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Professor Auxiliar, Universidade de Aveiro

vogais / examiners committee Doutor João Manuel Leite da Silva
Investigador Sénior, Altran Portugal (arguente)

Prof. Doutor Paulo Miguel de Jesus Dias
Professor Auxiliar, Universidade de Aveiro (orientador)





agradecimentos /
acknowledgements
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Palavras-chave Navegação autónoma; Véıculos autónomos; ATLASCAR; Agrupamento de
dados; Calibração; Anotação de dados; Deteção de Objetos; Fusão de Da-
dos; ADAS; LIDAR; Processamento de Imagem.

Resumo No âmbito do projeto do ATLASCAR2, esta dissertação baseia-se no de-
senvolvimento (usando Robot Operating System (ROS)) de um sistema de
assistência à condução que implementa uma interface para deteção, segui-
mento e anotação de alvos na estrada. A deteção e o seguimento são feitos a
partir de dados de sensores Light Detection And Ranging (LIDAR) e de uma
câmara. Numa primeira fase é implementado um algoritmo para ser usado
na câmara baseado na aparência do alvo a ser seguido. Seguidamente, é
desenvolvido um algoritmo baseado no alcance usando dados adquiridos nos
sensores para seguir objetos num espaço tridimensional. Finalmente, como é
posśıvel detetar e seguir objetos usando a imagem e os lasers, a combinação
dos algoritmos é feita projetando o que é capturado pelos sensores na im-
agem da câmara, sendo posśıvel obter um seguimento mais preciso e robusto
dos alvos na estrada. Para avaliar o algoritmo alguns ”datasets” foram us-
ados com a anotação dos vários alvos detetados e seguidos. Para efetuar
este trabalho é necessário que os sensores e a câmara estejam devidamente
calibrados. Para este efeito, a calibração entre os vários dispositivos é feita
através de uma aplicação que, ao passar uma bola em frente dos sensores, é
posśıvel descobrir os valores das posições de cada sensor relativamente a um
dispositivo dado como referência. Ao ńıvel da calibração, esta dissertação
inclui também uma melhoria do algoritmo de deteção da bola na imagem
obtida pela câmara.





Keywords Autonomous driving; Autonomous vehicles; ATLASCAR; Data Clustering;
Calibration; Data Labelling; Object Detection; Data Fusion; ADAS; LIDAR;
Image Processing.

Abstract In the scope of the ATLASCAR2 project, this dissertation is based on the
development (using ROS) of a driving assistance system that implements
an interface to detect, track and label targets on the road. The detection
and tracking are done using LIDAR sensor data and a camera. Firstly, an
algorithm is implemented to be used in the camera based on the appearance
of the target to be tracked. Next, a range based algorithm is developed using
the data acquired from the sensors to follow objects in a tridimensional
space. Finally, because it is possible to detect and track objects using the
image and the lasers, the combination of the algorithms is done by projecting
what is captured from the sensors in the camera image, being possible to
obtain a more accurate and robust tracking. To evaluate the algorithm
some datasets were used with the labelled data from the several detected
and followed objects. To perform this work the sensors and the camera need
to be properly calibrated. To do this, the calibration between the several
devices was done using an application that, by passing a ball in front of the
sensors, the position values of each sensor relatively to a given reference
device are found. Within the calibration, this dissertation also includes an
improvement of the ball detection algorithm in the image obtained by the
camera.
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Chapter 1

Introduction

Technological studies in the fields of Advanced Driver Assistance Systems (ADAS) and
Autonomous Driving (AD) have been growing in the past decades in the automobile industry
and in the academic environment.

It is important in AD and ADAS to implement machine learning methods so that the
vehicles recognize what objects are in their surroundings. Therefore, labelled data is necessary
to train machine learning algorithms. Data labelling is the solution to create datasets that
will serve as input to learning algorithms.

This thesis is focused on the research of methods to register data into labels using a
camera and LIDAR sensors in ATLASCAR 2, so that the vehicle can later create a model of
the objects it will detect and follow.

A tool for image labeling and tracking of objects will be developed. This tool will be used
to gather image templates while tracking objects in the camera video. This dissertation will
also improve some previous work, namely the calibration process in ATLASCAR 2.

1.1 ATLAS Project

ATLAS is a project developed by the Group of Automation and Robotics at the Depart-
ment of Mechanical Engineering of the University of Aveiro, Portugal. The mission of the
ATLAS project is to develop and enable the proliferation of advanced sensing and active
systems designed for implementation in automobiles and affine platforms. Advanced active
systems being improved, or newly developed, use data from vision, laser and other sensors.

