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Resumo Veículos autónomos têm atraído muito interesse nos últimos anos devido
ao seu potencial impacto na sociedade, o que tem impulsionado esta área
para estudos e desenvolvimentos constantes. Uma vez que os sistemas de
perceção são extremamente importantes na navegação autónoma, a sua
complexidade leva a um incremento do número de sensores a bordo (com-
posto normalmente por sensores LIDAR, câmaras entre outros) juntamente
com o aumento da sua diversidade, o que aumenta a preocupação sobre a
calibração de sensores. Os métodos de calibração são normalmente manu-
ais ou semi-automáticos e requerem intervenção de um utilizador. Poucos
métodos automáticos estão disponíveis, e mesmo os que existem são normal-
mente baseados em processos complexos e dispositivos dispendiosos. Este
trabalho apresenta um novo método de calibração automático usando uma
bola como alvo para extrair correspondências entre sensores. O processo
de calibração consiste em mover a bola permitindo a deteção do seu centro
ao longo de sucessivas posições por todos os sensores a serem calibrados.
Este estudo envolve a calibração de sensores LIDAR 2D e 3D, e câmaras. A
segmentação em 2D usa um algoritmo baseado nas propriedades geométri-
cas de um arco. Em 3D, a Point Cloud Library (PCL) sample consensus
module é usado para identi�car e localizar a bola. Finalmente, OpenCV é
usado para calibrar o sistema stereo e computar a imagem de disparidade e a
sua re-projeção 3D, resultando numa nuvem de pontos 3D. Durante o movi-
mento da bola, é criada uma nuvem de pontos dos centros da bola para cada
sensor. Finalmente, cada nuvem de pontos é alinhada com um sensor de
referência. O resultado �nal do processo é a transformação de corpo rígido
de cada sensor com respeito ao sensor de referência. O método foi testado
quer em laboratório quer com um veículo em tamanho real (AtlasCar). As
relativas calibrações entre sensores assegura muito bons resultados que são
avaliados pela consistência da performance da deteção por todos os sensores
calibrados. Outra característica adicional nesta solução é a sua �exibilidade
ao permitir a calibração de diferentes LIDARs e câmaras.





Keywords Point cloud; 3D re-projection; 3D data �tting; rigid body transformation.

Abstract Autonomous vehicles have attracted great interest in the past years due to
their potential impact on society, which has been pushing this area into
continuously study and development. Since the perception systems are ex-
tremely important in autonomous navigation, their complexity leads to an
increment of the number of sensors on board (composed commonly by LI-
DAR, cameras and other sensors) along with the increase of their diversity,
which raised concerns about sensor calibration. Calibration methods are usu-
ally manual or semi-automatic and require user intervention. Few automatic
methods are available, and even the existent methods are normally based in
complex processes and expensive devices. This work presents a new auto-
matic calibration method using a ball as target to extract correspondences
between sensors. The process of calibration consists of moving the ball al-
lowing the detection of its center along successive positions by all the sensors
to be calibrated. This study involves the calibration of 2D and 3D LIDAR
sensors, and cameras. Segmentation in 2D uses an algorithm based on the
geometric properties of an arc. In 3D, the Point Cloud Library (PCL) sample
consensus module is used to identify and locate the ball. Finally, OpenCV
is used to calibrate a stereo system and compute the disparity image and its
3D re-projection, resulting in a 3D point cloud. During ball motion, a point
cloud of the ball centers is created for each sensor. Finally, all the point
clouds are aligned with a reference sensor. The �nal result of the process is
the rigid body transformation of each sensor with respect to the reference
frame. The method was tested both in laboratory experiments and in a real
full size vehicle (AtlasCar). The relative calibration among all sensors yields
very good results that are evaluated by the consistency of the detection per-
formed by the calibrated sensors. Another additional feature of this solution
is its �exibility by permitting the calibration of several di�erent LIDARs and
cameras.
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Chapter 1

Introduction

Many vehicles with autonomous navigation capabilities, and also many advanced driver
assistance systems (ADAS), rely on LIDAR, VISION and RADAR based devices. In
particular VISION and LIDAR since they complement each other, resulting frequently
in accuracy and e�ciency. Moreover, most of the developed systems use multiple sensors
simultaneously, sometimes even combining di�erent types of LIDAR sensors (1D, 2D,
n×2D, 3D). Thus, when there is more than one sensor in the same setup, an accurate
extrinsic calibration is increasingly important so the data from the di�erent sensors can
be combined or fused in a common frame.

The majority of the existing methods are manual or semi-automatic. Manual ap-
proaches have large errors associated to it that may a�ect the e�ciency of the perception
system, in special when the sensors have a long working range, where even small errors
can result in signi�cant distortions. For the remaining approaches, the most common
approach is establishing correspondences in the data from the devices. Those correspon-
dences are normally introduced through manual inputs or using a target object, which
in general has a well know geometry.

Autonomous vehicles have attracted great interest in the past years due to their
potential impact on society, which has been pushing this area into continuously study
and development. Since the perception systems are extremely important in autonomous
navigation, their complexity leads to an increment of the number of sensors on board
(composed commonly by LIDAR, cameras and other sensors) along with the increase of
their diversity. Thus, the typical calibration methods are not enough, it is necessary a
more generalized and accurate methods.

To solve the necessity of a calibration method, a fully automatic method is developed
in this work, having no requirement of manual measurements or manual correspondences
in the data. Instead of those common approaches, a ball is used as a calibration target
allowing the detection of its center by the di�erent sensors.

1.1 The ATLAS Project

ATLAS [1] is a project created by the Group of Automation and Robotics at the De-
partment of Mechanical Engineering of the University of Aveiro, Portugal. This project
started in 2003 with the purpose of competing in autonomous driving competitions tak-
ing place at the Portuguese National Robotics Festival. Since then, several robots of
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2 1.Introduction

the ATLAS series were developed (Figure 1.1) and had a continuous success in those
competitions and won many prizes.

Figure 1.1: ATLAS robots used in the autonomous driving competitions.

With all the vast experience acquired along the years and the success achieved in
autonomous navigation in controlled environments, the team decided to deal with real
road scenarios with a full size prototype of a Ford Escort Station Wagon of 1998 (Figure
1.2). Thus, the ATLASCAR project appear.

Figure 1.2: The ATLASCAR and some of its sensors.

The main goal of the ATLASCAR project is to develop new Advanced Driver As-
sistance Systems (ADAS). For that purpose, the car was equipped with a rich set of
sensors dedicated mainly to the perception of the surrounding environment. Also, the
car su�ered some mechanical modi�cations in its interior to be able to perform some
operations.

Marcelo Silva Pereira Dissertação de Mestrado/ Master Thesis



1.Introduction 3

1.2 Problem Context

This work is part of the ATLASCAR project [1], carried out at the University of Aveiro,
whose main purpose is the research and development of solutions on autonomous driving
and Advanced Driver Assistance System (ADAS).

The car is equipped with several exteroceptive sensors, namely a stereo camera, a
3D LIDAR, a foveated vision unit and additional planar laser range �nders. The planar
lasers already installed on the car are two Sick LMS151, and the 3D laser is actually a
Sick LMS200 in a rotating con�guration. There is also a Hokuyo laser range �nder to
extract road pro�les ahead of the car. Additionally, a new multi-layer laser (sick LD-MRS
400001) and two new Point Grey cameras are to be installed in the car and, �nally, a
SwissRanger 3D TOF camera is also occasionally used in some experiments and contexts.

With this number of sensors a calibration between them is extremely important to
have a complete perception of the surrounding environment. Thus, the main objective
of this project is to develop a method to calibrate all the sensors presents in the car.

1.3 Objectives

Currently the calibration on AtlasCar is made by hand. However, the main problem
of this approach is not related with the translation between devices; the main problem
are the rotations, which are extremely di�cult to estimate accurately by manual means;
the �rst problem starts by identifying the placement of the referential system on the
devices and their axes directions; then, attaching the associated error of the measuring
tool used to estimate the rotations between devices, easily a signi�cant error is obtained.
A small error in the rotation provides a larger error when compared with errors related
with translation. Thus, the main objectives of this project are the following:

� Create an algorithm for the detection of the target with the laser sensors;

� Create an algorithm to calibrate the laser sensors;

� Implement a method to detect the target with the two cameras;

� Include the cameras on the calibration process;

� Tests and evaluation of the calibration method.

1.4 Related Work

Over the past several years, a number of proposed solutions for the calibration of a set
of sensors (LIDAR and VISON) with respect to a global frame were developed because
of its relevance for autonomous vehicles and robotic applications. The majority of the
existent solutions have as common base of �nding correspondences between di�erent
devices, being di�erentiated by the means to obtain those correspondences and how they
are related.

In [2] a method to estimate the motion of a camera-laser fusion system was developed,
which consists of a 2D laser sensor and multiple cameras designed to reconstruct a 3D
structure of outdoor environment by capturing data while it passes through the target

Marcelo Silva Pereira Dissertação de Mestrado/ Master Thesis



4 1.Introduction

area. The laser points are projected onto the images using the Kanade-Lucas-Tomasi
tracker [3] and tracked to other frames to be used as 3D-2D correspondences using a
three-point method approach. However, the generalized three-point algorithms (G3P)
[4], has a limitation: it is not able to estimate the motion of the system if three points
are collinear, which happens frequently when the laser sensor scans a large plane such
as walls or ground, as illustrated on Figure 1.3. To prevent that situation the authors
developed a solution based in the alternative algorithm that Bock et al. [5] presented,
called laser three-point (L3P). To estimate the motion between consecutive frames this
algorithm uses laser points from both frames; the union set of the lasers from both
frames is expected not to be collinear if the system moves while capturing data. Figure
1.4 illustrates how the algorithm works, where the points Q1 and Q2 scanned at frame
1 and Q3 scanned at frame 2 are projected onto the corresponding images and tracked
to the other frames. The angles between rays (θ1, θ2, θ3, φ1, φ2, φ3) and the distance
to the points at the scanned frame (L1, L2, L3) are known. The unknown variables are
the distances to the points (l1, l2, l3) at the tracked frames. Relating those variables, it
is obtained three equations that can be computed by solving a four-degree polynomial
equation.

Figure 1.3: Limitation of scanning a plane with a 2D laser sensor on the typical three-
point algorithms because all laser points are collinear. [2]

The authors presented the generalized laser three-point (GL3P) algorithm, which is
an adaption of the L3P for a multiple camera con�guration. Similarly to the L3P, two
points and other point are selected from di�erent frames. Then the problem is solved
by transforming two points (selected from the same frame) on two rays and apply the
inverse transformation to the third point (selected from the other frame).

