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Texture is everywhere: from skin to scene images
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Taxonomies of texture Requirements for texture operators
: Due to the variety of textures, we cannot expect that a single
* Microtextures vs. macrotextures o operator for texture description is adequate
» Stochastic (or irregular or random) vs. deterministic (or regular « efficient discrimination of different types of textures
or structured) « robustness to pose and scale variations
+ Coarseness, directionality, contrast, line-likeness, regularity and . ’OEUSI"eSS IO '”””t‘_'”la“c’” "_";‘"a“_ons
roughness (Tamura et al. 1978) robustness to spatial nonuniformity )
) k X o . « should work well for fairly small sample sizes
« Uniformity, density, coarseness, roughness, regularity, linearity, « low computational complexity
directionality, direction, frequency, and phase (Laws 1980) . o
« Three orthogonal dimensions of texture (Rao & Lohse 1993) Tuceryan gnd Jain (1993, 1999) divided texture
. " operators into
— repetitive vs. non-repetitive « statistical
— high contrast and non-directional vs. low-contrast and directional - geometrical,
— granular, coarse and low-complexity vs. non-granular, fine and high » model based, and
complexity « signal processing methods
< 3 U 3
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Graylevel difference statistics (A Rosenfeld & E Troy: 1970; J Weszka et
al.: IEEE T-SMC, 1976)

« First order statistics of local property values (i.e., means, variances) was
one of the first approaches for texture description

« Local properties based on absolute differences between pairs of gray
levels or of average gray levels were quite powerful (gray level difference
histograms)

« Gray level difference statistics are a subset of the co-coccurrence matrix

« Sum and difference histograms were used as features by M Unser, IEEE
TPAMI, 1986
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Graylevel co-occurrence matrices (R Haralick et al.: IEEE T-SMC, 1973)

Joint gray level distribution for two gray levels located at a
specified distance and angle (second order statistics)
« Haralick derived a set of 14 moments

+ has been most widely used texture method

+ works very well for stochastic textures

- computationally expensive

- needs gray-scale normalization / requantization
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Gray level image.

Generalized cooccurrence matrices were proposed by LS Davis et al.,
|IEEE TPAMI,1981
e
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Fourier analysis (R Bajcsy: CGIP, 1973)

)

Partitioning of Fourier spectrum: (a) Ring filter, (b) wedge

Laws’ texture energy measures (K Laws: PhD thesis, 1980 )

Masks for computing average gray level, edges, spots, ripples, waves

L3= (1,2,1) center-weighted averaging
E3=(-1,0,1) first difference — edge detection
S3=(-1,2,-1) second difference — spot detection
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[filier reflecting the Fourser spectrum symmeéry. Ly =(L4,641) 10 2 0 -1
By =(-1,-2,0,2,1) 40 8 0 —4
Sy ~1,0,2,0,-1) LfxS=|-60 12 0 -6
Ry =(L,-4,6,~4,1) —40 80 4
Wy =(-1,2,0,-2,-1) 1oz
e
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Julesz’s textons (B Julesz: Nature, 1981)
Textural features based on human perception (H Tamura et al.: IEEE T-
Color SMC, 1978)
Terminator, number of end-of-lines. Ex. Closure, Connectivity
Elongated blobs of different sizes. Ex. Granularity " . P " .
« Coarseness, contrast, directionality, line-likeness, regularity, roughness
Clasure Connectivity Granularity « Features based on these ideas are used in some content-based image
qLALeatobddred Pl NN S LAS S retrieval systems
pddratdbveaana PNV rasNL oS
ops2adnEPPras \LATALL IS AN
potégayanagean SILIAAINTL SO !
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Gabor filters (M Turner: Biol. Cybern., 1986; M Clark & A Bovik: PRL,
1987; AK Jain & F Farrokhnia, PR, 1991; BS Manjunath & WY Ma: IEEE
TPAMI, 1996 )

+ biologically inspired

+ minimizes the joint uncertainty in space and frequency

+ supports both frequency analysis and spatial pattern approaches (large
masks -> frequency analysis; small masks -> texture element detectors)

- selection of optimal features is not so straightforward

- computationally expensive

- does not work so well for stochastic textures

Wavelets : FS Cohen et al., IEEE TPAMI, 1993; T Chang & CCJ Kuo,
IEEE T-IP, 1993; M Unser, IEEE T-IP, 1995; etc.
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(Gaussian) random field models (G. Cross & A Jain: IEEE TPAMI, 1983;
R Chellappa & S Chatterjee: ASSP, 1985; S Zhu et al.: IJCV, 1997)

Markov Random Field is a conditional probability model
allowing to model local spatial interactions among pixels

Basic principle: Detemine model to describe texture
Use model parameters for classification

+ theoretically elegant

+ straightforward to use for texture synthesis
- sensitive to gray level distortions

- cannot model all textures

- computationally expensive
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2D and 3D textons (J Malik et al.: ICCV 1999; T Leung & J Malik: 1JCV,
2001; OG Cula & KJ Dana: CVPR 2001; M Varma & A Zisserman:
ECCYV, 2002; SC Zhu et al.: 1JCV, 2005)
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Sparse affine-invariant texture descriptors (S Lazebnik et al.: IEEE

TPAMI, 2005)
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3. Find clusters 4, Compute distances

and signatures between signatures

+ modern approach based on interest region descriptors
+ robust to affine image transformations

- requires quite large windows

- does not work well for stochastic textures

- computationally expensive
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Dynamic textures (R Nelson & R Polana: IUW, 1992; M Szummer & R
Picard: ICIP, 1995; G Doretto et al., IJCV, 2003)
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Part 2: Local binary pattern (LBP) operators
in spatial domain
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2.1 Theoretical foundations of LBP operators

2.2 LBP in various computer vision problems
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B 2.1 Theoretical foundations of LBP operators

2-D surface texture is a two dimensional phenomenon characterized by:
« spatial structure (pattern)
« contrast (‘amount’ of texture)

Property

Transformation Betenn | Contes:

Gray scale no effect affects

Thus,
1) contrast is of no interest in gray scale invariant analysis
2) often we need a gray scale and rotation invariant pattern measure

-

‘ MACHINE VISION GROUP A ﬁ
i i

B Local Binary Pattern and Contrast operators

Ojala T, Pietikdinen M & Harwood D (1996) A comparative study of texture measures

with classification based on feature distributions. Pattern Recognition 29:51-59.

An example of computing LBP and C in a 3x3 neighborhood:

example thresholded weights
6 |5 |2 .
Important properties:
716 (1 . .
+LBP is invariant to any
9 18 |7 monotonic gray level change

Pattern = 11110001
LBP =1+16 +32+64 +128= 241
C = (6+7+8+9+7)/5 - (5+2+1)[3= 4.7

« computational simplicity

-
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u Multiscale LBP

Ojala T, Pietikdinen M & Maenpaa T (2002) Multiresolution gray-scale and rotation

invariant texture classification with Local Binary Patterns. IEEE Transactions on Pattern
Analysis and Machine Intelligence 24(7):971-987.

