

F	Part 2: Local binary pattern (LE in spatial domain ICCV 2009 September 27, 2009 Matti Pietikäinen mkp@ee.oulu.fi	3P) operators
lafarech Gula	MACHINE VISION GROUP	

Table 3.4. Comparative performa	unce of detec	ting 227 faces in 8	0 image.
Method	Detected	False detection	Rates
Schneiderman-Kanade(1.0, 1.0)	218	41	96.0 %
BDF Method	221	1	97.4 %
Normalized Pixel features	213	6	93.8 %
$LBP_{4,1}+LBP_{8,1}^{u2}$ (203 bins)	221	0	97.4 %

	Result	s of LBF	• from tl	hree plai	nes
	15 20	25 30	0.2 0.15 0.1 0.05	100 200 30	
LBP	XY	XZ	YZ	Con	weighted
8,8,8,1,1,1 riu2	88.57	84.57	86.29	93.14	93.43[2,1,1]
	02.96	00.00	00.40	04.57	
8,8,8,1,1,1 u2	92.00	88.80	89.43	94.57	96.29[4,1,1]
8,8,8,1,1,1 u2 8,8,8,1,1,1 Basic	92.80	90.86	89.43 90	94.57 95.43	96.29[4,1,1] 97.14[5,1,2]
8,8,8,1,1,1 u2 8,8,8,1,1,1 Basic 8,8,8,3,3,3 Basic	92.80 95.14 90	90.86 91.17	90 94.86	94.57 95.43 95.71	96.29[4,1,1] 97.14[5,1,2] 96.57[1,1,4]

	Com	parison wi	th differ	ent approa	iches	
	People Num	Sequence Num	Class Num	Dynamic	Measure	Recognition Rate (%)
[Shan,2005]	96	320	7(6)	Ν	10 fold	88.4(92.1)
[Bartlett, 2003]	90	313	7	Ν	10 fold	86.9
[Littlewort, 2004]	90	313	7	N	leave-one- subject- out	93.8
[Tian, 2004]	97	375	6	Ν		93.8
[Yeasin, 2004]	97		6	Y	five fold	90.9
[Cohen, 2003]	90	284	6	Y		93.66
Ours	97	374	6	Y	two fold	95.19
Ours	97	374	6	Y	10 fold	96.26
Infatech Dala	M	ACHINE VISION	GROUP		UNIVERSITY	f of OULU

ς		Expe	rimer	ıts	
Three	datal	bases:			
1) Our ov	vn visu	ual speech database	: Oulu\	/S Database	
20 persor	ns; ead	ch uttering ten every	day's g	reetings one to five time	es.
Totally, 8	17 se	quences from 20 spe	akers	were used in the exper	iments.
	C1	"Excuse me"	C6	"See you"	
	C2	"Good bye"	C7	"I am sorry"	
	C3	"Hello"	C8	"Thank you"	
	C4	"How are you"	C9	"Have a good time"	
	C5	"Nice to meet you"	C10	"You are welcome"	
2) Tulips1	audio	-visual database			
12 subjects Totally 96 s	s, pron sequer	ouncing the first founces.	r digits	in English two times ir	repetition.
3) AVLette	ers da	tabase			
People,	each i	MACHINE VISION GROU	etters t	hree times. Totally 780 UNIVERSITY o	f OULU

Exper	imental results - Tulip	s1 audio-vis	sual database
Mouth	images with translation, scali	ng and rotation f	from Tulips1 database.
Comparison to	other methods on Tulips1 au	dio-visual databa	ase (speaker independen Results (%)
[Arsic 2006]	MRPCA	Y	81.25
[Arsic 2006]	MI MRPCA	Y	87.5
[Gurban 2005]	Temporal Derivatives Features	Y	80 91(a&v, 10 dB SNR level)
Ours	LBP - TOP _{8,8,8,1,1,1} Blocks: 3x6x2	N	92.71
Infanch Dulu	MACHINE VISION GROUP	UN	

	Some experimental results
7	04 04 04 04 04 04 04 04 04 04 04 04 04 0
	$\begin{array}{c} -10 & -10 & -10 \\ -10 &$

ç.	Experiments	on face recognition	
Hadid A, Pietikäinen dynamics for face re Workshop on Analys	M & Li SZ (2007) cognition from vie is and Modeling c	Learning personal speci deos. Proc. 2007 IEEE I of Faces and Gestures (A	fic facial nternational MFG), 1-15.
Method	Results on MoBo	Results on Honda/UCSD	Results on CRIM
PCA	87.1%	69.9%	89.7%
LDA	90.8%	74.5%	91.5%
LBP [13]	91.3%	79.6%	93.0%
HMM [8]	92.3%	84.2%	85.4%
ARMA [7]	93.4%	84.9%	80.0%
VLBP [14]	90.3%	78.3%	88.7%
VLBP+AdaBoost	96.5%	89.1%	94.4%
EVLBP+AdaBoost	97.9%	96.0%	98.5%
Static image base	d versus spatiotem	poral based approaches to f	ace recognition

Ex	periments – HM	M clas	sificatio	n
Databa	se 1 – 15 activities by	/ 5 people	е	
• LBP	MHI 99%	- · ·		
8,2	MEI 99%	-		
	MHI + MEI 100%	-		
• Weizm	ann database – 10 ac	tivities by	y 9 people	9
 LBP₄₁ 	Ref	Act		Kes I
 LBP_{4,1} 	Ref. Our method	Act. 10	90	97.8%
• LBP _{4,1}	Ref. Our method Wang and Suter 2007	10 10	90 90	97,8% 97,8%
• LBP _{4,1}	Ref. Our method Wang and Suter 2007 Boiman and Irani 2006	Act. 10 10 9	90 90 81	97,8% 97,8% 97,5%
• LBP _{4,1}	Ref. Our method Wang and Suter 2007 Boiman and Irani 2006 Niebles et al 2007	Act. 10 10 9 9	90 90 81 83	97,8% 97,8% 97,5% 72,8%
• LBP _{4,1}	Ref. Our method Wang and Suter 2007 Boiman and Irani 2006 Niebles et al 2007 Ali et al. 2007	Act. 10 10 9 9 9	90 90 81 83 81	Res. 97,8% 97,5% 72,8% 92,6%

Experiments – Continuous data	Activity recognition using dynamic textures
 Detection and recognition experiments on database 1 using a sliding window based detection. 	 Instead of using a method like MHI to incorporate time into the description, the dynamic texture features capture the dynamics straight from image data.
• <u>Demo</u>	 When image data is used, accurate segmentation of the silhouette is not needed Instead a bounding box of a person is sufficient!!
	Kellokumpu V, Zhao G & Pietikäinen M (2008) Human activity recognition using a dynamic texture based method. Proc. British Machine Vision Conference (BMVC), 10 p.
MACHINE VISION GROUP UNIVERSITY of OULU	MACHINE VISION GROUP UNIVERSITY of OULU

	S/B	B/S	F/B	B/F	S/F	F/S
CMU [4]	92 %	-	-	-	76 %	-
UMD [5]	48 %	68 %	48 %	48 %	80 %	84 %
MIT [6]	50 %	-	-	-	64 %	-
SSP [7]	-	-	-	-	54 %	32 %
SVB frieze [8]	77 %	89 %	61%	73 %	82 %	80 %
LBP-TOP	75 %	83 %	75 %	83 %	88 %	88 %