Marcelo Silva Pereira Dissertação de Mestrado/ Master Thesis
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Figure 1.4: Laser three-point algorithm: Two points Q1 and Q2 are selected from the
frame 1 and tracked to the frame 2. The other point Q3 is selected from the frame 2 and
tracked to the frame 1. [2]

In [6] an approach to solve the extrinsic calibration between a camera and a multi-
layer laser range �nder was presented. This method takes advantage of photographic and
laser range data by using a circle-based calibration target. The circle-based calibration
target is a rigid plane with a printed black ring. The inner circle is a plane perforation.
The con�guration is illustrated on Figure 1.5.

Figure 1.5: Overview of the proposed calibration as detailed in [6].

The proposed method consist of estimating di�erent poses of the calibration object
detected simultaneously by the camera and the multi-layer LIDAR, resulting in a set of
point correspondences between frames (circle centers of each pose), which will be used
to determine their relationships. Each pose of the calibration target is parameterized by
3D coordinates of the circle center and the normal vector of its plane.

After extracting the set of correspondences between camera and laser, the LIDAR-to-
camera calibration is processed in two steps. First an initial guess from a linear solution
is obtained, using a well-known closed-form solution developed by Arun et al. [7]; this
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6 1.Introduction

solution consists of determining the relationship between the two coordinate frames using
sets of corresponding features through the singular value decomposition (SVD). And for
last, the resulting transformation of the previous step is re�ned by minimizing a point-
to-point error measure, similar to the Iterative Closest Point (ICP) algorithm.

In [8] is presented an on-line approach to recover the geometric transformation of two
LIDAR lasers relatively to the vehicle. Although, this method make several assumptions;
�rst, it is assumed that the vehicle platform has the ability to estimate its position and
orientation with respect to a �xed world frame; second, an initial calibration estimation
for each LIDAR is available; �nally, it is also assumed that the LIDAR systems are
capable of simultaneous measuring range and remission (re�ectivity) γ values of features
in the environment.

Taking in account those assumptions, a scene is prepared with hand placed retro-
re�ective tape upon poles along a calibration loop. Over that calibration loop the targets
are automatically segmented from the background using a simple threshold (γ > γmin)
on the LIDAR remission measurements. The result of the segmentation are illustrated
on Figure 1.6, where a sample landmark pole with two retrore�ective marks is shown on
the left, and on the right the same pole viewed by a scanning LIDAR with the location of
the segmented targets through the threshold operation in red. After that, the segmented
targets are reduced to a point, which will be used as a correspondence across multiple
calibration loops. Finally, the extrinsic parameters of the laser in relation to the vehicle
are estimated using the recovered point correspondences through a second-order cone
programming (SOCP) [9].

Figure 1.6: A landmark placed in a pole on the left, and the resulting segmentation of
the LIDAR scan on the right. [8]

In [10] is presented a method for solving the extrinsic calibration between a camera
and a multi-layer laser scanner by detecting a planar triangle board as illustrated on
Figure 1.7. This method is based in three main steps:

� Acquiring synchronized data from the laser and camera;
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1.Introduction 7

� Select regions of interest and estimate the position of the calibration targets with
respect to the camera and laser frames, in which the target poses are computed in
2D and 3D respectively;

� An optimization procedure based on geometric minimization that involves image
and laser correspondences simultaneous by �tting virtual points Ot.

Figure 1.7: Overview of the proposed strategy in [10].

For the target detection in the laser frame, the scan is clustered, and only opportune
planar thin objects will be kept. Next, RANSAC �tting is applied to all potential targets
Tj to generate a target plane represented by a centroid and a normal vector model. Then,
all the points owned by Tj are projected in that plane , which will be used to estimate the
position of the calibration target with respect to the laser and calculate the coordinates
of the virtual point.

To detect the target in camera frame, two procedures based on monocular view and
stereo images were described. In mono images �rstly a preprocessing stage involves
sequentially color �ltering and edges extraction that are applied on image, and Hough
transformation is used to extract straight lines from it. After the preprocessing stage,
parametric equations of linear components are computed and applied on image. The
last stage concerns in matching between lines and edges previously obtained, where the
lines that matches with the higher amount of white pixels are extracted with respect to a
speci�c threshold. Finally, in this set of lines, each triangle is composed as a line triplet
by matching couple of segment vertex, whether all vertex couples di�er each other by
less than a Manhattan threshold, and an intersection point of the lines will be computed.
Only when three valid intersection points are obtained, a triangular shape is detected.
In the case of stereo images the procedure is similar to the laser procedure due the same
range information, however a di�erent error distribution is present and must be consider
in model extraction.

In order to compute the extrinsic parameters, the points in laser are projected in
the image, which knowing the intrinsic parameters of the camera, the extrinsic transfor-
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8 1.Introduction

mation between the laser and the camera can be formulated as a non-linear problem to
�nd the optimal solution of the rotation vector and translation vector. This non-linear
optimization is solved by using the Levenberg-Marquardt algorithm.

A more recent work [11] presents a solution for the extrinsic calibration of 2D LIDAR
lasers, which is based on the observation of perpendicular planes. These planes can
be already present in the environment (something common in structured scenes), or
constitute a calibration pattern built for the purpose. The calibration is constrained by
imposing co-planarity and perpendicularity constraints on the line segments extracted
by the di�erent laser scanners. A rough approximation of the sensors relative poses
must be provided. This method can be used to calibrate any set of rigidly joined lasers,
where there are at least two sensors with non-parallel scanning planes. In summary, the
necessary conditions for the method works are:

� An approximation of the sensors relative poses must be known;

� The sensors rig observes at least two perpendicular planes from two di�erent view-
ing directions;

� Not all the sensors scan parallel planes, that means that the measurement planes
of at least two sensors must intersect.

This proposed method is based in establishing geometric constraints from simultane-
ous observations of pairs of perpendicular planes (see Figure 1.8). Then, the geometric
constraints are inferred from:

� the co-planarity of the observed line segments lying on each face of the corner

� the perpendicularity of both planar surfaces.

Figure 1.8: Observation of a corner structure by a rig with two LIDARs. [11]
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Figure 1.9: Calibration object detection in 3D data. [12]

In summary this method is divided in the following steps: gather observations, seg-
ment lines, generate corner candidates, selection of the corner candidates and compute
calibration. The corner candidates are selected through co-planarity and orthogonality
constraints.

To select the corner observations (COs), a number of observations are taken from dif-
ferent poses of the sensor rig, which applying RANSAC method the inconsistent corner
candidates are excluded. For that, a candidate extrinsic calibration is calculated from a
minimum set of randomly selected corner candidates. Then, the number of corner can-
didates consistent with such calibration is evaluated. This process is repeated iteratively
by searching for a maximum consensus of corner candidates. The result of this process is
a larger set of consistent candidates, which are the the COs from which the calibration
is computed. The extrinsic calibration is calculated relatively to one of the sensors using
a method of maximum likelihood estimation (MLE).

Finally, the work developed by Miguel Oliveira [12] presented an approach to calibrate
3D/2D lasers, where the 2D laser are calibrated with respect to the 3D laser frame. This
method places a static calibration object in several positions in the acquired scene. The
calibration object has two cones with an intermediate plane to keep the cones at a �xed
distance. The cone geometry, due its geometric features, make possible the determination
of the position and orientation of the 2D laser footprints regarding the 3D point cloud,
since it removes the ambiguity in height. The combination with the second cone provides
enough information for the orientation around the vertical axis.

The calibration process requires an initial approximation position of the calibration
object in the 3D point cloud. User need a point in the center of the calibration object
(red sphere on Figure 1.9) and an additional point in the plane (blue sphere on Figure
1.9), which is between the two cones. Those points de�ne approximately the center and
orientation around the vertical axis of the calibration object with respect to the 3D laser.
The other rotations are not considered since it is assumed that the calibration object is
in a �at surface. Then, once the dimensions of the object are known, the 3D date is
�ltered using a bounding box and the points that belong to the object are extracted.
Next, a virtual calibration object is �t to the set of points extracted using the Iterative
Closest Point (ICP) [13], giving the transformation matrix of the calibration object with
respect to the 3D data frame.
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10 1.Introduction

With the detection of the calibration object in the 3D data, it is necessary to do the
same with in 2D data, in order to compute the transformation between the 2D laser and
the 3D laser. This detection is done by taking advantage of the geometry associated to
the cones, in other words, the calibration target produces two ellipses in 2D data, which
are used to identify the calibration object. The process of ellipse detection needs the user
to select two points per ellipse as shown on Figure 1.10. Then, using a minimum square
errors, is found the ellipse that best �t the extracted points. An additional step is used
to get the angle between the calibration object and the ellipse's major axis. Then, the
ellipse is �t into the cone, where the only indetermination is related with the rotation
angle around the vertical axis of the cone, which is solved by relating the ellipse with a
cone as shown in Figure 1.11.

Figure 1.10: Points selection for ellipse reconstruction. [12]

Figure 1.11: On the left a cone's cut along the major axis; on the right a projection of
the ellipse. [12]

Finally, from the analytical model of each ellipse, four points are computed in the
intersection of the ellipse with the major and minor axes, resulting in eight points from
the �tting of the ellipses to 2D laser data. Also, another eight points are obtained
from the �tting of the ellipses to the cones of the calibration object. Since this process
is done for each ellipse, each calibration provide eigth points in the 3D laser cloud.
The transformation matrix that relates the 2D laser with the 3D laser is obtained with
functionalities o�ered by VTK [14], which transforms the eight points from the 2D laser
data into the eight points of the 3D laser data.
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Chapter 2

Software and Hardware Description

This chapter presents the description of the software and hardware used in this master
thesis. In terms of software OpenCV, PCL and ROS were used. Relatively to the
hardware a Sick LMS151 already installed in the car, the new multi-layer laser Sick LD-
MRS400001, a SwissRanger SR4000 and two Point Grey cameras were used. Despite
the SwissRanger not being part of the set of sensors typically on board a car for the
autonomous driving, it provides a di�erent type of data to be processed in comparison
with the other two. Thus, it was possible to prove the versatility of the studied calibration
method regarding the type of sensors that it supports.

2.1 Hardware

2.1.1 Sick LMS151

The Sick LMS151 (Figure 2.1) is an outdoor 2D laser range�nder commonly used in
robotics applications and for obstacle detection in autonomous driving. The LMS151
is characterized by being small and easy to mount, and it can measure distances even
through glass and dust due its double pulse evaluation. The most relevant properties of
the laser Sick LMS151 are presented on the Table 2.1.

