
Chargers, microprocessors, Arduino, and whatever

Ken Shirriff's blog

Secrets of Arduino PWM
Pulse-width modulation (PWM) can be implemented on the Arduino in several ways. This
article explains simple PWM techniques, as well as how to use the PWM registers directly
for more control over the duty cycle and frequency. This article focuses on the Arduino
Diecimila and Duemilanove models, which use the ATmega168 or ATmega328.

If you're unfamiliar with Pulse Width Modulation, see the tutorial. Briefly, a PWM signal is a
digital square wave, where the frequency is constant, but that fraction of the time the
signal is on (the duty cycle) can be varied between 0 and 100%.

PWM has several uses:

Dimming an LED
Providing an analog output; if the digital output is filtered, it will provide an
analog voltage between 0% and 100% .
Generating audio signals.
Providing variable speed control for motors.
Generating a modulated signal, for example to drive an infrared LED for a
remote control.

The Arduino's programming language makes PWM easy to use; simply call
analogWrite(pin, dutyCycle), where dutyCycle is a value from 0 to 255, and pin is
one of the PWM pins (3, 5, 6, 9, 10, or 11). The analogWrite function provides a simple
interface to the hardware PWM, but doesn't provide any control over frequency. (Note that
despite the function name, the output is a digital signal.)

Probably 99% of the readers can stop here, and just use analogWrite, but there are
other options that provide more flexibility.

You can "manually" implement PWM on any pin by repeatedly turning the pin on and off for
the desired times. e.g.

void setup()
{
 pinMode(13, OUTPUT);
}

void loop()
{
 digitalWrite(13, HIGH);
 delayMicroseconds(100); // Approximately 10% duty cycle @ 1KHz
 digitalWrite(13, LOW);

Simple Pulse Width Modulation with analogWrite

Bit-banging Pulse Width Modulation

A Multi-Protocol Infrared
Remote Library for the
Arduino

A dozen
USB
chargers in
the lab:
Apple is very

good, but not quite the
best

iPad charger
teardown:
inside
Apple's
charger and

a risky phony

Apple iPhone charger
teardown: quality in a tiny
expensive package

Tiny, cheap,
and
dangerous:
Inside a
(fake)

iPhone charger

Bitcoins the
hard way:
Using the
raw Bitcoin
protocol

Teardown
and
exploration
of Apple's
Magsafe

connector

Bitcoin mining on a 55
year old IBM 1401
mainframe: 80 seconds
per hash

Secrets of Arduino PWM

Mining
Bitcoin with
pencil and
paper: 0.67
hashes per

day

Popular Posts

6502 8085 apple arc
arduino bitcoin

electronics

ir
math

Labels

10 More Next Blog» Create Blog Sign In

converted by Web2PDFConvert.com

http://www.righto.com/
http://www.arduino.cc/en/Tutorial/PWM
http://arduino.cc/en/Reference/AnalogWrite
https://www.blogger.com/profile/17060121093734820965
https://www.blogger.com/profile/05954077676960722034
https://www.blogger.com/profile/13087413453907453645
https://www.blogger.com/profile/08097301407311055124
https://www.blogger.com/profile/17184388661015389939
https://www.blogger.com/profile/16066285550739882631
https://www.blogger.com/profile/15133175322951099195
https://www.blogger.com/profile/17968034719797455466
http://www.xaxxon.com
https://www.blogger.com/profile/08097301407311055124
https://www.blogger.com/profile/10631873262839085568
https://www.blogger.com/profile/14597993167511073460
https://www.blogger.com/profile/11742364931896059935
https://www.blogger.com/profile/05858975075878302747
https://www.blogger.com/profile/14597993167511073460
http://www.houseofpain.org
https://www.blogger.com/profile/11742364931896059935
https://www.blogger.com/profile/12444475739456044479
https://www.blogger.com/profile/10201836718453977599
https://www.blogger.com/profile/08097301407311055124
https://www.blogger.com/profile/10071071884455787806
https://www.blogger.com/profile/16045746973596684539
https://www.blogger.com/profile/10071071884455787806
http://electricrcaircraftguy.blogspot.com/
https://www.blogger.com/profile/16695812640719120085
https://www.blogger.com/profile/08451368805339601586
https://www.blogger.com/profile/12357841577714823341
https://www.blogger.com/profile/12357841577714823341
https://www.blogger.com/profile/10071071884455787806
https://www.blogger.com/profile/07656591698609684025
https://www.blogger.com/profile/07656591698609684025
https://www.blogger.com/profile/14186406070483599248
https://www.blogger.com/profile/06646659717201792447
http://www.righto.com/2009/08/multi-protocol-infrared-remote-library.html
http://www.righto.com/2012/10/a-dozen-usb-chargers-in-lab-apple-is.html
http://www.righto.com/2012/10/a-dozen-usb-chargers-in-lab-apple-is.html
http://www.righto.com/2014/05/a-look-inside-ipad-chargers-pricey.html
http://www.righto.com/2014/05/a-look-inside-ipad-chargers-pricey.html
http://www.righto.com/2012/05/apple-iphone-charger-teardown-quality.html
http://www.righto.com/2012/03/inside-cheap-phone-charger-and-why-you.html
http://www.righto.com/2012/03/inside-cheap-phone-charger-and-why-you.html
http://www.righto.com/2014/02/bitcoins-hard-way-using-raw-bitcoin.html
http://www.righto.com/2014/02/bitcoins-hard-way-using-raw-bitcoin.html
http://www.righto.com/2013/06/teardown-and-exploration-of-magsafe.html
http://www.righto.com/2013/06/teardown-and-exploration-of-magsafe.html
http://www.righto.com/2015/05/bitcoin-mining-on-55-year-old-ibm-1401.html
http://www.righto.com/2014/09/mining-bitcoin-with-pencil-and-paper.html
http://www.righto.com/2014/09/mining-bitcoin-with-pencil-and-paper.html
http://www.righto.com/search/label/6502
http://www.righto.com/search/label/8085
http://www.righto.com/search/label/apple
http://www.righto.com/search/label/arc
http://www.righto.com/search/label/arduino
http://www.righto.com/search/label/bitcoin
http://www.righto.com/search/label/c%23
http://www.righto.com/search/label/calculator
http://www.righto.com/search/label/css
http://www.righto.com/search/label/electronics
http://www.righto.com/search/label/f%23
http://www.righto.com/search/label/fractals
http://www.righto.com/search/label/genome
http://www.righto.com/search/label/haskell
http://www.righto.com/search/label/html5
http://www.righto.com/search/label/ibm1401
http://www.righto.com/search/label/ipv6
http://www.righto.com/search/label/ir
http://www.righto.com/search/label/java
http://www.righto.com/search/label/javascript
http://www.righto.com/search/label/math
http://www.righto.com/search/label/oscilloscope
http://www.righto.com/search/label/photo
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

