
Universidade de Aveiro Departamento de Engenharia Mecânica
2013

Pedro Batista e Silva Visual Recognition of Pedestrians for a Driver

Assistance System

Dissertação apresentada à Universidade de Aveiro para cumprimento dos req-

uisitos necessários à obtenção do grau de Mestrado em Engenharia Mecânica,

realizada sob orientação cientí�ca de Vítor Manuel Ferreira dos Santos, Pro-

fessor Associado do Departamento de Engenharia Mecânica da Universidade

de Aveiro.

O júri / The jury

Presidente / President Prof. Doutor
da Universidade de Aveiro

Vogais / Committee Prof. Doutor
da

Prof. Doutor Vítor Manuel Ferreira dos Santos
Professor Associado da Universidade de Aveiro (orientador)

Agradecimentos /
Acknowledgements

Palavras-chave

Resumo

Keywords

Abstract

Contents

Contents i

List of Tables iii

List of Figures v

1 Introduction 1

1.1 Motivation and Framework . 1
1.2 Description of the Problems . 2
1.3 State of the Art . 3

1.3.1 Sliding Window Detectors . 3
1.3.2 Multi-sensor Detectors . 7

1.4 Proposed Solution . 8
1.5 Development Tools . 8

1.5.1 Robotic Operation System . 8
1.5.2 OpenCV . 9
1.5.3 INRIA Dataset . 9

1.6 Experimental Setup . 10

2 Integral Channel Features 12

2.1 Channels . 12
2.1.1 Gradient Magnitude . 13
2.1.2 Gradient Histogram . 14
2.1.3 LUV color channels . 15

2.2 Integral Images . 17
2.3 Feature extraction . 17
2.4 Multi-scale Image Analysis . 19
2.5 Parametrization Summary . 20

3 Classi�cation 21

3.1 AdaBoost . 22
3.2 Training Process . 23

3.2.1 Training Samples . 23
3.2.2 Classi�er Parametrization . 24

3.3 Post Processing . 24

4 Experiments and Results 26

i

ii

List of Tables

2.1 Default parametrization summary . 20

3.1 AdaBoost parameters . 24

iii

iv

List of Figures

1.1 AtlasCar. 2
1.2 Problems associated with pedestrain detection 3
1.3 schematic depiction of a detection cascade . 4
1.4 Viola and Jones's face detection algorithm . 4
1.5 Overview of HOG detection algorithm . 5
1.6 Example results of the shape-based pedestrian detection method 5
1.7 Multi-feature detector performance . 6
1.8 Examples of channels computed from an image 7
1.9 Schematic of a simple ROS communication architecture 9
1.10 Examples of positive windows . 10
1.11 Schematic representation of the experimental setup 11

2.1 Channel combination . 13
2.2 Gradient magnitude computation . 13
2.3 Detection performance of di�erent numbers of bin orientations 14
2.4 Gradient histogram computation . 15
2.5 Detection performance of di�erent color channels 16
2.6 LUV color channels computation . 16
2.7 Finding the sum of a rectangular region . 17
2.8 Examples of random features . 18
2.9 Dense image pyramid . 19
2.10 Multi-scale image processing . 20

3.1 Aggregation of weak classi�ers . 21
3.2 Rectangles generated by the detector . 25
3.3 Merged rectangles . 25

v

vi

1

Chapter 1

Introduction

1.1 Motivation and Framework

Humans are unmistakably the most important components of a machine's environment.
Whenever people are involved in a process with any associated risks, there is a great number of
special security rules that must be followed in order to assure their safety. Visual detection of
humans is a �eld with an extensive range of applications such as robotics, entertainment, surveil-
lance, care for the elderly and disabled, road safety and others. In all of these, the knowledge of
the presence of a person allows the equipment with whom it's interacting to act accordingly, be
it sounding an alarm, stopping an operation, or any other action. The bene�ts of this become
obvious when we think about a car being driven in an urban scenario. If the circumstances are
such that the driver is always aware of the surrounding pedestrians, danger of accidents involving
them would most likely decrease dramatically. One could even think of a safety mechanism that
refrains a driver's action in a dangerous situation for a pedestrian.
In the European Union, 21% (European Commission, 2009) of all tra�c fatalities are pedestri-
ans, indicating that we're looking at a matter of great importance. Motivated by this, many
researchers have devoted much work in developing algorithms for visual human detection, lead-
ing to extraordinary improvements in the past decade. Despite those signi�cant improvements,
there is still much room for progress due to the challenging nature of the problem. Issues like
varying lighting conditions or uncertain pedestrian postures require robust solutions in order to
overcome those di�culties.
In this work, an algorithm capable of visually detecting pedestrians achieving state-of-the-art
detection rate is implemented and exploited. The objective was to build a base detector to be
inserted in the Atlas project [reference], of the Department of Mechanical Engineering of the
University of Aveiro. This is an ongoing team project that started with the aim of participating
in autonomous mobile robots competitions and has since then is grown into real road vehicles
(Figure 1.1) with the goal of developing new Advanced Driver Assistance Systems (ADAS).

2 1.Introduction

Figure 1.1: AtlasCar.

