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Abstract This work exploits a vision based pedestrian recognition technique to build
a framework capable of performing detection in images of urban setting.
This method takes advantage of the richness of information present in mul-
tiple channels of an image to assemble di�erent detection techniques in a
simple and generic infrastructure. The general idea behind this method is
that pedestrians present speci�c visual properties that can be used to dif-
ferentiate them apart from a scene. So, to exploit such properties, features
are extracted from the channels in an optimized manner through the use of
integral images and a machine learning engine based on AdaBoost is trained
through positive and negative examples the relationship of those features
with the presence of pedestrians on visual data. This framework then inte-
grates a multi-scale, sliding window approach to perform visual pedestrian
detection. To evaluate the algorithm, tests were carried out in two distinct
datasets and results con�rm its validity.





Palavras-chave Deteção de peões, Canais integrais, Descritores, AdaBoost, Classi�cação,
Dataset de peões

Resumo Este trabalho explora uma técnica de deteção visual de peões que visa esta-
belecer uma estrutura capaz de realizar detecção em imagens de ambiente
urbano. O método tira partido da riqueza de informação presente em múlti-
plos canais da imagem para integrar diferentes técnicas de deteção numa
estrutura simples e genérica. Esta técnica tem como base a idéia de que
um peão apresenta propriedades visuais especí�cas que permitem a sua dis-
tinção do meio envolvente. Então, com vista a explorar essas propriedades,
são recolhidos descritores dos múltiplos canais de uma forma otimizada com
o uso da imagem integral, e, através de exemplos positivos e negativos,
um algorítmo de aprendizagem baseado no AdaBoost é treinado para rela-
cionar esses descritores com a presença de peões. Esta técnica integra uma
estrutura de varrimento de imagem a múltiplas escalas para efectuar o re-
conhecimento visual de peões. O método é testado em dois conjuntos de
dados diferentes e os resultados con�rmam a sua validade.
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1

Chapter 1

Introduction

1.1 Motivation and Framework

Humans are unmistakably the most important components of a machine's environ-
ment. Whenever people are involved in a process with any associated risks, there is
a great number of special security rules that must be followed in order to assure their
safety. Visual detection of humans is a �eld with an extensive range of applications such
as robotics, entertainment, surveillance, care for the elderly and disabled, road safety
and others. In all of these, the knowledge of the presence of a person allows the equip-
ment with whom it's interacting to act accordingly, be it sounding an alarm, stopping
an operation, or any other action. The bene�ts of this become obvious when we think
about a car being driven in an urban scenario. If the circumstances are such that the
driver is always aware of the surrounding pedestrians, danger of accidents involving them
would most likely decrease dramatically. One could even think of a safety mechanism
that refrains a driver's action in a dangerous situation for a pedestrian.
In the European Union, 21% (European Comission, 2011 [19]) of all tra�c fatalities are
pedestrians, indicating that we're looking at a matter of great importance. Motivated
by this, many researchers have devoted much work in developing algorithms for visual
human detection, leading to extraordinary improvements in the past decade. Despite
those signi�cant improvements, there is still much room for progress due to the challeng-
ing nature of the problem. Issues like varying lighting conditions or uncertain pedestrian
postures require robust solutions in order to overcome those di�culties.
In this work, an algorithm capable of visually detecting pedestrians achieving close to
state-of-the-art detection rate is implemented and exploited. The objective was to build
a base detector to be inserted in the Atlas project [6], of the Department of Mechanical
Engineering of the University of Aveiro. This is an ongoing team project that started
with the aim of participating in autonomous mobile robots competitions and has since
then is grown into real road vehicles (Figure 1.1) with the goal of developing new Ad-
vanced Driver Assistance Systems (ADAS). Visual detection of pedestrians is an obvious
and paramount feature that had yet to be incorporated in the project, making this work
a signi�cant contribution. The work presented in this document constitutes a base ap-
plication that has still much room for improvement in the future, as this is a subject in
constant development.



2 1.Introduction

Figure 1.1: Atlas Car.

1.2 Description of the Problems

Visual pedestrian detection is a challenging task with a set of complex problems to
overcome. In this section, an overview of some common problems associated with de-
tecting pedestrians in individual monocular images will be presented.
Computer Vision (CV) is a technology that has grown in presence on many �elds of
society over the past two decades. In industry, product inspection systems have signif-
icantly improved with the aid of CV by allowing inspection of parts at a major scale,
a fact that lead to considerable advancements in the process of �nding defects. In such
environments, a careful setup is planned in order to facilitate the processing of the images
outputted by the camera, since controlling the lighting level, background color and other
external parameters is of utmost importance for an easy object segmentation, meaning,
separating the object of interest from the background.
On the contrary, it is virtually impossible to control the external factors of the images
where pedestrians must be detected, precluding the possibility of segmentation and caus-
ing the need to process cluttered, random images with huge amounts of information. The
unpredictability of the location where a pedestrian might come into sight also mandates
the analysis of the whole scene. Moreover, the varying nature of the lighting conditions
caused either by changes in the daylight, or di�erent weather conditions further hampers
the task. Another typical problem that leads to relatively high miss rates is that pedes-
trians often appear partially occluded by other objects in the scene, such as trees, tra�c
signs, bikes, and even by other pedestrians. The uncertainty of their posture also consti-
tutes a problem, since it is obvious that an up-right pedestrian has di�erent properties
in an image than one sitting down or leaning into another object.
In sum, the mission is to detect pedestrians that might or not be partially occluded,
in unpredictable locations, assuming di�erent stances, on cluttered scenes with varying
lighting conditions. Such conditions demand highly robust algorithms which are typically
heavy and unable to run at the frame-rates that this task demands. Figure 1.2 attempts
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1.Introduction 3

to illustrate some of these problems.

Figure 1.2: Varying lighting conditions, partial occlusion and di�erent postures are
some of the problems associated with pedestrian detection. Images taken from the

INRIA dataset (Dalal and Triggs, 2005 [4]).

1.3 State of the Art

A great development has been made on the subject of visual pedestrian detection in
the past two decades. In this section a compact description of some notorious contribu-
tions for this area will follow. This review will focus �rstly on detectors with a sliding
window approach, often seen as the most promising for low and medium resolution ap-
proaches. Secondly, some multi-sensor applications for ADAS will also be analyzed.

1.3.1 Sliding Window Detectors

One of the �rst sliding window visual object detector attempted to describe an ob-
ject class in terms of an over-complete dictionary of local, oriented multi-scale intensity
di�erences between adjacent regions; they are known as Haar Wavelets, and are applied
to an example-based machine learning approach, where a model of an object class is
derived implicitly from a training set of negative and positive examples (Papageorgiou
et al., 2000 [2]). The speci�c learning engine used is a Support Vector Machine (Cortes
and Vapnik, 1995 [3]) classi�er, and results for car, faces and people detection tasks are
shown. Before this work, visual human detection had not yet been successfully tackled,
as they would typically assume a number of restrictive assumptions in order to produce
results.
Building upon Papageorgiou's ideas, (Viola and Jones, 2001 [25]) (VJ) proposed a method
that extracted Haar-like features with an highly optimized approach due to the use of in-
tegral images, which is an image transformation that allows for rectangular sums of pixels

Pedro Batista e Silva Dissertação de Mestrado / Master Thesis



4 1.Introduction

to be computed by fast arithmetic operations. In addition to this, a learning mechanism
based on the AdaBoost algorithm (Freund and Schapire, 1999 [23]) was utilized in order
to select the most relevant features to perform classi�cation, and a decision structure
in the form of a cascade was built for e�cient decision-making. This cascade works by
evaluating sets of features that grow in complexity as a sample advances in the structure,
an idea that stands upon the notion that a positive instance in an image is an extremely
rare event. By rejecting most negative samples in the earliest stages of the cascade, this
method, applied to face detection, was able to run at 15 frames per second (FPS) with a
high success detection rate. Figure 1.3 shows a schematic representation of the detection
cascade.