Figure 2.1: Sick LMS151 laser range�nder.
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12 2.Software and Hardware Description

Table 2.1: Properties of the laser Sick LMS151

Operating range 0.5 m - 50 m
Max. range with 10 % re�ectivity 18 m
Scanning angle 270°
Angular resolution 0.5°/0.25°
Scanning frequency 25 Hz/50 Hz
Systematic error ±30 mm
Statistical error ±12 mm
Laser protection class Laser class 1
Operating temperature range -30 °C to +50 °C
Dimensions (W x H x D) 162 mm × 102 mm × 106 mm
Total weight (without cables) Approximately 1.1 kg
Supply voltage 10.8 to 30 V
Data interfaces Ethernet 100 Mbit TCP/IP; RS 232; CAN

(for the connection of an I/O module)

Data is received from the sensor as a set of points in polar coordinates. This set is
sorted from starting angle (θ = −45°) to the stopping angle (θ = 225°). Considering the
number of measurements per scan n, the ranges {r1, ..., rn} and the angles between the
measured point and the y axis {θ1, ..., θn}. The cartesian coordinates (xn, yn) for each
point of the scan are calculated as follow:

{
xn = rn cos θn

yn = rn sin θn
(2.1)

2.1.2 Sick LD-MRS400001

The Sick LD-MRS40001 is a multi-layer laser scanner (Figure 2.2) commonly used for
automation with object tracking or �eld evaluation. This laser has four simultaneous
scanning layers, which allows angle compensation by means of the di�erent vertical angles
for each layer. Taking as example the application that it will have, the LD-MRS detects
the object reliably even when a car brakes or accelerate.

This laser can also detect three consecutive echo pulses per measurement and per
plane. Due this capacity, the LD-MRS can di�erentiate measurements of interference
such as rain, snow or dust. All those characteristics give to the LD-MRS the ability to
withstand outdoor conditions, even under poor environmental conditions. More of its
characteristics are presented on Table 2.2.
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Figure 2.2: Sick LD-MRS400001 multi-layer laser.

Table 2.2: Properties of the laser Sick LD-MRS400001

Operating range 0.5 m - 250 m
Max. range with 10 % re�ectivity 50 m
Scan planes 4, vertical aperture angle over 4 planes:

3.2°
Aperture angle 85°, operating angle with 4 measurement

layers, 25° work area expansion with 2
measurement layers (total 110°)

Angular resolution 0.125°/0.25°/0.50°
Scanning frequency 12.5 Hz/25 Hz/50 Hz
Statistical error ±100 mm
Echoes per individual measurement 3
Laser protection class Laser class 1
Operating temperature range -40 °C to +70 °C
Dimensions (W x H x D) 88 mm × 164.5 mm × 93.2 mm (including

fastening tabs)
Total weight (without cables) Approximately 1 kg
Supply voltage 9 to 27 V DC,
Data interfaces Ethernet 100 Mbit TCP/IP; RS 232; CAN

(for the connection of an I/O module)

Like the LMS151, the data received from the LD-MRS is in polar coordinates; al-
though, it has four layers with a vertical aperture between layers of 0.8°, which provides
3D coordinates. Figure 2.3 illustrates the con�guration of the four layers and the con�g-
uration of the coordinate system used.
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14 2.Software and Hardware Description

(a) Coordinate system. (b) Con�guration of the four layers.

Figure 2.3: Sick LD-MRS400001 multy-layer con�guration.

Taking as example the Figure 2.4 that illustrates a measured point by the laser; lets
consider i the number of the layer, n the number of the measurement in the scan of each
layer, the range {r1i , ..., rni}, the angles between the measured point {θ1i , ..., θni} and the
plane XY and the angles between the layer and the plane YZ {α1, ..., αi}. The Cartesian
coordinates are calculated as follow:

xni = rni cos θni

yni = rni sin θni

zni = rni sinαi

(2.2)

Figure 2.4: Illustration of a measured point by the Sick LD-MRS.

2.1.3 SwissRanger

The SwissRanger SR40000 (Figure 2.5) is a Time-of-�ight (TOF) 3D camera that pro-
vides high-resolution 3D image data in real time. The TOF principle uses the emitted
infrared light from the camera's internal lighting source, which is re�ected by the sur-
rounding objects in the scene and travels back to the camera where its precise time of
arrival is measured independently by each sensor pixel. Also, the SR40000 has a pro-
grammable modulation frequency (20/30/31 MHz) that allows the use of simultaneous
measurements of three cameras without interference.
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Figure 2.5: SwissRanger SR40000 3D camera.

This type of camera is designed for indoor environments and has an optical �lter in
front of the sensor to allow only wavelengths near of the emitted by the camera pass into
the camera lens. Due the characteristics of the SR40000, it is specially attractive for
indoor robotic applications. Some of its most important characteristics are illustrated
on Table 2.3.

Table 2.3: Properties of the laser SwissRanger SR40000

Detection range 0.1 m - 5.0 m
Modulation frequency 29/30/31 MHz
Angular resolution 0.24?
Absolute accuracy ±10 mm
Maximum frame rate 50 FPS
Pixel array size 176 (h) x 144 (v)
Field of view 43.6° (h) x 34.6° (v)
Operating temperature +10 °C to +50 °C
Storage temperature -20 °C to +70 °C
Dimensions (W x H x D) 65 mm × 65 mm × 68 mm
Weight 470 g
Electrical power requirements 12 V (-2%; +10%), maximum 1.0 A, (typ-

ical 0.8 A)
Data interface USB

The SR40000 does not require data treatment since the data provided is already in
cartesian coordinates.

2.1.4 Point Grey Camera

The cameras used are a Flea3 Gigabit Ethernet, more speci�cally the model FL3-GE-
28S4-C (Figure 2.6). This camera use a Sony ICX687 EXview HAD CCD II image sensor
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to deliver high resolution, high quality images in a compact and low cost package. Also,
is can runs at 15 FPS at full 1928 x 1448 resolution, and even faster using smaller regions
of interest, measuring just 29 x 29 x 30 mm and a weight of only 38 g. This combination
of resolution, sensitivity and size make these models ideal for applications that require
low cost and high-speed camera with compact design, such as: in factory automation
and machine vision; medical and life science applications; and intelligent transportation
systems.

Despite all this characteristics, the Flea3 GigE cameras o�ers other advantageous
features, like an 8-pin opto-isolated GPIO for industrial triggering and strobe output;
1 MB non-volatile �ash memory for user data storage; and on-camera frame bu�er for
retransmitting images. Some of its properties are presented on Table 2.4.

Figure 2.6: Point Grey camera FL3-GE-28S4-C.

Table 2.4: Properties of the laser Point Grey camera FL3-GE-28S4-C

Sensor size 1/1.8"
Interface GigE
Shutter CCD
Max resolution 1928 × 1448
Max frame rate 15 FPS
Pixel size 3.69 µm
Megapixels 2.8 MP
Chroma color
Power Requirements 12-24 V
Dimensions (W x H x D) 29 mm × 29 mm × 30 mm
Weight 38 g (without optics)
Temperature (Operating) 0° to 45°C
Temperature (Storage) -30° to 60°C
Humidity (Operating) 20 to 80% (no condensation)
Humidity (Storage) 20 to 95% (no condensation)
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2.2 Software

2.2.1 OpenCV

OpenCV (Open Source Computer Vision Library) [15] is an open source computer vision
and a learning software library written in C and C++ and runs under Linux, Windows
and Mac OS X. OpenCV was designed for computational e�ciency and with strong focus
on real-time applications. One of OpenCV's goals is to provide a simple-to-use computer
vision infrastructure that helps people build fairly sophisticated vision applications quick.
To achieve that OpenCV library contains more than 2500 optimized algorithms that span
many areas in vision, including factory product inspection, medical imaging, security,
user interface, camera calibration, stereo vision, and robotics. The OpenCV's library is
well documented, and due the large collaborative user community is in constant growth.

For this work, OpenCV's will have special interest in stereo vision as will be further
presented.

2.2.2 PCL

The Point Cloud Library (PCL) [16] is a large scale, open project for 2D/3D image and
point cloud processing. PCL is a cross-platform written in C++, and has been compiled
and developed on Linux, MacOS, Windows, and Android/iOS.

The PCL incorporates multiple processing algorithms that operate on point cloud
data including: �ltering, feature estimation, surface reconstruction, registration, model
�tting and segmentation. Some of these algorithms can be used to �lter outliers from
noisy data, stich 3D point clouds together, segment relevant parts of a scene, extract
keypoints and compute description to recognize objects in the world based on their
geometric appearance, and create surfaces from point clouds and visualize them. Each
set of algorithms is de�ned via base classes that attempt to integrate all the common
functionality used throughout the entire pipeline, thus keeping the implementations of
the actual algorithms compact and clean. The basic interface for such a processing
pipeline in PCL is:

� creat the processing object (e.g., �lter, feature estimation, sementation);

� use setInputCloud to pass the input point cloud dataset to the processing module;

� set some parameters;

� call compute (or �lter, segment, etc) to get the ouput.

2.2.3 ROS

ROS [17] is an open-source development environment speci�cally for applications in
robotics, usually used in large projects that, due to its modular architecture, it reduces
the projects complexity by splitting a large project into smaller modules, each with a
speci�c application. Also, those modules can be used for other applications and not only
in a single project. It provides standard operating system facilities such as hardware
abstraction, low-level device control, implementation of commonly-used functionalities,
message-passing between processes and package management.
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One of the main goals of ROS is to make easy the communication between hardware
and software using a peer-to-peer topology, where nodes can communicate directly with
another without the need of a central server. However, it's not typically feasible for each
node to be directly connected to other node, so, instead the nodes connect to some subset
of nodes. Information can be published to a network in a broadcast fashion making this
information available for all nodes, but it's not possible to directly address it to a node.
This topology permits to run a great number of executables in parallel that need to
be able to exchange data synchronously or asynchronously. A system built using ROS
consists of a number of processes, potentially on a number of di�erent hosts, connected
at runtime in a peer-to-peer topology. The concepts of the implementation of the peer-
to-peer topology are: nodes; master; parameters server; messages; topics; services; and
bags.

The peer-to-peer topology requires some sort of lookup mechanism to allow processes
to �nd each other at runtime. We call this the name service, or master. It stores topics
and services registration for ROS nodes. Nodes communicate with the master to report
their registration information. As these nodes communicate with the master, they can
receive information about other registered nodes and make connections as appropriate.
The master will also make call backs to these nodes when this registration information
changes, which allows nodes to dynamically create connections as new nodes are run.

Nodes connect to other nodes directly, the master only provides the lookup informa-
tion. The connection between node is performed using a publish/subscribe messaging
model into topics. These messages are a simple data structure already prede�ned by
ROS. In resume, a node that subscribe to a topic will request connection from the node
that publish into that topic and establish a connection. In general, nodes are not aware of
who they are communicating with. Instead, nodes that are interested in data, subscribe
to the relevant topic. This is important for large projects because it's possible to have
several topics being published and subscribed for multiple nodes. Figure 2.7 shows how
this architecture works.