1.2 Description of the Problems

Visual pedestrian detection is a challenging task with a set of complex problems to overcome.
In this section, an overview of some common problems associated with detecting pedestrians in
individual monocular images will be presented.
Computer Vision (CV) is a technology that has grown in presence on many �elds of society over
the past two decades. In industry, product inspection systems have signi�cantly improved with
the aid of CV by allowing inspection of parts at a major scale, a fact that lead to considerable
advancements in the process of �nding defects. In such environments, a careful setup is planned
in order to facilitate the processing of the images outputted by the camera, since controlling the
lighting level, background color and other external parameters is of utmost importance for an
easy object segmentation, meaning, separating the object of interest from the background.
On the contrary, it is virtually impossible to control the external factors of the images where
pedestrians must be detected, precluding the possibility of segmentation and causing the need to
process cluttered, random images with huge amounts of information. The unpredictability of the
location where a pedestrian might come into sight also mandates the analysis of the whole scene.
Moreover, the varying nature of the lighting conditions caused either by changes in the daylight,
or di�erent weather conditions further hampers the task. Another typical problem that leads
to relatively high miss rates is that pedestrians often appear partially occluded by other objects
in the scene, such as trees, tra�c signs, bikes, and even by other pedestrians. The uncertainty
of their posture also constitutes a problem, since it is obvious that an up-right pedestrian has
di�erent properties in an image than one sitting down or leaning into another object.
In sum, the mission is to detect pedestrians that might or not be partially occluded, in unpre-
dictable locations, assuming di�erent stances, on cluttered scenes with varying lighting condi-
tions. Such conditions demand highly robust algorithms which are typically heavy and unable
to run at the frame-rates that this task demands. Figure 1.2 attempts to illustrate some of these
problems.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

1.Introduction 3

Figure 1.2: Varying lighting conditions, partial occlusion and di�erent postures are some of the
problems associated with pedestrian detection. Images taken from the INRIA dataset (Dalal

and Triggs, 2005)

1.3 State of the Art

A great development has been made on the subject of visual pedestrian detection in the past
two decades. In this section a compact description of some notorious contributions for this area
will follow. This review will focus �rstly on detectors with a sliding window approach, often seen
as the most promising for low and medium resolution approaches. Secondly, some multi-sensor
applications for ADAS will also be analyzed.

1.3.1 Sliding Window Detectors

One of the �rst sliding window visual object detector attempted to describe an object class in
terms of an over-complete dictionary of local, oriented multi-scale intensity di�erences between
adjacent regions; they are known as Haar Wavelets, and are applied to an example-based machine
learning approach, where a model of an object class is derived implicitly from a training set of
negative and positive examples (Papageorgiou et al., 2000). The speci�c learning engine used
is a Support Vector Machine (Cortes and Vapnik, 1995) classi�er, and results for car, faces and
people detection tasks are shown. Before this work, visual human detection had not yet been
successfully tackled, as they would typically assume a number of restrictive assumptions in order
to produce results.
Building upon Papageorgiou's ideas, (Viola and Jones, 2001) (VJ) proposed a method that
extracted Haar-like features with an highly optimized approach due to the use of integral images,
which is an image transformation that allows for rectangular sums of pixels to be computed by
fast arithmetic operations. In addition to this, a learning mechanism based on the AdaBoost
algorithm (Freund and Schapire, 1999) was utilized in order to select the most relevant features
to perform classi�cation, and a decision structure in the form of a cascade was built for e�cient
decision-making. This cascade works by evaluating sets of features that grow in complexity as a
sample advances in the structure, an idea that stands upon the notion that a positive instance
in an image is an extremely rare event. By rejecting most negative samples in the earliest stages

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

4 1.Introduction

of the cascade, this method, applied to face detection, was able to run at 15 frames per second
(FPS) with a high success detection rate. Figure 1.3 shows a schematic representation of the
detection cascade.

Figure 1.3: Schematic depiction of a detection cascade (Viola and Jones, 2001)

VJ's work is a popular and widely spread approach that still serves as foundation for many
modern detectors, and full implementations of the method were made available in software de-
velopment tools such as OpenCV and MatLab. In �gure 1.4 some example results of the VJ
algorithm are shown.

Figure 1.4: Viola and Jones's face detection algorithm (Viola and Jones, 2001)

Up until this moment, detection algorithms worked mostly on intensity images, a principle
that changed when gradient-based features were introduced in the scope of pedestrian detection.
Becoming widely known as Histogram of Oriented Gradient (HOG) (Dalal and Triggs, 2005),
this method attempted to de�ne a scene by dividing it into small spacial regions (cells), and
accumulating for each one a local histogram of normalized gradient directions. These cells are
combined over slightly larger and overlapping spacial regions (blocks), and each block is also
locally normalized for better invariance to lighting conditions. The above-mentioned descriptors
are then applied to a trained SVM based window classi�er that identi�es if a pedestrian is present
in the scene or not. Figure 1.5 presents an overview of the HOG algorithm. This contribution
resulted in large gains when compared to intensity based methods and, since its introduction,
the number of variants of HOG has increased to the point that nearly all modern detectors use
some form of these features.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

1.Introduction 5

Figure 1.5: Overview of HOG detection algorithm (Dalal and Triggs, 2005)

Interpretation of shape is also an important cue to the subject. In general terms, shape-based
methods work by generating templates of the desired object and �nding matches for them in
visual data. The work developed by (Gravila and Philomin, 1999) was one of the �rst to adopt
this approach in the domain of pedestrian detection. It uses the Hausdor� distance transform
and a template hierarchy to rapidly match image edges to a set of shape templates, and tests
were made for pedestrian and tra�c sign detection with satisfactory results, as shown in �gure
1.6.

