation we us the
OpenCV1 implementation of their algorithm to select the relevant features and
only use those appropriately scaled to our detection window’s size of 64 × 128
pixels. Similarly to [1] we found that for the class of people the coefficient’s sign is
irrelevant due to different clothing and surroundings and therefore used absolute
values. Moreover, we found that the applied illumination variance normalization
performs worse than simple L2 length normalization on the selected features.

Histograms of Oriented Gradients have been proposed by Dalal and
Triggs [2]. Image derivatives are computed by centered differences in x- and y
direction. The gradient magnitude is then inserted into cell histograms (8 × 8
pixels), interpolating in x, y and orientation. Blocks are groups of 2 × 2 cells
with an overlap of one cell in each direction. Blocks are L2 length normalized
with an additional hysteresis step to avoid one gradient entry to dominate the
feature vector. The final vector is constituted of all normalized block histograms
with a total dimension of 3780 for a 64 × 128 detection window.

Shapelets [13] are another type of gradient-based feature obtained by se-
lecting salient gradient information. They employ discrete Adaboost on densly
sampled gradient image patches of multiple orientations (0◦, 90◦, 180◦, 270◦) at
the scales of 5 to 15 pixels to classify those locally into people and non-people
based on the local shape of the object. As preprocessing step, gradient images
are smoothed to account for inaccuracies of the person’s position within the an-
notation. Moreover, the underlying gradient image is normalized shapelet-wise
to achieve illumination invariance. Compared to the published source code2 we
use stronger regularization for the normalization step, in order not to amplify
noise. This improves the results considerably.

Shape Context has originally been proposed as a feature point descriptor
[15] and has shown excellent results for people detection in the generative ISM
framework [16,3]. The descriptor is based on edges which are extracted with a

1 http://sourceforge.net/projects/opencvlibrary
2 http://www.cs.sfu.ca/˜mori/research/shapelet_detect
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Canny detector. Those are stored in a log-polar histogram with location being
quantized in nine bins. For the radius 9, 16 and 23 pixels are used, while orien-
tation is quantized into four bins. For sliding window search we densly sampled
on a regular lattice with a support of 32 pixels (other scales in the range from
16 to 48 pixels performed worse). For our implementation we used the version of
Mikolajczyk [17] which additionally applies PCA to reduce the feature dimen-
sionality to 36 dimensions. The overall length of all descriptors concatenated for
one test window is 3024.

2.2 Classifiers

The second major component for sliding-window approaches is the deployed
classifier. For the classification of single windows two popular choices are SVMs
and decision tree stumps in conjunction with the AdaBoost framework. SVMs
optimize a hyperplane to separate positive and negative training samples based
on the global feature vector. Different kernels map the classification problem
to a higher dimensional feature space. For our experiments we used the imple-
mentation SVM Light [18]. In contrast, boosting is picking single entries of the
feature vector with the highest discriminative power in order to minimize the
classification error in each round.

3 Dataset and Methodology

To evaluate the performance for the introduced features and their combination
with different classifiers we use the established INRIA Person dataset3. This data
set contains images of humans taken from several viewpoints under varying light-
ing conditions in indoor and outdoor scenes. For training and testing the dataset
is split into three subsets: the full size positive images, the scale-normalized crops
of humans and full size negative images. Table 2 gives an overview of the number
of images and the number of overall depicted people.

Table 2. Number of images and instances
for the INRIA Person dataset

Positive
set/

# instances

Normalized
crops set Negative set

Training 615 / 1208 2416 1218
Testing 288 / 566 1132 453

For training we use all 2416 posi-
tive images and for the negative train-
ing instances we randomly cropped a
fixed set of 10 negative windows from
every negative image. Unlike the orig-
inal authors [2] we test the trained de-
tectors on the full images. We do so,
in order not only to evaluate the de-
tector in terms of false positive detec-
tions per window (FPPW) but with respect to their frequency and spatial dis-
tribution. This gives a more realistic assessment on how well a detector performs
for real image statistics. To allow this evaluation in terms of recall and precision,
the nearby initial detections in scale and space need to be merged to a single
final hypothesis. To achieve this, a mode seeking adaptive-bandwidth mean shift
3 http://pascal.inrialpes.fr/data/human
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algorithm [19] is used. The width of the smoothing kernel was kept fixed for
all experiments and no further postprocessing was applied. Ground truth and
final detections are matched using the PASCAL criterion [20], which demands a
minimum overlap of 50% for two matching bounding boxes.