Figure 1.3: Schematic depiction of a detection cascade (Viola and Jones, 2001 [25]).

VJ's work is a popular and widely spread approach that still serves as foundation for
many modern detectors, and full implementations of the method were made available in
software development tools such as OpenCV and MatLab. In �gure 1.4 some example
results of the VJ algorithm are shown.

Figure 1.4: Viola and Jones's face detection algorithm (Viola and Jones, 2001 [25]).

Up until this moment, detection algorithms worked mostly on intensity images, a
principle that changed when gradient-based features were introduced in the scope of
pedestrian detection. Becoming widely known as Histogram of Oriented Gradient (HOG)
(Dalal and Triggs, 2005 [4]), this method attempted to de�ne a scene by dividing it into
small spacial regions (cells), and accumulating for each one a local histogram of normal-
ized gradient directions. These cells are combined over slightly larger and overlapping
spacial regions (blocks), and each block is also locally normalized for better invariance
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1.Introduction 5

to lighting conditions. The above-mentioned descriptors are then applied to a trained
SVM based window classi�er that identi�es if a pedestrian is present in the scene or not.
Figure 1.5 presents an overview of the HOG algorithm. This contribution resulted in
large gains when compared to intensity based methods and, since its introduction, the
number of variants of HOG has increased to the point that nearly all modern detectors
use some form of these features.

Figure 1.5: Overview of HOG detection algorithm (Dalal and Triggs, 2005 [4]).

Interpretation of shape is also an important cue to the subject. In general terms,
shape-based methods work by generating templates of the desired object and �nding
matches for them in visual data. The work developed by (Gravila and Philomin, 1999
[13]) was one of the �rst to adopt this approach in the domain of pedestrian detection. It
uses the Hausdor� distance transform and a template hierarchy to rapidly match image
edges to a set of shape templates, and tests were made for pedestrian and tra�c sign
detection with satisfactory results, as shown in �gure 1.6.

Figure 1.6: Example results of the shape-based pedestrian detection method (Gravila
and Philomin, 1999) [13].

Still on this note, (Sabzmeydani and Mori, 2007 [22]) used gradient-based HOG-like
features combined with an AdaBoost engine to learn head, torso, legs and full body
shapes. In this approach two kinds of features are used for classi�cation: the low-level
features, which are simple and reminiscent to Haar-like features, and mid-level features
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6 1.Introduction

that are learned part models for template matching. This method is documented to
outperform HOG by a considerable margin.
Some researchers have used motion features to further improve detection results. The
basic idea is that in an usual situation people are in motion, rather then sitting still.
Therefore it is natural to think that if the circumstances are such that detection of mo-
tion is achievable, important clues as to the possibility of the presence of pedestrians will
be found. It is, however, a challenging task to incorporate motion features into detec-
tors given a moving camera. Given a static camera, (Viola et al., 2005 [26]) proposed a
similar approach to their previous work, but applied to the result of the di�erence of two
sequential frames, resulting in large performance gains. For non-static imaging setups,
camera motion has to be factored out, as did (Dalal et al., 2006 [5]) when they attempted
to model motion statistics based on an optical �ow's (Fleet and Weiss, 2006 [12]) internal
di�erences, thereby compensating for uniform motion locally.
Although HOG has not been outperformed by any single feature, some researchers hy-
pothesized that assembling multiple types of features could provide important comple-
mentary information. To prove this, (Wojek and Schiele, 2008 [28]) combined Haar-like
features, shapelets, shape context, and HOG features to compare the resultant detec-
tor with each of the features performing on their own, demonstrating that the combo
outperforms any single feature detector, as shown in �gure 1.7. This framework was
later extended to include the above-mentioned motion features in (Walk et al, 2010 [27]),
further improving the detection results.

Figure 1.7: Multi-feature detector performance (Wojek and Schiele, 2008 [28]).

Using a di�erent course of action, (Dollár et al., 2009 [9]) extracted Haar-like features
from various channels, including gradient magnitude, LUV color channels and gradient
magnitude quantized by orientation, providing a simple framework for integrating multi-
ple feature types. Examples of possible channels are shown in image 1.8. In the author's
approach, a large pool of features is extracted from random regions of the channels to
guarantee a good characterization of the scene. A decision structure similar to the VJ's
method is utilized with the purpose of selecting the most relevant features and perform-
ing e�cient classi�cation. This method became known as Integral Channel Features. A
signi�cant optimization was made to this algorithm when the authors hypothesized that
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1.Introduction 7

features could be approximated at nearby scales with little sacri�ce to results (Dollár et
al., 2010 [8]). By eliminating the need to extract features at every scale, this algorithm
is documented to perform multi-scale detection at 6 FPS and ranks among the best
found in literature. A still better version of this framework was introduced in (Dollár et
al., 2012 [7]), in which an even more e�cient decision structure was proposed. In this
brand new Crosstalk Cascades method, it is established that nearby decision windows
have correlated responses. By creating a mean of communication between detector's
responses, this method achieves similar detection rates as the Integral Channel Features
while increasing speed by an order of magnitude.

Figure 1.8: Examples of channels computed from an image (Dollár et al., 2009 [9]).

Some authors have made an e�ort to modify learning engines to improve their speed,
as did (Tuzel et al., 2008 [24]) by utilizing covariance matrices computed locally over
a large diversity of features as object descriptors. The learning data doesn't lie on the
vector space, thus improving the learning/testing performance. Non-linear SVM applied
to sliding window detection was made possible when (Maji et al., 2008 [16]) found that
the use of the learning algorithm with an approximation to the histogram intersection
kernel lead to substantial gains in terms of speed.

1.3.2 Multi-sensor Detectors

Visual data has great potential due to the richness of information it holds. However,
it may be a challenging task to build a robust detector to be implemented in an ADAS
relying solely on camera output as a result of the problems discussed in the previous sec-
tion. To overcome those di�culties, some try to ally di�erent type of sensor information
to create robust and more reliable detectors.
Infra-red image and laser data were used by (Fardi et al. 2005 [11]) to generate regions
of interest where pedestrians might be at sight. A �rst-step classi�cation is obtained
by evaluating a set of descriptors based on the Euclidean distance of Fourier between
objects and reference sets on infra-red visual data, a classi�cation that is later re�ned by
motion features acquired using egomotion sensors and optical �ow.
On a di�erent approach, radar, color and infra-red information is fused in (Milch et al.,
2005 [17]). In this work, hypothesis are generated through the evaluation of vision-based
local histograms on edges, computed both on color and infra-red visual data. Neural
Networks is the learning engine used for a preliminary classi�cation, and its output un-
dergoes further veri�cation by a fusion between radar and tracking information.
Combining infra-red and visual spectra from the two camera types was proposed by
(Bertozzi et al., 2006-2007 [1]). In the author's work, foreground segmentation is carried
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8 1.Introduction

out by overlapping 2D and 3D information from both sensors and, �nally, symmetry and
template matching are used to classify, verify and re�ne �nal detections.
Laserscanner-based tracking of points was the strategy chosen by (Premebida et al. 2007
[20]) to generate candidate regions of interest for further analysis. Objects were de�ned
by laser and visual features, and AdaBoost was utilized for generating responses.
These systems were built in scienti�c research environments where information is usually
made accessible for anyone. That is not the case in industrial environments where, for
commercial reasons, conducted research is kept in absolute secret, a circumstance that
makes it hard to �nd reliable sources about the state of this technology in industry. It
seems granted, however, that the on of �rst pedestrian detection system to be commer-
cialized will be launched in 2014 by Mercedes and will be based on stereo camera images
(Mercedes press information, 2013 [15]). A study made by Mercedes shows that their
safety mechanism based on pedestrian detection could avoid 6% of pedestrian accidents
and reduce the severity of a further 41%. Volvo was the �rst, and only to this date,
to launch a real pedestrian detection application (Volvo Mobileye Pedestrian Collision
Warning, 2012 [18]) to the market. Their mechanism uses monocular image and radar
to perform detection, and issues a warning to the driver when there is risk of collision,
giving him over two seconds to avoid it.