Figure 1.6: Example results of the shape-based pedestrian detection method (Gravila and
Philomin, 1999)

Still on this note, (Sabzmeydani and Mori, 2007) used gradient-based HOG-like features
combined with an AdaBoost engine to learn head, torso, legs and full body shapes. In this
approach two kinds of features are used for classi�cation: the low-level features, which are simple
and reminiscent to Haar-like features, and mid-level features that are learned part models for
template matching. This method is documented to outperform HOG by a considerable margin.
Some researchers have used motion features to further improve detection results. The basic idea
is that in an usual situation people are in motion, rather then sitting still. Therefore it is natural
to think that if the circumstances are such that detection of motion is achievable, important clues
as to the possibility of the presence of pedestrians will be found. It is, however, a challenging
task to incorporate motion features into detectors given a moving camera. Given a static camera,
(Viola et al., 2005) proposed a similar approach to their previous work, but applied to the result
of the di�erence of two sequential frames, resulting in large performance gains. For non-static
imaging setups, camera motion has to be factored out, as did (Dalal et al., 2006) when they

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

6 1.Introduction

attempted to model motion statistics based on an optical �ow's (Fleet and Weiss, 2006) internal
di�erences, thereby compensating for uniform motion locally.
Although HOG has not been outperformed by any single feature, some researchers hypothesized
that assembling multiple types of features could provide important complementary information.
To prove this, (Wojek and Schiele, 2008) combined Haar-like features, shapelets, shape context,
and HOG features to compare the resultant detector with each of the features performing on
their own, demonstrating that the combo outperforms any single feature detector, as shown in
�gure 1.7. This framework was later extended to include the above-mentioned motion features
in (Walk et al, 2010), further improving the detection results.

Figure 1.7: Multi-feature detector performance (Wojek and Schiele, 2008)

Using a di�erent course of action, (Dollár et al., 2009) extracted Haar-like features from
various channels, including gradient magnitude, LUV color channels and gradient magnitude
quantized by orientation, providing a simple framework for integrating multiple feature types.
Examples of possible channels are shown in image 1.8. In the author's approach, a large pool of
features is extracted from random regions of the channels to guarantee a good characterization
of the scene. A decision structure similar to the VJ's method is utilized with the purpose of
selecting the most relevant features and performing e�cient classi�cation. This method became
known as Integral Channel Features. A signi�cant optimization was made to this algorithm
when the authors hypothesized that features could be approximated at nearby scales with little
sacri�ce to results (Dollár et al., 2010). By eliminating the need to extract features at every
scale, this algorithm is documented to perform multi-scale detection at 6 FPS and ranks among
the best found in literature. A still better version of this framework was introduced in (Dollár
et al., 2012), in which an even more e�cient decision structure was proposed. In this brand
new Crosstalk Cascades method, it is established that nearby decision windows have correlated
responses. By creating a mean of communication between detector's responses, this method
achieves similar detection rates as the Integral Channel Features while increasing speed by an
order of magnitude.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

1.Introduction 7

Figure 1.8: Examples of channels computed from an image (Dollár et al., 2009)

Some authors have made an e�ort to modify learning engines to improve their speed, as did
(Tuzel et al., 2008) by utilizing covariance matrices computed locally over a large diversity of
features as object descriptors. The learning data doesn't lie on the vector space, thus improving
the learning/testing performance. Non-linear SVM applied to sliding window detection was
made possible when (Maji et al., 2008) found that the use of the learning algorithm with an
approximation to the histogram intersection kernel lead to substantial gains in terms of speed.

1.3.2 Multi-sensor Detectors

Visual data has great potential due to the richness of information it holds. However, it may
be a challenging task to build a robust detector to be implemented in an ADAS relying solely
on camera output as a result of the problems discussed in the previous section. To overcome
those di�culties, some try to ally di�erent type of sensor information to create robust and more
reliable detectors.
Infra-red image and laser data were used by (Fardi et al. 2005) to generate regions of interest
where pedestrians might be at sight. A �rst-step classi�cation is obtained by evaluating a set
of descriptors based on the Euclidean distance of Fourier between objects and reference sets
on infra-red visual data, a classi�cation that is later re�ned by motion features acquired using
egomotion sensors and optical �ow.
On a di�erent approach, radar, color and infra-red information is fused in (Marchal et al., 2005).
In this work, hypothesis are generated through the evaluation of vision-based local histograms
on edges, computed both on color and infra-red visual data. Neural Networks is the learning
engine used for a preliminary classi�cation, and its output undergoes further veri�cation by a
fusion between radar and tracking information.
Combining infra-red and visual spectra from the two camera types was proposed by (Bertozzi et
al., 2006-2007). In the author's work, foreground segmentation is carried out by overlapping 2D
and 3D information from both sensors and, �nally, symmetry and template matching are used
to classify, verify and re�ne �nal detections.
Laserscanner-based tracking of points was the strategy chosen by (Premebida et al. 2007) to
generate candidate regions of interest for further analysis. Objects were de�ned by laser and
visual features, and AdaBoost was utilized for generating responses.
These systems were built in scienti�c research environments where information is usually made
accessible for anyone. That is not the case in industrial environments where, for commercial
reasons, conducted research is kept in absolute secret, a circumstance that makes it hard to �nd
reliable sources about the state of this technology in industry. It seems granted, however, that
the �rst pedestrian detection system to be commercialized will be launched in 2014 by Mercedes
and will be based on stereo camera images (Mercedes press information). A study made by
Mercedes shows that their safety mechanism based on pedestrian detection could avoid 6 percent
of pedestrian accidents and reduce the severity of a further 41 percent.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