- arbitrary circular neighborhoods

- uniform patterns

- multiple scales

- rotation invariance

- gray scale variance as contrast measure
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|| The value of the LBP code of a pixel (x..y.) is given by:
P—1
Loifax = 0O
S (o — g )27 sz} — . =
LBPpr Z{) 5(![*" 9:)2 s(x) { 0, otherwise.
p=

2. Difference

3. Threshold

| 171 +102 + 1% + 18 + 0°16 + 0732 + 064 + 0128 = [i§] |

4, Multiply by powers of two and sum

N 3
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o Description of local image texture

Texture at g, is modeled using a local neighborhood of radius R,
which is sampled at P (8 in the example) points:

# 4 i al T g,
99 O,:J‘L"& O.TR‘+90
| -] h-1
[ . 95 e |97
5 Yg 7 e

Square neighborhood Circular neighborhood
(91.93,9s,97 interpolated)
Let's define texture T as the joint distribution of gray levels

gcand g, (p=0,..., P-1):

T=%9c 9o, ---,9p-1)
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|| Description of local image texture (cont.)

Without losing information, we can subtract g from gy
T =40 9o~ 9os -+ Ip-1- o)

Assuming g, is independent of g,-g., we can factorize above:
T~49c) U909 ---» 9p-1-9c)

t(g.) describes the overall luminance of the image, which is unrelated to
local image texture, hence we ignore it:

T~ %9oYe: -+ Ip-179c)
Above expression is invariant wrt. gray scale shifts

-
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u Description of local image texture (cont.)

Exact independence of t(g.) and t(g-0c, ---, 9p.1-0c ) is not warranted in
practice:

average t(d.Jo- 9c)

average absolute difference
between t(g..go-9.) and t(gc) t(go-9c)

Pooled (G=16) from 32 Brodatz textures used in
[Ojala, Valkealahti, Oja & Pietikdinen: Pattern Recognition 2001]
-
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o Signed gray level differences

Ojala T, Valkealahti K, Oja E & Pietikéinen M (2001) Texture discrimination with

multidimensional distributions of signed gray level differences. Pattern Recognition
34:727-739.

Cooccurring differences provide more information than just one.
Computing cooccurring differences in 3x3 subimages:

93| 92| 9

94| 9c | 90
95| 96| 97

we estimate distributions

P2 (90-9c,92-9c)

P4 (90-9c:91-9¢:92-9c.95-0c)
e Ps(809c9rGc - .07-Gc)

‘ MACHINE VISION GROUP ﬁ
bl i

N Signed gray level differences (cont.)

1/2|5 p, =(3,-3) L

7|58 Ps = (3,-3,0,-4) \/

9136 Ps = (3:-3,0,-4,2,4,-2,1) %

I:> (Y-2)(X-2) difference vectors

—N—
p (k=2,4,8) estimated with a discrete histogram of N bins

Stability criterion: f,,, = (Y-2)(X-2) IN >, (~5or 10)

“Volume of the difference space: V = (2G -1)>> N
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o Signed gray level differences (cont.)

Vector quantization of the difference space

texture image

index of
the nearest
codeword

difference space of p, quantized
with a codebook of N codewords

- N ~ (X-2)(Y-2)/fin
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discrete histogram
estimating p,

o LBP: Local Binary Pattern

Invariance wrt. any monotonic transformation of the gray scale is achieved
by considering the signs of the differences:

T ~1(S(9o"Yc), -+ S(Ip-1-9c))
where

1,x>0
69 = { 0,x<0

Above is transformed into a unique P-bit pattern code by assigning
binomial coefficient 2P to each sign s(g,-9c):

p-1
LBPpg = 205 (9p-90) 2°
p=
e
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N ‘Uniform’ patterns

|| - Rowation 1

090 @99 ‘Uniform’ patterns (P=8) . A A -
u=0 O o o © +Bit patterns with 0 YRR TR TR YN NN
CpoC @g0 or 2 transitions e i Sl e
0090 009 099 099 099 09¢ 09¢ 0-lorl-0
U=20 ©eO0 @eO0 @eO0 ee®e e e e e e when the pattern is DSl ‘
0p0 0p0 0p0 0QO0 OpO0 @50 @0 considered circular HIERYERYERTE
+All non-uniform o RVAAVARVAR!
Examples of ‘nonuniform’ patterns (P=8) patterns assigned to S i st
a single bin 2V ALV RV
09®op 0®o 0®o WPANPANFANY
uU=4 O @ U=6 @ @ u=8 @ @ +58 uniform patterns P e W e
060 050 0O in case of 8 AN AN AN
sampling points ot
T
- . RO et
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Texture primitives (“micro-textons”) detected by the uniform
patterns of LBP

Rotation of Local Binary Patterns

Spatial rotation of the binary pattern changes the LBP code:

e%e
9] @ edge (15)
Q 0pO0
Spot Spot/flat Line end Edge Corner
%0 0% ©°0 0“0 0%0 0% o0Ce 0%
O @ o o e o @ o e O O @ O @ O (@]
0p0 0,0 @ep0 ©,0 @ge ©,0 oge 0,0
(15) (30) (60) (120)  (240)  (225)  (195)  (135)
- ] - J
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Rotation invariant local binary patterns

Formally, rotation invariance can be achieved by defining:

LBPpg" = Mi{ROR(LBPg, i) | i=0, ..., P-1}

e®e 0% 0°0 ¢°0 000 0% 0Ce %
O @ o o @ o @ o @ O O @ O @ O

0g0 0,0 @e,0 ©,0 @eg0 ©, 8 Oge O o
@5  (30)  (60)  (120)  (240) (225 (195  (135)

(15)
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o Operators for characterizing texture contrast

Local gray level variance can be used as a contrast measure:

1 P1
VARpg= - z(gp' m)32
P p=0
where
1 F’i
m= - g
P p=0 P
VAR,

« invariant wrt. gray scale shifts
« invariant wrt. rotation along the circular neighborhood

-
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|| Quantization of continuous feature space B Estimation of empirical feature distributions
Input image (region) is scanned with the chosen operator(s), pixel by pixel,
. . o . and operator outputs are accumulated into a discrete histogram
Texture statistics are described with discrete histograms r — g
- Mapping needed for continuous-valued contrast features % v 44 -}'“
3 A 3
5 5 LBPP Rr|u2
Nonuniform quantization 4
« Every bin have the same amount of total data Iy
« Highest resolution of the quantization is used where the number of entries alllzlalel el
is largest LBPP,Rriuz
equal area
total distribution Joint histogram of
/ \ two operators
bin0 | bin1|bin2] bin3 ® \BPeR
- PR LBPpr™? / VARpR
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|| Multiscale analysis o Multi-scale analysis (cont.)

Information provided by N operators can be combined simply by summing
up operatorwise similarity scores into an aggregate similarity score:

N
Ly=ZIly Q. LBPy,™ + LBPyy™ + LBPsg™2

Effectively, the above assumes that distributions of individual operators are
independent

Image regions can also be re-scaled prior to feature extraction

- ) - J
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|| Nonparametric classification principle || LBP histogram Fourier features

Ahonen T, Matas J, He C & Pietikdinen M (2009) Rotation invariantimage description

Sample S is assigned to the class of model M that maximizes

B-1
LSM)=2S,InM,
b=0

Many other dissimilarity measures can be used (chi square, histogram
intersection, Kullback-Leibler divergence, Jeffrey’s divergence, etc.)

Nonparametric: no assumptions about underlying feature distributions are
made!!

MACHINE VISION GROUP ﬁ
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with local binary pattern histogram fourier features. In: Image Analysis, SCIA 2009
Proceedings, Lecture Notes in Computer Science 5575, 61-70.