1.4 Proposed Solution

Although great advantages arise from fusing di�erent type of sensor information, a
multi-sensor approach also has its issues, such as di�culties in fusing and correlating
di�erent sensor data, higher registration demands, more complex system implementa-
tions, accumulation of errors generated from di�erent sensors, and others. Despite these
problems, it is obvious that any real and full-functional pedestrian detector will, in all
likelihood, require the use of multiple sensors as a result of the extremely demanding
nature of the task in hands.
However, creating such complex application is a large engineering e�ort that requires
a great deal of know-how, expensive equipment and time, especially when the applica-
tion is being built from scratch. Although much useful equipment already exists in the
laboratory, as well as a sta� with a comprehensive knowledge and set of skills, building
a full-functional, multi-sensory system cannot the objective due to the short amount
of time available to complete this work. The goal was to build a reliable, generic and
simple vision-based pedestrian detection framework that leaves the possibility for future
development and integration in more complex systems. It was decided then that the im-
plementation of a sliding window algorithm was the way to go, since one can be modi�ed
to work with other sensors in future development.
In order to de�ne a course of action, two premises were established: the implemented
algorithm should rank among the best in terms of detection performance and should also
leave space for future improvements. In respect of this, (Dollár et al, 2012 [10]) made an
extensive survey of existing sliding window detectors, where 16 algorithms were compared
against each other in a carefully designed evaluation platform. Out of all the evaluated
algorithms, Integral Channel Features (ChnFtr) proved to be the most interesting for
several reasons. Firstly, the only method that slightly outperforms it uses motion and
gradient-based features, a computationally heavy approach that is documented to run
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50 times slower than ChnFtr, rendering it uninteresting. On the contrary, the authors
of ChnFtr have largely improved its performance in later work, to the point of enabling
multi-scale detection at 30 FPS [8] [7]. Secondly, the method provides a relatively simple
framework in terms of code implementation when compared to other approaches. Since
this implementation �tted perfectly with the proposed goal, it was the chosen way to go
for this project.
A detailed explanation of ChnFtr is presented in chapter 2.

1.5 Development Tools

It has become clear that this was mainly a software development project, and, as
one would expect, most work involved designing, implementing and testing code. The
programming language used was C++ under Linux platform, and, in addition to this, a
set of indispensable development tools were utilized, all of which will be enumerated and
described in this section.

1.5.1 Robotic Operation System

The Robot Operating System (ROS) (Quigley et al., 2009 [21]) provides a software
development framework that is designed for the creation of robot software. This appli-
cation has several built-in components prepared to handle the output of di�erent types
of sensors, such as cameras, lasers, actuators, contacts and other common elements in a
robotic environment.
ROS also allows for an easy way to establish communication between di�erent software
modules (nodes), which permits the elaboration of an infrastructure that can communi-
cate with any running process. This communication works in three steps: �rst, a node
advertises a ROS Topic. Once that topic of communication is advertised, the same node
is able to publish messages on that topic, and �nally, those messages can be listened by
any node that subscribes to the same topic. Such messages can be of any kind, from
simple strings of characters to visual and laser data. Figure 1.9 tries to illustrate a very
simple ROS communication architecture. It is easy to understand that this information
exchanging structure has a great potential when applied to robotics, since an uniform
and standardized communication between sensors facilitates the development of complex
multi-sensor applications.

Figure 1.9: Schematic of a simple ROS communication architecture.

Another important feature that ROS provides is the possibility to record data logs
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(rosbags) that can be replayed later. This allows for data to be collected in real scenery,
to be later treated in a laboratory environment as if it was on the �eld.
Recently, to standardize the work developed for the Atlas project, an e�ort has been
made to migrate every application to ROS environment and, for this reason, the work
presented in this document was also developed in ROS.

1.5.2 OpenCV

OpenCV is a popular open source computer vision library written in C and C++
that was designed for high computational e�ciency and with a strong focus on real-time
image processing applications. It provides an infrastructure to help people build fairly
sophisticated vision applications, and contains hundreds of functions that span many
areas of application, like factory product inspection, security, medical imaging, robotics
and many others. This is a well documented, very complete library with a huge and
collaborative user community that is in constant growth. Such a healthy and knowledge-
sharing environment is a positive aspect that largely contributed for the development of
the project.
In this work many useful OpenCV functions are used for several purposes. Resizing
images, computing gradients, converting images between colors spaces or selecting sub-
windows from images are just a few examples of operations provided by OpenCV that
are absolutely necessary for most visual pedestrian detection applications.

1.5.3 INRIA Dataset

In order to develop detection applications of objects in complex scenes, where seg-
mentation and other similar approaches are not an option, the use of a learning machine
algorithm is absolutely necessary. In a nutshell, these algorithms work by exhaustive
learning of positive and negative instances of the problem in question, and once the
learning process is �nished, they are able to predict on new unseen data. So, in order to
develop a detection application, the developer must possess a set of positive examples of
the object to be detected, and, to ensure that the learning engine is correctly trained, the
number of positive examples usually needs to be large. Acquiring hundreds, sometimes
thousands, of positive instances of an object is obviously a slow and time-consuming task,
even more when the data needs to be treated and labelled in laboratory. Fortunately, a
handful of pedestrian datasets were made public by the scienti�c community, and anyone
is free to use them.
The INRIA dataset was acquired by (Dalal and Triggs, 2005 [4]) with the objective of
setting a challenging framework to test the HOG algorithm. Since then, this dataset has
been used by most pedestrian detection researchers, as did the authors of ChnFtr.
This dataset provides a training set with 1218 images where no pedestrians appear (neg-
ative images), and 2416 positive training windows, meaning, pedestrian images cropped
from the original scene in which they appear. The fact that the positive examples are
already cropped out of the original images largely facilitated the training process. The
dataset also provides a di�erent set of images, with 1132 positive windows and 462 neg-
ative images to test the detector performance.
This dataset was of utmost importance for the development of this work, as it not only
allowed for a facilitated training/testing process, but also for the implementation of a
meaningful evaluation platform to compare results between the original algorithm and
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the ones achieved in this work. Image 1.10 shows a set of example positive windows from
the INRIA dataset.

Figure 1.10: Examples of positive windows used for training a classi�er. In this dataset
people appear on a wide variety of backgrounds.