8 1.Introduction

1.4 Proposed Solution

Although great advantages arise from fusing di�erent type of sensor information, a multi-
sensor approach also has its issues, such as di�culties in fusing and correlating di�erent sensor
data, higher registration demands, more complex system implementations, accumulation of errors
generated from di�erent sensors, and others. Despite these problems, it is obvious that any real
and full-functional pedestrian detector will, in all likelihood, require the use of multiple sensors
as a result of the extremely demanding nature of the task in hands.
However, creating such complex application is a large engineering e�ort that requires a great
deal of know-how, expensive equipment and time, especially when the application is being built
from scratch. Although much useful equipment already exists in the laboratory, as well as a
sta� with a comprehensive knowledge and set of skills, building a full-functional, multi-sensory
system cannot the objective due to the short amount of time available to complete this work.
The goal was to build a reliable, generic and simple vision-based pedestrian detection framework
that leaves the possibility for future development and integration in more complex systems. It
was decided then that the implementation of a sliding window algorithm was the way to go, since
one can be modi�ed to work with other sensors in future development.
In order to de�ne a course of action, two premises were established: the implemented algorithm
should rank among the best in terms of detection performance and should also leave space
for future improvements. In respect of this, (Dollár et al., 2012) made an extensive survey of
existing sliding window detectors, where 16 algorithms were compared against each other in
a carefully designed evaluation platform. Out of all the evaluated algorithms, Integral Channel
Features (ChnFtr) proved to be the most interesting for several reasons. Firstly, the only method
that slightly outperforms it uses motion and gradient-based features, a computationally heavy
approach that is documented to run 50 times slower than ChnFtr, rendering it uninteresting.
On the contrary, the authors of ChnFtr have largely improved its performance in later work, to
the point of enabling multi-scale detection at 30 FPS. Secondly, the method provides a relatively
simple framework in terms of code implementation when compared to other approaches. Since
this implementation �tted perfectly with the proposed goal, it was the chosen way to go for this
project.
A detailed explanation of ChnFtr is presented in chapter 2.

1.5 Development Tools

It has become clear that this was mainly a software development project, and, as one would
expect, most work involved the writing of code and debugging. The programming language used
was C++ under Linux platform, and, in addition to this, a set of indispensable development
tools were utilized, all of which will be enumerated and described in this section.

1.5.1 Robotic Operation System

The Robot Operating System (ROS) (Quigley et al., 2009) provides a software development
framework that is designed for the creation of robot software. This application has several built-
in components prepared to handle the output of di�erent types of sensors, such as cameras,
lasers, actuators, contacts and other common elements in a robotic environment.
ROS also allows for an easy to establish communication between di�erent software modules
(nodes), which permits the elaboration of an infrastructure that can communicate with any run-
ning processes. This communication works in three steps: �rst, a node advertises a ROS Topic.
Once that topic of communication is advertised, the same node is able to publish messages on
that topic, and �nally, those messages can be listened by any node that subscribes to the same
topic. Such messages can be of any kind, from simple strings of characters to visual and laser
data. Figure 1.9 tries to illustrate a very simple ROS communication architecture. It is easy
to understand that this information exchanging structure has a great potential when applied

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

1.Introduction 9

to robotics, since an uniform and standardized communication between sensors facilitates the
development of complex multi-sensor applications.

Figure 1.9: Schematic of a simple ROS communication architecture

Another important feature that ROS provides is the possibility to record data logs (rosbags)
that can be replayed later. This allows for data to be collected in real scenery, to be later treated
in a laboratory environment as if it was on the �eld.
Recently, to standardize the work developed for the Atlas project, an e�ort has been made to
migrate every application to ROS environment and, for this reason, the work presented in this
document was also developed in ROS.

1.5.2 OpenCV

OpenCV is an popular open source computer vision library written in C and C++ that was
designed for high computational e�ciency and with a strong focus on real-time image processing
applications. It provides an infrastructure to help people building fairly sophisticated vision ap-
plications, and contains hundreds of functions that span many areas of application, like factory
product inspection, security, medical imaging, robotics and many others. This is a well docu-
mented, very complete library with a huge and collaborative user community that is in constant
growth. Such a healthy and knowledge-sharing environment is a positive aspect that largely
contributed for the development of the project.
In this work many useful OpenCV functions are used for several purposes. Resizing images,
computing gradients, converting images between colors spaces or selecting sub-windows from
images are just a few examples of operations provided by OpenCV that are absolutely necessary
for most visual pedestrian detection applications.