Figure 2.7: ROS based architecture: nodes are programs that exchange data through
messages/topic subscription and services.
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Chapter 3

Methodology for Sensors Calibration

This chapter presents the methodology for the sensors calibration. The main goal of
calibration is from a set of sensors, obtain the extrinsic parameters that describes the ge-
ometric transformation (rotation and translation) between two coordinate systems. This
calibration process is important when a system has more then one sensor; if the data
from each sensor is relative to a global coordinate frame, a more complete information
about the covered scene is obtained by the sensors, which can for example help in object
detection, and prevent some false object detections. Figure 3.1 shows two lasers mea-
suring a ball from two distinct positions, and Figure 3.2 shows the di�erence between
uncalibrated and calibrated sensors with respect to a reference frame.

Figure 3.1: Two sensors measuring a ball.

Uncalibrated (overlapped sensors). Calibrated.

Figure 3.2: Di�erence between uncalibrated and calibrated sensors.
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20 3.Methodology for Sensors Calibration

For this work the set of sensors is composed by a Sick LD-MRS400001, a Sick LMS151,
a SwissRanger and two Point Grey cameras. The idea to calibrate the sensors is of �nding
correspondences between sensors using a ball as target, allowing its center detection by
all sensors. Given the di�erent set of sensors (2D LIDAR, 3D data, and images), the
process is di�erent for each type. For LIDAR data, mathematical properties of the sphere
and algorithms provided by PCL are used. On the case of vision, two methods using
OpenCV algorithms are used. One is to �nd the circle that �ts the ball on image; the
second is to use the two cameras as a stereo system. The choice turned out to be the
stereo system, using the two cameras mounted on a stereo rig as shown on Figure 3.3.

Figure 3.3: The two cameras mounted on a stereo rig.

The methodology and some preliminary results of the LIDAR sensors calibration was
already presented in [18]. All the processes and choices made are detailed on the next
sections.

3.1 Calibration Procedure

Calibration consists in estimating the rigid body transformation between all the sensors
with respect to a reference one; the proposed solution is to use a ball as calibration
target; the only restriction of the calibration target is about its size (diameter). The size
of the calibration target is related to the angular resolution of the lasers used; after some
empirical experiments, it was observed that, in order to obtain feasible results, the ball
must have a diameter large enough for the sensors to have at least 8 measurements on
the target at 5 m, which means that for �ner angular resolutions it is possible to use a
ball with a smaller diameter.

The approach used to obtain the calibration between all the devices is achieved in
three stages. First, each sensor must detect the center of the ball; then, the ball is placed
in motion in front of the sensors allowing them to detect its center along successive
positions, creating at the same time a point cloud for each sensor; the condition to
consider a new point for each point cloud is that each new point is separated from the
previous point some minimum distance. Finally, a sensor is chosen to be the reference
frame and the remainder are calibrated relatively to this each one at a time by using an
algorithm of the PCL [16]. Figure 3.4 illustrates the calibration approach, where several
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position of the ball are taken (black points) by all sensors from the movement of the ball
in front of them.

Figure 3.4: Overview of the calibration approach.

3.2 Calibration Target

The main reason to choose a ball as calibration target was mainly due its geometry. This
object has the particularity that any planar section of the ball is a circle, a geometry well
known and relatively easy to detect avoiding the necessity of detecting more complex
geometries, having particular interest in 2D sensors. For the 3D sensors that have not
the require of detecting circles, the mathematical model of a sphere as well as the circle
is well known. Further will be explained the importance of those characteristics on the
process of the ball center detection. Also, due the sphere form of the ball, its geometry
is always the same independently of the point of view.

The ball used during the calibration is illustrated on Figure 3.5.

Figure 3.5: Real ball used as calibration target. The diameter is 107cm.
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3.3 Sphere Center Detection on LIDAR Lasers

The method to �nd the center of the ball depends on the type of the range data. The
method for 2D data is based in �nding circular arcs, taking advantage on the particularity
that any planar section of the ball is a circle. Thus, the process to detect the center of
the ball is divided in the following sequence: segmentation of the laser scan, detection of
circle and calculation of its properties (center coordinates and radius), and calculation
of the center of the ball given the properties of the target (diameter). Figure 3.6 shows
the diagram of the process.

Figure 3.6: Overview of the steps to �nd the center of the ball.

It is important to mention that in 2D scans, due the symmetry of the ball, there is the
ambiguity relatively to which of the hemispheres belongs the detected circle, since every
section of the ball has a symmetric section relatively to the hemisphere, resulting in two
solutions for the center of the ball (one above and another below the detected section).
Consequently, some a priori information about the position of the sensor relatively to the
ball is required. For the Sick LD-MRS the idea was to solve this problem taking advantage
of its multi-layer technology, however, due its associated error it is not possible. After
some tests with the Sick LD-MRS, it was veri�ed that when all the laser scans were below
the hemisphere of the ball, the lower scan should give the smallest circle diameter (since
it is the smallest section of the ball), however, that's not always con�rmed because of
the sensor error. Thus, also a priori information about this laser is required.

3.3.1 Segmentation

Segmentation is a very important part of the calibration process; sets of points are
generated with a probability of belonging to the ball, being then evaluated. The main
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goal is to cluster the point cloud in sub sets of points which have high probability to
belong to the same object through detected discontinuities in the laser data sequence,
which are called break-points. A bad segmentation can compromise the rest of the
process, which may cause problems to identify the ball.

In order to �nd the break-point, a Distance-based method is used to compute the
Euclidean distance between two points, DE(pi, pi+1), and if that distance is greater than
a threshold Dth, then a break-point is detected.

Several methods are available to perform 2D point cloud segmentation. Based on the
work from Coimbra [19], the Spatial Nearest Neighbour (SNN) was used since it appears
the most consistent over di�erent tested scenes.

Consider a full scan Scan as an ordered sequence of n measurement points (p) in the
form:

Scan = {p1, p2, ..., pn}. (3.1)

The raw data collected by the LIDAR is de�ned in a R2 space. These scanner points
are commonly de�ned in polar coordinates (ri, αi) but also in cartesian coordinates (xi,
yi), meaning: 

xi = ri cosα

yi = ri sinα

ri =
√

(xi)2 + (yi)2
(3.2)

The two scan coordinates are illustrated more clearly on Figure 3.7.

Figure 3.7: Geometrical representation of a hypothetical laser data. [19]

With the points de�ned in cartesian coordinates the Euclidean distance is calculated
as follows:

Deu =
√

(xi − xi−1)2 + (yi − yi−1)2. (3.3)

The SNN is a recursive algorithm where the distance between a scanned point and
all the other points that are not yet assigned to a cluster is computed. If that distance
is smaller than a certain threshold the points are assigned to that cluster.
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The algorithm can be explain as follows:

If pi not yet assigned to a cluster then
Calculate the Euclidean distance Deu to all the other unsigned points
if Deu < Dth then

Points will belong to that cluster
end

Go to the next unsigned point and repeat procedure until there are no more
unsigned points

end

The only variable in this algorithm is the threshold value, so it is expected that for
a higher Dth the result will be bigger clusters, and for a smaller Dth the result will be
smaller clusters.

Since this method calculates the Euclidean distance to all the others points (not yet
assigned to a cluster), and just not to its neighbour, it is possible that the point pi and
pi+3 belong to the same cluster, while the points pi+1 and pi+2 belong to another. Figure
3.8 illustrates a case when this situation occurs, where a smaller object is occluding a
bigger one and the last keeps being one cluster.

Figure 3.8: Segmentation Using the SNN, non-consecutive background points are as-
signed to the same segment (s1).

In conclusion this method can partially solve some occlusion related problems pre-
senting better results than others. Figure 3.9 shows the result of the segmentation in a
scan and the cluster related to the ball.

3.3.2 Circle Detection

The method used for circle detection is inspired on a work developed for line, arc/circle
and leg detection from a laser scan data [20]. The circle detection makes use of a technique
named Internal Angle Variance (IAV). This technique uses the trigonometric properties
of the arcs: every point in an arc has congruent angles (angles that have the same
amplitude) in respect to the extremes.

This property can be veri�ed in Figure 3.10. Let P1 and P4 be the extremes of the arc,
and P2 and P3 random points belong to the same arc. Then (∠P1P2P4) = (∠P1P3P4)
holds, because both angles measure one-half of (∠P1OP4).

The detection of circles involves calculating the mean of the aperture angle (m̄) be-
tween the extreme points and the remaining points of a cluster, as well as the standard
deviation (σ).To verify a positive detection at the beginning, values of standard devi-
ation smaller than 8.6º and values of mean aperture between 90° and 135° were used,
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Figure 3.9: Result of the segmentation on sensor Sick LMS151.

Figure 3.10: Congruent angles of points on an arc in respect to the extremes.
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considering that the scan covers approximately half a circle. However, those values are
dependent of two factors: the error associated to the sensors, and how much of the circle
the scan covers. Thus, after analysing the results empirically, the values were adjusted to
standard deviations values under 5º and values of mean aperture between 105° and 138°
for the sick LMS151, and 10° and between 110° and 135°, respectively for the sick LD-
MRS400001. These adjustments allowed to obtain the best results avoiding the detection
of false circles.

Considering that a segment C has n points (P), say C = {P1, P2, ..., Pn}, the mean
and standard deviation of the angle are calculated as follow:

m̄ =
1

n− 2

n−1∑
i=2

m(∠P1PiPn) (3.4)

σ =

√√√√ 1

n− 2

n−1∑
i=2

(m(∠P1PiPn)− m̄)2 (3.5)

The con�dence of the analyse increases with the following factors:

� The cluster has more than 8 points;

� For values of standard deviation below 5°;

� The average aperture angle is near of 90°, this means that the scan covers approx-
imately half a circle.

3.3.3 Calculation of Circle Properties

The calculation of the center and radius of the circle uses the method of least squares to
�nd the circle that best �ts the points. Given a �nite set of points in R2, say {(xi, yi)|0 ≤
i < N}, �rst calculate their mean values by x̄ = 1

N

∑
i xi and ȳ = 1

N

∑
i yi. Let ui =

xi − x̄, vi = yi − ȳ for 0 ≤ i < N , and de�ning Su =
∑

i ui, Suu =
∑

i u
2
i , etc. The

problem is to solve �rst in (u, v) coordinates, and then transform back to (x, y).
Considering that the circle has center (uc,vc) and radius R, the main goal is to

minimize S =
∑

i g(ui, vi)
2, where g(u, v) = (u − uc)2 + (v − vc)2 − α, and α = R2. To

do that, it is necessary to di�erentiate S(α, uc, vc), giving the following solutions:

ucSuu + vcSuv =
1

2
(Suuu + Suvv) (3.6)

ucSuv + vcSvv =
1

2
(Svvv + Svuu) (3.7)

Solving equations (3.6) and (3.7) simultaneously gives (uc, vc). Then the center (xc, yc)
of the circle in the original coordinate system allows to write (xc, yc) = (uc, vc) + (x̄, ȳ),
and calculating α as follow:

α = u2c + v2c +
Suu + Svv

N
(3.8)

The result of the combination of circle detection with the properties of the circle is
illustrated on �gure 3.11.
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Figure 3.11: Result of the circle detection in real data from the sensor Sick LMS151.