1.6 Experimental Setup

The tools described on the previous section integrate an experimental setup that was
the base for all the development. A schematic representation of the experimental setup
is shown in �gure 1.11.
Having in mind that the end goal of this project was to build an application to run on
the Atlas Car, it was an important pre-requisite for the setup to be generic enough to
allow for full development in laboratory environment, and also be easily set to run on
the �eld.
To ful�ll that important pre-requisite, two nodes were created. The image server is re-
sponsible for advertising an image transport topic, loading images from �le and publishing
those images on the topic. The image client subscribes to that topic and, the event of an
image being sent over triggers a callback function that processes and analyses the image
using OpenCV.
To test the application on another setting, be it with camera output or rosbag replay,
one just needs to set the image client to subscribe to the topic in which those instances
are publishing.
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Figure 1.11: Schematic representation of the experimental setup.
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Chapter 2

Integral Channel Features

To solve a complex vision detection problem it is necessary to perform exhaustive
descriptions of the objects in order to �nd a set of descriptors that present signi�cant
variability in their presence. The proposed solution takes advantage of the richness
of information present in multiple channels of an image, using it to assemble di�erent
detection techniques in a simple framework. By evaluating a very large number of simple
features from multiple channels, this algorithm integrates normal, HOG-like, shape-based
and other feature types in an indirect manner and, not only that, those features can be
extracted in an optimized manner with the use of the integral images. These are the
reasons as to why Integral Channel Features (ChnFtr) has so much potential, since it
allies multi-feature analysis and speed in a relatively simple infrastructure. ChnFtr is
divided into three main parts:

1. Computation of channels

2. Feature extraction

3. Classi�cation

In this chapter items 1 and 2 will be discussed, leaving the topic of classi�cation for
the next chapter.

2.1 Channels

In the context of this work, a channel of an image is a representation of the original,
where the output pixels are obtained by using linear or non-linear transformations on the
input ones, thus preserving the overall image layout. A trivial channel is the grayscale
representation of an image, and, likewise, the di�erent color channels of an image can
also serve as channels in this context.
There are countless transformations that can be applied to an image that will result in
new channels; application of �lters, binary thresholds and edge detectors are just a few
examples of simple ways to obtain numerous channels. However, our human perception
only goes so far when it comes to realize which channels will contribute with more rele-
vant information for detection. The only way to complete such a task is to test various
channels for performance and check which are more informative by evaluating results.
Fortunately, that information is already available in the original publication, where the
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detection performance of di�erent channels were put against each other. As shown in
�gure 2.1, the conclusions that were drawn from that study were that the channels that
lead to the best results are the gradient magnitude, gradient histogram (labelled Hist in
�gure 2.1) and the LUV color channels. For this obvious reason, these channels were the
ones used, and will be described in the following sub-sections.

Figure 2.1: Detection performance of di�erent channel combinations (Dollár et al., 2009
[9]).

2.1.1 Gradient Magnitude

Given an input image I, the gradient magnitude (GM ) of I is a representation of the

strength of its edges. The channel is computed as shown in equation 2.1, in which
δI

δx

and
δI

δy
are respectively the horizontal and vertical gradients of I.

GM(x, y) =

√(
δI

δx
(x, y)

)2

+

(
δI

δy
(x, y)

)2

(2.1)

In terms of code implementation, the horizontal and vertical gradients are computed by
applying a simple Sobel operator. The gradients are then squared, summed and �nally
square rooted for the �nal result. Figure 2.2 describes how this is processed in the code.
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Figure 2.2: Gradient magnitude computation.

2.1.2 Gradient Histogram

A gradient histogram is a weighted histogram where bin index is determined by
gradient angle and weighted by gradient magnitude, providing important information
about edge strength under di�erent pixel orientations. The only parameter for computing
gradient histogram is the number of bin orientations, knowing that each bin generates a
separate channel. This parameter is set to 6, which is the number from which the results
stop improving, as shown in picture 2.3.

Figure 2.3: Detection performance of di�erent numbers of bin orientations (Dollár et
al., 2009 [9]).

The orientation at each pixel is calculated according to equation 2.2.

θ(x, y) = arctan

 δI
δy

(x, y)

δI
δx

(x, y)

 (2.2)
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Concerning the code implementation, the horizontal and vertical gradients obtained be-
fore are used to compute quotients between the gradients, which are stored in a new data
structure. Then, the orientation for each pixel is calculated and a heuristic structure is
built to accumulate the previously computed gradient magnitude values on di�erent bins
depending on the value of θ. A schematic description of how gradient histogram bins are
processed in the code is shown on �gure 2.4.

Figure 2.4: Gradient histogram computation.

2.1.3 LUV color channels

Color is an important cue for detection. In respect of this, di�erent color spaces were
compared against in order to �nd out which is more informative; this a comparison lead
to the conclusion that the LUV color channels are the ones that provide the best results,
as show in �gure 2.5.
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Obtaining these channels is done with few lines of code, since OpenCV provides a straight-
forward way to convert images between color spaces. Figure 2.6 illustrates how the
channels are computed code-wise.

Figure 2.5: Detection performance of di�erent color channels (Dollár et al., 2009 [9]).

Figure 2.6: LUV color channels computation.
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2.2 Integral Images

There is a middle step between computation of channels and feature extraction. Since
a scene description is done through the computation of great amounts of rectangular sums
of pixels, it is convenient to use a optimized way for computing local sums. This is done
with the use of the integral image, and is a key point of the algorithm.
The integral image is an image transformation that allows e�cient generation of sums
of pixel values in a rectangular subset of an image. Given an input image I, the value at
any point (x,y) in the integral image Int is just the sum of all pixels above and to the
left of (x,y), as illustrated in equation 2.3.

Int(x, y) =
∑
x′≤x
y′≤y

I(x′, y′) (2.3)

Then, the sum of any rectangular region of the image can be calculated by a simple
arithmetic operation, as illustrated in �gure 2.7.

Figure 2.7: Finding the sum of a rectangular region (Viola and Jones, 2001 [25]). In
this example, the value of the summed pixels in area D is Int(4)+Int(1)-Int(2)-Int(3).

OpenCV already provides a way for computing integral images automatically, making
it unnecessary to implement this operator by hand. The 10 channels (1 gradient mag-
nitude, 6 bins of orientation and 3 color channels) are transformed into integral images,
and the resulting transformations are referred as Integral Channels.

2.3 Feature extraction

Sliding window detection is performed by applying a Detection Window (DW) over
the image, evaluating a set of features, and then sliding it to an adjacent place to re-
peat the process. The DW has constant dimensions (64x128 as in most sliding window
detection methods), so, in order to �nd pedestrians with di�erent sizes the image has
to be rescaled and re-analysed multiple times. This compact description of a generic
multi-scale sliding window detector shows that de�ning how a DW is analysed is a major
key point for detection. This section will focus on feature extraction from DWs.
There are distinct approaches for describing a DW. Some researchers opt to generate a
�ne tuned pool of features that are subject to tests until they achieve good results. This
is the case of the HOG algorithm, where features are made of local sums calculated over
a dense overlapping grid in the DW. On the contrary, rather then carefully designing
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a feature space, ChnFtrs generates random features from the channels, knowing that a
good characterization of the DW is most likely granted if the feature pool is large enough.
In the context of this work, a feature is no more than a rectangular sum of pixels, and
each feature has the following random parameters: the channel where it is calculated, the
starting position of the rectangle and its dimensions. To make this more clear, an illus-
tration of 20 possible random features is shown in �gure 2.8. One is inclined to think that
thousands of random features are likely to lead to a strong and robust characterization
of a DW.

Figure 2.8: Examples of random features: in this illustration, the black rectangles
represent the DW over the 10 channels, and the red rectangles represent examples of

random rectangles over which local sums are calculated.