1.5.3 INRIA Dataset

In order to develop detection applications of objects in complex scenes, where segmentation
and other similar approaches are not an option, the use of a learning machine algorithm is
absolutely necessary. In a nutshell, these algorithms work by exhaustive learning of positive and
negative instances of the problem in question, and once the learning process is �nished, they are
able to predict on new unseen data. So, in order to develop a detection application, the developer
must possess set of positive examples of the object he wants to detect, and, to ensure that the
learning engine is correctly taught, the number of positive examples usually needs to be large.
Acquiring hundreds, sometimes thousands, of positive instances of an object is obviously a slow
and time-consuming task, even more when the data needs to be treated and labeled in laboratory.
Fortunately, a handful of pedestrian datasets were made public by the scienti�c community, and
anyone is free to use them.
The INRIA dataset was acquired by (Dalal and Triggs, 2005) with the objective of setting a
challenging framework to test the HOG algorithm. Since then, this dataset has been used by
most pedestrian detection researchers, as did the authors of ChnFtr.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

10 1.Introduction

This dataset provides a training set with 1218 images where no pedestrians appear (negative
images), and 2416 positive training windows, meaning, pedestrian images cropped from the
original scene in which they appear. The fact that the positive examples are already cropped
out of the original images largely facilitated the training process. The dataset also provides a
di�erent set of images, with 1132 positive windows and 462 negative images to test the detector
performance.
This dataset was of utmost importance for the development of this work, as it not only allowed for
a facilitated training/testing process, but also for the implementation of a meaningful evaluation
platform to compare results between the original algorithm and the ones achieved in this work.
Image 1.10 shows a set of example positive windows from the INRIA dataset.

Figure 1.10: Examples of positive windows used for training a classi�er. In this dataset people
appear on a wide variety of backgrounds

1.6 Experimental Setup

The tools described on the previous section integrate an experimental setup that was the
base for all the development. A schematic representation of the experimental setup is shown in
�gure 1.11.
Having in mind that the end goal of this project was to build an application to run on the
Atlas Car, it was an important pre-requisite for the setup to be generic enough to allow for full
development in laboratory environment, and also be easily set to run on the �eld.
To ful�ll that important pre-requisite, two nodes were created. The image server is responsible
for advertising an image transport topic, loading images from �le and publishing those images
on the topic. The image client subscribes to that topic and, the event of an image being sent
over triggers a callback function that processes and analyses the image using OpenCV.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

1.Introduction 11

To test the application on another setting, be it with camera output or rosbag replay, one just
needs to set the image client to subscribe to the topic in which those instances are publishing.

Figure 1.11: Schematic representation of the experimental setup

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

12 2.Integral Channel Features

Chapter 2

Integral Channel Features

To solve a complex vision detection problem it is necessary to perform exhaustive descriptions
of the objects in order to �nd a set of descriptors that present signi�cant variability in their
presence. The proposed solution takes advantage of the richness of information present in multiple
channels of an image, using it to assemble di�erent detection techniques in a simple framework.
By evaluating a very large number of simple features from multiple channels, this algorithm
integrates normal, HOG-like, shape-based and other feature types in an indirect manner and, not
only that, those features can be extracted in an optimized manner with the use of the integral
images. These are the reasons as to why Integral Channel Features (ChnFtr) has so much
potential, since it allies multi-feature analysis and speed in a relatively simple infrastructure.
ChnFtr is divided into three main parts:

1. Computation of channels

2. Feature extraction

3. Classi�cation

In this chapter items 1 and 2 will be discussed, leaving the topic of classi�cation for the next
chapter.

2.1 Channels

In the context of this work, a channel of an image is a representation of the original, where
the output pixels are obtained by using linear or non-linear transformations on the input ones,
thus preserving the overall image layout. A trivial channel is the grayscale representation of an
image, and, likewise, the di�erent color channels of an image can also serve as channels in this
context.
There are countless transformations that can be applied to an image that will result in new
channels; application of �lters, binary thresholds and edge detectors are just a few examples of
simple ways to obtain numerous channels. However, our human perception only goes so far when
it comes to realize which channels will contribute with more relevant information for detection.
The only way to complete such a task is to test various channels for performance and check which
are more informative by evaluating results.
Fortunately, that information is already available in the original publication, where the detec-
tion performance of di�erent channels were put against each other. As shown in �gure 2.1, the
conclusions that were drawn from that study were that the channels that lead to the best results
are the gradient magnitude, gradient histogram (labelled Hist in �gure 2.1) and the LUV color
channels. For this obvious reason, these channels were the ones used, and will be described in

2.Integral Channel Features 13

the following sub-sections.

Figure 2.1: Detection performance of di�erent channel combinations. (Dollár et al., 2009)

2.1.1 Gradient Magnitude

Given an input image I, the gradient magnitude (GM) of I is a representation of the strength

of its edges. The channel is computed as shown in equation 2.1, in which
δI

δx
and

δI

δy
are

respectively the horizontal and vertical gradients of I.

GM(x, y) =

√(
δI

δx
(x, y)

)2

+

(
δI

δy
(x, y)

)2

(2.1)

In terms of code implementation, the horizontal and vertical gradients are computed by applying
a simple Sobel operator. The gradients are then squared, summed and �nally square rooted for
the �nal result. Figure 2.2 describes how this is processed in the code.

Figure 2.2: Gradient magnitude computation

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

14 2.Integral Channel Features

2.1.2 Gradient Histogram

A gradient histogram is a weighted histogram where bin index is determined by gradient angle
and weighted by gradient magnitude, providing important information about edge strength under
di�erent pixel orientations. The only parameter for computing gradient histogram is the number
of bin orientations, knowing that each bin generates a separate channel. This parameter is set
to 6, which is the number from which the results stop improving, as shown in picture 2.3.