The ATLAS project has vast experience with autonomous navigation in controlled environ-
ments and is now evolving to deal with real road scenarios. To ensure that the developments
are meeting the ATLAS project mission statement, a full sized prototype, the ATLASCAR 1,
has been equipped with several state of the art sensors (LARlabs 2018). Currently, ATLAS-
CAR 2 is the new full sized prototype being used for research equipped with LIDAR sensors
and a camera.

The ATLAS Project was created in 2003 and began with robots developed to participate
at AD competitions taking place at Portuguese National Robotics Festival. From this project,
three small-sized platform robots were built (figure 1.1). These robots were very successful
having won prizes in some of the robotics competitions.

As the project grew, it evolved into full-sized prototypes: the ATLASCARs. ATLASCAR1
(figure 1.2) is the first full-sized platform and it is based on a Ford Escort Station Wagon.

1



2 1.Introduction

Figure 1.1: ATLAS project small-sized prototypes LARlabs 2018

The ATLASCAR1 was equipped with several LIDAR sensors and cameras. Data about its
environment is gathered by the scanners which is then processed building perception into the
car allowing it to actuate and move autonomously.

Figure 1.2: ATLASCAR1 based on the Ford Escort platform LARlabs 2018

The ATLASCAR1 brought successful results. In the end, the vehicle was able to move
and execute maneuvers autonomously in small and controlled places. The ATLASCAR1 was
then replaced by a more recent vehicle. The ATLASCAR2 (figure 1.3) is the new full-sized
platform of the ATLAS project and it is based on a Mitsubishi i-MiEV. This is the vehicle
used for research in this dissertation. The ATLASCAR2 is equipped with various LIDAR
sensors and a camera. It is also a full electric vehicle which will be easier to modify, test and
control.
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Figure 1.3: ATLASCAR 2 based on the Mitsubishi i-MiEV platform LARlabs 2018

1.2 Motivation

AD and ADAS often make use of machine learning. Deep learning algorithms utilize
neural and convolutional networks for images and range-based sensor data. In the fields of
machine learning, images are often used as input templates to create object models. In an
image sequence it is possible to track an object and obtain samples of the target’s location.
This way an algorithm can automatically recognize targets.

While registering the position of the objects in an image sequence, it is important to tell
what those objects are. Labelling is the act to classify objects in a certain category. As the
annotation is done, when selecting an object, the user should enter a label that identifies the
target making it easy for the learning algorithm to recognize to object afterwards.

The objective and importance of tagging samples of images with a label is to assign
metadata in the form of a keyword to later allow an application to retrieve this information
and easily construct a database. However, most labelling for images is currently done with
non optimized manual procedures.

In the end of this dissertation, the ATLASCAR2 will have a labelling system that fuses
images retrieved from the camera with the laser data, creating a semi automatic object
tracking system that offers the possibility to retrieve various image template sequences and
store metadata about them. This metadata contains, for instance, the label, object related
identification markers and position of the object in the image and in the real world relatively
to the ATLASCAR2.

1.3 Objectives

The objectives for this dissertation are, firstly, to improve the calibration of the camera,
in particular regarding the detection of the ball by the camera in the existing multi-sensor
calibration package developed using ROS. Secondly, the development of another ROS package
used for semi-automatic detection and labelling of objects in the field of view.

Master’s Thesis



4 1.Introduction

The calibration package was already developed by Vieira da Silva 2016. The methods used
to detect the ball in the camera image were basically filtering values from the Hue, Saturation
and Value (HSV) color space. There are methods that can make this detection more robust
that will be explained in this thesis.

The detection, tracking and labelling system will combine the image data and the laser
data from the sensors to create a semi-automatic tracking system that allows the user to as-
sociate an object category to the target and create datasets with metadata from the labelling.

1.4 Document Structure

This document is composed by seven chapters including the introduction. The second
chapter describes the related work previously done on ATLASCAR 2 as well as a literature
review detailing the most significant milestones on the history of autonomous driving and a
research on image labelling datasets.

In the third chapter, the experimental structure of this dissertation will be described
depicting the hardware (ATLASCAR2 and sensors) and the software (ROS, LAR Toolkit
(LARTk) and Point Cloud Library (PCL)).

In the fourth chapter, the implementation of the calibration node will be explained pre-
senting its features, the base algorithm and how the calibration package was modified in order
to improve the ball detection.

In the fifth chapter, the detection, tracking and labelling node development will be ex-
plained, firstly by describing how the image tracking is done, then clarifying how to track
objects using the LIDAR sensors and finally using both the image and laser sensor data. This
chapter also features the created datasets and some extra tools used to aid in the labelling.