4 Experiments

4.1 Single Feature Detection

We start by evaluating all features individually in combination with the three
classifiers AdaBoost, linear SVM and RBF kernel SVM. In order not to introduce
bias by the selection of negative samples a fixed set was used and no bootstrap
learning was employed. Figures 1 (a)-(c) show the results we have obtained.

First of all, the HOG descriptor and the similar Shape Context descriptor
consistently outperform the other features independent of the learning algorithm.
They are able to achieve around 60% equal error rate. The two Haar-like wavelet-
based approaches perform similar, while the Haar features by [1] perform slightly
better in combination with AdaBoost and the Haar-like features by [10] show
better results when combined with a linear SVM. Shapelets are not performing
as well as suggested by the reported FPPWs in the original paper. Only in
combination with a linear SVM they do better than the wavelet features.

Overall, RBF kernel SVMs together with the gradient-based features HOG
and Shape Context show the best results. All features except shapelets show
better performance with the RBF kernel SVM compared to the linear SVM.
AdaBoost achieves a similarly good performance in comparison with RBF kernel
SVMs in particular for the Haar-like wavelet, the HOG feature and for shapelets.
It does slightly worse for the dense Shape Context descriptor. For the wavelet
features, linear SVMs are not able to learn a good classifier with limited data.
AdaBoost and RBF kernel SVMs are doing better in this case due to their ability
to separate data non-linearly. Remarkably, linear SVMs show better performance
in combination with Shape Context compared to HOG. This might be an effect
of the log-polar sampling for the feature histograms which allows for a better
linear separation.

4.2 Multi-cue Detection

A closer look on the single detectors’ complementarity reveals that different
features in combination with different classifiers have a varying performance on
the individual instances. This can be explained by the fact, that the features
encode different information. While gradients encode high frequency changes in
the images, Haar wavelets as they are proposed by [1] also encode much lower
frequencies. Thus, it is worth to further investigate the combination of features.
To this end, we conducted several experiments employing early integration with
linear SVMs and AdaBoost as classifier. RBF kernel SVMs have not further been
employed for computational complexity reasons.
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(a) Feature performance with AdaBoost
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SVM
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(c) Feature performance with RBF SVM
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Before stacking feature vectors in an linear SVM classifier, each feature cue
was L2 length normalized to avoid a bias resulting from the features’ scale range.
In order to keep the comparison fair, we also used the same normalization for
AdaBoost. We have combined all possible subsets of HOG, Shape Context and
Haar wavelet-based features [1]. Combinations with shapelets have not been tried
due to the poor performance of the feature. In the following we will focus on the
combinations which yielded the best results.

Additionally we also employed a bootstrapping method, which has shown to
improve performance [2,9]. For this an initial classifier is trained with all available
positive training data and random negative samples. Then “hard examples” are
collected by scanning the negative training images. The final classifier is then
trained on the set of the initial and hard samples.

Our most successful experiments yielded results as depicted in plots 1(d)-(f).
For easier comparison the curve of the best performing published4 binary ([2],
bootstrapped SVM classifier) is also shown. Figure 1(d) shows the performance
of Haar wavelets [1] and HOG features. Even without boostrapping, the com-
bined features with the AdaBoost classifier almost reach the performance of the
published HOG binary. This is due to local optimization of AdaBoost that con-
centrates on the most discriminative feature in each round. An analysis shows
that 67.5% are HOG features while 32.5% are Haar features. The performance
of SVM with this feature combination is in between the performance of the
two original features. This result can be explained by the global optimization
strategy of SVMs, which needs more data to obtain a good fit. Obviously, the
bootstrapping method provides more data and consequently performance in-
creases substantially to little above the performance of the bootstrapped HOG
features. However, it does not reach the performance of the bootstrapped Ada-
Boost classifier. As already discussed in section 4.1, AdaBoost is doing better in
separating HOG features and Haar wavelets when used individually. Thus, it is
only little surprising for the combination to perform also well.