Figure 2.3: Detection performance of di�erent numbers of bin orientations (Dollár et al., 2009)

The orientation for each pixel is calculated according to equation 2.2.

θ(x, y) = arctan

 δI
δy

(x, y)

δI
δx

(x, y)

 (2.2)

Concerning the code implementation, the horizontal and vertical gradients obtained before are
used to compute quotients between the gradients, which are stored in a new data structure.
Then, the orientation for each pixel is calculated and a heuristic structure is built to accumulate
the previously computed gradient magnitude values on di�erent bins depending on the value of
θ. A schematic description of how gradient histogram bins are processed in the code is shown on
�gure 2.4.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

2.Integral Channel Features 15

Figure 2.4: Gradient histogram computation

2.1.3 LUV color channels

Color is an important cue for detection. In respect of this, di�erent color spaces were com-
pared against in order to �nd out which is more informative, a comparison that lead to the
conclusion that the LUV color channels are the ones that provide the best results, as show in
�gure 2.5.
Obtaining these channels is done with few lines of code, since OpenCV provides a straightfor-
ward way to convert images between color spaces. Figure 2.6 illustrates how the channels are
computed code-wise.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

16 2.Integral Channel Features

Figure 2.5: Detection performance of di�erent color channels (Dollár et al., 2009)

Figure 2.6: LUV color channels computation

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

2.Integral Channel Features 17

2.2 Integral Images

There is a middle step between computation of channels and feature extraction. Since a scene
description is done through the computation of great amounts of rectangular sums of pixels, it
is convenient to use a optimized way for computing local sums. This is done with the use of the
integral image, and is a key point of the algorithm.
The integral image is an image transformation that allows e�cient generation of sums of pixel
values in a rectangular subset of an image. Given an input image I, the value at any point (x,y)
in the integral image Int is just the sum of all pixels above and to the left of (x,y), as illustrated
in equation 2.3.

Int(x, y) =
∑
x′≤x
y′≤y

I(x′, y′) (2.3)

Then, the sum of any rectangular region of the image can be calculated by a simple arithmetic
operation, as illustrated in �gure 2.7.

Figure 2.7: Finding the sum of a rectangular region (Viola and Jones, 2001). In this example,
the value of the summed pixels in area D is Int(4)+Int(1)-Int(2)-Int(3)

OpenCV already provides a way for computing integral images automatically, making it
unnecessary to implement this operator by hand. The 10 channels (1 gradient magnitude, 6
bins of orientation and 3 color channels) are transformed into integral images, and the resulting
transformations are referred as Integral Channels.

2.3 Feature extraction

Sliding window detection is performed by applying a Detection Window (DW) over the image,
evaluating a set of features, and then sliding it to an adjacent place to repeat the process. The
DW has constant dimensions (64x128 as in most sliding window detection methods), so, in order
to �nd pedestrians with di�erent sizes the image has to be rescaled and re-analysed multiple
times. This compact description of a generic multi-scale sliding window detector shows that
de�ning how a DW is analysed is a major key point for detection. This section will focus on
feature extraction from DWs.
There are distinct approaches for describing a DW. Some researchers opt to generate a �ne tuned
pool of features that are subject to tests until they achieve good results. This is the case of the
HOG algorithm, which features constitute of local sums calculated over a dense overlapping grid
in the DW. On the contrary, rather then carefully designing a feature space, ChnFtrs generates
random features from the channels, knowing that a good characterization of the DW is granted
if the feature pool is large enough.
In the context of this work, a feature is no more than a rectangular sum of pixels, and each feature
has the following random parameters: the channel where it is calculated, the starting position of

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

18 2.Integral Channel Features

the rectangle and its dimensions. To make this more clear, an illustration of 20 possible random
features is shown in �gure 2.8. One reaches to the conclusion that thousands of random features
are likely to lead to a strong and robust characterization of a DW.

Figure 2.8: Examples of random features: in this illustration, the black rectangles represent the
DW over the 10 channels, and the red rectangles represent examples of random rectangles over

which local sums are calculated

To extract any number of random features, its necessary to generate their parameters �rst.
In terms of code implementation, a vector data structure was created in which each element has
information about the 5 random parameters necessary to de�ne a rectangle:

� Channel index

� Width

� Height

� X coordinate of the upper-left corner of the rectangle

� Y coordinate of the upper-left corner of the rectangle

Then, a function to initialize the vector with N random parameters was created. Keep in mind
that even if the parameters are random, it is vital that the program is able to reproduce the same
parameter vector any number of times. To achieve this, OpenCV provides an RNG (Random
Number Generator) class that is initialized with a seed. If the seed is the same, the random
parameters generated will also be the same.
For each element of the vector the following random parameters are generated:

� Random(0,9) - channel index

� Random(5,DW width) - rectangle width

� Random(5,DW height) - rectangle height

� Random(0,DW width-rectangle width) - X coordinate

� Random(0,DW height-rectangle height) - Y coordinate

This process occurs once when the program is initiated, and the resulting parameter vector's
elements are accessed when a DW is processed.
The integral channels and feature parameter information is all that is necessary to compute
features over a DW. In what concerns the code implementation, for every random parameter, a
rectangle is de�ned and the local sum is computed and stored in a feature vector. The resulting
vector characterizes the DW feature-wise.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

2.Integral Channel Features 19

2.4 Multi-scale Image Analysis

Once feature extraction from DWs is set, the next step is to build an architecture for full
image analysis. As it was mentioned before, it is essential to analyse not only the entire image,
but the same image at multiple scales to �nd pedestrians with multiple sizes. It is then necessary
to build a dense image pyramid (�gure 2.9) for analysis.