The sixth chapter presents the results of the ball detection and integration with the
calibration package will be shown and the outcome of the labelling node will also be analyzed
using some datasets produced by the same.

The final chapter the conclusions of this thesis are presented and some future work related
to the scope of this dissertation is proposed.
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Chapter 2

Literature Review

This chapter presents some milestones in the history of autonomous driving and also some
of the most relevant projects made previously in the ATLASCAR2. It also presents examples
of ADAS datasets for labelled data.

2.1 Milestones on the History of autonomous driving

Overall, motorized road transport led to the accidental deaths of around 200,000 US citi-
zens in the 1920s; by far the greatest number of these were pedestrians (Kröger 2016). The
idea of substituting error-prone humans with technology thus practically suggested itself. The
first registered experiments for AD have been conducted circa the 1920’s (The Milwaukee Sen-
tinel 1926) in Milwaukee (see figure 2.1). A 1926 Chandler was equipped with a transmitting
antennae and was radio-controlled by a second car that followed it.

Figure 2.1: The Milwaukee Sentinel 1926, 8 December - ’Phantom Auto’ Will Tour City
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6 2.Literature Review

In the 1950s promising trials in AD took place. General Motors conducted experiments
in miniature models along with the electronic manufacturer Radio Corporation of America
(RCA). The two companies later developed a full size system that was successfully demon-
strated completing a test route of one mile (Kröger 2016).

In the 1980s, pioneer Ernst Dickmanns designed a vision-guided Mercedes Benz along
with the Bundeswehr University Munich engineering team, achieving a speed of 63 km/h on
streets with no traffic. In the late 80s, projects with both LIDAR scanners and computer
vision were carried out. In 1989 the first experiments with vehicles making use of neural
networks were conducted (Pomerleau 1989).

Various autonomous vehicles competitions have been held. The first long distance com-
petition for driverless cars was the Defense Advanced Research Projects Agency (DARPA)
Grand Challenge (DARPA 2018). The event was open to teams and organizations from around
the world. Teams have participated from high schools, universities, businesses and other or-
ganizations, bringing a wide variety of technological skills to the race. The challenge offered
high value money prizes to the winners. Because the reward was so high, the contest brought
various state-of-the-art autonomous vehicles that showcased the solutions implemented in the
platforms featuring new ideas that used the most recent technologies (Montemerlo et al. 2006
and Thrun et al. 2007).

Since then, many companies and research organizations have been developing various
prototype cars. In the past decade, electric motored cars have emerged and new opportunities
for AD and ADAS research have appeared.

Waymo, the Google self-driving car project, begun testing driverless cars without someone
at the driver position. The Waymo project started in 2009 and it counts more than 5 million
miles self-driven. Google has recently partnered with Jaguar and designed self-driving Jaguar
I-PACEs (figure 2.2). Tests on the newest self-driving Waymo’s vehicle will be conducted in
2018 (Waymo 2018).

Figure 2.2: Waymo’s Jaguar I-PACE Waymo 2018
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Another example of an autonomous vehicle project is the Uber Advanced Technologies
Center (ATC) car based on an hybrid Ford Fusion (figure 2.3). The vehicle is equipped with
state of the art LIDAR scanners, and several vision-based sensors and radars.

Figure 2.3: Ford Fusion Uber ATC car (Uber Advanced Technologies Group 2018)

Audi released its A8 (figure 2.4) and the company stated that they would be the first
manufacturer to use laser scanners in addition to cameras and others sensors in autonomous
vehicles. The vehicle was designed to a level 3 autonomous driving: it is capable of self-
driving with the expectation that the human driver will respond appropriately to a request
to intervene. The Audi AI traffic jam pilot takes over the driving task in slow-moving traffic
up to 60 km/h (Audi MediaCenter 2018 and Andreas Herrmann, Walter Brenner 2018).

Figure 2.4: The new Audi A8 (Audi MediaCenter 2018)

Like the University of Aveiro, many other universities and research institutes study the
AD and ADAS paradigms.

Master’s Thesis
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Another interesting autonomous vehicle project is the Shared Computer-Operated Transit
(SCOT) vehicle (figure 2.5), conducted by the Singapore-MIT Alliance for Research and
Technology (SMART) (Singapore-MIT Alliance for Research and Technology 2018). Like the
ATLASCAR 2, SCOT is also a Mitsubishi i-MiEV used to research ADAS and AD at SMART
and it is designed for operations on public roads (Andreas Herrmann, Walter Brenner 2018).
The SCOT vehicle also relies on LIDAR sensors similar to ATLASCAR 2 (Teo 2018).