3.3.4 Calculation of the Ball Center

After knowing all the properties of the circle, it is possible to calculate the center of the
ball through trigonometric relations as shown on Figure 3.12, where R is the radius of
the ball, R′ the radius of the circle and d the distance between the center of the circle
and the center of the ball, with d =

√
R2 −R′2.

Figure 3.12: Example of the cross-section of the sphere at a distance d from the sphere's
center.

Taking into account the ambiguity for the 2D lasers mentioned in section 3.3, and
considering that the center of the circle has (xc,yc) coordinates, the coordinates of the
center of the ball for this laser are de�ned as follows: (Xc, Yc, Zc) = (xc, yc,±d). Figure
3.13 illustrates an example of the ball detection in a 2D scan.
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Figure 3.13: Detection of the ball in a 2D scan from the Sick LMS151.

In order to simplify the calculations in the 3D multi-layer laser, the coordinates of
the circle center are transformed into the XY plane for each layer; then for each layer,
the center of the ball is calculated precisely in the same way as for the 2D laser. After,
the centers of the ball are transformed back into the respective original plane.

At this point, for each layer, the center of the ball was calculated, which means
that there are as many centers as layers. Thus, statistically, the center of the ball is
obtained by calculating the mean of all the centers. Considering that there are n layers
and the di�erent circles have (xc1 , yc1 , zc1 ; ...;xcn , ycn , zcn) coordinates, the center mean
coordinates are de�ned as follows:


Xc = 1

n

∑n
i=1 xci

Yc = 1
n

∑n
i=1 yci

Zc = 1
n

∑n
i=1 zci

(3.9)

Figure 3.14 shows an example of the detection of the ball by the multi-layer laser Sick
LD-MRS.

Figure 3.14: Detection of the ball on Sick LD-MRS.
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3.4 Detection of Sphere Center in 3D Data

The ball recognition in 3D data, the case of the SwissRanger and stereo system, is
achieved using the PCL segmentation capabilities, namely the sample consensus module,
which accepts as input a point cloud and outputs the geometric model. In this case the
model is a sphere, so the output produces the coordinates of the center of the ball and
the radius.

The PCL implementation to compute the �tting of a sphere uses a Random Sample
Consensus (RANSAC) [21] estimator method and a sphere model. The algorithm is an
iterative method used to estimate parameters of a mathematical model from a set of data
(3D point cloud from sensors) containing outliers. The RANSAC algorithm assumes that
all the data includes of both inliers and outliers. Inliers are known as data points whose
distribution �ts some set of model parameters. On the other hand, RANSAC call outliers
all those points that do not belong to the surface of a model. The goal of the RANSAC
algorithm is to estimate which of the input points are inliers and which ones are outliers.
The �nal result of the algorithm will be a set of estimated inliers and a set of estimated
outliers. The RANSAC algorithm is composed of two phases that are repeated in a loop
for each iteration.

The �rst phase is known as hypothesize phase. In this step, RANSAC follows a sam-
pling strategy based on minimal sampling set of points (MSS). These points are randomly
selected from the input data points, such that the shape parameters are computed by
using only this minimal set.

In the second phase, which is known as testing phase, the quality of the MSS is
evaluated. In order to carry out this task, the algorithm checks how well the model
parameters, which were computed in the �rst phase, �t the rest of the points from the
input data set. Each MSS is tested against the whole data points checking which points
are closer to the candidate model. All the points which support the MSS con�gure the
set of inliers for the �tting model, called consensus set.

The RANSAC algorithm keeps executing the loop until the probability of improving
the consensus set drops below a given threshold. Consequently, after a certain number of
iterations, the MSS with the best consensus set is chosen as the �nal model and all these
points will be called estimated inliers. Figure 3.15 shows a point cloud received from the
SwissRanger and result of the application of RANSAC algorithm on the detection of the
ball.

3.5 Detection of the Center of the Ball with Cameras

The �rst approach to compute the center of the ball was using the Hough Transform
provided by OpenCV. The Hough Transform is a method used for extracting features of
speci�ed shape in an image. Since the calibration target is a ball, Hough Circle Transform
was used to �nd the circle that best �ts the ball on image, returning its parameters (radius
and center). Then, knowing the intrinsic parameters of the camera, those parameters
would be used to relate the radius of the ball (which is known) with the radius and center
of the circle in pixels, allowing the computation of the homogeneous coordinates of the
ball with respect to the camera frame.

The Hough Circle Transform works in a manner roughly analogous to the Hough
line transform, since it can be computed like the line detection case. The di�erence is
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Figure 3.15: Ball detection in the SwissRanger point cloud.

that a line is de�ned by two parameters, and a circle is de�ned by three parameters
(xcenter, ycenter, r), so, the accumulator plane used by Hough line transformation would
have to be replaced by an accumulator with three dimensions; one for xcenter, one for
ycenter, and another for the circle radius r. This would lead to considerable computational
demand. To handle the dimensionality problem the OpenCV implementation uses the
Hough gradient method [22]. This approach makes clever use of the image gradients to
boost e�ciency.

The Hough gradient method has two main stages. On �rst stage is obtained the binary
edge image by applying the Canny edge detector. Additionally, gradients are computed
using the �rst order Sobel derivatives. Then, for every edge points, all points that lies
inside a maximum and minimum distance and lie along the gradient are incremented
in the accumulator. Those incremented points will be the candidates for possible circle
centers.

The algorithm on the second stages selects all center candidates passing a threshold
and ensure that no neighbours has higher accumulator value. The selected centers are
then sorted by amount of votes in descending order. Beginning at the highest supported
center, the algorithm �nd the radius that best �ts the possible edges for this center
candidate. The remaining circles are detected in the same way.

Taking this into account, the algorithm provided by OpenCV has four parameters
that can be con�gured: one that de�ne the higher threshold of the two used by Canny
edge detector (the lower is half that value); one that de�ne the accumulator threshold
for the circle center at the detection stage; and the other two delimit the maximum and
minimum radius of the circle.

The problem using this approach was mainly because of the ball used in this work,
which even adjusting the parameters referred previously, the results weren't the expected.
In indoor tests was possible to detect the ball, but when applied outdoor, it wasn't
possible re�ne those parameters to allow the detection of the ball. This is a consequence
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Figure 3.16: Pinhole camera model. [23]

of the lack of consistency of the ball color and the white color parts on the ball, causing
a lot of re�ection. The conjunction of those two problems leads to a bad edge extraction,
in�uencing the rest of the process. Nevertheless, even if it were possible to detect the
ball, the radius of the detected circle presented a considerable variation with the ball
static.

Since we are using two cameras, the problem was solved by mounting a stereo sys-
tem. This was also performed with algorithms provided by OpenCV. This new approach
consists of four main steps: realize a stereo calibration with a chessboard; compute the
disparity map; realize a 3D reconstruction based on the disparity map and create a point
cloud; and in last, apply the method used for 3D data presented on section 3.4 to cal-
culate the coordinates of the center of the ball on the point cloud. The three �rst steps
will be detailed in the next sections.

3.5.1 Camera Model

OpenCV uses the pinhole camera model. This is the simplest, and the ideal, model of
camera function. This model is based on modeling the lens of the camera as a pinhole
(center of projection) that lets through light rays that intersect a speci�c point in space
and are projected to an image plane. As result, the image on this image plane (also called
the projective plane) is inverted and is always in focus, and the size of the image relative
to the distant object is given by a single parameter of the camera, its focal length. So
the distance from the pinhole aperture to the screen is assumed as the focal length. This
is shown in Figure 3.16, where f is the focal length of the camera, Z is the distance from
the camera to the object, X is the length of the object, and x is the object's image on
the image plane.

To simplify the mathematical relationship between the coordinates of a world 3D
point and its projection onto the image plane, the original model su�ers a rearrangement
to an equivalent form. In this new arrangement, the pinhole and the image plane are
swap. A new frontal image plane is generated, where the object is no longer upside
down. The point in the pinhole is reinterpreted as the center of projection. The point
at the intersection of the image plane and the optical axis is referred to as the principal
point. On this new frontal image plane (Figure 3.17), which is the equivalent of the old
projective or image plane, the image of the distant object is exactly the same size as
it was on the image plane in Figure 3.16. The image is generated by intersecting these
rays with the image plane, which happens to be exactly a distance f from the center of
projection.
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Figure 3.17: Rearrangement of the pinhole camera model. [23]

The intrinsic parameters describes a geometric property of the camera that are used
to transform 3D pinhole coordinates of camera frame into 2D image coordinates. The
intrinsic matrix of the camera is parameterized as follow:

M=

fx 0 cx
0 fy cy
0 0 1


The parameters fx and fy are focal length, and cx e cy represent the principal point.

The intrinsic parameters are indi�erent of the scenario where the camera are, and once
estimated can be used again, since if the focal length does not change.

The relation that transforms the points Q in the physical world with coordinates (X
, Y , Z ) to the points on the projection screen with coordinates (x , y ) is called a
projective transform. The projection of the points in the physical world into the camera
is proceeded as follow:

s

uv
1

 =

xy
w

 =

fx 0 cx
0 fy cy
0 0 1

XY
Z


If the world reference frame (Xw, Yw, Zw) is di�erent from the camera coordinate

frame, another transformation has to be added. This transformation is de�ned as the
extrinsic parameters matrix, which represent the rotation and translation between the
world reference and camera frame. The parameters rij combine rotations along the three
main axes and ti parameters the translation in the three axes. The extrinsic parameters
matrix can be de�ned as:

R=

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3


This way it is possible to establish the relation between the coordinates of the world

reference into the camera frame as follows:
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s

xy
w

 = M ×R×


Xw

Yw
Zw
1


3.5.2 Stereo Calibration

Stereo calibration is the process of computing the geometric relationship between the
two cameras in space. The process to calibrate the two stereo cameras is similar to the
process to calibrate just one camera. The main di�erence, is that in a single camera
the calibration returns a list of rotation and translation vectors between the camera and
the chessboard views, and the stereo calibration returns a single rotation matrix and
translation vector that relate the second camera to the �rst.

For the calibration of a single camera OpenCV uses a chessboard calibration target,
which is used to take several images in di�erent orientations in the camera's �elds of view.
Then, for each position of the chessboard reference points (i.e. corners) are extracted
with sub-pixel resolution from the images and used for estimating the intrinsic matrix
of the camera. This method is described in details by Zhang in [24]. An example of the
corners extraction can be seen on Figure 3.18.

Figure 3.18: Example of the detection of the corners of a chessboard during a calibration.