Rotation revisited

Rotation of an image by a degrees
Translates each local neighborhood to a new location
* Rotates each neighborhood by a degrees

-
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Rotation revisited (2)

If a = 45, local binary patterns
00000001 — 00000010,
00000010 — 00000100, ...,
11110000 — 11100001, ...,

Similarly if a = k*45°,
each pattern is circularly
rotated by k steps

Rotation revisited (3)

In the uniform LBP histogram, rotation of input image by k*45° causes a
cyclic shift by k along each row:

- -
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o ) LBP Histogram Fourier Features
Rotation invariant features
Pl
H(n,u)= >0, (U, (n,r))e """
r=0
LBP histogram features that are \H(n,u)\:« H (n,u)H (n,u) :
invariant to cyclic shifts along the rows are — m:;r::trllje(;es
invariant to k*45° rotations of the input image l -
= - — v & magnitudes
« Sum (original rotation invariant LBP)
« Cyclic autocorrelation
« Rapid transform
« Fourier magnitude
- ——)) | Fourer
magnitudes
. LBP-HF feature vector
- . - R
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Example LBP unifies statistical and structural approaches
N pixsls
s
Gray lovel N-uples Tedtons  ——
s,
dmonionaity SRR e Cirmvecas.
Muttidimenslonal Blnary hexmrs Taxmre unlt
co-occurrence Gabor fitering
distributions
Differences I.wll bl\amn Local quantization Chustering of
o =3 ke =
o e helabor sat  eemtcies
S| ray-scale
levg’a#eegyne (mGam»)textnn ——
e — T distributions gammho Micro-textons, distributions
. Uniform Original rot.invariant LBP (red) ‘vocabulary
Inputimage LBP histogram LBP-Histogram fourier (blue) "*hg"m
- ) - J
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2.2 LBP in various computer vision problems

LBP has become very widely used in various computer vision
problems and applications due to its high discriminative power,
tolerance against illumination changes and computational simplicity.

Next we give examples of our research applying spatial domain
LBP to unsupervised segmentation, recognition of 3D textured
surfaces, image retrieval, face analysis, description of interest
regions, and modeling the background and detecting moving
objects.

‘ MACHINE VISION GROUP |

Unsupervised texture segmentation

Ojala T & Pietikainen M (1999) Unsupervised texture segmentation using

feature distributions. Pattern Recognition 32:477-486.
« LBP/C was used as texture operator
Segmentation algorithm consists of three phases:
1. hierarchical splitting
2. agglomerative merging
3. pixelwise classification

hierarchical agglomerative pixelwise
- splitting merging classification e
‘ MACHINE VISION GROUP | 5 T )
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Examples of segmentation

Natural scene #1: 384x384 pixels

View-based recognition of 3D-textured surfaces

Pietikdinen M, Nurmela T, Mdenpaa T & Turtinen M (2003) View-based recognition of

real-world textures. Pattern Recognition 7(32):313-323.

Due to the changes in viewpoint and illumination, the
visual appearance of different surfaces can vary greatly

« textures are modeled with multiple histograms of micro-textons
extracted with the LBP operator

« provided the leading performance in the classification of CUReT
textures taken from different view angles and illuminations

« very promising results in the classification of outdoor scene images

« an approach to learning appearance models for view-based texture
recognition using self-organization of feature distributions was also
proposed

,
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Classification results for CUReT textures

Each image class included
118 images taken under
varying viewpoint and
illumination

Classification rates:

- 98.8% for 20 classes
- 97.3% for 40 classes
- 96.6% for 61 classes

Results were better than
those obtained, e.g., by
Cula & Dana (2001) and
Varma and Zisserman
(2002)

-
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Example of view-based classification of an Outex image
(a) The original image (b) Ground-truth regions
(c) Classified pixels within ground-truth regions (d) Segmented image
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LBP in image retrieval

Takala V, Ahonen T & Pietikdinen M (2005) Block-based methods for image retrieval

using local binary patterns. In: Image Analysis, SCIA 2005 Proceedings, Lecture Notes
in Computer Science 3540, 882-891.

Ablock division method for content-based retrieval (best results are obtained with
overlapping blocks)
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Experiments with images from Corel Gallery database

27 categories with 50 images in each were used
 Block based LBP method performed better than Edge
Histogram (of MPEG-7) and color correlogram features

- ,
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Block-based image retrieval
The primitive blocks approach

Ho Hi H;

::> H=Ho# Hy + Hy .

‘ MACHINE VISION GROUP 15 c ﬁ
i i

Block-based image retrieval

Query results with the primitive-based approach

TR
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Face analysis using local binary patterns

« Face recognition is one of the major challenges in computer vision

» We proposed (ECCV 2004, PAMI 2006) a face descriptor based on LBP’s
« Our method has already been adopted by many leading scientists and
groups

« Computationally very simple, excellent results in face recognition and
authentication, face detection, facial expression recognition, gender
classification

el
et ——

Feature

Face The face image s LBP histogram
image divded Into blocks  from each block

- '
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Face description with LBP

Ahonen T, Hadid A & Pietikainen M (2006) Face description with local binary
patterns: application to face recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence 28(12):2037-2041. (an early version published at
ECCV 2004)

A facial description for face recognition:

1l

[ 4
el la
Afaceimage  Theimage is divided into  LBP histogram Feature
(144x112 pixels) 24 blocks of 24°28 pixels from each block histogram

- ,
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Weighting the regions
Block size Metrics

18 * 21

i

Weighting

2 (Chi-square) l

130 * 150 Lorg
Feature vector length - 2891

LBP in AuthenMetric F1
Institute of Automation, Chinese Academy of Sciences

D

- ) s~ 3
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Face detection with LBP

Hadid A, Pietikdinen M & Ahonen T (2004) A discriminative feature space for
detecting and recognizing faces. Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2004), 2:797-804.

A facial description for small-sized face images:

e

|

Fasturs bistogram  LBF histogram from
the whole imase

Face image divided  LEP histogram from.
into esveral blocks sach block

Feature vector length - 203

Face detection results

- ) s~ 3
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Face detection results

Table 3.4. Comparative performance of detecting 227 faces in 80 images.

Method Detected False detection  Rates
Schneiderman-Kanade(1.0, 1.0) 218 41 96.0 %
BDF Method 221 1 97.4 %
Nonnalized Pixel features 213 6 93.8 %
LBP4‘1+LBP§_:1 (203 bins) 221 0 97.4 %

- ,
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Application example: FP7 project: Mobile Biometry
(MOBIO) 2008-2010 (www.mobioproject.org)

«» The aim of is to investigate multiple aspects of biometric
authentication based on the face and voice in the context of
mobile devices

« To increase security and user acceptance - using standard
sensors already available on mobile phones

« Coordinator: IDIAP Research Institute (CH)

« Partners: University of Manchester (UK), University of Surrey
(UK), Universite d’Avignon (FR), Brno University of Technology
(C2), University of Oulu (Fl), IdeArk (CH), EyePmedia (CH),
Visidon (FI)
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LBP in facial expression recognition from still images

Feng X, Pietikdinen M & Hadid A (2005) Facial expession recognition with local
binary partterns and linear programming. Pattern Recognition and Image
Analysis 15(2):546-548.

« Linear programming technique was adopted to
classify seven facial expressions: anger, discust,
fear, happiness, sadness, surprise, and neutral

‘ MACHINE VISION GROUP 15 c ﬁ
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Description of interest regions with center-symmetric LBPs

Heikkila M, Pietikainen M & Schmid C (2009) Description of interest regions

with local binary patterns. Pattern Recognition 42(3):425-436.