Figure 2.5: SCOT - Shared Computer-Operated Transit vehicle (Singapore-MIT Alliance for
Research and Technology 2018)

To resume this chapter, in figure 2.6 a timeline with the referred milestones is presented.

2.2 Related work on ATLASCAR2

In this section it is referenced previous work done at LAR relevant for this thesis.

2.2.1 Multisensor Calibration and Data Fusion Using LIDAR and Vision

The calibration procedure for data fusion of ATLASCAR was developed by Vieira da
Silva 2016. The work presents an expansion to an existing extrinsic calibration package to
vision-based sensors where a ball is used as calibration target.

The calibration consists of a appearance-based algorithm to detect the ball in the image
and a range-based algorithm to detect the ball in the surroundings.

The calibration package consists in a graphical interface (see figure 2.7) that allows the
user to configure the various sensors to be calibrated. The estimated positions between sensors
are achieved with sensor data fusion.
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1926
Radio-Controlled "Phantom
Auto" toured Milwaukee City.

1950's
General Motors and RCA conducted

experiments in miniature models.

The two companies developed a full size
vehicle completing a test route of one mile.

1980
Dickmanns designed an autonomous
Mercedes Benz capable of achieving 63 km/h.

LIDAR scanners and computer vision were
introduced.

1989
Neural networks were

introduced in the fields of AD
and ADAS.

2004
The first DARPA Grand Challenge was held.

2009
Google Waymo Project was

founded.

2014
SMART launches first Singapore-developed
driverless car designer for operations in public

d

2017
The new Audi A8 is the first
fully-autonomous car to
speeds up to 60km/h.

2015
Uber ATC was established with the goal of

researching a self-driving car for the company.

Figure 2.6: Timeline with some milestone of autonomous driving history
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Figure 2.7: Calibration package result visualization (Vieira da Silva 2016)

2.2.2 Visual and Depth Perception Unit for ATLASCAR2

The infrastructure to build a visual and depth perception unit for the ATLASCAR was
developed by Correia 2017. is focused on the installation of an aluminum infrastructure on
ATLASCAR 2 to support ranging and vision-based sensors. The sensors setup also include
the electrical project in which a power distribution circuit was developed, consisting in the
wiring installation and the communication infrastructure.

In addition, sensor calibration was done using the calibration graphical interface developed
by Vieira da Silva 2016. New sensors were added to the package so that the calibration could
be proceeded. To demonstrate the functionalities of the platform setup, a multisensor data
merging application was developed representing the free space to navigate around the car (see
figure 2.8).

2.2.3 Active Tracking of Dynamic Multivariate Agents

Methods to detect and follow targets using the LIDAR on the ATLASCAR were developed
by Soares De Almeida 2016. The thesis is based in the tracking of multiple targets in the fields
of advanced safety systems. The focus lies in the prediction of the movement and actions of
external agents. Two main targets are studied: vehicles and pedestrians.

This thesis proposes techniques to improve motion prediction to achieve the development
of algorithms capable of target tracking. These algorithms make use of the 3D point clouds
of the environment and vision-based sensors.
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Figure 2.8: Free space represented by a polygon (left) and an occupancy grid (right) (Correia
2017)

2.3 ADAS Datasets - Examples of Labelled Data

This sections presents some relevant work and its results in public labelled datasets for
ADAS projects.

2.3.1 KITTI Dataset

Probably the most well-known dataset in the fields of AD is the KITTI (Karlsruhe Institute
of Technology 2018). The KITTI dataset was captured with a Volkswagen station wagon
(figure 2.9) used in mobile robotics and AD research. The KITTI benchmark suite started in
2012 at Karlsruhe Institute of Technology with the need to have a dataset to classify objects
on the streets.

This project has grown by increasingly adding more results with more sensors. The KITTI
benchmark started with the stereo, flow and odometry benchmarks and today it includes
standards for object tracking and more.

Just like ATLASCAR 2, the car used in the KITTI dataset is equipped with LIDAR
sensors and Point Grey Video Cameras. The dataset is used for automatic recognition and
tracking of vehicles and pedestrians.

It consists in image sequences (see figure 2.11) and a text file in which, for each frame the
various objects in the field of view are depicted with and identification number, a label, and
coordinates about their position in the 2D and 3D space (Geiger et al. 2013).