Figure 1(e) shows the combination of dense Shape Context features with Haar
wavelets. Without boostrapping AdaBoost and linear SVM perform similar and
better than for the single features alone. Adding bootstrapping the SVM classifier
again gains a significant improvement. This is due to the same fact we have
pointed out in section 4.1. Shape Context features show good linear separability
and thus linear SVMs are able to achieve a high classification performance. Again
we reviewed the features chosen by AdaBoost. Those were 66.25% Shape Context
features and 33.75% Haar wavelet features. We also analyzed the performance
of the individual features in a linear SVM when learned with a bootstrapping
strategy. Figure 1(g) shows, that in fact both features on their own cannot reach
the performance that is reached with their combination. Compared to the state-
of-the-art HOG object detector we improve recall considerably about 10% at
80% precision.

Finally, figure 1(f) shows results of the combination of HOG, Shape Con-
text and Haar features. For this combination AdaBoost already outperforms

4 http://pascal.inrialpes.fr/soft/olt
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the HOG object detector by Dalal [2] even without bootstrapping. The linear
SVM classifier again profits from the boostrapping step and performs similarly
to the bootstrapped AdaBoost classifier. Interestingly, the performance obtained
by the combination of HOG, Shape Context and Haar features is highly sim-
ilar to the pairwise combinations of Haar features with either HOG or Shape
Context. Here the analysis on the chosen features yields the following distri-
bution: 45.25% HOG, 34.0% Shape Context, 20.75% Haar. Additionally adding
Haar-like features [10] resulted in almost unchanged detections.

In summary we can state that the combination of different features is success-
ful to improve state-of-the-art people detection performance. We have shown,
that a combination of HOG features and Haar wavelets in a AdaBoost classifi-
cation framework as well as dense Shape Context features with Haar wavelets
in a linear SVM framework are able to achieve about 10% better recall with a
precision of 80% compared to a single feature HOG detector. Figure 2 shows the
improvement on sample images. Similarly to [21] we also observe that a combi-
nation of features can achieve better detection performance than the standalone
features when trained on the same amount of training data. Additionally, SVMs
were able to benefit from a bootstrapping strategy during learning as noted by
[9]. While AdaBoost also improves by bootstrapping, the effect is much weaker
compared to SVMs.

4.3 Failure Analysis

To complete our experimental evaluation we also conducted a failure case anal-
ysis. In particular, we have analyzed the missing recall and the false positive
detections at equal error rate (149 missing detections/ 149 false positives) for
the feature combination of Shape Context and Haar wavelets in combination
with a linear SVM. Missing recall mainly occurred due to unusual articulations
(37 cases), difficult background or contrast (44 cases), occlusion or carried bags

Fig. 2. Sample detections at a precision of 80%. Red bounding boxes denote false
detections, while yellow bounding boxes denote true positives. First row shows detection
by the publically available HOG detector[2]; second row depicts sample detections for
our combination of dense Shape Context with Haar wavelets in a linear SVM.
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(a) Unusual articulation (b) Difficult contrast (c) Occlusion (d) Person carrying goods

(e) Detection on parts (f) Too large scale (g) Detection on vertical
structures

(h) Cluttered
background

(i) Missing
annotation

Fig. 3. Missed recall (upper row) and false positive detections (lower row) at equal
error rate

(43 cases), under- or overexposure (18 cases) and due to detection at too large or
too small scales (7). There were also 3 cases which were detected with the correct
height but could not be matched to the annotation according to the PASCAL
criterion due to the very narrow annotation.

False positive detections can be categorized as follows: Vertical structures like
poles or street signs (54 cases), cluttered background (31 cases), too large scale
detections with people in lower part (24 cases), too low scale on body parts (28
cases). There were also a couple of “false” detections (12 cases) on people which
were not annotated in the database (mostly due to occlusion or at small scales).
Some samples of missed people and false positives are shown in figure 3.