Neighborhood Binary Pattern

LBP = CS-LBP =
s(no—nc)2®+| [s(n0 —n4)2° +
s(nl-nc)2'+| |s(nl —n5)2'+
s(n2-nc)2%+| |s(n2 —n6)2% +
s(n3-nc)2°+| |s(n3 —n7)2°
s(nd —nc)2“ +
s(n5 —nc)2 ° +
s(n6 —nc)2 ® +
s(n7-nc)2”’

- ,
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Description of interest regions

Region Descriptor

Input CS-LBP
Region Features

Feature

- '
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scted Hessian—Affine gion ) lized with

(2) CS—LBF Descrip for the gion

50 100 150 200

- ,
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Setup for image matching experiments

Mviabt

+ CS-LBP perfomed better than SIFT in image maching and categorization
experiments, especially for images with lllumination variations

- '
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Modeling the background and detecting moving objects

Heikkila M & Pietikainen M (2006) A texture-based method for modeling the
background and detecting moving objects. IEEE Transactions on Pattern

Analysis and Machine Intelligence 28(4):657-662. (an early version published
at BMVC 2004)

Foreground Detection

Background Modeling

- .
‘ MACHINE VISION GROUP E‘&
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Roughly speaking, the background subtraction can be seen as a two-stage
process as illustrated below.

Background Modeling

Background modeling

The goal is to construct and maintain a statistical representation of the
scene that the camera sees.

Foreground Detection
The comparison of the input frame with the current background model.
The areas of the input frame that do not fit to the background model are
considered as foreground.

-
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...Overview of the approach...

We use an LBP histogram computed over a circular region around the
pixel as the feature vector.

The history of each pixel over time is modeled as a group of K weighted
LBP histograms: {X;,Xs,...,X}.

The background model is updated with the information of each new video
frame, which makes the algorithm adaptive.

The update procedure is identical for each pixel.

- )
‘ MACHINE VISION GROUP E‘&
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...Overview of the approach... Background modeling

1. Calculate an LBP histogram x, for the pixel of the new video frame.

2. Compare the new pixel histogram x, against the existing K model
histograms {x,X,,...,Xc} by using the histogram intersection as the
distance measure.

1. If none of the model histograms is close enough to the new
histogram, the model histogram with the lowest weight is
replaced with the new histogram and is given a low initial weight.

2. If a model histogram close enough to the new histogram was
found, the bins of this histogram are updated as follows:
Xicall] = apXifi] + (1 - ap)Xy 1] Osap=1 M
Furthermore, the weights of the model histograms, {w,, w,...,
wy}, are updated as follows:
Wi = (1-ay) Wepq + aMy ¢ O<a,=<1 (2) where
M, is 1 for the matched histogram and 0 for the others.

MACHINE VISION GROUP
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...Overview of the approach... Background modeling

3. Decide which of the histograms of the model are most likely
produced by the background processes. We use the persistence of
the histogram as an evidence for this. Because the persistence of the
k" model histogram is directly related to its weight wy,, the model
histograms are sorted in decreasing order according to their weights.
As a result the most probable background histograms are on the top
of the list.

4. As a last phase of the updating procedure, the first B model

histograms are selected to be the background model as follows:
Wyt Wyt ...+ W > Ty 0< Tgs1 (3)

MACHINE VISION GROUP
i

...Overview of the approach... Foreground detection

Foreground detection is achieved via comparison of the new pixel
histogram x, against the existing B background histograms {X;,X5,...,Xg}
selected at the previous time instant.

« If a match is not found, the pixel is considered to belong to the
foreground.

« Otherwise, the pixel is marked as background.

MACHINE VISION GROUP
i




Examples of detection results

i

||
Detection results for images of Toyama et al. (ICCV 1999)

First Test Ideal
Frame Frame Result

Hored otld aa--
- -

Resutt

Time of Day

oo - “

Waving Trees M2 1

APV
e = @ 11

Bootstrapping

Foreground ' be %y
= TN
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Demo for detection of moving objects
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o LBP in multi-object tracking

Takala V & Pietikdinen M (2007) Multi-object tracking using color, texture, and motion.

Proc. Seventh |IEEE International Workshop on Visual Surveillance (VS 2007),
Minneapolis, USA, 7 p.

Detecson Tracaing
Testue bond Makchirg usng
e o Onjoct dotection

Framas
sbiracien sing contours ol laaturas.

Group handlig
merging ana
witira)
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Part 3: Motion analysis with spatiotemporal LBPs

ICCV 2009
Sep. 27, 2009

Guoying Zhao
gyzhao@ee.oulu.fi
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|| Contents

3.1 Dynamic texture recognition

« Volume LBP

« LBP-TOP

3.2 Facial expression recognition based on dynamic texture
« A block-based method, combining local information from pixel, region and
volume levels

o Illumination invariant recognition under NIR imaging system
3.3 Visual speech recognition

3.4 Face analysis from videos

o Face

* Gender

3.5 Activity recognition: activity and gait

eTexture Based Description of Movements

eActivity Recognition Using Dynamic Textures

eDynamic Textures for Gait Recognition

3.6 Dynamic texture segmentation

3.7 Dynamic texture synthesis

e
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03_motion_segmentation_and_multi-object_tracking_valtteri_takala.avi

3.1 Dynamic texture recognition
Zhao G & Pietikdainen M (2007) Dynamic texture recognition using local binary

patterns with an application to facial expressions. IEEE Transactions on Pattern

Analysis and Machine Intelligence 29(6):915-928. (parts of this were earlier
presented at ECCV 2006 Workshop on Dynamical Vision and ICPR 2006)
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Dynamic texture

Dynamic Textures (DT): Temporal texture
Textures with motion
An extension of texture to the temporal domain

Encompass the class of video sequences that
exhibit some stationary properties in time

Lots of dynamic textures in real world
Description and recognition of DT is needed

MACHINE VISION GROUP NI

Volume Local Binary Patterns (VLBP)

LBP from Three Orthogonal Planes (LBP-TOP)

. R Gray-level values
Sampling in volume a2 % ]
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. Thresholding 5 x1
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../../Local Settings/Temp/sea_waves_Cute.avi

DynTex database

¢ Our methods outperformed the state-of-the-art in experiments
. With DynTex and MIT dynamic texture databases
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i of

MACHINE VISION GROUP

Results of LBP from three planes

W b JII‘IIJIIA ﬁ.umi“. sl

s w0 7w

LBP XY | Xz YZ Con weighted
8,881,111 riu2 |8857 8457 [86.29 [93.14 |93.43[2,11]

8,838,111 u2 92.86 | 88.86 |89.43 |94.57 |96.29[4,1,1]

8,8,8,1,1,1Basic |95.14|90.86 |90 95.43 |97.14[5,1,2]
8,8,8,3,3,3Basic |90 91.17 |94.86 |95.71 |96.57[1,1,4]

28833 1Basic 8971|9114 9257 |9457 |95.71[2,18]
U

3
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3.2 Facial expression recognition

Zhao G & Pietikdinen M (2007) Dynamic texture recognition using local binary
patterns with an application to facial expressions. IEEE Transactions on
Pattern Analysis and Machine Intelligence 29(6):915-928.