To extract any number of random features, it is necessary to generate their parameters
�rst. In terms of code implementation, a vector data structure was created in which each
element has information about the 5 random parameters necessary to de�ne a rectangle:

� Channel index

� Width

� Height

� X coordinate of the upper-left corner of the rectangle

� Y coordinate of the upper-left corner of the rectangle

Then, a function to initialize the vector with N random parameters was created. Keeping
in mind that even if the parameters are random, it is vital that the program is able to
reproduce the same parameter vector any number of times. To achieve this, OpenCV
provides an RNG (Random Number Generator) class that is initialized with a seed. If
the seed is the same, the random parameters generated will also be the same.
For each element of the vector, the following random parameters are generated:

� Random(0,9) - channel index

� Random(5,DW width) - rectangle width

� Random(5,DW height) - rectangle height
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� Random(0,DW width-rectangle width) - X coordinate

� Random(0,DW height-rectangle height) - Y coordinate

This process occurs once when the program is initiated, and the resulting parameter
vector's elements are accessed when a DW is processed.
The integral channels and feature parameter information is all that is necessary to com-
pute features over a DW. In what concerns the code implementation, for every random
parameter, a rectangle is de�ned and the local sum is computed and stored in a feature
vector. The resulting vector characterizes the DW feature-wise.

2.4 Multi-scale Image Analysis

Once feature extraction from DWs is set, the next step is to build an architecture
for full image analysis. As it was mentioned before, it is essential to analyse not only
the entire image, but the same image at multiple scales to �nd pedestrians with multiple
sizes. It is then necessary to build a dense image pyramid (�gure 2.9) for analysis.

Figure 2.9: Dense image pyramid (Dollár et al., 2010 [8]). The green rectangle
represents the DW of constant dimensions.

There are a few parameters for building this pyramid, all of which are easily change-
able.
At each step the image is rescaled depending on the number of scales per octave (nPer-
Oct), and its default value is set to 8. An octave is the necessary scaling to rescale the
image by a factor of 2. So, each downsampled image is rescaled according to equation
2.4, and for upsampling the logic is the same (equation 2.5).

DownScale = 2
−1

nPerOct (2.4)

UpScale = 2
1

nPerOct (2.5)

For 640x480 images, upsampling becomes a computationally heavy operation that is
performed when detection of far scale pedestrians is a requisite, so, it is turned o� by
default. Downsampling goes on until the image reaches a parametrizable minimum size,
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which default value is set to the same of the DW (64x128).
All that remains is to slide a DW through all the images in the pyramid and store a
feature vector for every DW analysed. The default value for the step by which the DW
slides through an image is set to 4 (in both directions), which is the step used in the
original implementation.
With the default parameters described in this section, each 640x480 image has ∼60000
DWs and takes ∼0.8 seconds to be processed if 1000 features are extracted per DW, in
an Intel core i7 processor. The processing time grows fairly linearly with the number of
features computed, taking ∼1.6 seconds for 2000 features and so on.
Regarding the code implementation, a cyclic architecture described by �gure 2.10 was
built.

Figure 2.10: Multi-scale image processing.

2.5 Parametrization Summary

For an easy overview of the work so far, this section provides a table that summarizes
the parametrization of the algorithm.

Integral Channel Features

Channel types
Gradient magnitude
Gradient histogram

LUV color

DW size (w x h) 64 x 128

min. feature size (w x h) 5 x 5

max. feature size (w x h) 64 x 128

Number of scales per octave 8

max. scaled image size (w x h) 640 x 480

min. scaled image size (w x h) 64 x 128

Sliding DW step 4

Table 2.1: Default parametrization summary

These parameters are default values that are de�ned in a header �le. The program
is prepared to run cleanly for any parametrization. So, for running the application with
di�erent parameters, one just needs to change the header �le de�nitions.
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Chapter 3

Classi�cation

Searching for an object in a scene demands for a method capable of evaluating the
feature vectors that describe it. This can be done through the implementation of a Ma-
chine Learning (ML) mechanism. The purpose of ML is to turn data into information,
a process that becomes fundamental when the information has to be inferred from large
amounts of data, much like the case of the problem in hands. Typically, these methods
attempt to model an object class from a training set of examples to then make predic-
tions on new and unseen data, or, in other words, perform classi�cation.
There are multiple ML methods, each with its speci�cations and applications, so, one
must choose a method that correctly �ts the problem. The adopted method needs to
classify between two classes, Pedestrian and Not Pedestrian, needs to handle thousands
of features per sample and should also be fairly resistant to over-�tting. The method
that best �ts these requirements is AdaBoost, and a compact description will be carried
out in the following section. The basic idea behind AdaBoost, short for Adaptive Boost-
ing, is that it is possible to generate a very accurate prediction rule, or strong classi�er,
through the aggregation of rough and moderately inaccurate linearc rules, weak classi-
�ers, provided that they perform just slightly better than a random classi�er would. A
graphic illustration of this is shown in �gure 3.1.
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Figure 3.1: Aggregation of weak classi�ers: in this example, each black line represents a
weak classi�er that attempts to distinguish red from blue dots. It is easy to understand
that each weak classi�er doesn't perform well on its own, whereas a combination of the

5 weak classi�ers will correctly label most samples.

3.1 AdaBoost

This algorithm takes as input a training set (x1,y1),..., (xm,ym), where xi belongs to
the domain X, and refers to a feature vector; yi refers to the label of the corresponding
sample, and belongs to Y={-1, +1}. AdaBoost calls a weak learning algorithm over
and over again in a series of rounds t= 1,...,T. One of the key points of this method
is to maintain a distribution set of weights over a training set, which are set uniformly
in the �rst iteration. The weight of this distribution on a training example i on round
t is denoted Dt(i). At the starting point, all weights are set uniformly but, on each
iteration, the weights of incorrectly classi�ed examples are increased in an attempt to
force the algorithm to give them a special attention, and this is why the method is called
Adpative Boosting, since it adapts iteratively to focus on hard examples. The weak
learner's function is to �nd a weak classi�er : ht: X −→ {-1,+1 }, appropriate for the
weight distribution Dt. A weak classi�er is evaluated by its error, calculated according
the equation 3.1.

εt =
∑

i:ht(xi)6=yi

Dt(i) (3.1)

Once an hypothesis ht has been set, AdaBoost chooses a parameter αt, which is a mea-
sure of the importance of the learned weak classi�er, and is calculated according to the
equation 3.2.

αt =
1

2
ln

(
1− εt
εt

)
(3.2)

Note that αt > 0 if εt<1/2, meaning, a weak classi�er is only attributed with importance
if it gets atleast half of the training examples right. It is also intuitive that a weak classi�er
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is as more important as lower its error is. The distribution Dt is then updated according
to the rule illustrated by equation 3.3, in which the denominator is a normalization factor
used to ensure that Dt+1 is a probability distribution.

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))∑
iDt(i)exp(−αtyiht(xi))

(3.3)

This rule assures that the misclassi�ed examples are attributed with more weight so that
in the next iteration they can be resolved.
The �nal hypothesis H is a majority weighted vote of the T weak classi�ers, as show in
equation 3.4.

H(x) = sign

(
T∑
t=1

αtht(x)

)
(3.4)

Or equation 3.5 to obtain a measure of the con�dence of the detector

H(x) =
T∑
t=1

αtht(x) (3.5)

This whole process is summed up in algorithm 1.

Algorithm 1 The boosting algorithm AdaBoost

Given (x1,y1),..., (xm,ym) where xi ∈ X, yi ∈ Y = {-1,1 }
Initialize D1(i)=

1

m
For t=1,...,T:

� Train weak learner using distribution Dt

� Get weak hypothesis with error:

εt =
∑

i:ht(xi) 6=yi

Dt(i)

� Choose αt =
1

2
ln

(
1− εt
εt

)
� Update:

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))∑
iDt(i)exp(−αtyiht(xi))

Output of the �nal hypotheses:

H(x) = sign

(
T∑
t=1

αtht(x)

)
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3.2 Training Process

OpenCV provides an implementation of AdaBoost, so there was no need to build one
from scratch. The most relevant aspects of the training process of the �nal classi�er are
discussed in this section.