Figure 2.9: Dense image pyramid (Dollár et al., 2010). The green rectangle represents the DW
of constant dimensions

There are a few parameters for building this pyramid, all of which are easily changeable.
At each step the image is rescaled depending on the number of scales per octave (nPerOct), and
its default value is set to 8. An octave is the necessary scaling to rescale the image by a factor
of 2. So, each downsampled image is rescaled according to equation 2.4, and for upsampling the
logic is the same (equation 2.5).

DownScale = 2
−1

nPerOct (2.4)

UpScale = 2
1

nPerOct (2.5)

For 640x480 images, upsampling becomes a computationally heavy operation that is performed
when detection of far scale pedestrians is a requisite, so, it is turned o� by default. Downsampling
goes on until the image reaches a parametrizable minimum size, which default value is set to the
same of the DW (64x128).
All that remains is to slide a DW through all the images in the pyramid and store a feature
vector for every DW analysed. The default value for the step by which the DW slides through
an image is set to 4 (in both directions).
With the default parameters described in this section, each 640x480 image has ∼60000 DWs
and takes ∼0.8 seconds to be processed if 1000 features are extracted per DW. The processing
time grows fairly linearly with the number of features computed, taking ∼1.6 seconds for 2000
features and so on.
Regarding the code implementation, a cyclic architecture described by �gure 2.10 was built.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

20 2.Integral Channel Features

Figure 2.10: Multi-scale image processing

2.5 Parametrization Summary

For an easy overview of the work so far, this section provides a table that summarizes the
parametrization of the algorithm.

Integral Channel Features

Channel types
Gradient magnitude
Gradient histogram

LUV color
DW size (w x h) 64 x 128
min. feature size (w x h) 5 x 5
max. feature size (w x h) 64 x 128
Number of scales per octave 8
max. scaled image size (w x h) 640 x 480
min. scaled image size (w x h) 64 x 128
Sliding DW step 4

Table 2.1: Default parametrization summary

This parameters are default values that are de�ned in a header �le. The program is prepared
to run cleanly for any parametrization. So, for running the application with di�erent parameters,
one just needs to change the header �le de�nitions.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

21

Chapter 3

Classi�cation

Searching for an object in a scene demands for a method capable of evaluating the feature
vectors that describe it. This can be done through the implementation of a Machine Learning
(ML) mechanism. The purpose of ML is to turn data into information, a process that becomes
fundamental when the information has to be inferred from large amounts of data, much like the
case of the problem in hands. Typically, these methods attempt to model an object class from
a training set of examples to then make predictions on new and unseen data, or, in other words,
perform classi�cation.
The basic idea behind AdaBoost, short for Adaptive Boosting, is that it is possible to generate
a very accurate prediction rule, or strong classi�er, through the aggregation of rough and mod-
erately inaccurate rules, weak classi�ers, provided that they perform just slightly better than a
random classi�er would. A graphic illustration of this is shown in �gure 3.1.
There are multiple ML methods, each with its speci�cations and applications, so, one must
choose a method that correctly �ts the problem. The adopted method needs to classify between
two classes, Pedestrian and Not Pedestrian, needs to handle thousands of features per sample
and should also be fairly resistant to over-�tting. The method that best �ts these requirements
is AdaBoost, and a compact description will be carried out in the following section

Figure 3.1: Aggregation of weak classi�ers: in this example, each black line represents a weak
classi�er that attempts to distinguish red from blue dots. It is easy to understand that each

weak classi�er doesn't perform well on its own, whereas a combination of the 5 weak classi�ers
will correctly label most samples.

22 3.Classi�cation

3.1 AdaBoost

This algorithm takes as input a training set (x1,y1),..., (xm,ym), where xi belongs to the
domain X, and refers to a feature vector; yi refers to the label of the corresponding sample,
and belongs to Y={-1, +1}. AdaBoost calls a weak learning algorithm over and over again in
a series of rounds t= 1,...,T. One of the key points of this method is to maintain a distribution
set of weights over a training set. The weight of this distribution on a training example i on
round t is denoted Dt(i). At the starting point, all weights are set equally but, on each iteration,
the weights of incorrectly classi�ed examples are increased in an attempt to force the algorithm
to give them a special attention, and this why the method is called Adpative Boosting, since
it adapts iteratively to focus on hard examples. The weak learner's function is to �nd a weak
classi�er : ht: X −→ {-1,+1 }, appropriate for the weight distribution Dt. A weak classi�er is
evaluated by its error, calculated according the equation 3.1.

εt =
∑

i:ht(xi) 6=yi

Dt(i) (3.1)

Once an hypothesis ht has been set, AdaBoost chooses a parameter αt, which is a measure of
the importance of the learned weak classi�er, and is calculated according to the equation 3.2.

αt =
1

2
ln

(
1− εt
εt

)
(3.2)

Note that αt > 0 if εt<1/2, meaning, a weak classi�er is only attributed with importance if it
gets atleast half of the training examples right. It is also intuitive that a weak classi�er is as
more important as lower its error is. The distribution Dt is then updated according to the rule
illustrated by equation 3.3, in which the denominator is a normalization factor used to ensure
that Dt+1 is a probability distribution.