« Determine the emotional state of the face

e Regardless of the identity of the face

3
‘ MACHINE VISION GROUP | 25 of O
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| Facial Expression Recognition |

Dynamic Information
[Feng, 2005][Shan, 2005]
[Bartlett, 2003][Littlewort,2004] @ Prototypic Emotional
Expressions

[Tian, 2001][Lien, 1998] [Cohen,2003]
[Bartlett,1999][Donato,1999] [Yeasin, 2004]
[Aleksic,2005]

[Cohn,1999]

Psychological studies [Bassili 1979], have demonstrated that humans do a better job in

recognizing expressions from dynamic images as opposed to the mug shot.

Y .
vk %ol

MACHINE VISION GROUP

(a) Block volumes (c) Concatenated features for one block volume

(b) LBP features
- from three orthogonal planes with the appearance and motion o
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../../../../Dynamic Texture Recognition/seawaves2.avi
../../../../Dynamic Texture Recognition/liftdownward2.avi
../../../../Dynamic Texture Recognition/curlyhair2.avi
../../../../Dynamic Texture Recognition/watergrass2.avi
../../../../Dynamic Texture Recognition/bigleaves2.avi
../../../../Dynamic Texture Recognition/blossom2.avi
../../../../Dynamic Texture Recognition/straw2.avi

Database

Cohn-Kanade database :

* 97 subjects
374 sequences
«  Age from 18 to 30 years

«  Sixty-five percent were female, 15 percent were African-American,
and three percent were Asian or Latino.

‘ MACHINE VISION GROUP ﬁ
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Happiness Angry Disgust

Sadness Fear Surprise
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Comparison with different approaches

People | Sequence | Class | Dynamic | Measure Recognition

Num | Num Num Rate (%)
[Shan,2005] 96 320 76) |N 10 fold 88.4(92.1)
[Bartlett, 2003] | 90 313 7 N 10 fold 86.9
[Littlewort, 90 313 7 N leave-one- | 93.8

2004] subject-
out
[Tian, 2004] 97 375 6 D 93.8
[Yeasin, 2004] |97  |------ 6 Y five fold 90.9
[Cohen, 2003] | 90 284 6 Vo === 93.66
Ours 97 |374 6 Y two fold |95.19
|Ours 97 374 6 Y 10 fold |96.26

‘ MACHINE VISION GROUP E
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|| Demo for facial expression recognition

< Low resolution

TOoOo:vl:508 9

< No eye detection

< Translation, in-plane and out-of-
plane rotation, scale

< Illumination change
< Robust with respect to errors in
face alignment

‘ MACHINE VISION GROUP ﬁ
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o Example images in different illuminations

Visible light (VL) : 0.38-0.75 um
Near Infrared (NIR) : 0.7um-1.1um

Strong illumination Weak illumination Dark illumination

Taini M, Zhao G, Li SZ & Pietikidinen M (2008) Facial expression recognition
from near-infrared video sequences. Proc. International Conference on

Pattern Recognition (ICPR), 4 p.

On-line facial expression recognition from NIR videos

* NIR web camera allows expression recognition in near darkness.
+ Image resolution 320 x 240 pixels.

+ 15 frames used for recognition.

« Distance between the camera and subject around one meter.

Start sequences  Middle sequences End sequences

MACHINE VISION GROUP
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M result

Facial expression under NIR environment

MACHINE VISION GROUP

3.3 Visual speech recognition

Zhao G, Barnard M & Pietikainen M (2009). Lipreading with local spatiotemporal

descriptors. IEEE Transactions on Multimedia, in press.

« Visual speech information plays an important role in speech
recognition under noisy conditions or for listeners with
hearing impairment.

< A human listener can use visual cues, such as lip and
tongue movements, to enhance the level of speech
understanding.

« The process of using visual modality is often referred to as
lipreading which is to make sense of what someone is saying
by watching the movement of his lips.

McGurk effect [McGurk and MacDonald 1976] demonstrates that inconsistency
between audio and visual information can result in perceptual confusion.
MACHINE VISION GROUP , i
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System overview

' Js

Face detector Eyes detector /; - Lip localization

Phrases SVM Jwal fatures -

Ay

»2a%

—

Our system consists of three stages.
« First stage: face and eye detectors, and the localization of mouth.
« Second stage: extracts the visual features.

« Last stage: recognize the input utterance.

MACHINE VISION GROUP

Local spatiotemporal descriptors for visual information

Mouth region images

%

(a) Volume of utterance sequence LBP-XY

images

(b) Image in XY plane (147x81)
(c) Image in XT plane (147x38) in y =40
(d) Image in TY plane (38x81) in x =70

e,

23 2
LBP-XT images

Overlapping blocks (1 x 3, overlap size = 10).

-
MACHINE VISION GROUP 2 T
ekt LBP-YT.images

(s) Block volumes
appearanss and rotion

)

]

{b) LEP features fiom thuee orthogonal planes  {s) Concatenated features for one block volume with the

Features in each block volume.

A

Mouth movernent features from the whole sequence

Mouth movement representation.

MACHINE VISION GROUP

Experiments

« Three databases:

1) Our own visual speech database: OuluVS Database

20 persons; each uttering ten everyday’s greetings one to five times.
Totally, 817 sequences from 20 speakers were used in the experiments.

Cl | “Excuse me” C6 | “Seeyou”

C2 | “Good bye” Cc7 “l am sorry”

C3 | “Hello” Cc8 “Thank you”

C4 | “How are you” C9 “Have a good time”
C5 | “Nice to meetyou” | C10 | “You are welcome”

2) Tulips1 audio-visual database

12 subjects, pronouncing the first four digits in English two times in repetition.
Totally 96 sequences.

3) AVLetters database
'Tto people, each uttering 26 english letters three times. Totally 780 sequenc&
‘ i
£
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Experimental results - OuluVS database
= =
Mouth regions from the dataset. “

Experimental results - Tulips1 audio-visual database

Mouth images with translation, scaling and rotation from Tulipsl database.

Comparison to other methods on Tulips1 audio-visual database (speaker independent).

Speaker-independent: Features Normalization | Results (%)
[Arsic 2006] MRPCA Y 81.25
g [Arsic 2006] MI MRPCA Y 87.5
F A
5 S [Gurban 2005] | Temporal Derivatives Features Y 80
L gt ( r/A 91(a8v, 10 dB SNR
& o[ === 1x5x3 block volumes level)
5 1543 block wolumes (features just from XY plane)
—©— 1x5x1 block wolumes. Ours LBP-TOR 44111 Blocks: 3x6x2 N 92.71
- €1 ez G o4 cs ce o7 G co cio , -— it .
‘ MACHINE VISION GROUP ﬁ ‘ MACHINE VISION GROUP 5 C ﬁ
[ . e i
Visemes | Phooemes | Visemes [ Phooemes Principal appearance and motion
» e e | ™ . .
T y w [ from boosted spatiotemporal descriptors
v % o, e 5| ax,
e = Zhao G & Pietikdinen M (2009) Boosted multi-resolution spatiotemporal descriptors for
* W om o | . wy facial expression recognition. Pattern Recognition Letters 30(12):1117-1127.

AV Letters database: 26 letters, 10 people, three utterances per letter.