 delayMicroseconds(900);
}

This technique has the advantage that it can use any digital output pin. In addition, you
have full control the duty cycle and frequency. One major disadvantage is that any
interrupts will affect the timing, which can cause considerable jitter unless you disable
interrupts. A second disadvantage is you can't leave the output running while the
processor does something else. Finally, it's difficult to determine the appropriate constants
for a particular duty cycle and frequency unless you either carefully count cycles, or tweak
the values while watching an oscilloscope.

The ATmega168P/328P chip has three PWM timers, controlling 6 PWM outputs. By
manipulating the chip's timer registers directly, you can obtain more control than the
analogWrite function provides.

The AVR ATmega328P datasheet provides a detailed description of the PWM timers, but
the datasheet can be difficult to understand, due to the many different control and output
modes of the timers. The following attempts to clarify the use of the timers.

The ATmega328P has three timers known as Timer 0, Timer 1, and Timer 2. Each timer
has two output compare registers that control the PWM width for the timer's two outputs:
when the timer reaches the compare register value, the corresponding output is toggled.
The two outputs for each timer will normally have the same frequency, but can have
different duty cycles (depending on the respective output compare register).

Each of the timers has a prescaler that generates the timer clock by dividing the system
clock by a prescale factor such as 1, 8, 64, 256, or 1024. The Arduino has a system clock
of 16MHz and the timer clock frequency will be the system clock frequency divided by the
prescale factor. Note that Timer 2 has a different set of prescale values from the other
timers.

The timers are complicated by several different modes. The main PWM modes are "Fast
PWM" and "Phase-correct PWM", which will be described below. The timer can either run
from 0 to 255, or from 0 to a fixed value. (The 16-bit Timer 1 has additional modes to
supports timer values up to 16 bits.) Each output can also be inverted.

The timers can also generate interrupts on overflow and/or match against either output
compare register, but that's beyond the scope of this article.

Several registers are used to control each timer. The Timer/Counter Control Registers
TCCRnA and TCCRnB hold the main control bits for the timer. (Note that TCCRnA and
TCCRnB do not correspond to the outputs A and B.) These registers hold several groups
of bits:

Waveform Generation Mode bits (WGM): these control the overall mode of the
timer. (These bits are split between TCCRnA and TCCRnB.)
Clock Select bits (CS): these control the clock prescaler
Compare Match Output A Mode bits (COMnA): these enable/disable/invert
output A
Compare Match Output B Mode bits (COMnB): these enable/disable/invert
output B

The Output Compare Registers OCRnA and OCRnB set the levels at which outputs A
and B will be affected. When the timer value matches the register value, the
corresponding output will be modified as specified by the mode.

The bits are slightly different for each timer, so consult the datasheet for details. Timer 1 is
a 16-bit timer and has additional modes. Timer 2 has different prescaler values.

In the simplest PWM mode, the timer repeatedly counts from 0 to 255. The output turns on
when the timer is at 0, and turns off when the timer matches the output compare register.
The higher the value in the output compare register, the higher the duty cycle. This mode
is known as Fast PWM Mode.
The following diagram shows the outputs for two particular values of OCRnA and OCRnB.

Using the ATmega PWM registers directly

Timer Registers

Fast PWM

power supply random
reverse-engineering
sheevaplug snark
teardown Z-80

iPhone charger teardown
A dozen USB chargers
Magsafe hacking
Inside a fake iPhone
charger
Power supply history

Power supply posts

► 2015 (5)

► 2014 (13)

► 2013 (24)

► 2012 (10)

► 2011 (11)

► 2010 (22)

▼ 2009 (22)
► December (2)

► November (5)

► September (1)

► August (3)

▼ July (1)
Secrets of Arduino

Blog Archive

converted by Web2PDFConvert.com

http://www.sparkfun.com/datasheets/Components/SMD/ATMega328.pdf
http://www.righto.com/search/label/power supply
http://www.righto.com/search/label/random
http://www.righto.com/search/label/reverse-engineering
http://www.righto.com/search/label/sheevaplug
http://www.righto.com/search/label/snark
http://www.righto.com/search/label/spanish
http://www.righto.com/search/label/teardown
http://www.righto.com/search/label/theory
http://www.righto.com/search/label/Z-80
http://www.arcfn.com/2012/05/apple-iphone-charger-teardown-quality.html
http://www.arcfn.com/2012/10/a-dozen-usb-chargers-in-lab-apple-is.html
http://www.righto.com/2013/06/teardown-and-exploration-of-magsafe.html
http://www.arcfn.com/2012/03/inside-cheap-phone-charger-and-why-you.html
http://www.arcfn.com/2012/02/apple-didnt-revolutionize-power.html
http://www.blogger.com/profile/08097301407311055124
javascript:void(0)
http://www.righto.com/search?updated-min=2015-01-01T00:00:00-08:00&updated-max=2016-01-01T00:00:00-08:00&max-results=5
javascript:void(0)
http://www.righto.com/search?updated-min=2014-01-01T00:00:00-08:00&updated-max=2015-01-01T00:00:00-08:00&max-results=13
javascript:void(0)
http://www.righto.com/search?updated-min=2013-01-01T00:00:00-08:00&updated-max=2014-01-01T00:00:00-08:00&max-results=24
javascript:void(0)
http://www.righto.com/search?updated-min=2012-01-01T00:00:00-08:00&updated-max=2013-01-01T00:00:00-08:00&max-results=10
javascript:void(0)
http://www.righto.com/search?updated-min=2011-01-01T00:00:00-08:00&updated-max=2012-01-01T00:00:00-08:00&max-results=11
javascript:void(0)
http://www.righto.com/search?updated-min=2010-01-01T00:00:00-08:00&updated-max=2011-01-01T00:00:00-08:00&max-results=22
javascript:void(0)
http://www.righto.com/search?updated-min=2009-01-01T00:00:00-08:00&updated-max=2010-01-01T00:00:00-08:00&max-results=22
javascript:void(0)
http://www.righto.com/2009_12_01_archive.html
javascript:void(0)
http://www.righto.com/2009_11_01_archive.html
javascript:void(0)
http://www.righto.com/2009_09_01_archive.html
javascript:void(0)
http://www.righto.com/2009_08_01_archive.html
javascript:void(0)
http://www.righto.com/2009_07_01_archive.html
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