As referred, the stereo calibration is done almost in the same way as in a single
camera calibration, but involves more steps, resulting in the intrinsic parameters of the
camera and extrinsic parameters of the stereo rig. This calibration was done with a total
of 30 di�erent static positions of the chessboard. Then, in each image the corners of the
chessboard were extracted in both images the same way for a single camera, and used
as reference points. Next, the reference points of both cameras are used as input on
OpenCV to calculate the stereo calibration. In last, the parameters from the calibration
are recti�ed (stereo recti�cation), which returns the follow parameters:

� R1 - 3 × 3 recti�cation of rotation matrix for the �rst camera;

� R2 - 3 × 3 recti�cation of rotation matrix for the second camera;

� P1 - 3 × 4 projection matrix in the new (recti�ed) coordinate systems for the �rst
camera;
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� P2 - 3 × 4 projection matrix in the new (recti�ed) coordinate systems for the
second camera;

� Q - dispaity-to-depth mapping matrix.

3.5.3 Stereo Imaging

This section describes how the images captured from both cameras can be converted to
tridimensional data. Stereo imaging consists of �nding the relation of two or more images
of the same scenario at di�erent points of view. This principle can be compared with
human vision, in which each eye o�ers a di�erent perspective of the viewed scenario, and
give us a tridimensional perception of surrounding environment. So, if we are capable of
�nding correspondences between images, and knowing the baseline separation between
cameras and the intrinsic parameters of stereo system, we can compute the depth infor-
mation of objects of a certain scenario. To realize the reconstruction from two images
to 3D world coordinates, the OpenCV library already o�ers all the tools necessaries to
compute this transformation. This involves four steps:

� Remove radial and tangential lens distortion to obtain undistorted images;

� Adjust for the angles and distances between cameras to obtain recti�ed image in
frontal arrangement (Figure 3.22) a recti�cation of images. Results in two coplanar
images with images rows exactly aligned;

� Find the same features in the left and right camera views. With this correspon-
dences between images, a disparity map is created, where the disparities are the
di�erences in x coordinates on the image planes of the same feature viewed in the
left and right cameras;

� Knowing the geometric arrangement of the cameras, reproject the disparity map
into depth map by triangulation.

Undistortion and Recti�cation

The disparity image is easy to compute in the ideal case when two images planes are
perfectly aligned. However, in practice that situation is rare with real stereo system,
since the two cameras almost never have exactly coplanar, row-aligned imaging planes.
The main goal of the recti�cation is that, reproject the image planes of two cameras so
they reside in the exact same plane, with image rows perferctly aligned into a frontal
parallel con�guration.

The algorithm provided on OpenCV already make the undistortion and recti�cation
of the images, since they are related. OpenCV implements two methods to compute the
recti�cation: Hartley's algorithm [25]; and Bouguet's algorithm. Bouguet's algorithm
was the chosen. This algorithm for a given rotation matrix and a translation resulted
from the stereo calibration, attempts to minimize the amount of change that a new
projection produces for each of the two images in order to reduce the resulting distortion
while maximizing the common viewing area. For more information, this algorithm is
a completion and simpli�cation of the method �rst presented by Tsai [26] and Zhang
[24; 27]. The algorithm steps represented on Figure 3.19.
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Figure 3.19: Steps of the recti�cation of an image by OpenCV. [23]

Stereo Correspondences

The stereo correspondences consists of matching 3D points of the same scene in the two
di�erent camera views, which can be computed only over the visual areas in which the
views of the two cameras overlap. The regions in one image which have no counterparts
in the other image, are referred to as occlusions. This is the reason why are obtained
better results if the arrangement of the cameras are the best possible near frontal parallel.

In OpenCV are available two di�erent algorithms to calculate correspondences: the
block-matching (BM), which is similar to the one developed by Kurt Konolige [28]; and
an adaptation of Hirschmuller's semi-global matching (SGM) [29], referred as the semi-
global block matching (SGBM). After some tests, was concluded that the SGBM present
better results than the BM algorithm, where is possible to observe that the SGBM present
a smoother disparity image and with less noise than the BM algorithm. Nevertheless,
even being a slower algorithm, and since for this application is not required high frame
rates, the process of ball detection is not a�ected. The images taken by both cameras are
present on Figure 3.20, and the resulting disparity image by both algorithms are present
on Figure 3.21.

The SGBM method is based on the idea of pixelwise matching of Mutual Infor-
mation and approximating a global, 2D smoothness constraint by combining many 1D
constraints. The algorithm is described in distinct processing steps, assuming a gen-
eral stereo geometry of two or more images with known epipolar geometry. A detailed
description of the algorithm is available in [29].

The implementation of the SGBM on OpenCV have some con�gurable parameters, in
order to obtain the best image disparity depending on the application. Those parameters
are the following:

� minDisparity - Minimum possible disparity value;

� numDisparities - Maximum disparity minus minimum disparity. The value is
always greater than zero, and in this implementation must be divisible by 16;
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� SADWindowSize - SAD (Sum of Absolute Di�erence) is a measure of similarity
between image blocks. This parameter is to de�ne the block size, which must be
an odd number ≥ 1;

� P1 - The �rst parameter controlling the disparity smoothness;

� P2 - The second parameter controlling the disparity smoothness. The larger values
the values are, the smoother disparity is. P1 is the penalty on the disparity change
by plus or minus 1 between neighbor pixels. P2 is the penalty on the disparity
change by more than 1 between neighbor pixels. The algorithm requires P2 > P1;

� Disp12MaxDi� - Maximum allowed di�erence (in integer pixel units) in the left-
right disparity check. Set it to a non-positive value to disable the check;

� preFilterCap - Truncation value for the pre�ltered image pixels. The algorithm
�rst computes x-derivative at each pixel and clips its value by [-preFilterCap, pre-
FilterCap] interval. The result values are passed to the Birch�eld-Tomasi pixel cost
function;

� uniquenessRatio - Margin in percentage by which the best (minimum) computed
cost function value should "win" the second best value to consider the found match
correct;

� speckleWindowSize - Maximum size of smooth disparity regions to consider their
noise speckles and invalidate. Set it to 0 to disable speckle �ltering;

� speckleRange - Maximum disparity variation within each connected component.
If speckle �ltering are activated, the parameter is a positive value, which will be
implicitly multiplied by 16;

� fullDP - Set it to true to run the full-scale two-pass dynamic programming algo-
rithm. It will consume O(W*H*numDisparities) bytes, which is large for 640x480
stereo and huge for HD-size pictures. By default, it is set to false.

Image camera 1. Image camera 2.

Figure 3.20: Images of a scenario taken by both cameras.
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BM. SGBM.

Figure 3.21: Disparity images of BM and SGBM algorithms.

After some experimental tests, the values that best adjust for this work either for
indoor or outdoor are presented on Table 3.1. Also, during those tests was veri�ed that
the intensity of light didn't e�ect much the disparity image on this cameras.

Table 3.1: Parameters settings.

minDisparity 0
numDisparities 192
SADWindowsSize 5
P1 950
P2 2500
Disp12MaxDi� 10
preFilterCap 4
uniquenessRatio 1
speckleWindowSize 150
speckleRange 2
fullDP false

3D Reconstruction

Knowing the geometric arrangement obtained from the stereo calibration, it is possible
reproject the disparity map into depth by triangulation if the geometric arrangement is
similar to the one represented on Figure 3.22.

In order to understand the triangulation let's assume that the images are row-aligned
and that every pixel row of one camera aligns perfectly with the corresponding row in
the other camera. It is also assumed that is possible to �nd a point P in the physical
world in the left and the right image views at pl and pr with the respective horizontal
coordinates xl and xr. This conditions shows that the depth is inversely proportional to
the disparity between these views, where the disparity is de�ned by d = xl − xr. Figure
3.22 shows that situation, being easily the estimation of the depth Z of the point P by
the equation 3.10.

T − (xl − xr)
Z − F

=
T

Z
→ Z =

fT

xl − xr
(3.10)
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Figure 3.22: Illustration of the triangulation method. [23]

Since depth is inversely proportional to disparity, there is a nonlinear relationship
between this two terms. When disparity is near zero, small di�erences on disparity results
in large depth di�erences. In the other hand, for large disparities, small di�erences on
disparity do not changes the depth by much. As consequence, stereo vision systems
have high depth resolution only for objects relatively near the camera. This relation are
illustrated on Figure 3.23.

Figure 3.23: Depth and disparity relationship. [23]

Figure 3.24 shows an example of the reprojection of the disparity map into 3D coor-
dinates of our stereo vision system, where the ball is in the �eld of view of both cameras.
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Figure 3.24: Example of an 3D reconstruction of the disparity map.

3D Coordinates of the Ball Center

As referred previously, the center of the ball is calculated as described on subsection 3.4.
The resulting 3D points of the reprojection of the disparity map are converted into a
point cloud; then, the RANSAC algorithm is used in that point cloud, giving as result
the coordinates of the center (xc, yc, zc) of the ball and its radius. Figure 3.25 shows the
result of the ball detection applied on the point cloud of the stereo vision system.

Figure 3.25: Example of the ball detection on 3D point cloud.

3.6 Architecture

As referred previously one of the main advantages of using ROS, is that is possible to
have more than one process (node) running at the same time, and exchange information
between nodes through a publish/subscribe messaging model into topics. During the
process of calibration one of the steps require a synchronized acquisition of points of the
center of the ball by all sensors. Thus, each sensor has a node associated to detect the
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center of the ball and publish its coordinates into a speci�c topic. Then, a calibration node
has the function of subscribe each topic where the nodes of the sensors are subscribing.
Figure 3.26 shows all the processes that run during the calibration and what each of
them is publishing and subscribing. Four processes are shown (one for each sensor), but
this is scalable for more sensors.

Figure 3.26: Calibration process scheme.

3.7 Point Clouds Acquisition

The last node (calibration node) is responsible for the creation of the point clouds for
each sensor, since it is the node that gathers all the information of the other nodes. As
known, this point clouds contain the point correspondences between sensors. In order
to make that correspondences more accurate possible, some conditions are imposed to
consider a valid point during the formation of the point clouds. Considering that there
are i sensors and d the distance between consecutive points (the point being evaluated
and the last added into the point cloud), the conditions are the following:

� Each sensor have to detect the center of the ball in the same time stamp;

� To prevent the inclusion of more than one point into the point cloud when the ball
is static, a minimum distance Dmin between consecutive points are required. That
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means di > Dmin;

� Finally to prevent some false detection of the ball in some of the sensors, when the
last two condition are ful�lled, there is one last condition. In the perfect scenario,
the distance di should be equal in all point clouds, although, small di�erences are
implicit due the associated errors in the ball center detection. To prevent that the
di�erences are to large, which could mean a false ball detection, a mean d̄ of the
distances di of each sensor is calculated independently, d̄ = 1

i

∑j=i
j=1 dj . Then, the

di�erence ∆di between the mean d̄ and di is calculated for all sensors, ∆di = |d̄−di|.
If ∆di in all sensors is smaller than a certain threshold Dth, ∆di < Dth, the point
of each sensor is valid and is added into the respective point cloud. However, when
the point clouds are empty this condition cannot be veri�ed.