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))∑
iDt(i)exp(−αtyiht(xi))

(3.3)

This rule assures that the misclassi�ed examples are attributed with more weight so that in the
next iteration they can be resolved.
The �nal hypothesis H is a majority weighted vote of the T weak classi�ers, as show in equation
3.4.

H(x) = sign

(
T∑

t=1

αtht(x)

)
(3.4)

Or equation 3.5 to obtain a measure of the con�dence of the detector

H(x) =

T∑
t=1

αtht(x) (3.5)

This whole process is summed up in algorithm 1.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

3.Classi�cation 23

Algorithm 1 The boosting algorithm AdaBoost

Given (x1,y1),..., (xm,ym) where xi ∈ X, yi ∈ Y = {-1,1 }
Initialize D1(i)=

1

m
For t=1,...,T:

� Train weak learner using distribution Dt

� Get weak hypothesis with error:

εt =
∑

i:ht(xi)6=yi

Dt(i)

� Choose αt =
1

2
ln

(
1− εt
εt

)
� Update:

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))∑
iDt(i)exp(−αtyiht(xi))

Output of the �nal hypotheses:

H(x) = sign

(
T∑

t=1

αtht(x)

)

3.2 Training Process

OpenCV provides an implementation of AdaBoost, so there was no need to build one from
scratch. The most relevant aspects of the training process of the �nal classi�er are discussed in
this section.

3.2.1 Training Samples

OpenCV's AdaBoost training method uses a matrix containing the training data as input,
and outputs a classi�er that can later be used to perform detection in new samples. The most
convenient way to prepare the data is to write it to a text �le and only later convert it into a
matrix. So, simple changes had to be made to the infrastructure to enable the writing of feature
vectors in �le.
Selecting the training samples of the �nal classi�er is done in three stages. The �rst stage classi�er
is trained with the 2416 positive training windows available on the INRIA dataset and ∼5000
negative windows generated randomly from a wide variety of negative images. The resulting
classi�er is then tested on the same negative images, and this time ∼5000 false positives are
added to the training data as negative examples, forcing the classi�er to learn the hard examples,
a process that is known as bootstrapping. Finally, a �nal round of bootstrapping is performed
where more ∼5000 hard negatives are added to the training data. In sum, The �nal classi�er
has 2416 positives examples and ∼15000 negative examples, ∼10000 of which are samples that
were incorrectly classi�ed as positive by the �rst 2 stage classi�ers.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

24 3.Classi�cation

3.2.2 Classi�er Parametrization

There are a few additional parameters important for training the classi�er. The number of
features to be computed per window is a key factor that has a major e�ect on the detector's
performance. To understand how the size of the feature pool a�ects results, two classi�ers were
trained, one with 10000 features and other with 15000. Note that a classi�er trained with a
given number of features has to be fed with that same number of features in order to produce a
response during test time.
The number of weak classi�ers is also an important parameter. As explained before, each weak
classi�er will contribute with a weighted vote for each decision. This parameter is set to 2000,
which means that 2000 weak classi�ers are derived from the feature pool.
The �nal parameter is the depth of the classi�er, which is set to 2. This parameters de�nes
the number of features that constitute each weak classi�er. Depth 1 uses one feature per weak
classi�er while depth 2 uses three features per weak classi�er.
In practical terms, the OpenCV boost training method will go through the training data for 2000
iterations, and in each iteration will select the combination of 3 features that best classi�es the
training data. Table 3.1 gives a summary of the classi�er's parameters.

Adaboost Classi�er
Positive class Pedestrian
Negative class Non pedestrian

Feature pool size
15000
10000

Positive samples 2416
Negative random samples ∼5000
Negative bootstrapped samples ∼10000
Weak classi�ers 2000
Depth 2

Table 3.1: AdaBoost parameters

3.3 Post Processing

In full image analysis, it is necessary to keep track of the windows that are classi�ed as
positive in order to draw rectangles around detected pedestrians. Since feature extraction and
classi�cation are processes that occur on par, it was necessary to create a data structure to
accumulate the image coordinates of the positive windows, as well as the scale at which they
were obtained in order to transform them to the original scale. As one would expect, in a
multi-scale detection platform an object is often detected multiple times, generating multiple
rectangles, as shown in �gure 3.2. It was then important to �nd a way to group rectangles that
belong to the same object together. Fortunately, since this is a common detection problem,
OpenCV provides a way to merge rectangles with similar sizes and locations, and the resulting
output is illustrated by �gure 3.3.

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

3.Classi�cation 25

Figure 3.2: Rectangles generated by the detector

Figure 3.3: Merged rectangles

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis

26 4.Experiments and Results

Chapter 4

Experiments and Results

Ok bora lá...

	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation and Framework
	Description of the Problems
	State of the Art
	Sliding Window Detectors
	Multi-sensor Detectors

	Proposed Solution
	Development Tools
	Robotic Operation System
	OpenCV
	INRIA Dataset

	Experimental Setup

	Integral Channel Features
	Channels
	Gradient Magnitude
	Gradient Histogram
	LUV color channels

	Integral Images
	Feature extraction
	Multi-scale Image Analysis
	Parametrization Summary

	Classification
	AdaBoost
	Training Process
	Training Samples
	Classifier Parametrization

	Post Processing

	Experiments and Results