The development kit used for the KITTI database contains C++ and MATLAB code to
read the sensor data and write dataset results. The data development kit used is provided
on the KITTI Website (Karlsruhe Institute of Technology 2018). It contains a MATLAB
demonstration code with C++ wrappers.
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Figure 2.9: Volkswagen Station Wagon used in the KITTI Dataset (Karlsruhe Institute of
Technology 2018)

The demonstration script of the KITTI development kit shows how 3D boxes can be read
from the dataset files and projected into the image plane of the cameras (see figure 2.10).

Figure 2.10: KITTI development kit showing 2D and 3D bounding boxes around several cars
(Karlsruhe Institute of Technology 2018)

The data is processed and inserted into MATLAB structures and arrays. The KITTI
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1 ...

2 3 1 Cyclist 0 0 -1.931469 759.786603 146.098339 954.280160

374.000000 1.739063 0.824591 1.785241 1.821119 1.569936

5.783265 -1.642450

3 3 2 Pedestrian 0 0 -2.547728 1154.836779 148.360923

1241.000000 321.627088 1.714062 0.767881 0.972283 6.463579

1.474131 7.560739 -1.860031

4 4 -1 DontCare -1 -1 -10.000000 252.530000 168.660000

284.460000 202.850000 -1000.000000 -1000.000000 -1000.000000

-10.000000 -1.000000 -1.000000 -1.000000

5 4 0 Van 0 0 -1.808333 290.287584 146.641981 444.387179

269.473545 2.000000 1.823255 4.433886 -4.934786 1.601945

14.098646 -2.139796

6 4 1 Cyclist 0 0 -1.929519 767.158958 140.942948 961.992360

374.000000 1.739063 0.824591 1.785241 1.881359 1.534695

5.785600 -1.631447

7 4 2 Pedestrian 1 0 -2.557045 1180.675035 151.025283

1241.000000 325.015204 1.714062 0.767881 0.972283 6.516488

1.497786 7.267796 -1.846627

8 ...

Listing 2.1: KITTI dataset file snippet presenting frame id, object id, label, truncated and
occluded flags, alpha, left top and right bottom coordinates, height, width and length, 3D
coordinates (x,y,z) and rotation

database also uses the PCL to process and gather the pointclouds obtained from the LIDAR
sensors.

Listing 2.1 shows an example snippet of what the KITTI dataset looks like. Each line
starts with the frame ID and the ID of the object being tracked. Then it is added a label
to classify this object. There are also flags to indicate if the object is either truncated or
occluded in the image sequence.

The following numbers consist in the alpha (observation angle of object), the left, top,
right and bottom of the 2D bounding box, the height, width and length of the 3D bounding
box and its XYZ coordinates. The last number consists in the 3D rotation angle in the Y
axis (Boston Didi Team 2018).

Analyzing the snippet, a cyclist and a pedestrian can be located in frame 3 and the same
cyclist and pedestrian (because they have the same object id) in the next frame with also a
van. The DontCare label is often shown representing an object detected that is not related
to the scope of the KITTI dataset. Other information indicate where these objects are found
relatively to the car.

Figure 2.11 depicts a result from an image sequence using the KITTI dataset.
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Figure 2.11: Sequence example of tracking by detection using the KITTI dataset (Karlsruhe
Institute of Technology 2018)

2.3.2 Berkeley DeepDrive Dataset

The DeepDrive Dataset is a recent ADAS labelled dataset from the University of Califor-
nia, Berkeley.

The Dataset consists of box annotations, region annotations and detection of objects,
lanes and drivable areas (Yu et al. 2018). The only source data for each dataset is a video
captured with a camera on a vehicle. Their labelling system is a web-based tool (see figure
2.12).

Figure 2.12: DeepDrive Dataset Annotation Tool (Yu et al. 2018)

The labelling has a semi-automatic and a manual mode. In this annotation application
the objects of interest are suggested with a bounding box and a category (label). The size of
the bounding box and the category can be edited if the system fails. The objects are detected
using a previously trained object detection model.

In listing 2.2 a snippet from a file of the DeepDrive dataset is depicted. The dataset is
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1 ...

2 "frames": [

3 {

4 "timestamp": 10000 ,

5 "objects": [

6 {

7 "category": "car",

8 "id": 0,

9 "attributes": {

10 "occluded": true ,

11 "truncated": false ,

12 "trafficLightColor": "none"

13 },

14 "box2d": {

15 "x1": 555.647397 ,

16 "y1": 304.228432 ,

17 "x2": 574.015906 ,

18 "y2": 316.474104

19 }

20 },

21 {

22 "category": "car",

23 "id": 1,

24 "attributes": {

25 "occluded": true ,

26 "truncated": false ,

27 "trafficLightColor": "none"

28 },

29 "box2d": {

30 "x1": 554.116689 ,

31 "y1": 318.004813 ,

32 "x2": 567.89307 ,

33 "y2": 328.719775

34 }

35 },

36 ...