Note that both outputs have the same frequncy, matching the frequency of a complete
timer cycle.

The following code fragment sets up fast PWM on pins 3 and 11 (Timer 2). To summarize
the register settings, setting the waveform generation mode bits WGM to 011 selects fast
PWM. Setting the COM2A bits and COM2B bits to 10 provides non-inverted PWM for
outputs A and B. Setting the CS bits to 100 sets the prescaler to divide the clock by 64.
(Since the bits are different for the different timers, consult the datasheet for the right
values.) The output compare registers are arbitrarily set to 180 and 50 to control the PWM
duty cycle of outputs A and B. (Of course, you can modify the registers directly instead of
using pinMode, but you do need to set the pins to output.)

 pinMode(3, OUTPUT);
 pinMode(11, OUTPUT);
 TCCR2A = _BV(COM2A1) | _BV(COM2B1) | _BV(WGM21) |
_BV(WGM20);
 TCCR2B = _BV(CS22);
 OCR2A = 180;
 OCR2B = 50;

On the Arduino Duemilanove, these values yield:

Output A frequency: 16 MHz / 64 / 256 = 976.5625Hz
Output A duty cycle: (180+1) / 256 = 70.7%
Output B frequency: 16 MHz / 64 / 256 = 976.5625Hz
Output B duty cycle: (50+1) / 256 = 19.9%

The output frequency is the 16MHz system clock frequency, divided by the prescaler value
(64), divided by the 256 cycles it takes for the timer to wrap around. Note that fast PWM
holds the output high one cycle longer than the compare register value.

The second PWM mode is called phase-correct PWM. In this mode, the timer counts
from 0 to 255 and then back down to 0. The output turns off as the timer hits the output
compare register value on the way up, and turns back on as the timer hits the output
compare register value on the way down. The result is a more symmetrical output. The
output frequency will be approximately half of the value for fast PWM mode, because the
timer runs both up and down.

The following code fragment sets up phase-correct PWM on pins 3 and 11 (Timer 2). The
waveform generation mode bits WGM are set to to 001 for phase-correct PWM. The other
bits are the same as for fast PWM.

Phase-Correct PWM

PWM

► June (3)

► April (1)

► March (3)

► February (2)

► January (1)

► 2008 (27)

The Arduino
Starter Kit
Arduino.org
New $98.63
Best $93.71

Arduino Uno
Ultimate Starter Kit
-- ...
Vilros
New $54.99
Best $54.99

ARDUINO
Compatible 37-in-
1 Sensor Mo...
SHANHAI
New $32.88
Best $26.40

Arduino UNO R3
board with DIP
ATmega...
Arduino
New $26.03
Best $10.00

Sunfounder
Project Super
Starter Kit...
SunFounder
New $32.99
Best $30.52

Privacy Information

Arduino IR library
6502 reverse-
engineering

Quick links

converted by Web2PDFConvert.com

http://www.sparkfun.com/datasheets/Components/SMD/ATMega328.pdf
javascript:void(0)
http://www.righto.com/2009_06_01_archive.html
javascript:void(0)
http://www.righto.com/2009_04_01_archive.html
javascript:void(0)
http://www.righto.com/2009_03_01_archive.html
javascript:void(0)
http://www.righto.com/2009_02_01_archive.html
javascript:void(0)
http://www.righto.com/2009_01_01_archive.html
javascript:void(0)
http://www.righto.com/search?updated-min=2008-01-01T00:00:00-08:00&updated-max=2009-01-01T00:00:00-08:00&max-results=27
http://www.arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
http://www.righto.com/2013/01/a-small-part-of-6502-chip-explained.html
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

 pinMode(3, OUTPUT);
 pinMode(11, OUTPUT);
 TCCR2A = _BV(COM2A1) | _BV(COM2B1) | _BV(WGM20);
 TCCR2B = _BV(CS22);
 OCR2A = 180;
 OCR2B = 50;

On the Arduino Duemilanove, these values yield:

Output A frequency: 16 MHz / 64 / 255 / 2 = 490.196Hz
Output A duty cycle: 180 / 255 = 70.6%
Output B frequency: 16 MHz / 64 / 255 / 2 = 490.196Hz
Output B duty cycle: 50 / 255 = 19.6%

Phase-correct PWM divides the frequency by two compared to fast PWM, because the
timer goes both up and down. Somewhat surprisingly, the frequency is divided by 255
instead of 256, and the duty cycle calculations do not add one as for fast PWM. See the
explanation below under "Off-by-one".

Both fast PWM and phase correct PWM have an additional mode that gives control over
the output frequency. In this mode, the timer counts from 0 to OCRA (the value of output
compare register A), rather than from 0 to 255. This gives much more control over the
output frequency than the previous modes. (For even more frequency control, use the 16-
bit Timer 1.)