3.8 Calibration

The 3D transformation estimation purpose is to align the point clouds generated by each
sensor. This alignment results on the relative pose (position and orientation) between
sensors in a global coordinate frame, such that the overlapping areas between the point
clouds match as well as possible. To compute the transformation between sensors an
Absolute Orientation algorithm is used. A variant of the Iterative Closest Point (ICP)
algorithm is used to estimate the 3D translation and rotation between a pair of point
clouds, available on PCL.

The objective is to solve the rigid transformation T that minimizes the error of the
point pairs. For that purpose the ICP algorithm provided by PCL has two error min-
imization metrics: point-to-point and point-to-plane. For this work was applied the
point-to-point (Eq. 3.11) metric, where pn and qn are 3D points of N pair correspon-
dences from the source and target cloud.

E(T ) =

N∑
n=1

||Tpn − qn||2 (3.11)

This metric to minimize the sum of the Euclidean distances between corresponding
points corresponds to a least-square problem, which can be solved by using a closed-form
using Singular Value Decomposition (SVD) method proposed in [7; 30].

The SVD method uses two sets of corresponding 3D points; one is the source and
the other the target. Based on the point correspondences, the cross correlation matrix
M between the two centered point clouds can be calculated, after which the eigenvalue
decomposition is obtained as follows:

M = USV T (3.12)

Then the optical solution to the least-square problem is de�ned by a rotation matrix
R as:

R = UV T (3.13)

and the translation from target point cloud (ct) to source point cloud (cs) is de�ned
as:

t = cs −Rct (3.14)
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The concept of the ICP algorithm is illustrated on Figure 3.27.

Figure 3.27: ICP overview scheme.
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Chapter 4

Results

This chapter describes the experiments that were carried out to test all the functionalities
of the new developed calibration method. The tests have special interest in evaluating:

� The consistency in the ball detection in each sensor;

� The consistency in the 3D transformation estimation depending on the number of
points used;

� The validation of the method.

4.1 Evaluation of the Consistency in the Ball Detection and

the 3D Transformation

The test about the consistency of the 3D transformation does not include the stereo
system, because it was not yet integrated on the calibration process at the time. Since
the goal is to evaluate the relation of the size of the point clouds on the calibration, the
use of the other sensors is already a good indicator of this information. Also, the test
of the consistency on the ball detection was not performed for the stereo system since
the integration of cameras in this work presented some limitations on the ball detection,
being necessary a further study. This limitations will be presented and explained on the
evaluation tests.

4.1.1 Ball Detection

In the ball detection test, and in similar conditions, the ball was placed statically at
di�erent distances from the sensor and, for each position, 500 samples of the coordinates
of the ball center were acquired. From these samples, a mean and the standard deviation
were calculated. Figure 4.1 shows the standard deviations of the measurements of the
three sensors used on this test.

It is important to refer that the test with the SwissRanger was done only up to 3
m due its small range (maximum of 5 m), because for distances longer than 3 m, the
algorithm couldn't detect the ball.
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Figure 4.1: Standard deviation of ball center detection for several distances using sets of
500 measurements.

The results show that the variation veri�ed is consistent with the error associated
to each sensor (below 10 cm for the Sick LD-MRS, and about 1 cm for the remaining
sensors). In the case of the SwissRanger, a greater variation is veri�ed for the closest
and furthest distances; it may be due to the proximity of the ball and a lower density of
points for further distances, but this is only a suspicions that needs a more detailed study.
Nonetheless, the standard deviation in the detection of the ball is not larger than the
error associated to the standalone sensors, indicating that the method does not introduce
new measurement errors. For the Sick LD-MRS, even with results in accordance with its
error, it is di�cult to evaluate the interference of the distance of the ball on its detection,
which can be possibly explained by the �uctuations in the data provided by the sensor;
for example, it is possible to have a set of 500 measurements of a static object at 10 m,
where 80% of the measurements have a deviation of ±0.01 m and the remainder 20%
have a deviation of ±0.08 m. On the other hand, for the exact same conditions, if a new
set of 500 measurements is obtained, a ratio of 50%/50% may be found instead.

4.1.2 Transformation Estimation

In the second test, several calibrations between all the sensors were performed using
always the same setup; this was done by using di�erent sizes of the point clouds (number
of points), where each point of the cloud corresponds to a di�erent position of the ball
during its motion in front of the sensors. Thus, for each size of the point clouds, a set
of 20 calibrations was performed having as result the respective matrix of the estimated
rigid transformation. The analysis of results compares the translation and rotation;
the translation is obtained directly from the matrix of the geometric transformation;
considering the rotation matrix (R) from calibration and Rx, Ry and Rz the generic
rotations around each axis, R is de�ned as R = Rx(Roll)Ry(Pitch)Rz(Y aw), which
allows to be solved and obtain the Euler angles (Roll, Pitch, Y aw). Then, as in the �rst
test, a mean and a standard deviation of the translation and Euler angles are calculated,
with the di�erence that the Euler angles are analysed individually. Figure 4.2 shows the
results for the translation, and Figure 4.3 presents the results for the Euler angles.

Figure 4.4 shows the setup used for the calibration and Figure 4.5 the estimated
positions of the sensors after being calibrated. As expected, the standard deviation
decreases with the number of points, and stabilizes at around 20 points; for this test

Marcelo Silva Pereira Dissertação de Mestrado/ Master Thesis



4.Results 45

5 10 15 20 25 30
0

50

100

150

200

Number of points per point cloud

σ
(m

m
)

LD-MRS⇔SwissRanger

LD-MRS⇔LMS151

LMS151⇔SwissRanger

Figure 4.2: Standard deviation of the translation between the three sensor pairs from
the 20 calibrations realized for each size of the point clouds.
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Figure 4.3: Standard deviation of the Euler angles between the three sensor pairs from
the 20 calibrations realized for each size of the point clouds.
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the minimum distance between consecutive points was 10 cm. The mean variation from
point clouds of 20 points is lower than 10 cm and about 4°or 5°, which, once again, is in
the range of the standalone sensors.

Figure 4.4: Layout of the sensors on the scene.

Figure 4.5: Positions of the sensors after the calibration.

4.2 Validation of the Method

The di�culty of having a ground-truth makes complicated the validation of the method,
which would allow the comparison of the estimated transformation with the exact trans-
formation. It is very di�cult to guarantee with precision if the calibration obtained is
correct, given the di�culty to measure exactly the correct pose between pair of sensors.
The problem of evaluating the pose between sensors is particularly di�cult with rota-
tions (it is possible to have a fairly reasonable evaluation of the translation with simple
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measures), which is critical since small errors in rotation may result in large error in the
�nal registered data.

Having in account how di�cult is to prove the validity of the method, the best solution
found was to perform a calibration of all the devices with respect to the laser with better
accuracy. Then, the point cloud of the reference sensor is used as ground-truth, and on
the remainder is applied the resulting transformation from the calibration to evaluate
how well the point clouds �t in the reference by calculating the absolute mean error and
the standard deviation of the corresponding points relatively to the ground-truth.

This test was performed in a vehicle (AtlasCar) to evaluate the method on real
conditions. And since this tests are outdoor, the devices used are the ones that will have
some functionality on the AtlasCar project, which means that the set of sensors does not
include the SwissRanger. The main reason to exclude the SwissRanger is that the sensor
does not work outside being a�ected by external light that interferes with the infrared
light projected by the system.

The sensors used in this experiment are: the Sick LD-MRS, the two Sick LMS151
and the stereo system. One of the Sick LMS151 was the chosen sensor to be the reference
and the remainder are calibrated relatively to it. The experience has the following steps:

� Chose one of the sensors as reference (in this case a Sick LMS151 was chosen given
this is the sensor with better accuracy);

� Perform the point cloud acquisition for each sensor and calibrate them with respect
to the reference frame;

� Apply the resulting transformation on the point clouds of the calibrated sensors;

� Calculate the error of each point belonging to the point cloud of the calibrated
sensors relatively to the corresponding points of the ground-truth (point cloud of
the reference sensor);

� Calculate the mean error and standard deviation of the of the previous step.

The acquisition of the point clouds were performed with two di�erent approaches: i)
following a pattern, by forming a grid as illustrated on Figure 4.6 (it is just an example
of the intended); ii) acquire random points during the motion of the ball in front of the
sensors. The idea of acquiring a pattern is to perform a study about the in�uence of
the distribution of the points on the calibration by selecting di�erent points from the
pattern. The acquisition of random points is to evaluate the calibration method in a
normal situation. Figure 4.7 shows the setup mounted on AtlasCar, where can be seen
that the Sick LD-MRS is placed on the top of a box because there is not yet a support
to apply it in the car, nonetheless, its location will not be much di�erent from where it
was placed.

4.2.1 Calibration with a Pattern

To perform the acquisition with the ball moving along a grid/pattern, several markers
were placed in the �oor and the ball was placed as close as possible to each marked
position, forming a point cloud for each sensor. Figure 4.10 shows the markers placed on
the �oor and the resulting point cloud on the Sick LMS151 sensor.

Marcelo Silva Pereira Dissertação de Mestrado/ Master Thesis



48 4.Results

Figure 4.6: Illustration of the pattern to be acquired forming a grid. The sensors are
represented by the black rectangles, and the points are the placement of the target
(sphere).

Figure 4.7: Setup used on the validation test and the sensor positions.
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Floor marks. Resulting point cloud.

Figure 4.8: Markers placed on the �oor and a resulting point cloud on the Sick LMS151
sensor.

The resulting point clouds of each sensor were divided in two sub sets of points. One
with the central points of the point cloud, which will be called inner points, and the second
with the remaining points, which will be called outer points. This two di�erent sub-sets
were used to evaluate the in�uence of the ball position (namely the size of the area
used for calibration). Thus, evaluate the in�uence of the area size on the transformation
estimation. Figure 4.9 shows the selected inner points in red and the outer points in
green.

Figure 4.10 shows the point clouds of each sensor with respect to their own frame.
On the left the point clouds with the inner points and on the right the point clouds with
the outer points.

The calibration of the sensors with respect to the reference on both cases (with the
inner and outer points) is performed. Then, the resulting transformation was applied on
the point cloud of each sensor. The result for both cases is illustrated on Figure 4.11; on
left is the result for the calibration with the inner points, and on right the result using
the outer points. This �gure shows, for each pair of calibrated sensors, the �tting of the
point clouds of the calibrated sensor on the point cloud of the reference sensor (used as
a sort of ground-truth). There are some points between LIDAR lasers that do not seem
to have a �tting, which happens when two points are overlapped.