3.2.1 Training Samples

OpenCV's AdaBoost training method uses a matrix containing the training data as
input, and outputs a classi�er that can later be used to perform detection in new sam-
ples. The most convenient way to prepare the data is to write it to a text �le and only
later convert it into a matrix. So, simple changes had to be made to the infrastructure
to enable the writing of feature vectors in �le.
Selecting the training samples of the �nal classi�er is done in three stages. The �rst
stage classi�er is trained with the 2416 positive training windows available on the INRIA
dataset and ∼5000 negative windows generated randomly from a wide variety of nega-
tive images. The resulting classi�er is then tested on the same negative images, and this
time ∼5000 false positives are added to the training data as negative examples, forcing
the classi�er to learn the hard examples, a process that is known as bootstrapping. Fi-
nally, a �nal round of bootstrapping is performed where more ∼5000 hard negatives are
added to the training data. In sum, The �nal classi�er has 2416 positives examples and
∼15000 negative examples, ∼10000 of which are samples that were incorrectly classi�ed
as positive by the �rst 2 stage classi�ers.

3.2.2 Classi�er Parametrization

There are a few additional parameters important for training the classi�er. The
number of features to be computed per window is a key factor that has a major e�ect
on the detector's performance. To understand how the size of the feature pool a�ects
results, two classi�ers were trained, one with 10000 features and another with 15000.
Note that a classi�er trained with a given number of features has to be fed with that
same number of features in order to produce a response during test time.
The number of weak classi�ers is also an important parameter. As explained before, each
weak classi�er will contribute with a weighted vote for each decision. This parameter is
set to 2000, which means that 2000 weak classi�ers are derived from the feature pool.
The �nal parameter is the depth of the classi�er, which is set to 2. This parameters
de�nes the number of features that constitute each weak classi�er. Depth 1 uses one
feature per weak classi�er while depth 2 uses three features per weak classi�er.
In practical terms, the OpenCV boost training method will go through the training data
for 2000 iterations, and in each iteration will select the combination of 3 features that
best classi�es the training data. Table 3.1 gives a summary of the classi�er's parameters.
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Adaboost Classi�er

Positive class Pedestrian

Negative class Non pedestrian

Feature pool size
15000
10000

Positive samples 2416

Negative random samples ∼5000
Negative bootstrapped samples ∼10000
Weak classi�ers 2000

Depth 2

Table 3.1: AdaBoost parameters

3.3 Post Processing

In full image analysis, it is necessary to keep track of the windows that are classi�ed as
positive in order to draw rectangles around detected pedestrians. Since feature extraction
and classi�cation are processes that occur on par, it was necessary to create a data
structure to accumulate the image coordinates of the positive windows, as well as the
scale at which they were obtained in order to transform them to the original scale. As
one would expect, in a multi-scale detection platform an object is often detected multiple
times, generating multiple rectangles, as shown in �gure 3.2. It was then important to
�nd a way to group rectangles that belong to the same object together. Fortunately,
since this is a common detection problem, OpenCV provides a way to merge rectangles
with similar sizes and locations, and the resulting output is illustrated by �gure 3.3.

Figure 3.2: Rectangles generated by the detector.
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Figure 3.3: Merged rectangles.

3.4 Computation Time

In the original implementation of ChnFtrs, classi�cation is done through a cascade
of boosted classi�ers. Each stage of the cascade grows in complexity and evaluates more
features. So, if at any point in the cascade a sample is rejected, the detector stops
evaluating features and goes on to the next window. In one 640x480 image there are
∼60000 windows to evaluate, and, on average, less then 0.1% of those windows will
be positive for pedestrian, so, it follows that if most negative windows can be rejected
by evaluating a small set of features, the algorithm will speed up by multiple orders of
magnitude. Indeed, the cascade of boosted classi�ers is the major key point for the speed
of the detector, however, a great deal of complexity lies in training one and there are no
standard tools that o�er a ready to use implementation. Due to the short amount of time
available to develop this project, it was not possible to implement a cascade. Instead,
one big boosted classi�er is utilized, largely sacri�cing speed since the detector evaluates
the whole set of features for every single detection window. In this setting, each image
takes ∼20 seconds to be fully processed and classi�ed if 15000 features are extracted per
window.
However, given that the results in terms of detection rate do not vary much between
both approaches, the validation of the method is not in question. Figure 3.4 illustrates
the di�erences between a single boosted classi�er and a cascade of boosted classi�ers.
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Figure 3.4: Di�erence between single boosted classi�er and a cascade (Grossmann, 2004
[14]).
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Chapter 4

Experiments and Results

There are two main aspects important to evaluate a detector's performance: true
positive rate and false positive rate. These parameters are not independent, since a very
permissive detector may achieve almost perfect results in terms of true positives, but with
prohibitive amounts of false positives as a consequence. The conclusion is that these pa-
rameters must be assessed simultaneously in order to achieve a meaningful performance
evaluation. This can be done through the use of ROC (Receiving Operating Character-
istic) curves, which draw the relationship between true positive and false positive rates.
To test the detector's performance, experiments were carried out in two distinct datasets.
The INRIA dataset provides a test set that allows for a straightforward quanti�cation of
results and makes them directly comparable to other detectors that were tested in the
same manner, conferring objectiveness and signi�cance to the obtained results.
The detector was also tested in a dataset acquired aboard the Atlas Car in Aveiro.
Achieving a signi�cant quanti�cation of results on the Atlas Pedestrian Dataset demands
the establishment of a ground truth that re�ects the necessities of the application, so,
rather than aiming for pedestrian individualization, situations representing any potential
risk to pedestrians were the considered targets.
All the relevant aspects related to the attainment of results are discussed in this chapter.

4.1 INRIA Dataset Experiments

The INRIA Dataset provides a test-bed that largely facilitates the process of generat-
ing ROC curves. The adopted methodology, ground truth rules and results are discussed
in this section.

4.1.1 Ground Truth

To produce the data to draw the curves, the algorithm was tested on 1132 positive
windows and around 10 million negative windows taken from 452 di�erent images. In
these circumstances the ground truth is established in a straightforward manner, since it
is known before-hand that each one of the 1132 positive windows contain a pedestrian,
and none of the 452 images from which the negative windows originate contain a single
pedestrian.
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4.1.2 Methodology

For a given threshold, the positive windows are evaluated and every negative response
from the detector means a missed pedestrian. Then the negative windows are tested in
the same fashion, only now any positive response from the detector is a false positive.
This process is repeated several times for di�erent thresholds and the curves are drawn
by connecting the various data points. To understand the e�ect of the feature pool size
on the detector performance, two detectors are tested in the same way and compared,
one trained with 15K features and the other with 10K.

4.1.3 Results

Figure 4.1 shows the ROC curves for both detectors. The x-axis measures in false
positives per window and is log-scaled for a better visualization. The y-axis measures
detection rate in percentage, which is the quotient between the true positives and the
total number of pedestrian windows tested.

Figure 4.1: Detector performance on the INRIA dataset.

4.1.4 Commentary

On the reference value of 10−4 false positives per window, the algorithm trained with
15K features achieves 79.5% detection rate, and, although this is not a bad �gure at all,
the original implementation documents a detection rate of 91%, over 10 points above the
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presented implementation.
It was hypothesised that the explanation for this di�erence in performance could lie in
the fact that the original classi�er was trained with 30K features, rather than 15K. To
back this hypothesis, a similar classi�er was trained but now with only 10K features; if
the number of features could be causing this under-performance, an even lower detection
rate was expected, and, in fact, that is what the results show, with the 10K detector
performing ∼3.5% points below the 15K detector. That is not to say that if this detector
was trained with 30K features the results would be exactly the same as in the original,
they would probably still be lower for di�erent reasons. The method may be the same,
but the implementations are unique, and this algorithm has still much room for tweaks
and improvements.
Tests weren't made for 30K features because OpenCV's data structures wouldn't even
allow for such big feature spaces. So, instead, it was decided that 15K and 10K feature
detectors were to be trained and tested for performance in order to establish a coherent
relation with the results shown in the original document.