CONFUSION MATRIX FROM SVMs( LBP — TOP3 6.5,5,2 FEATURES WITH 2 x 5 x 3 BLOCKS)

o =[z|~ [

Multiresolution features=>Learning for pairs=>Slice selection

« 1) Use of different number of neighboring points when computing the features in
XY, XT and YT slices

* 2) Use of different radii which can catch the occurrences in different space and
time scales

/"'L
() Q\:P._
|

‘ MACHINE VISION GROUP

« 3) Use of blocks of different sizes to have global and local statistical

features
sesas

The first two resolutions focus on the
« pixel level in feature computation, providing different local spatiotemporal
information

the third one focuses on the
« block or volume level, giving more global information in space and time
dimensions.

‘ MACHINE VISION GROUP

Learned first 15 slices (left) and five blocks (right), each block includes three
slices from LBP — TOPS,8,8,3,3,3 with 2 x 5 x 3 blocks for all classes
learning.

The selected features for all classes are mainly from YT slices (seven out of 15)

and XT slices (seven out of 15), just one from XY slices. That suggests that

in visual speech recognition the motion information is more important than the
«5~._appearance.

i J
A | [
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These phrases were most difficult to recognize
because they are quite similar in the latter part
containing the same word “you”.

The selected slices are mainly in the first and
second part of the phrase,

The phrases “excuse me” and I am sorry”are
different throughout the whole utterance, and the
selected features also come from the whole
pronunciation.

Selected 15 slices for phrases ”Excuse me” and ”I am sorry”.

‘ MACHINE VISION GROUP

Demo for visual speech recognition

- ;
‘ MACHINE VISION GROUP 5 C )] ﬁ

3.4 Face analysis from videos

Hadid A, Pietikdinen M & Li SZ (2007) Learning personal specific facial
dynamics for face recognition from videos. Proc. 2007 IEEE International
Workshop on Analysis and Modeling of Faces and Gestures (AMFG), 1-15.

‘ MACHINE VISION GROUP 25 of O ﬁ
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Traditional approaches..

The most common approach is to
apply still image based methods to some selected (or all) frames

MACHINE VISION GROUP

Problem description
=

4
How to efficiently recognize faces, determine
gender, estimate age etc. from video sequences?

& /\\
R

One new direction..

= ASpatiotemporal Approach to Face Analysis from Videos

Motivations:
neuropsychological studies indicating that facial dynamics do support face and

gender recognition especially in degraded viewing conditions such as poor
illumination, low image resolution...

- .
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A face sequence can be seen as a collection of rectangular prisms
(volumes) from which we extract local histograms of Extended
Volume Local Binary Pattern code occurrences.

LP histogram Fesnre
from eachbiock  istogram

MACHINE VISION GROUP

A spatiotemporal approach to face analysis from videos..

Algorithm;
1. Divide the video into local prisms
2. Consider 3D neighborhood of each pixel
3. Apply VLBP
4. Feature Selection using AdaBoost
5. Extract local histograms
6. Histogram concatenation & normalization
7. Matching

-
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Some experimental results

Experiments on face recognition

Hadid A, Pietikdinen M & Li SZ (2007) Learning personal specific facial
dynamics for face recognition from videos. Proc. 2007 IEEE International
Workshop on Analysis and Modeling of Faces and Gestures (AMFG ), 1-15.

Method |Results on MoBo‘Resulrs on Honda/UCSD ‘Results on CRIM
PCA 87.1% 69.9% 89.7%
LDA 90.8% 74.5% 91.5%
LBP[13] 91.3% 79.6% 93.0%
HMM [8] 92.3% 84.2% 85.4%
ARMA [7] 93.4% 84.9% 80.0%
VLBP [14] 90.3% 78.3% 88.7%
VLBP+AdaBoost 96.5% 89.1% 94.4%
EVLBP+AdaBoost 97.9% 96.0% 98.5%

Static image based versus spatiotemporal based approaches to face recognition

- ,
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Experiments on gender classification

Hadid A & Pietikdinen M (2009) Combining appearance and motion for face and

gender recognition from videos. Pattern Recognition 42:2818-2827.
Databases: CRIM, VidTIMIT and Cohn-Kanade

Gender classification results on test videos of familiar (columns 1-3) and unfamiliar
subjects (columns 4-6). The methods are based on appearance only (151, 2nd & 3rd rows),
motion only (4th & 5th rows), and combination of appearance and maltion (6th & Tth rows).

Gender Clssiheation Rate
Method Subjects Seen during Training | Subjects Unseen dunng Traming
W30 [ 90 7 30 | 60560 | 0520 [ 0740 | 6060
Pixels+5VM4Voting | 931 933 919 883 RO 887
TBF+SVMvoung_| @10 | 944 | w4 | 01 | 906 910
XVLBPSVM Gh1 | 91 | o1 | #F | w7 %63
VTLBP+SVM TS | 86 | w2 [ 5o | 497 04
[ XTLEP+SVM TS | 94 | S04 | 49 | 1 42
‘ VLBP+SVM 982 98.3 X 827 843 BT
[_EVLBP+AdaBoost [0 T 160 1 815 76

3.5 Activity recognition

Kellokumpu V, Zhao G & Pietikdinen M (2009) Recognition of human actions
using texture, a journal article in revision.

- ,
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|| ||
Texture based description of movements
Overview of the approach
+ We want to represent human movement with it's local
properties
> Texture Silhouette representation “
+ But texture in an image can be anything? (clothing, scene Il Il
background
9 ) ) ) ‘ MHI ‘ ‘ MEI n‘
> Need preprocessing for movement representation L
> We use temporal templates to capture the dynamics @ @
* We propose to extract texture features from temporal templates ‘ LBP feature extraction iy ‘
to obtain a short term motion description of human movement. @
‘ HMM modeling @ ‘
Kellokumpu V, Zhao G & Pietikainen M (2008) Texture based description of
movements for activity analysis. Proc. International Conference on Computer
Vision Theory and Applications (VISAPP), 1:206-213. -
. < G
‘ MACHINE VISION GROUP E‘; ‘ MACHINE VISION GROUP
[ * [
|| ||
Features Hidden Markov Models (HMM)
* Model is defined with:
’—,‘”n " w— — Set of observation histograms H
— iti i an a a
W, M y— Transition matrix A 2 33
w, % F ™ — State priors
T e - + Observation probability is
L Y 1Y taken as intersection of the
——
observation and model
e histograms:
PNy |5 =) = 2 min( hy, hy)
- ] -
‘ MACHINE VISION GROUP E; ‘ MACHINE VISION GROUP
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Experiments Experiments — HMM classification
« Experiments on two databases: « Database 1 - 15 activities by 5 people
— Database 1: * LBR, [wm 9%
« 15 activities performed by 5 persons MEI 90%
MHI + MEI 100%
B
! s « Weizmann database — 10 activities by 9 people
* LBPy R Act Seq Res.
— Database 2 - Weizmann database: Our method 10 %0 978%
« 10 Activities performed by 9 persons Wang and Suter 2007 10 kil 97.8%
. . . . P Boiman and Irani 2006 9 81 97,5%
« Walkig, running, jumping, skipping etc. Nicbies et al 2007 o = Py
Ali etal. 2007 9 81 92,6%
Scovanner et al. 2007 10 92 82,6%
- -
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Experiments — Continuous data

« Detection and recognition experiments on database 1
using a sliding window based detection.

Activity recognition using dynamic textures

* Instead of using a method like MHI to incorporate
time into the description, the dynamic texture features
capture the dynamics straight from image data.