Note that in this mode, only output B can be used for PWM; OCRA cannot be used both
as the top value and the PWM compare value. However, there is a special-case mode
"Toggle OCnA on Compare Match" that will toggle output A at the end of each cycle,
generating a fixed 50% duty cycle and half frequency in this case. The examples will use
this mode.

In the following diagram, the timer resets when it matches OCRnA, yielding a faster output
frequency for OCnB than in the previous diagrams. Note how OCnA toggles once for each
timer reset.

The following code fragment sets up fast PWM on pins 3 and 11 (Timer 2), using OCR2A
as the top value for the timer. The waveform generation mode bits WGM are set to to 111
for fast PWM with OCRA controlling the top limit. The OCR2A top limit is arbitrarily set to
180, and the OCR2B compare register is arbitrarily set to 50. OCR2A's mode is set to
"Toggle on Compare Match" by setting the COM2A bits to 01.

 pinMode(3, OUTPUT);
 pinMode(11, OUTPUT);
 TCCR2A = _BV(COM2A0) | _BV(COM2B1) | _BV(WGM21) |
_BV(WGM20);
 TCCR2B = _BV(WGM22) | _BV(CS22);
 OCR2A = 180;
 OCR2B = 50;

On the Arduino Duemilanove, these values yield:

Output A frequency: 16 MHz / 64 / (180+1) / 2 = 690.6Hz

Varying the timer top limit: fast PWM

converted by Web2PDFConvert.com

http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

Output A duty cycle: 50%
Output B frequency: 16 MHz / 64 / (180+1) = 1381.2Hz
Output B duty cycle: (50+1) / (180+1) = 28.2%

Note that in this example, the timer goes from 0 to 180, which takes 181 clock cycles, so
the output frequency is divided by 181. Output A has half the frequency of Output B
because the Toggle on Compare Match mode toggles Output A once each complete timer
cycle.

Similarly, the timer can be configured in phase-correct PWM mode to reset when it
reaches OCRnA.

The following code fragment sets up phase-correct PWM on pins 3 and 11 (Timer 2),
using OCR2A as the top value for the timer. The waveform generation mode bits WGM
are set to to 101 for phase-correct PWM with OCRA controlling the top limit. The OCR2A
top limit is arbitrarily set to 180, and the OCR2B compare register is arbitrarily set to 50.
OCR2A's mode is set to "Toggle on Compare Match" by setting the COM2A bits to 01.

 pinMode(3, OUTPUT);
 pinMode(11, OUTPUT);
 TCCR2A = _BV(COM2A0) | _BV(COM2B1) | _BV(WGM20);
 TCCR2B = _BV(WGM22) | _BV(CS22);
 OCR2A = 180;
 OCR2B = 50;

On the Arduino Duemilanove, these values yield:

Output A frequency: 16 MHz / 64 / 180 / 2 / 2 = 347.2Hz
Output A duty cycle: 50%
Output B frequency: 16 MHz / 64 / 180 / 2 = 694.4Hz
Output B duty cycle: 50 / 180 = 27.8%

Note that in this example, the timer goes from 0 to 180 and back to 0, which takes 360
clock cycles. Thus, everything is divided by 180 or 360, unlike the fast PWM case, which
divided everything by 181; see below for details.

You may have noticed that fast PWM and phase-correct PWM seem to be off-by-one with
respect to each other, dividing by 256 versus 255 and adding one in various places. The
documentation is a bit opaque here, so I'll explain in a bit of detail.

Suppose the timer is set to fast PWM mode and is set to count up to an OCRnA value of
3. The timer will take on the values 012301230123... Note that there are 4 clock cycles in
each timer cycle. Thus, the frequency will be divided by 4, not 3. The duty cycle will be a
multiple of 25%, since the output can be high for 0, 1, 2, 3, or 4 cycles out of the four.
Likewise, if the timer counts up to 255, there will be 256 clock cycles in each timer cycle,
and the duty cycle will be a multiple of 1/256. To summarize, fast PWM divides by N+1
where N is the maximum timer value (either OCRnA or 255).

Now consider phase-correct PWM mode with the timer counting up to an OCRnA value of
3. The timer values will be 012321012321... There are 6 clock cycles in each timer cycle
(012321). Thus the frequency will be divided by 6. The duty cycle will be a multiple of 33%,
since the output can be high for 0, 2, 4, or 6 of the 6 cycles. Likewise, if the timer counts
up to 255 and back down, there will be 510 clock cycles in each timer cycle, and the duty
cycle will be a multiple of 1/255. To summarize, phase-correct PWM divides by 2N, where

Varying the timer top limit: phase-correct PWM

Off-by-one

converted by Web2PDFConvert.com

http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

N is the maximum timer value.

The second important timing difference is that fast PWM holds the output high for one
cycle longer than the output compare register value. The motivation for this is that for fast
PWM counting to 255, the duty cycle can be from 0 to 256 cycles, but the output compare
register can only hold a value from 0 to 255. What happens to the missing value? The fast
PWM mode keeps the output high for N+1 cycles when the output compare register is set
to N so an output compare register value of 255 is 100% duty cycle, but an output
compare register value of 0 is not 0% duty cycle but 1/256 duty cycle. This is unlike
phase-correct PWM, where a register value of 255 is 100% duty cycle and a value of 0 is
a 0% duty cycle.

The Arduino supports PWM on a subset of its output pins. It may not be immediately
obvious which timer controls which output, but the following table will clarify the situation. It
gives for each timer output the output pin on the Arduino (i.e. the silkscreened label on the
board), the pin on the ATmega chip, and the name and bit of the output port. For instance
Timer 0 output OC0A is connected to the Arduino output pin 6; it uses chip pin 12 which is
also known as PD6.
Timer output Arduino output Chip pin Pin name
OC0A 6 12 PD6
OC0B 5 11 PD5
OC1A 9 15 PB1
OC1B 10 16 PB2
OC2A 11 17 PB3
OC2B 3 5 PD3

The Arduino performs some initialization of the timers. The Arduino initializes the prescaler
on all three timers to divide the clock by 64. Timer 0 is initialized to Fast PWM, while Timer
1 and Timer 2 is initialized to Phase Correct PWM. See the Arduino source file wiring.c for
details.