Listing 2.2: DeepDrive dataset file snippet.
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presented in the JSON format. For each frame there is a timestamp and a set of objects. Each
object is identified with a category, an ID, attributes that indicate if the object is occluded,
truncated, and if the object is a traffic light which light color is on. The position is represented
by the 2D bounding box position (x1, y1, x2, y2).

2.3.3 HumanEva II Dataset

The HumanEva II Dataset from the Max Planck Institut Informatik (MPII) was also an
interesting dataset, although it is used mainly for pedestrian detection.

This dataset appears with the need to represent information about detection and tracking
of humans and their poses captured by a single image camera. The HumanEva dataset
development kit includes several MATLAB modules, each one implementing a feature. Some
modules refer to the body pose, others to image stream processing, writing the dataset results,
and so on. Each script implements a chunk of the system that gathers the data and shapes
it into MATLAB structures to be processed and to create the dataset.

The HumanEva dataset has information about the bounding boxes position used to track
and detect pedestrian limb poses. This information is useful to know which direction the
person is facing from the 3D skeleton derived from the pose. The data structure in the
dataset is similar to a XML file. For each frame in the image sequences there are several
bounding boxes with the respective coordinates (Sigal et al. 2009).

By looking at listing 2.3, in this dataset snippet is easy to identify the interest points in
the given frame. The files are a set of annotations called annotationList in which a path to
the image corresponding to the frame is given. For each image there are several bounding
boxes with coordinates (x1, y1, x2, y2), a score, silhouette, articulation and viewpoint id.

2.3.4 Other relevant datasets

Other datasets included in the research for this dissertation are found in ETHZ and in
EPFL projects.

ETHZ dataset

ETHZ conducted studies for detection and tracking of people on the street (Ess et al.
2009). Just like the previous datasets, its creation is based in MATLAB scripts and the data
is gathered and stored in MATLAB structures. The dataset is simple: for each frame there
are several bounding boxes in the image.

This dataset is focused only in the detection and tracking of pedestrians in the image
(ETHZ (Eidgenössische Technische Hochschule Zürich) 2018). In listing 2.4 each line is com-
posed with a string defining a path to the image representing the actual frame, followed by
tuples of four elements (x1, y1, x2, y2) representing the bounding boxes where pedestrians are
found in the respective frame.

EPFL dataset

The EPFL designed a dataset for multiple people in a camera environment, independent
of the scenario. This dataset used various synced video cameras filming the same area in
different angles (Biliotti, Antonini and Thiran 2015). The data from the cameras is captured
and processed with MATLAB scripts and some algorithms in C++.
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1 <annotationlist >

2 ...

3 <annotation >

4 <image>

5 <name>test /00050. png</name>

6 </image>

7 <annorect >

8 <x1>65</x1>

9 <y1>45</y1>

10 <x2>118</x2>

11 <y2>213</y2>

12 <score>636</score>

13 <silhouette >

14 <id>2</id>

15 </silhouette >

16 <articulation >

17 <id>-1</id>

18 </articulation >

19 <viewpoint >

20 <id>-1</id>

21 </viewpoint >

22 <annopoints >

23 <point>

24 <id>0</id>

25 <x>92</x>

26 <y>114</y>

27 </point>

28 <point>

29 <id>1</id>

30 <x>108</x>

31 <y>96</y>

32 </point>

33 </annopoints >

34 </annorect >

35 <imgnum >50</imgnum >

36 </annotation >

37 ...

38

39 </annotationlist >

Listing 2.3: HumanEva dataset file snippet.
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Figure 2.13: Example image of the HumanEva dataset that generated the snippet in listing
2.3 (Max-Planck-Gesellschaft 2018)

1 ...

2 "left/image_00000015_0.png": (222, 177, 268, 312), (373, 105,

463, 393), (458, 220, 487, 285), (310, 225, 327, 265), (335,

228, 352, 264), (267, 228, 281, 261);

3 "left/image_00000016_0.png": (220, 172, 266, 313), (378, 407,

476, 102), (462, 219, 486, 285), (312, 223, 327, 264), (337,

226, 352, 262), (267, 231, 279, 260);

4 "left/image_00000017_0.png": (219, 173, 267, 316), (394, 94,

489, 423), (313, 222, 330, 262), (338, 227, 354, 262), (267,

228, 279, 260);

5 ...