To evaluate the quality of the calibration, the distance between each corresponding
point of the calibrated sensors to the reference sensor was calculated. The measures
obtained were the standard deviation and the error associated to each corresponding
point. Then, the absolute mean error is calculated for each calibrated sensor. The
resulting standard deviation and the absolute mean error of the calibration using the
inner points are shown on Table 4.1, and using the outer points on Table 4.2.
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Figure 4.9: The two sub sets of points from a point cloud: inner points in red and outer
points in green.

Table 4.1: Resulting standard deviation and absolute mean error for each calibrated
sensor using the inner points.

Standard deviation [cm] Absolute mean error [cm]

Sick LMS151 - Sick LMS151 2.897 2.292
Sick LMS151 - Sick LD-MRS 3.758 3.242
Sick LMS151 - Stereo system 38.470 31.335

Table 4.2: Resulting standard deviation and absolute mean error for each calibrated
sensor using the outer points.

Standard deviation [cm] Absolute mean error [cm]

Sick LMS151 - Sick LMS151 3.803 2.618
Sick LMS151 - Sick LD-MRS 4.544 3.729
Sick LMS151 - Stereo system 76.094 63.568

In order to have a better idea of the quality of the calibration, the sensors were placed
on a CAD model of the AtlasCar. The result is shown on Figure 4.12, where the sensors
are represented by arrows pointing in the X axis direction of their own referential system.

The pattern acquired with the lasers is similar to the expected, the di�erences that
are noticed it is because of a bad placement of the ball on the marks, and the nearby
objects to the markers. However, on Figure 4.10 can be observed that the result with the
stereo system was poor. This can be a cause of several factors, from a bad calibration
of the stereo system to the scene where the pattern was acquired, which has a lot of
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Inner points.

Outer points.

Figure 4.10: Representation of the sensors point clouds not yet calibrated. On the left
the inner points and on the right the outer points.
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Sick LMS151 - Sick LMS151. Sick LMS151 - Sick LMS151.

Sick LMS151 - Sick LD-MRS. Sick LMS151 - Sick LD-MRS.

Sick LMS151 - Stereo System. Sick LMS151 - Stereo System.

Figure 4.11: Fitting of each pair of calibrated sensors. The �gures on the left are from
the calibration with the inner points, and on the right with the outer points.
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Calibration using the inner points. Calibration using the outer points.

Figure 4.12: Representation of the sensors positions in a CAD model of the AtlasCar on
both calibrations.
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close objects that may interfere on the ball detection. Also, due to the re�ection of light
on the ball and its large areas with uniform color, the disparity map shows some noise
that a�ects the re-projection of the ball to 3D coordinates. The re-projection of the ball
instead of being a perfect spherical surface, presents an irregular spherical surface, and
sometimes is hard to detect as being part of the ball.

As consequence of the bad pattern acquisition by the stereo system, its calibration
presents a big standard deviation and absolute mean error for both calibrations as pre-
sented on Table 4.1 and 4.2.

Analysing the results for the lasers calibration on Table 4.1 and 4.2, the results
between both calibrations does not di�er much. The standard deviation and the absolute
mean error values are slightly bigger on the outer points, which is related with the furthest
measures of the ball center, however, the di�erence is so small that it becomes irrelevant.
However, this does not mean a better calibration, only that the point clouds �t better.
Looking at Figure 4.12, and comparing with the setup used (Figure 4.7), the displacement
of the lasers on the car model seems to be better on the calibration with the outer points.
This result was expected, since the number of possible positions for the lasers to �t two
point clouds are bigger if the points cover a small area.

There are three conclusions from this experiment:

� The stereo system needs to be improved and the ball texture should be replaced
by a di�erent one, or an alternative implementation should be used for the ball
detection;

� The �tting of the point clouds are not much a�ected by the size of the covered area
that contains the corresponding points;

� The use of a larger covered area seems to improve the accuracy of the calibration.

4.2.2 Calibration with Random Points

The calibration method does not need to follow any particular pattern with the corre-
sponding points. Thus, this test is to evaluate a calibration in a normal use by acquiring
points in random positions. Di�erently from the previous test, this one was realized in
an open area without close objects that may interfere on the ball detection. Based on
the results obtained in the previous tests about the in�uence of the number of points on
the transformation estimation, we chose a number of 25 corresponding points per point
cloud. The resulting point clouds of the calibration process for each sensor with respect
to their own frame are shown on Figure 4.13.

Again, the calibration of the sensors was computed with respect to the one of them
taken as reference (the Sick LMS151). Then, the transformation estimation was applied
on the corresponding point cloud. The �tting of the point clouds on the ground-truth is
represented on Figure 4.14 in di�erent perspective by pairs of calibrated sensors.

As in the previous test, the position of the sensors after calibration are placed on
the car model. The arrangement is shown on Figure 4.15 along with the real setup for
comparison.

The point cloud in Figure 4.14 �ts better on the calibration of the Sick LMS151
and the Sick LD-MRS, meaning a smaller error on the calibration. On the other hand,
the stereo system presents a larger disparity, having as consequence a calibration with a
larger error.
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Figure 4.13: Resulting point clouds for each sensor (yet uncalibrated).

Figure 4.15 shows that the obtained calibration and the real setup appear to be fairly
consistent for the lasers. Although the same it is not veri�ed for stereo system; the
problem appear to be in the 3D reconstruction from the disparity map since the whole
3D cloud of points seems to be to close to the car. This might indicate problems in the
stereo rig calibration.

The evaluation of the calibration was performed exactly as in the previous test. The
standard deviation and the absolute mean error for each calibrated sensor is presented
on Table 4.3.

Table 4.3: Calculated standard deviation and absolute mean error of the calibration.

standard deviation [cm] absolute mean error [cm]

Sick LMS151 - Sick LMS151 3.114 2.367
Sick LMS151 - Sick LD-MRS 5.994 4.157
Sick LMS151 - Stereo system 21.488 18.189

The results on Table 4.3 for the standard deviation and the absolute mean error
between lasers is similar to the ones obtained on the previous test. However, the calibra-
tion of the stereo system improved signi�cantly. This may be related with the change
of scenery where the calibration was performed, since in this scenario close objects that
may interfere on the ball detection did not exist. The error is still too large to allow a
real use of the stereo system and further investigation on the topic is necessary to better
understand the causes of this large error and improve the process.

The small error and standard deviation associated between the two lasers Sick LMS151
was expected, since they are the devices with smaller error (±1cm), however, the result
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Sick LMS151 - Sick LMS151.

Sick LMS151 - Sick LD-MRS.

Sick LMS151 - Stereo System.

Figure 4.14: Fitting of the point clouds of each calibrated sensor into the ground-truth
from two perspectives.
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Sensors setup on the AtlasCar.

Sensors positions on the car model after the calibration.

Figure 4.15: Displacement of the sensors on the AtlasCar and the car model after the
calibration for comparison.
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between the laser Sick LMS151 and the Sick LD-MRS was surprising, since the cali-
bration error is smaller than the error associated to the Sick LD-MRS (±10cm). This
results prove that the method for the ball detection on the Sick laser does not provide
more error than its associated intrinsic error. Also, since the calibration algorithm uses
several points and minimizes the sum of the point pairs error, a point with greater error
does not a�ect much the calibration result.

The largest error on the stereo, once again, may be related to reasons pointed previ-
ously, such as the re�ection of light on the ball, and its big areas with uniform color.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

A new automatic calibration of multiple LIDAR sensors and cameras was developed
and successfully implemented. The algorithm uses a ball as calibration target, allowing
the detection of its center by all sensors along successive positions. The only initial
parameters required concerns the position of the LIDAR sensors relatively to the ball
(whether it is above or below the equator of the ball).

To perform the detection of the ball and posteriorly the calibration, the algorithm uses
the LIDAR sensors clustering techniques, arc properties and trigonometric relationships
to estimate the center of the ball; in the case of the SwissRanger, the data is processed
using a PCL consensus algorithm for the ball center detection; the two cameras are
used to build a stereo system, which by a combination of algorithms of OpenCV and
PCL, allows the ball center to be detected. The stereo calibration, the calculation of the
disparity map and 3D reconstruction are performed using OpenCV, and the detection
of the ball with a PCL consensus algorithm. All the di�erent approaches applied to the
various types of sensors for the ball detection proved to be suitable for the function, and
did not increase the error that each sensor already has associated. However, even the
process for the cameras being suitable, some improvements are required.

The calibration estimation between sensors was done based on correspondences. The
ball was placed in motion allowing its detection by all sensors for the creation of a point
cloud for each sensor. The number of corresponding points in�uences the calibration
quality. 15 seems to be a reasonable threshold according to some experiments performed.

Other objective of this method was also proven, which is related to its capacity to
support various types of sensors. That was possible because of the variety of sensors used
on this work, which forced this method to deal with di�erent types of data (2D, n×2D,
3D and image). As a matter of fact, this method can handle various types of sensors, as
long as it is possible to detect the center of the ball in each of them.

In summary, the good results on the consistency tests for the ball detection and
transformation estimation were con�rmed with the validation tests by the small errors
that were obtained on the calibration of the LIDAR lasers. However, the stereo system
presented some limitations on the ball detection, having consequences on the accuracy
of its calibration.
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5.2 Future Work

For future work, a detailed study about the calibration of cameras should be carried out.
The process of the cameras calibration is a good start, however, they presented the worst
results. An improvement of the method used for the ball center detection is necessary, or
a development of an alternative method for the calibration of individual cameras. Thus,
if so, it is advisable to use of a ball with a uniform color. Having a robust process for
the ball detection, the calibration of cameras might be as good as the calibration of the
LIDAR lasers done in this work.

It would be interesting to create some validation tools to automatically evaluate the
quality of the resulting calibration, in order to avoid a potential bad calibration; that
could be done by doing something similar to the test performed to prove the validation
of the process. That means, after calibrating the sensors, apply the transformations on
the respective point clouds and calculate the mean error of the points, exactly as it was
done on the validation test. If the mean error in some calibrated sensor is larger than a
certain threshold, another calibration should be done.

To remove the necessity of a previous information related with the position of the
LIDAR sensor relatively to the ball, a priori process should be implemented relatively to
the calibration method. Put the ball bouncing around in front of the sensors, and study
the diameter variation of the ball sections, might be a good starting point. With that
this method could support any kind of con�guration easily.

In order to simplify the use of the method, an interface could be developed to be a
more user friendly method; so, it could be used by everyone, without the necessity of
using line commands.

Finally, more directly related to the AtlasCar, a support for the application of the
Sick LD-MRS shall be done, and applied in the car in the more adequate position for its
function. Thus, after calibrate all the sensors on board the car, gather all the information
with respect to a reference frame and de�ne the navigable areas for the car.
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