The Arduino uses Timer 0 internally for the millis() and delay() functions, so be warned
that changing the frequency of this timer will cause those functions to be erroneous. Using
the PWM outputs is safe if you don't change the frequency, though.

The analogWrite(pin, duty_cycle) function sets the appropriate pin to PWM and sets
the appropriate output compare register to duty_cycle (with the special case for duty
cycle of 0 on Timer 0). The digitalWrite() function turns off PWM output if called on a
timer pin. The relevant code is wiring_analog.c and wiring_digital.c.

If you use analogWrite(5, 0) you get a duty cycle of 0%, even though pin 5's timer
(Timer 0) is using fast PWM. How can this be, when a fast PWM value of 0 yields a duty
cycle of 1/256 as explained above? The answer is that analogWrite "cheats"; it has
special-case code to explicitly turn off the pin when called on Timer 0 with a duty cycle of
0. As a consequency, the duty cycle of 1/256 is unavailable when you use analogWrite
on Timer0, and there is a jump in the actual duty cycle between values of 0 and 1.

Some other Arduino models use dfferent AVR processors with similar timers. The Arduino
Mega uses the ATmega1280 (datasheet), which has four 16-bit timers with 3 outputs each
and two 8-bit timers with 2 outputs each. Only 14 of the PWM outputs are supported by
the Arduino Wiring library, however. Some older Arduino models use the ATmega8
(datasheet), which has three timers but only 3 PWM outputs: Timer 0 has no PWM, Timer
1 is 16 bits and has two PWM outputs, and Timer 2 is 8 bits and has one PWM output.

It can be tricky to get the PWM outputs to work. Some tips:

You need to both enable the pin for output and enable the PWM mode on the
pin in order to get any output. I.e. you need to do pinMode() and set the
COM bits.
The different timers use the control bits and prescaler differently; check the
documentation for the appropriate timer.

Timers and the Arduino

Troubleshooting

converted by Web2PDFConvert.com

http://code.google.com/p/arduino/source/browse/trunk/hardware/cores/arduino/wiring.c
http://code.google.com/p/arduino/source/browse/trunk/hardware/cores/arduino/wiring_analog.c
http://code.google.com/p/arduino/source/browse/trunk/hardware/cores/arduino/wiring_digital.c
http://arduino.cc/en/Main/Hardware
http://arduino.cc/en/Main/ArduinoBoardMega
http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2486.pdf
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

Labels: arduino

Some combinations of bits that you might expect to work are reserved, which
means if you try to use them, they won't work. For example, toggle mode
doesn't work with fast PWM to 255, or with output B.
Make sure the bits are set the way you think. Bit operations can be tricky, so
print out the register values and make sure they are what you expect.
Make sure you're using the right output pins. See the table above.
You'll probably want a decoupling capacitor to avoid spikes on the output.

An oscilloscope is very handy for debugging PWM if you have access to one. If you don't
have one, I recommend using your sound card and a program such as xoscope.

I hope this article helps explain the PWM modes of the Arduino. I found the documentation
of the different modes somewhat opaque, and the off-by-one issues unexplained. Please
let me know if you encounter any errors.

Conclusion

+10 Recommend this on Google

42 comments:
Anonymous said...

Thank you for the article!

As a beginning Arduino user, this is very helpful!

November 1, 2009 at 10:46 AM

Didier said...

Excellent paper. Many Thanks

January 10, 2010 at 5:57 AM

Jason said...

exactly what I needed! thanks!

January 23, 2010 at 1:38 PM

Tom said...

I am so glad I found this. Just what I needed.
One question though-likely I am not understanding some subtlety.
It seems from the datasheet that the 64 pre-scale corresponds to 110. I am
wondering if I am missing something, as you mention 100 as the 64 prescale
divider.
Thank you!

February 7, 2010 at 9:56 AM

Anonymous said...

Excellent article, I've been going through some example code but this made it all
come together.

Thanks,
Mike

February 27, 2010 at 9:42 AM

Ken Shirriff said...

Tom, you asked about how to divide by 64 with the prescaler. For timer0 and
timer1, the clock select bits are set to 011 (CS02,CS01,CS00 or
CS12,CS11,CS10). But for timer2, the clock select bits are set to 100
(CS20,CS21,CS20). Confusingly, Timer 2 uses different clock select bit values
from Timers 0 and 1.

converted by Web2PDFConvert.com

http://xoscope.sourceforge.net/
https://www.blogger.com/email-post.g?blogID=6264947694886887540&postID=5409564808315467886
https://www.blogger.com/share-post.g?blogID=6264947694886887540&postID=5409564808315467886&target=email
https://www.blogger.com/share-post.g?blogID=6264947694886887540&postID=5409564808315467886&target=blog
https://www.blogger.com/share-post.g?blogID=6264947694886887540&postID=5409564808315467886&target=twitter
https://www.blogger.com/share-post.g?blogID=6264947694886887540&postID=5409564808315467886&target=facebook
https://www.blogger.com/share-post.g?blogID=6264947694886887540&postID=5409564808315467886&target=pinterest
http://www.righto.com/search/label/arduino
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1257101179917#c57531341931304128
https://www.blogger.com/profile/17060121093734820965
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1263131833332#c6069690033327361117
https://www.blogger.com/profile/05954077676960722034
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1264282695751#c7495656219882598511
https://www.blogger.com/profile/13087413453907453645
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1265565380022#c6378661885610687434
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1267292568913#c6379427141641594515
https://www.blogger.com/profile/08097301407311055124
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

March 16, 2010 at 11:22 PM

monty said...