5 Conclusion

We have presented a systematic performance evaluation of state-of-the-art fea-
tures and classification algorithms for people detection. Experiments on the chal-
lenging INRIA Person dataset showed that both HOG and dense Shape Context
perform better than other features independent of the deployed classifier. More-
over, we have shown that a combination of multiple features is able to improve
the performance of the individual detectors considerably. Clearly, there are sev-
eral open issues which cannot be solved easily with single image classification.
Thus, additional motion features and the integration across multiple frames are
necessary to further improve performance. Motion for instance can help to re-
solve false detections due to vertical structures while multiple frame integration
is likely to yield better results with cluttered background.



A Performance Evaluation of Single and Multi-feature People Detection 91

Acknowledgements. We gratefully acknowledge support by the Frankfurt
Center for Scientific Computing. This work has been funded, in part, by the
EU project CoSy (IST-2002- 004250).

References
1. Papageorgiou, C., Poggio, T.: A trainable system for object detection. IJCV 38(1),

15–33 (2000)
2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:

CVPR, pp. 886–893 (2005)
3. Seemann, E., Leibe, B., Schiele, B.: Multi-aspect detection of articulated objects.

In: CVPR, pp. 1582–1588 (2006)
4. Forsyth, D., Fleck, M.: Body plans. In: CVPR (1997)
5. Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single

image by bayesian combination of edgelet part detectors. In: ICCV (2005)
6. Felzenszwalb, P., Huttenlocher, D.: Efficient matching of pictorial structures. In:

CVPR (2000)
7. Mikolajczyk, K., Schmid, C., Zisserman, A.: Human detection based on a proba-

bilistic assembly of robust part detectors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV
2004. LNCS, vol. 3024, pp. 69–81. Springer, Heidelberg (2004)

8. Seemann, E., Leibe, B., Mikolajczyk, K., Schiele, B.: An evaluation of local shape-
based features for pedestrian detection. In: BMVC (2005)

9. Munder, S., Gavrila, D.M.: An experimental study on pedestrian classification.
PAMI 28(11), 1863–1868 (2006)

10. Viola, P.A., Jones, M.J.: Robust real-time face detection. IJCV 57(2), 137–154
(2004)

11. Gavrila, D.: Multi-feature hierarchical template matching using distance trans-
forms. In: Proceedings of the International Conference on Pattern Recognition,
vol. 1, pp. 439–444 (1998)

12. Shashua, A., Gdalyahu, Y., Hayun, G.: Pedestrian detection for driving assistance
systems: Single-frame classification and system level performance. In: International
Symposium on Intelligent Vehicles, pp. 1–6 (2004)

13. Sabzmeydani, P., Mori, G.: Detecting pedestrians by learning shapelet features. In:
CVPR (2007)

14. Tuzel, O., Porikli, F., Meer, P.: Human detection via classification on Riemannian
manifolds. In: CVPR (2007)

15. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using
shape contexts. PAMI 24(4), 509–522 (2002)

16. Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In:
CVPR, pp. 878–885 (2005)

17. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors.
PAMI 27(10), 1615–1630 (2005)

18. Joachims, T.: Making large–scale SVM learning practical. In: Schölkopf, B., Burges,
C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods — Support Vector Learn-
ing, pp. 169–184. MIT Press, Cambridge (1999)

19. Comaniciu, D.: An algorithm for data-driven bandwidth selection. PAMI 25(2),
281–288 (2003)

20. Everingham, M., Zisserman, A., Williams, C., van Gool, L.: The PASCAL visual
object classes challenge (VOC 2006) results. Technical report (2006)

21. Levi, K., Weiss, Y.: Learning object detection from a small number of examples:
The importance of good features. In: CVPR, vol. II, pp. 53–60 (2004)


	A Performance Evaluation of Single and Multi-feature People Detection
	Introduction
	Features and Classifiers
	Features
	Classifiers

	Dataset and Methodology
	Experiments
	Single Feature Detection
	Multi-cue Detection
	Failure Analysis

	Conclusion