* When image data is used, accurate segmentation of
the silhouette is not needed

— Instead a bounding box of a person is sufficient!!

Kellokumpu V, Zhao G & Pietikdinen M (2008) Human activity recognition using
a dynamic texture based method. Proc. British Machine Vision Conference

(BMVC), 10 p.

Y 3 3
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Dynamic textures for action recognition Dynamic textures for action recognition
« lllustration of xyt-volume of a person walking « Formation of the feature histogram for an xyt volume
of short duration
/| "
xt i
Feature histogram of a bounding volume
+« HMM is used for sequential modeling
- ) o~ ]
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Action classification results — Weizmann dataset Action classification results - KTH
« Classification accuracy 95,6% using image data « Classification accuracy 93,8% using image data
25efssexil
2S3E&EH B33 ww Bo« Clap Wave Jog Run Walk loresn
- ) o~ ]
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Dynamic textures for gait recognition

Feature histogram of the whole volume

Similarity = > min( h,h;)

Kellokumpu V, Zhao G & Pietikdinen M (2009) Dynamic texture based gait

MACHINE VISION GROUP

recognition. Proc. International Conference on Biometrics (ICB ), 1000-1009.

B
£

Experiments - CMU gait database

CMU database

+ 25 subjects

+ 4 different conditions
(ball, slow, fast, inctine)

- ,
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Experiments - Gait recognition results 3.6 Unsupervised dynamic texture segmentation
Chen J, Zhao G & Pietikainen M (2008) Unsupervised dynamic texture
segmentation using local spatiotemporal descriptors. Proc. International
Conference on Pattern Recognition (ICPR), 4 p.
5/8 B/S F/B B/F S/F F/S
CcMU [4] 92 % - - - 76 % -
UMD [5] 48% | 68% | 48% | 48% | 80% 84 %
MIT [6] 50 % - - - 64 % -
SSP (7] - - - - 54 % 32%
SVB frieze (8] 77% | 89% | 61% 3% | 82% 80 %
LBP-TOP 75% | 83% | 75% | 83% | 88% 88 %
Input Output
- ) o~ ]
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Dynamic texture segmentation

« Potential applications: Remote monitoring and various type of
surveillance in challenging environments:

monitoring forest fires to prevent natural disasters

— traffic monitoring

homeland security applications

— animal behavior for scientific studies.

‘ MACHINE VISION GROUP

Related work

+ Mixtures of dynamic texture model

— A.B. Chan and N. Vasconcelos, PAMI2008
+  Mixture of linear models

— L. Cooper, J. Liu and K. Huang, Workshop in ICCV2005
+ Multi-phase level sets

— D. Cremers and S. Soatto, IJCV2004
+ Gauss-Markov models and level sets

— G. Doretto, A. Chiuso, Y. N. Wuand S. Soatto, ICCV2003
+ Ising descriptors

— A. Ghoreyshi and R. Vidal, ECCV2006
«  Optical flow

— R.Vidal and A. Ravichandran, CVPR2005

- ,
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Feature: (LBP/C)op

— Local binary patterns
— Contrast

— three orthogonal planes

9|04 tjo]o L2]4 tlofao LBP=148+32-41

af2ofz| [ ol |s 16| [ 8 a Co{29+42+55)3-

sslus[a| [t ]o]o] [s2]es]izs] [52]0 (26534
(e)

MA

Measure

* Similarity measuremq_nt
TI(H,, H,) = > min(H,,, H,,) 1
i=1
+ Distance between two sub-blocks

d={nLBP, XY I-ILBF’, XT» I-ILBF’, YT
I-IC, XY I-IC, XT» nC, A\ }T'
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DT segmentation

Three phases:
Splitting, Merging, Pixelwise classification.

Splitting

=

Pixelwise classification

Splitting

* Recursively split each input frame into square
blocks of varying size.

« criterion of splitting:
— one of the features in the three planes (i.e., LBPT
and Cr, m=XY, XT, YT) votes for splitting of current
block

‘ MACHINE VISION GROUP

UNIVERSITY of QULU

Merging

Merge those similar adjacent regions with smallest merger
importance (MI) value

MI : MI=f(p)x(1-M)
— Mis the distance between two regions
— f(p)=sigmoid(Bp). (B=1, 2, 3, ...)
* p=Np/N;
* Ny is the number of pixels in current block
* N;is the number of pixels in current frame

MACHINE VISION GROUP UNIVERSITY of QULL

Pixelwise classification

« Compute (LBP/C)cp histograms over its circular neighbor for each
boundary pixel.

« Compute the similarity between neighbors and connected models.

* Re-label the pixel if the label of the nearest model votes a different
label.

‘ MACHINE VISION GROUP UNIVERSITY of QULL




Experimental results

Some results on types of sequences and compared with
existing methods.

Experimental results

» Results on sequences ocean-fire-small

(a) Our method (b) LBP/C (c) LBP-TOP  (d) Method in [6] (e) Method in [7] b
& d
[61G. Doretto, A. Chiuso, Y. N. Wu and S. Soatto, Dynamic Texture Segmentation, ICCV, 2003 NONN (d) Frame 60 (e) Frame 80 (f) Frame 100 pro;
[7) A Ghoreyshi and R. Vidal, Segmeting Dynarmic Textures with Ising Descriptors, ARX Models and Level Sets, £CCV, 2006 i ‘ MACHINE VISION GROUP ORIVERSITY of cULU PSS
i i Sy
| |

Experimental results
Chen J, Zhao G & Pietikdinen M (2009) An improved local descriptor and

threshold learning for unsupervised dynamic texture segmentation. Proc. ICCV
Workshop on Machine Learning for Vision-based Motion Analysis.

« Results on a real challenging sequence

3.7 Dynamic texture synthesis

Guo Y, Zhao G, Chen J, Pietikdinen M & Xu Z (2009) Dynamic texture synthesis

using a spatial temporal descriptor. Proc. IEEE International Conference on
Image Processing (ICIP), in press.

« Dynamic texture synthesis is to provide a continuous and infinitely
varying stream of images by doing operations on dynamic textures.

i
(a) Frame 5 (b) Frame 10 ?
P
< oY < oY
‘ MACHINE VISION GROUP UNIVERSITY of QULL [ ‘ MACHINE VISION GROUP UNIVERSITY [
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Introduction

< Basic approaches to synthesize dynamic textures:

- parametric approaches
« physics-based
+ method and image-based method

- nonparametric approaches: they copy images chosen from original sequences
and depends less on texture properties than parametric approaches

« Dynamic texture synthesis has extensive applications in:

- video games
- movie stunt
"i\ - virtual reality

MACHINE VISION GROUP UNIVERSITY of QULL

Synthesis of dynamic textures using a new representation

A. Schadl, R. Szeliski, D. Salesin, and |. Essa, “Video textures,” in
Proc. ACM SIGGRAPH, pp. 489-498, 2000.

- The basic idea is to create transitions from frame i to frame j anytime the
successor of i is similar to j, that is, whenever Diy is small.