Ken,

I am just learning about Arduino and I have a question about your article on
“Secrets of Arduino PWM”.

Your example says
pinMode(3, OUTPUT);
pinMode(11, OUTPUT);
TCCR2A = _BV(COM2A1) | _BV(COM2B1) | _BV(WGM20);
TCCR2B = _BV(CS22);
OCR2A = 180;
OCR2B = 50;
What I am confused about is previously you stated that that these examples set
the clock divisor to 64. Is there a bit inversion in the writes to an AVR register?
Your line TCCR2B = _BV(CS22); would set the TCCR2B register to 00000100b.

Is there something I’m missing here?

Thanks in advance for your response.

Monty

April 21, 2010 at 9:15 AM

Steve Gough said...

Very helpful, thanks--we're trying to use Arduinos to power a small pump and
measure flow for an open source river modeling system, and I was hung on this
topic until reading this--see our stuff at lrrd.blogspot.com.

May 22, 2010 at 6:06 PM

Matej said...

that is wonderful.. but whan i was looking at the library i saw in the comments that
this will work only for 36-40khz modulation? Whay is that and how can i change it
so it will work on 56khz?

May 23, 2010 at 1:32 AM

Cassiano Rabelo said...

Excellent tutorial Ken. Thanks a lot for sharing your knowledge.

Would you mind elaborating a bit more on how someone could use the sound
card and a program such as xoscope to help debug this sort of thing? Do you
mean by plugin a speaker to the arduino pin, getting it close to the computer mic
and using such a software to graph the wave?

Thanks once again.

September 23, 2010 at 5:55 PM

Colin Adamson said...

Most excellent thank you -- saved me days trying to make sense of that
Atmega328 datasheet
I was using the default 490 Mhz arduino analogWrite PWM and was getting
horribly low torque with some small DC motors on low duty cycles. Changed it to
30Hz and now its way better, still runs smooth.

December 16, 2010 at 11:44 PM

Ken Shirriff said...

Colin, thanks for your comment. I'm glad the article was helpful.

converted by Web2PDFConvert.com

http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1268806958430#c7465220869248547949
https://www.blogger.com/profile/17184388661015389939
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1271866545382#c6033633940766427347
https://www.blogger.com/profile/16066285550739882631
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1274576763674#c3187764426059483792
https://www.blogger.com/profile/15133175322951099195
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1274603562218#c4140266131425292634
https://www.blogger.com/profile/17968034719797455466
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1285289751717#c689804252439570451
http://www.xaxxon.com
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1292571894063#c6535255387428565246
https://www.blogger.com/profile/08097301407311055124
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

Cassiano, with a sound card oscilloscope, you connect the signal directly to the
sound card through a resistor to reduce the current. There are details at
http://www.ehow.com/how_2278973_use-sound-card-oscilloscope.html

December 17, 2010 at 10:27 PM

Thorsten said...

Thanks for explaining this matter so extensively! I was looking for a way to
generate 1 MHz on one of the Arduino-pins. Your post helped me a great deal to
accomplish that.

The reason I am writing this comment is the following: It took me almost 6 hours till
I found out (mainly in sheer desperation) that the order of setting the timer control
registers TCCR2* and the output compare registers OCR2* seems to matter! If
you assign an OCR before setting the corresponding TCCR the timer simply
doesn't start counting.

February 13, 2011 at 11:47 AM

Anonymous said...

but how can i get it to make a 38khz freq with 50% duty cicle?

March 8, 2011 at 2:14 PM

Quarkninja said...

Very informative! Excellent Work! Thanks!

May 1, 2011 at 12:37 AM

coopermaa said...

Very helpful, thanks for your share.

As for debugging PWM, I think proteus ISIS is a good tool for that purpose.
Proteus has a virtual osilloscope, see my post(in chinese, sorry):
http://coopermaa2nd.blogspot.com/2011/05/proteus-pwm.html

May 15, 2011 at 2:56 AM

Sami Mughal said...

I wrote a brief article on creating PWM using the Arduino UNO, with ability to
control the frequency on my blog. Just leaving a link here as I found this article
very useful in my research !

http://smacula.blogspot.com/2011/04/creating-variable-frequency-pwm-
output.html

June 27, 2011 at 8:21 AM

Anonymous said...

Great summary and guide for using the ATmega328p timers! Thanks for taking
the time to put this together. Very helpful.

July 24, 2011 at 2:05 PM

Michael said...

This may be a stupid question by a newbie, but what is the _BV function?
Nowhere to be found in the Arduino reference.

August 14, 2011 at 11:58 PM

coopermaa said...

_BV is a macro defined in avr-libc:

converted by Web2PDFConvert.com

http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1292653673023#c3981609119757961662
https://www.blogger.com/profile/10631873262839085568
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1297626476152#c2692242728647297320
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1299622449448#c4186506149259778314
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1304235459330#c6783103267359376189
https://www.blogger.com/profile/14597993167511073460
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1305453416673#c54981265695428223
https://www.blogger.com/profile/11742364931896059935
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1309188078401#c97908890212131299
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1311541509521#c833855992645591806
https://www.blogger.com/profile/05858975075878302747
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1313391522122#c8888101986429879071
https://www.blogger.com/profile/14597993167511073460
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

#define _BV(x) (1 << x)

see http://194.81.104.27/~brian/microprocessor/BVMacro.pdf

August 15, 2011 at 12:47 AM

Anonymous said...

Thank you very much, this is the best condensed reference I have seen, all clear
and to the point!!!

January 19, 2012 at 1:21 AM

mitch deoudes said...

The version of this article posted at arduino.cc is missing all of the diagrams
except the first one.

February 3, 2012 at 9:32 PM

Henry Best said...

I want to use a low frequency PWM, below 10Hz. The frequency isn't critical but
would have to be in that area. Any ideas how to get down to that frequency? I
want to use the Arduino Uno for other things whilst the PWM is being output.

February 6, 2012 at 10:02 PM

Anonymous said...