Listing 2.4: ETHZ dataset dataset file snippet (ETHZ (Eidgenössische Technische Hochschule
Zürich) 2018)
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Figure 2.14: One of the images of the ETHZ dataset that generated part of the snippet in
listing 2.4 (ETHZ (Eidgenössische Technische Hochschule Zürich) 2018)

1 ...

2 1 80 45 99 98 9363 0 0 1 "PERSON"

3 1 80 45 99 98 9364 0 0 0 "PERSON"

4 1 77 45 96 98 9365 0 0 1 "PERSON"

5 1 74 45 93 98 9366 0 0 1 "PERSON"

6 1 71 46 90 99 9367 0 0 0 "PERSON"

7 2 81 45 110 126 0 0 0 0 "PERSON"

8 2 80 45 109 126 1 0 0 1 "PERSON"

9 2 80 45 109 126 2 0 0 1 "PERSON"

10 2 80 45 109 126 3 0 0 1 "PERSON"

11 2 80 45 109 126 4 0 0 1 "PERSON"

12 ...

Listing 2.5: EPFL dataset file snippet (EPFL (École polytechnique fédérale de Lausanne)
2018)
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Figure 2.15: One of the images of the EPFL dataset that generated part of the snippet in
listing 2.5 (EPFL (École polytechnique fédérale de Lausanne) 2018)

In listing 2.5 there is a snippet of the dataset. The dataset includes, for each frame, various
objects identified with a number, a label, bounding box coordinates, and flags to point out
if the person is occluded, lost, or if the detection was automatically interpolated from the
other camera’s information (EPFL (École polytechnique fédérale de Lausanne) 2018). The
particularity of the structure of this dataset is that, for each object, it is tracked in the image
sequences individually, and only then another object is tracked and labeled. In listing 2.6 a
legend of this dataset can be found.

1 track_id. All rows with the same ID belong to the same path

2 xmin. The top left x-coordinate of the bounding box

3 ymin. The top left y-coordinate of the bounding box

4 xmax. The bottom right x-coordinate of the bounding box

5 ymax. The bottom right y-coordinate of the bounding box

6 frame_number. The frame that the annotation represents

7 lost. If 1, the annotation is outside of the view screen

8 occluded. If 1, the annotation is occluded

9 generated. If 1, the annotation was automatically interpolated

10 label. (human , car/vehicle , bicycle ...)

Listing 2.6: EPFL dataset legend.
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2.3.5 Resume

To summarize this section, after analyzing these datasets and how they are created, it is
important to look at what is stored in the data structures . Some datasets use well known
data structures such as XML (HumanEva) or JSON (DeepDrive), and some datasets use their
own set of data where each line corresponds to an entry.

To design a dataset for the ATLASCAR it is necessary to decide which construction to
use. To simplify the complexity of the files, an adapted approach used in the KITTI dataset
will be used, where each line is an entry for a different object.

Analyzing the datasets, the most common and relevant information in all files is the
position of the targets, their classification and identification. So it is fundamental for the
ATLASCAR dataset to contain, for each frame, 2D and 3D coordinates of the target, a label,
and an identification number.

Regarding the labelling system, it would be interesting to implement an interface that
suggests the user objects of interest similar to the DeepDrive annotation tool.
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Chapter 3

Experimental Infrastructure

In this section, the hardware and frameworks used for this thesis will be described. The
hardware used was mainly the ATLASCAR 2 and its sensors: two SICK LMS151 LIDAR,
one SICK LD-MRS LIDAR and a PointGrey Zebra 2 Camera. The central framework that
receives messages from the sensors is ROS. This data will be processed using the Open Source
Computer Vision Library (OpenCV) for images, and several libraries will be used for the
range-based sensors, such as the PCL and MTT.

3.1 ATLASCAR 2

The ATLASCAR 2 is based in the platform of the 2015 Mitsubishi i-MiEV, a full electric
vehicle. The battery that powers the engine is the same powering the camera and the sensors.
The main characteristics of the car are in table 3.1.

Figure 3.1: The ATLASCAR 2 based on the Mitsubishi i-MiEV platform equipped with a
camera and several LIDAR sensors
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Table 3.1: Mitsubishi i-MiEV technical specifications (MITSUBISHI MOTORS 2018)

Characteristic Unit Value

Wheelbase mm 2550
Track (Front/Rear) mm 1310/1270
Vehicle weight kg 1450

Engine – Electric
Electric energy consumption Wh/km 135
Electric range (NEDC) km 150
Maximum speed km/h 130
Minimum turning radius m 4.5
Max. Power output kW 49
Max. torque Nm 180

Traction battery type – Lithium-ion battery
Traction battery voltage V 330
Traction battery energy kWh 16
Regular charging (AC 230V 1 phase) 8A hrs 10

3.2 LIDAR Sensors

The sensors equipped in the ATLASCAR 2 are two SICK LMS151 LIDAR, a SICK LD-
MRS LIDAR and a PointGrey Zebra 2 Camera. The sensors have been mounted in the
front of the car in an aluminum infrastructure designed by Correia 2017. These devices are
connected to a network switch installed in the car to which a computer can be plugged to
receive the data from the sensors.