4.2 Atlas Pedestrian Dataset Experiments

One of the main goals for this project was the implementation of a pedestrian de-
tection infrastructure on the Atlas Car, making the evaluation of the detector on data
recorded by the car's cameras a paramount procedure. This dataset was obtained in
Aveiro on some areas known for being usually busy, such as the Avenida Lourenço Peix-
inho and the area around the university. Because it is important to test the detector on
a wide variety of urban environments, some areas with less pedestrian activity were also
recorded and tested.
Quantifying results isn't nearly as straightforward on the Atlas Pedestrian Dataset as it
was on the INRIA Dataset, since labelling all the acquired data frames was an impossible
to complete task in the available time to complete the project. It was then necessary to
adopt a di�erent methodology for obtaining signi�cant results.
In this section ground truth rules, methodology and results will be discussed.

4.2.1 Ground Truth

A close analysis of the Atlas Pedestrian Dataset leads to the conclusion that in order
to achieve any meaningful result out of real road data, a careful ground truth rule that
takes into account the intended application has to be established. One can easily think
that the results of an application for counting pedestrians have to be perceived di�erently
then the ones for driving assistance, where detecting all pedestrians in the environment
is not only unnecessary, but undesirable, since many appear in situations that do not
pose any risk. Having this in mind, only pedestrians that appear at a close to medium
range on the image are taken into account, since these are the ones that may be at risk,
and pedestrians that appear either in the far opposite side of the street, or very far into
the horizon are discarded. Also, rather than individualizing pedestrians, it is important
to detect situations that may represent any potential risk. It was then assumed that
two or more pedestrians that stand relatively close to each other represent one target.
Figures 4.2 through 4.7 illustrate some situations where pedestrians were considered valid
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targets, and others where they were not. For easier visualization, green rectangles were
manually drawn around valid targets, and red rectangles around not valid ones.

Figure 4.2: Ground truth example 1 - Close and medium range pedestrians that stand
in the sidewalk are targets, whereas far range pedestrians in the opposite side of the

road or far in the sidewalk are not.
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Figure 4.3: Ground truth example 2 - Occluded pedestrians that stand in close or
medium range are also valid targets.

Figure 4.4: Ground truth example 3 - Groups of pedestrians standing close to each
other are assumed to be only one target.
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Figure 4.5: Cyclists are considered valid targets.

Figure 4.6: Ground truth example 5 - Two pedestrians crossing the street together are
considered to be one target.
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Figure 4.7: Ground truth example 6 - Di�cult examples such as shadowed pedestrians
are valid targets.

4.2.2 Methodology

To assess the detector's performance on the Atlas Pedestrian Dataset, the program
is set to draw green rectangles around positive detections on the images, and save them
to disk. Afterwards, the images are analysed one by one to identify the risk situations
involving pedestrians, and whether they are detected or not.
A preliminary assessment of the detector's behaviour makes it clear that most of the false
detections occur on vertical-shaped, pedestrian-like objects. To objectively understand
the behaviour of the detector on false detections, the concept of Pseudo-False Positives
(PFP) was used. These are false detections that instead of behaving randomly, follow
a predictable pattern that can be easily understood. In this work, false detections on
objects of vertical expression, such as trees, tra�c signs or mail boxes are labelled as
PFP. So, in an attempt to lower the PFP rate and determine whether the nature of
the training data could in�uence the performance, a third round of bootstrapping was
carried out on top of the previous INRIA data. Using just a few selected images with
no pedestrians, ∼750 hard negative windows were added to the training data and a new
detector was trained. The detector trained solely with INRIA data is referred as INRIA
Detector and the one that was modi�ed to include some Atlas examples is referred as
Atlas Bootstrapped Detector. They are compared in terms of detection rate over a given
number of False Positives per Image (FPPI).
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4.2.3 Results

The detectors described in the previous section were both tested in the same data
logs using the rosbag feature provided by ROS, which allows for data to be replayed as
it was recorded in the �eld.
It is important to mention that to perform these experiments, the re-player had to be
set to run 16 times slower than the original frame-rate and, since experiments were not
carried out at the same time for both detectors, the frames that were analysed were not
exactly the same. Because of that, there is a slight di�erence in the number of frames
tested for each detector and consequently a varying number of targets. This situation
is also explained by the fact that in an experiment a pedestrian might happen to be
visible for multiple frames and not on the other. However, rather than invalidating
the evaluation approach, this circumstance further attests to the method's capacity for
generalization.
The evaluated parameters displayed on table 4.1 are the following:

� True Positives: correctly labelled targets.

� False Negatives: not correctly labelled targets.

� False Positives: wrong positive classi�cations of non-targets.

� Pseudo-false Positives: wrong positive classi�cations of pedestrian-shaped non-
targets.

� Detection Rate: ratio between the correctly labelled targets and the total number
of them.

� False Positives per Image: ratio between total number of both types of false posi-
tives and the total number of frames tested.

Atlas Pedestrian Dataset Results

Parameter INRIA Detector Atlas Bootstrapped Detector

Total frames analysed 529 540

Total number of targets 189 207

True Positives 81 101

False Negatives 108 106

False Positives 102 89

Pseudo-false Positives 142 88

Detection Tate 42.8% 48.7%

False Positives per Image 0.45 0.33

Table 4.1: Atlas Pedestrian Dataset Results

To provide a better understanding of how the detection works, some example results
are shown in �gures 4.8 through 4.19, in which green rectangles were automatically drawn
by the program. Some of the most common urban pedestrian detection situations are
covered by the example images that follow.
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Figure 4.8: Example result 1 - Close range pedestrians crossing the street don't go
undetected.

Figure 4.9: Example result 2 - In bright environments, close range pedestrians walking
on the sidewalk are usually detected.
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Figure 4.10: Example result 3 - Shadowed pedestrians highly contribute to the miss
rate.

Figure 4.11: Example result 4 - Groups of pedestrians are often detected as one target,
rather then being individualized. Also, partially occluded pedestrians are often missed.
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Figure 4.12: Example result 5 - Medium and far range pedestrians are sometimes
missed even in bright environments.

Figure 4.13: Example result 6 - Example of a common pseudo-false positive.
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Figure 4.14: Example result 7 - Trees are also commonly detected as pedestrians.

Figure 4.15: Example result 8 - Tra�c signs are also confused by the detector rather
often. On the right, another example showing that occlusion and shadowed

environments are major issues in pedestrian detection.
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Figure 4.16: Example result 9 - The detector occasionally makes random false
detections.

Figure 4.17: Example result 10 - Cyclists are often missed when they lack the vertical
expression of a pedestrian.
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Figure 4.18: Example result 11 - Cyclists are detected if they appear on frontal or back
perspectives.