Hi, is it possible for my Arduino Duemilanove to go down to 70 Hz? I need to
output a PWM from my board at that frequency. Basically I am creating a buffer
that takes in a PWM signal and outputs a PWM that has the same pulse width
and frequency as the input signal. Is it also possible to update the frequency in
every execution? I can't seem to get it to work
properly.. Thanks in advance!

March 29, 2012 at 8:50 PM

Sami Mughal said...

Hi,

If you read my article: http://www.smacula.co.uk/2011/04/creating-variable-
frequency-pwm-output.html

You can actually go as low as 15Hz. I have not tried to go that low myself though,
but don't see why it would not work.

March 29, 2012 at 11:50 PM

GratefulFrog said...

Hi,
Your article has been a great help, but now I am working on an Arduino Micro with
an ATMEGA 32u4 processor.

All I want to do is get phase-correct PWM at the highest possible frequency on 3
pins.

Will these 2 lines do that?

TCCR1B = _BV(CS00); // change the PWM frequencey to 31.25kHz - pins 9 & 10

// timer 0B : pin 3 & 11
TCCR0B = _BV(CS00); // change the PWM frequencey to 31.25 kHz - pin 3 & 11

please let me know, if you can, by relying to my id at gmail.
Cheers,
Bob

March 8, 2013 at 9:36 AM

converted by Web2PDFConvert.com

http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1313394430254#c8134674511736544012
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1326964883049#c825525498605018816
http://www.houseofpain.org
http://arduino.cc/en/Tutorial/SecretsOfArduinoPWM
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1328333524395#c7581832958560681375
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1328594524383#c5608487134960863004
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1333079422883#c209537865320067215
https://www.blogger.com/profile/11742364931896059935
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1333090245360#c2109371642016811591
https://www.blogger.com/profile/12444475739456044479
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1362764168986#c7316938269752375217
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

Сергей Орляк said...

Hi Ken,
Thank you for your library!
I modified it a bit to work with Hitachi air conditioning. But there is one momnet I
can not understand. I had to increase the buffer to 600 (RAWBUF 600). But then
I try to read I can read only 532 byte. While there is still 8 :(In what may be
another reason of not getting all the data from the console?
Thank you! And excuse me for my english!

April 14, 2013 at 9:33 AM

Ken Shirriff said...

Сергей: another user of the irremote library found that rawlen type (uint8_t) is
too small for more than 256 entries, so try replacing it by unsigned short int. Also,
discussion of the irremote library is here.

April 15, 2013 at 8:42 AM

Gabriel said...

Fantastic Article!!! Thanks a ton.

As Mitch Deoudes, said, "The version of this article posted at arduino.cc is
missing all of the diagrams except the first one." This is still true. If you could
figure out how to get the diagrams added back into the article on arduino.cc
(http://arduino.cc/en/Tutorial/SecretsOfArduinoPWM) that would be great!

Thanks!
Gabriel Staples
http://electricrcaircraftguy.blogspot.com/

December 21, 2013 at 9:29 PM

dafaddah said...

I'm working on 'sculpting' an output signal to meet certain shape and frequency
parameters. This is the first time I'm beginning to see the light at the end of the
tunnel trying to understand how to code PWM to accomplish this. Many thanks!!

February 11, 2014 at 4:22 AM

Gabriel said...

dafaddah, that sounds very interesting; I'd like to see what you can do to "sculpt"
a signal shape, so would you mind sharing a link here when you are done, so
others can see your work?

February 11, 2014 at 4:56 AM

Gabriel said...

dafaddah,

Since posting my last question to you, I've learned that you can turn a PWM
signal into a true analog output by using an R-C filter (ex: Resistor of 10k and
Capacitor of 0.1uF). I'm now guessing that you are using an R-C analog filter to
turn a high-freq PWM output into a true analog signal....just like a DAC (Digital to
Analog Converter). Is this correct? If so, what freq are you using, and what R-C
values are you using on your filter?

In either case, for anyone who wants to see an example of this, see pgs. 217-219
of Simon Monk's book "Programming Arduino Next Steps: Going Further with
Sketches." Figure 13-4 on the bottom of pg. 217 shows the R-C filter with R=10k
and C=100nF (0.1uF), feeding a PWM-generated signal into an Oscilloscope, as
a filtered analog signal. Figure 13-5 on pg. 219 shows the actual 1KHz wave form
(a sine wave) produced by the Arduino Uno with a 10KHz PWM signal sent
through this analog filter. The top sine wave is the input signal to the Arduino, as
created by a nice signal generator, and the bottom sine wave (a little rougher
looking), is the signal that the Arduino generated itself, again, using a 10KHz

converted by Web2PDFConvert.com

https://www.blogger.com/profile/10201836718453977599
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1365957205354#c205529487850980488
https://www.blogger.com/profile/08097301407311055124
http://www.righto.com/2009/08/multi-protocol-infrared-remote-library.html
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1366040547883#c3761743678438384954
https://www.blogger.com/profile/10071071884455787806
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1387690165951#c4024014866128728453
https://www.blogger.com/profile/16045746973596684539
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1392121354382#c2951068811413961591
https://www.blogger.com/profile/10071071884455787806
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1392123397133#c2527166080295102088
http://electricrcaircraftguy.blogspot.com/
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

PWM signal going through that simple R-C filter. This is very cool! An R-C filter
like that is only a few cents, and now you have a true analog output using a
cheap Arduino! For anyone wanting to see these pages, they are viewable on
Amazon here, by clicking the book image to look inside:
http://www.amazon.com/Programming-Arduino-Next-Steps-
Sketches/dp/0071830251.

Have fun!

~Gabriel
http://electricrcaircraftguy.blogspot.com/

July 1, 2014 at 9:09 PM

Rohit Varma said...

Hii ken i need to generate digital AM signal using arduino using timer 0 and 1
http://www.ncbi.nlm.nih.gov/pubmed/24689560
please help any help would be gretly appreciated

September 9, 2014 at 6:49 AM

emgab said...