‘ MACHINE VISION GROUP
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Part 4: Summary and future directions

ICCV 2009
September 27, 2009

Matti Pietikdinen
mkp@ee.oulu.fi
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- Thealgorithm of the dynamic texture synthesis: ||
Calculate the concatenated local binary pattern i X i X
1. Frame representation; histograms from three orthogonal planes for each Synthesis of dynamic textures using a new representation
frame of the input video
2. Similarity measure; Compute the similarity measure Dij between frame )
pair li and | j by applying Chi-square to the An example:
3. Distance mapping; histogram of representation
To create transitions from frame i to j when i is similar Considering that there .are three tra‘nsmons: 'n _TJ n(n=1,2,3) ,.Ioops
4. Preserving dynamics; toj, all these distances are mapped to probabilities from the source frame i to the destination frame j would create new image
through an exponential function Pij. The next frame to paths, named as loops. A created cycle is shown as:
Avoid dead ends; display after i is selected according to the distribution -
of Pij. m N
nthesis __ _ _ Z Transitions ‘
4 Match subsequences by filtering the difference matrix Dij TR PR 2 ™ n=1
with a diagonal kernel with weights . "_E
[w=-m,...wm~1] i L L L i L L -
vz aomo1 aow o
Distance measure can be updated by
SR (i ENTEEEY @SS When transitions of video texture ?? ? ?
Y are identified, video frames are E‘S ‘ E‘S
MACHINE VISION| ’ MACHINE VISION GROUP
e played by video loops A e A
|| ||
Experiments Experiments
« Dynamic texture synthesis of natural scenes concerns temporal
changes in pixel intensities, while human motion synthesis
+ We have tested a set of dynamic textures, including natural scenes and concerns temporal changes of body parts
human motions. :
(http:/mww.texturesynthesis.com/links.htm and DynTex database, which
provides dynamic texture samples for learning and synthesizing.) * The synthesized sequence by our method maintains smooth
dynamic behaviors. The better performance demonstrates its
+ The experimental results demonstrate our method is able to describe the DT ability to synthesize complex human motions.
frames from not only space but also time domain, thus can reduce
discontinuities in synthesis. (http://www.ee.oulu.fi/~guoyimo/download/)
- ¢ .
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Summary

« Modern texture operators form a generic tool for computer vision

< LBP and its spatiotemporal extensions are very effective for
various tasks in computer vision

« Spatiotemporal LBP descriptors combine appearance and motion

« The advantages of the LBP methods include

- computationally very simple

- can be easily tailored to different types of problems
- robust to illumination variations

- robust to localization errors

« For a bibliography of LBP-related research, see
http://www.ee.oulu.filresearch/imag/texture
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|| Examples of using LBP in computer vision problems

- Texture segmentation: Ojala et al., 1999;

- Color-texture segmentation: Chen & Chen, 2002; Nammalwar et al., 2003
- Color-texture classification: Maenpaa & Pietikainen, 2002, 2004

- Color-texture based indexing: Yao & Chen, 2003; Connah & Finlayson, 2006
- Active contour modeling: Savelonas et al., 2006, 2008

- Description of interest regions: Heikkila et al., 2009

- Object detection: Zhang et al., 2006

- Human detection: Mu et al., 2008

- Crowd estimation: Ma et al., 2008

- On-line boosting: Grabner & Bishof, 2006

- Object classification: Lisin et al., 2005; Autio, 2006

- Recognition of 3D textured surfaces: Pietikainen et al., 2003

- Background subtraction: Heikkila & Pietikainen, 2006

- Object tracking: Takala & Pietikainen, 2007; Petrovic et al., 2008

- Recognition of dynamic textures: Zhao & Pietikainen, 2007

- Segmentation of dynamic textures: Chen et al., 2008

- Recognition of actions/events: Kellokumpu et al., 2008; Ma & Cisar, 2009
- Video texture synthesis: Guo et al. 2009

e
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Examples of using LBP in various applications

- Metal strip inspection: Pietikainen et al., 1994

- Paper inspection: Turtinen et al., 2003

- Inspection of ceramic tiles: Lopes, 2005; Novak & Hocenski, 2005

- Fabric defect detection: Tajeripur et al., 2008

- Quality grading of painted slates: Ghita et al., 2005

- Content-based retrieval: Liao & Chen, 2002; Takala et al., 2005;

- Classification of underwater images: Marcos et al., 2005; Clement et al., 2005
- Aerial image segmentation: Urdiales et al., 2004

- Segmentation of multispectral remote sensing images: Lucieer et al., 2005
- Intravascular tissue characterization: Pujol & Radeva, 2005

- Cell phenotype classification: Nanni & Lumini, 2008

- Ulcer detection in capsule endoscopy images: Li & Meng, 2009

- Mass false positive reduction in mammography: Llado et al., 2009

- Detecting body parts in X-ray images: Jeanne et al., 2009

- Mobile robot navigation: Hong et al., 2002; Davidson & Hutchinson, 2003
- Steganalysis for stenography: Lafferty & Ahmed, 2004

- Designing aesthetically interesting and informative displays: Fogarty et al.,

2001
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B Examples of using LBP in biometrics ||
Some future directions
- Ovehead view person recognition: Cohen et al., 2000
- Face recognition: Ahonen et al., 2004; G. Zhang et al., 2004; W. Zhang et al. . .
2005; Li et al., 2006; Rodriguez & Marcel, 2006; Wolf et al., 2008 + New local descriptors are emerging, for example:
- Face preprocessing: Heusch et al., 2006; Park & Kim, 2007 - WLD - Weber law descriptor (Chen et al., IEEE TPAMI 2009)
- Face detection: Hadid et al., 2004; Jin et al., 2004 - LPQ - Local phase quantization (Ojansivu & Heikkila, ICISP 2008)
- Facial expression recognition: Feng et al., 2004; Shan et al.. 2005, 2009; Liao
et al., 2006; Gritti et al., 2008 . . . .
- Gender classification: Sun et al., 2006; Lian & Lu, 2006; Hadid & Pietikainen + Often asingle descriptor is not effective enough
- Demographic classification: Yang & Ai, 2007 * Multi-scale processing
- Eye IocaIizg_tion: Kroon et al., 2009 « Use of complementary descriptors
- Iis recognition: Sun et al., 2005; He et al., 2009 - LBP&C, LBP&WLD, Haar&LBP, Gabor&LBP, curvelet&LBP, HOG&LBP
- Fingerprint recognition: Nanni & Lumini, 2008 o R .
- Palmprint recognition: Wang et al., 2006; Goh et al., 2008 « Combining local with more global descriptors (e.g. LBP & Gabor)
- Grip-pattern recognition in smart gun: Shang & Veldhuis, 2007 « Combining sparse and dense descriptors
- Blind identification of source cell-phone model: Celiktutan et al., 2008
- Facial expression recognition using facial dynamics: Zhao & Pietikdinen, 2007 . . .
- Visual speech recognition: Zhao et al., 2009 « Dynamic textures offer a new approach to motion analysis
- Analysis of facial paralysis: He et al., 2009 - general constraints of motion analysis (i.e. scene is Lambertian, rigid
- Gait recognition: Kellokumpu et al., 2009 and static) can be relaxed
- -
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. A Springer book: Computer Vision Using Local Binary Patterns

To be published next year
Part | Introduction
1. Background
2. Local binary pattern operators

Part Il Analysis of still images
3. Texture classification
4. Segmentation and description of interest regions
5. Applications in image retrieval and 3D recognition

Part Ill Motion analysis
6. Recognition and segmentation of dynamic textures
7. Background modeling
8. Recognition of actions

Part IV Face analysis
9. Face analysis using still images
10. Face analysis using image sequences
11. Visual speech recognition

Part V Survey to related work
12. Introduction to LBP bibliography
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Thanks!
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