Figure 4.19: Example result 12 - A result obtained on the highway, where a
motorcyclist was wrongly identi�ed as a target.
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4.2.4 Commentary

Although a quanti�cation of the results on this dataset was obtained, it is important
to have in mind that these are preliminary results, and they might not assess with a great
degree of con�dence to the performance of the detector. Obtaining more con�dent results
would require more experiments and a larger testing data. It is, however, a preliminary
result that gives a fair idea of the potential of this approach when applied to driving
assistance.
At a �rst glance, the achieved detection rate seems to be a low one, but, to make a correct
interpretation of the results, it is crucial to have in mind that the primary detector that
was used in the Atlas data was solely trained with images from the INRIA dataset,
which are of completely di�erent nature than the Atlas ones, as most aren't even of
urban environment, and the sensors used to acquire the data are also di�erent. This
provides a hint that the adopted method generalizes well for images of di�erent nature.
However, the results improved signi�cantly just by adding a few hundred examples from
the Atlas dataset to the training data. The improvement of the results is best observed
in the lowering of the false positive rate, which accounts for the fact that only negative
examples were added to the training data. The lower occurrence of false positives made
possible for a less demanding threshold to be used in the Atlas Bootstrapped Detector
and, because of that, the detection rate went from 42.8% to 48.7% with an even lower
rate of False Positives per Image. One is inclined to think that if the detector was trained
solely or mainly with Atlas data, the results would improve even further.
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Chapter 5

Conclusions and Future Work

An application for visual recognition of pedestrians was successfully implemented in
this work. Integral Channel Features uses a simple and generic framework that takes
advantage of the richness of the information present in various channels of an image to
produce a number of features capable of distinguishing between the presence and absence
of pedestrians through the use of a trained classi�er based on AdaBoost.
To validate the approach, experiments were carried out in two distinct datasets. The IN-
RIA dataset served as an important test-bed because of the objectiveness and signi�cance
it conferred to the obtained results. In this dataset, the detector achieves a detection
rate of almost 80% on the reference value of 10−4 false positives per window, which is in
line with many detectors found on literature. It is important to mention, however, that
in the publication on which this work was based, a detection rate of 91% on the same
reference value was documented. The explanation for this di�erence in performance may
lie in the fact that the original detector was trained with twice the features that were
used in the presented implementation, and it was shown that performance grows rapidly
with the number of features utilized. It is safe to assume that if twice the features had
been used, a signi�cantly higher detection rate would have been achieved.
Tests were also performed on visual data captured on the Atlas Car. A preliminary
quanti�cation of the results was done by analysing more than 500 frames acquired in
Aveiro. A detector trained solely with INRIA data achieved a detection rate of 42.8% at
the False Positive per Image rate of 0.45, and this detection rate was ampli�ed to 48.7%
just by adding a few hundred hard negative samples from the Atlas Pedestrian Dataset
to the training data, at the even lower rate of False Positives per Image of 0.33.
In a more qualitative analysis, it was observed that every single pedestrian that was
captured in close-range was detected, showing that the method generalizes very well on
images of di�erent nature than the ones used for training. The detector also behaves well
on mid-range pedestrians given a bright environment. Far-range pedestrians, however,
are often missed, which could be partially explained by the fact that the pedestrian win-
dows used for training only contain close and mid-range pedestrians. This problem would
probably be minimized if the image was subject to an upscaling prior to analysis, with
sacri�ces to the computation time. On crowded areas the detector makes usually several
hits, but often not individualizing targets, giving more con�rmation that the detector is
obviously prone to make positive classi�cations where pedestrians appear.
As one would expect, shadowing and partial occlusion are responsible for most missed
pedestrians, as this factors are known to be hard to overcome. Pedestrians on the side-
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walk are detected less often than pedestrians that are crossing the street, even if they
appear in the same range. This odd result can be explained by a slight distortion that
occurs on the Atlas images but not on the INRIA's, certainly causing the image to have
di�erent properties on the borders and more missed pedestrians as a consequence.
The detector also makes a fair amount of false detections, mainly on areas with great
density of objects, but it was surprising to �nd that the vast majority were not random
detections at all, but instead followed a consistent and predictable pattern. Most false
detections occur on vertical-shaped, pedestrian-like objects, such as trees, tra�c signs,
lighting poles, mail boxes and other similar objects. This situation not only attests for
the validity of the method, since it is obvious that for the most part pedestrian-shaped
objects are being detected, but also opens the possibility of the implementation of a
post-processing method that could further di�erentiate these false positives from actual
pedestrians.
In fact, there is a wide range of possibilities to improve the framework. Improving the
detector speed can be done through the use of a decision structure based on a cascade
of boosted classi�ers, rather than a single big boosted classi�er. This implementation
alone would improve the detector speed by multiple orders of magnitude without sacri�ce
to results (in fact they could be even better). Not only that, a boosted cascade would
allow for more features to be evaluated with almost no speed loss, improving detection
rate signi�cantly. Still working on the algorithm itself, multi-scale detection over a dense
pyramid can be avoided since (Dóllar et al., 2010 [8]) demonstrated that features can
be approximated at nearby scales, thus improving speed even further. Moreover, this
algorithm can be even further developed to take advantage of the correlation between
detector responses at nearby window positions, a concept introduced in (Dóllar et al.,
2012 [7]) which documents multi-scale detection at 30 FPS.
Other directions can be taken to develop this framework. Using other sensor informa-
tion such as laser or thermal image to generate possible candidates prior to classi�cation
would eliminate the need to analyse the full image, and computation time would decrease
exponentially. In fact, multi-sensor detection systems are unavoidable when it comes to
robust and reliable detectors, and the work developed in this project is open to that
possibility.
As it was shown on by the Atlas Bootstrapped Detector results, the data used for training
could also be better focused on the application, since the INRIA dataset is rather poor
on urban scenarios. So, gathering a more complete dataset highly focused on road situ-
ations and use it for training would most certainly greatly improve the detection results
on urban environments.
Although this work is highly focused on ADAS, it is obvious that an infrastructure for
visual human detection has a wider range of applications. In fact, the work developed
in this project is generic enough to be applicable in any �eld, and one could imagine the
usefulness of detecting humans for security, robotics and many other applications.
The greatest contribution of this project was the creation of a framework for pedestrian
detection to be incorporated in the Atlas Car, a feature that had not yet been developed
in the scope of the project. It can and most certainly will be improved in the future,
and, although this is a personal opinion, I think that a very robust, fast and reliable
detector can be achieved if some of the proposed improvements were to be developed and
integrated in the present framework.
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Appendix A

Usage Instructions

A launch �le was created to launch the necessary ROS nodes for the program to run.
One of the launch �les is used to process images from �le. It launches a server that
checks a folder path for image �les and sends them one by one over a ROS topic. If the
client is subscribed to that same topic it will receive and process each received image.
This launch �le also launches a image view model, which is a ROS node that subscribes
to image messages and displays them on a window.
Simple changes like choosing folder path or changing the frame rate are done by manually
changing the source code and re-compile the program.
The next box shows the code for the launch �le described above.

<launch>

<node name="Client" pkg="PedestrianDetect"

type="client" output="screen"/>

<node name="Server" pkg="PedestrianDetect"

type="server" output="screen"/>

<node name="image_view" pkg="image_view" type="image_view">

<remap from="image" to="Image_Out"/>

</node>

</launch>

Provided access to the LAR tool kit, follow the next steps to run the program:

1. Open a terminal on Ubuntu.

2. Enter "roscd PedestrianDetect".

3. Too access and change the source code enter in the terminal "kate src/server-
img2.cpp" and "kate src/clientimg4.cpp".

4. Compile by entering "make" on the PedestrianDetect path or "rosmake Pedestrian-
Detect" anywhere.

5. Run the program by entering "roslaunch PedestrianDetect peddetect.launch".
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If the goal is to run the program on a rosbag or output from a camera, there is no need
to launch the server. A very similar launch �le was created that launches only the client
and the image view. To use it follow the same steps described above but substitute
"peddetect.launch" for "bagplayer.launch".
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