Excellent article, never saw something as comprehensive and clear about
Timeers and PWM before - many thanks for your time and efforts.

kind regards, Mike from Mannheim, Germany

November 6, 2014 at 5:56 AM

Anonymous said...

Hello Ken,

I need some help from you on my the same task.

I need to generate 4 independent PWM signals with fixed frequency of 25Khz.

I am currently using UNO. I have implemented the same code which was in this
blog, setting the same PRESCALE and OUTPUT COMPARE REG for a test.

As UNO is ATMEGA 328, the FAST PWM should work on this too having same
CS values.

I did not get any waveform at the desired PIN. Do you suggest me work on any
other board?

Need some inputs, so that i can move in that direction.

Thank you in advance.

SAFWAN

November 11, 2014 at 2:36 AM

DvanF said...

Ken, thanks for this usefull document. I have tried the examples and they do work
fine. What I would like is some more detailed information on how to use the PWM
outputs with a controllable frequency AND separately controleed duty cycle. In
your examples I can't find a way to change the frequency. I want to use it for
speed control of my model train (Märklin scale Z).
Thanks, Dick van Fulpen, Houten (NL)

November 17, 2014 at 5:26 AM

DvanF said...

Ken, thanks for this usefull document. I have tried the examples and they do work
fine. What I would like is some more detailed information on how to use the PWM

converted by Web2PDFConvert.com

http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1404274165419#c8929414268107960175
https://www.blogger.com/profile/16695812640719120085
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1410270574740#c1711510783605100165
https://www.blogger.com/profile/08451368805339601586
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1415282184262#c2567906990536604885
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1415702179104#c3027610008365565669
https://www.blogger.com/profile/12357841577714823341
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1416230781776#c1145550892096784996
https://www.blogger.com/profile/12357841577714823341
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

outputs with a controllable frequency AND separately controleed duty cycle. In
your examples I can't find a way to change the frequency. I want to use it for
speed control of my model train (Märklin scale Z).
Thanks, Dick van Fulpen, Houten (NL)

November 17, 2014 at 5:27 AM

Gabriel said...

DvanF, it's all there. Looks like you need to do a closer read. See the section
"Varying the timer top limit: fast PWM", for example. Varying OCR2A in that
example sets the frequency, and varying OCR2B sets the duty cycle of output B.

I hope that helps. Good luck!

~Gabriel Staples
http://electricrcaircraftguy.blogspot.com/

November 19, 2014 at 7:31 PM

SOLID said...

I am a newbie to arduino and this tutorial was excellent in solving so many
problems for me. The problem is that I would like to do same with the other timers
(1 and 0).. Could you please confirm that what I have currently setup is correct..

pinMode(3, OUTPUT);
pinMode(11, OUTPUT);
pinMode(6, OUTPUT);
pinMode(5, OUTPUT);
pinMode(9, OUTPUT);
pinMode(10, OUTPUT);
TCCR2A = _BV(COM2A1) | _BV(COM2B1) | _BV(WGM21) | _BV(WGM20);
TCCR2B = _BV(CS22);
TCCR1A = _BV(COM1A1) | _BV(COM1B1) | _BV(WGM11) | _BV(WGM10);
TCCR1B = _BV(CS22);
TCCR0A = _BV(COM0A1) | _BV(COM0B1) | _BV(WGM01) | _BV(WGM00);
TCCR0B = _BV(CS22);
OCR2A = 180;
OCR2B = 50;
OCR1A = 180;
OCR1B = 50;
OCR0A = 180;
OCR0B = 50;

January 16, 2015 at 2:45 AM

SOLID said...

Solved it.... All by myself... thanks to this tutorial that clarified the avr guide...
SUPER>....

January 16, 2015 at 8:16 AM

Александр Собецкий said...

Solid, please tell me the solution
s0bes@mail.ru
s0bes68@gmail.com

January 28, 2015 at 2:57 AM

Paul Moore said...

Hello Ken and thank you for this post -- I am looking at doing a 60Hz AC inverter -
so I need to push a new Duty Cycle setting to the timer for every pulse.
Based on your info I am expecting to use Timer 2 for the Phase Correct (
ensuring A or B can have a true 0% DS output. (I am using an H Bridge) - So for
1/2 cycle A will go from 0 to 100% and back with B at 0%.
So the questions is...As the timer is running, I do my calculation and come up with
the next pulse DS and I have to write this to the OCR2A and B - whaile the output

converted by Web2PDFConvert.com

http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1416230866975#c8074275132104637245
https://www.blogger.com/profile/10071071884455787806
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1416454315320#c7566802577946870043
https://www.blogger.com/profile/07656591698609684025
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1421405132787#c770164676638915203
https://www.blogger.com/profile/07656591698609684025
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1421424990736#c3507029197301532926
https://www.blogger.com/profile/14186406070483599248
http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1422442621959#c7241194663057582524
https://www.blogger.com/profile/06646659717201792447
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

Newer Post Older PostHome

Subscribe to: Post Comments (Atom)

Post a Comment

Create a Link

is active - does this work? - or will this reset the timer and start the pulse all over?
- I am guessing this is more in the guts of the register management for the 328 -
the DS says they are double buffered, and I would assume this means you can
write to them while the timer is running (in one pulse period) -
Do I have this correct?

March 25, 2015 at 6:18 AM

Links to this post

converted by Web2PDFConvert.com

http://www.righto.com/2009/07/secrets-of-arduino-pwm.html?showComment=1427289514523#c3310475731256471580
https://www.blogger.com/comment.g?blogID=6264947694886887540&postID=5409564808315467886
https://www.blogger.com/blog-this.g
http://www.righto.com/2009/08/worlds-smallest-arc-server.html
http://www.righto.com/2009/06/arduino-sheevaplug-cool-hardware.html
http://www.righto.com/
http://www.righto.com/feeds/5409564808315467886/comments/default
http://www.web2pdfconvert.com?ref=PDF
http://www.web2pdfconvert.com?ref=PDF

