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1 Introduction

The voc_release5 is a complete learning-based system for detecting and localizing objects in images.
The system represents objects using mixtures of deformable part models. These models are trained using
a discriminative method that only requires bounding boxes for the objects in an image. This system
achieved state of the art results on the PASCAL dataset.

This document presents an overview of the main functions and their interaction.

The voc_release5 package is accessible in http://www.cs.berkeley.edu/~rbg/latent/

2 Configuration

To prepare Matlab to use the voc_release5 use the function startup(). This function adds all necessary
paths.

The voc_release5 uses C++ mex functions to increase performance. The mex functions can be compiled
by calling the function compile(). To successfully compile, additional CXXOPTIMFLAGS are needed, these
flags are -msse -msse2 -msse3 -mfpmath=sse.

Package parameters are configured by voc_config(). This function provides a simple overwrite mecha-
nism, the user must only define the global variable VOC_CONFIG_OVERRIDE with a handler to an additional
user defined configuration file. All parameters already defined in the user configuration file will not be
redefined.

3 Training

The top level training function is pascal(), this function trains and evaluates a model using the PASCAL
database. This function calls pascal_train() for the training phase.

pascal_train() starts by obtaining the configuration using voc_config() and loading the training
information (headers only) by calling pascal_data().

The pascal_train() function performs multiple rounds of training using the train() function. First,
it starts by training only the root filters, figure 1, the user specifies how many root filters must be trained
for each class, the positives are sorted by aspect ratio and n root filters are initialized. Then mirrored
versions of the initialized root filters are added to create mixture models, and subsequently trained, figure
2. Following that, all root filters are combined into one mixture model and undergo another round of
training. The last step is the inclusion of part filters, 8 parts for each root model, and retraining, figure
3.

Function root_model() is used for root model initialization; lr_root_model() is used to add mirrored
root filters; model_merge() combines all root models into a single mixture model and model_add_parts()

adds parts to a model.
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Figure 1: Asymmetrical root filter trained with warped positives and random negatives. This is just one
of the root filters created for each class, in this case a car.

Figure 2: Mixture of two mirrored root filters trained with latent positives and hard negatives. In this
stage there are still multiple models created from the initial positives.

Figure 3: Part of a final model, only one of the mirrored root filters. On the left the root filters; in the
middle the part filters and on the right the cost of placing the part filters away from their initial position,
relative to the root.

train() implements the main training routine, this function uses a C++ implemented feature cache. The
examples are prepared using specialized functions and put in the cache: poswarp() prepares warped
positive examples; poslatent() prepares the latent positives; neghard() prepares the hard negatives
and finally negrandom() prepares the random negatives.

The preparing functions use the C++ implemented features() function to calculate HOG features. Both
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poswarp() and negrandom() call features() directly. poslatent() calls gdetect_pos_prepare() to
create a feature pyramid (using featpyramid()) and prepare it for latent detection, while the neghard()
calls featpyramid() directly.

train() uses the fv_obj_func() to calculate the objective function value and gradient, this opera-
tion is also performed on the cache. L-BFGS is used to minimize the objective function by calling
minConf_TMP() (function from an external library included in the package).

All cache operations are performed by calling fv_cache() with different arguments (see the handlers

structure in fv_cache.cc for a list of possibilities and the corresponding handling functions).

4 Detection

To perform a detection using a previously trained model the function process() is used. This func-
tion calls imgdetect(), that calculates the feature pyramid, featpyramid(), and calls gdetect().
gdetect() performs detections by first computing dynamic programming tables using gdetect_dp()

and obtaining detections by calling gdetect_parse().

Detections are output as bounding boxes for both the root filter position and parts positions.

Figure 4: Example of a vehicle detection. The red box denotes the root filter detection while the blue
boxes are part filters.
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