3.2.1 SICK LMS151

The SICK LMS151 (figure 3.2) is a LIDAR sensor designed to be used in outdoors. It is a
planar infrared scanner with a large planar aperture angle often used in robotics and in AD
fields for its high scanning frequency and operating range. This scanner is also able to scan
distances through fog, glass and dust (multi-echo technology). This scanner is provided with
an Ethernet TCP/IP interface with high data transmission rate (SICK 2018b).

Table 3.2: SICK LMS151 specifications (SICK 2018b

Field of application Outdoors
Laser Class 1 (IEC 60825-1:2014, EN 60825-1:2014)
Aperture Angle 270◦

Scanning frequency 25 Hz / 50 Hz
Angular resolution 0.25◦ / 0.5◦

Operating range 0.5 m ... 50 m
Max. range with 10 % reflectivity 18 m
Amount of evaluated echoes 2
Data transmission rate 10/100 MBit/s

For this project, the SICK LMS151 will operate at 50 Hz with an angle increment of
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Figure 3.2: The SICK LMS151 LIDAR and its operating range (SICK 2018b

0.5◦ between readings. Each message will transmit a total of 540 points per scan in polar
coordinates (r, θ) (SICK 2018b).

3.2.2 SICK LD-MRS

The SICK LD-MRS (figure 3.3) is a LIDAR sensor also designed to be used in outdoors.
It features 4 planar infrared scanners with 0.8◦ vertical aperture angle between each plan,
offering tri-dimensional point clouds. It provides high scanning frequencies and long operating
range up to 300 meters. This scanner is also provided with an Ethernet TCP/IP interface
with high data transmission rate (SICK 2018a).

Table 3.3: SICK LMS151 specifications (SICK 2018a

Field of application Outdoors
Laser Class 1 (IEC 60825-1:2014, EN 60825-1:2014)
Scanner Planes 4 measuring planes
Aperture Angle 85◦

Total Aperture 110◦

Scanning frequency 12.5 Hz / 50 Hz
Angular resolution 0.125◦ / 0.25◦ / 0.5◦

Operating range 0.5 m ... 300 m
Max. range with 10 % reflectivity 50 m
Amount of evaluated echoes 3
Data transmission rate 100 MBit/s
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Figure 3.3: The SICK LD-MRS LIDAR and its operating range (SICK 2018a
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For this project, the SICK LD-MRS will operate at 50 Hz with an angle increment of
0.5◦ between readings. Each message will transmit a total of 200 points per scan in polar
coordinates (r, θ) for each plan. Since this scanner offers four planar scans, the final point
cloud will total 800 points (SICK 2018a).

3.3 PointGrey Zebra 2 Camera

The PointGrey Zebra 2 Camera (figure 3.4) is a high resolution camera with a Sony
ICX274. It also features a GigE PoE Interface and it is highly configurable to fulfill any
particular utilization needs (PointGrey 2018). The camera is inserted in a case made with 3D
printing and designed by Correia 2017. Other relevant specifications are found in table 3.4.

Figure 3.4: The PointGrey Zebra 2 Camera

Table 3.4: PointGrey Zebra 2 Camera specifications

Resolution 1624 x 1224
Max. Frame Rate 25 FPS with HD-SDI
Megapixels 2.0 MP
Chroma Color
Sensor Sony ICX274 CCD
Image Buffer 32 MB
Interface GigE PoE, HD-SDI

Working at maximum resolution and frame rate would increase the network bandwidth
and image processing times would be longer. In this project the camera’s frame rate is set
at 7.5 FPS so that a balance between image quality and processing optimization can be
accomplished.

3.4 Software

This section discusses the software used in this dissertation. The base architecture of this
dissertation is centered in the ROS framework. Many ROS tools and features are used such
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as Rviz, rosbags, roslaunch and rosrun. Two main nodes are to be developed in this work:
the camera calibration package node (previously developed by Vieira da Silva 2016) and the
labelling node. The handling of data from the sensors was done using PCL, MTT, and the
image processing was performed with OpenCV libs. All software was programmed with C++.

3.4.1 ROS

The central framework in the ATLASCAR 2 is based on ROS Kinect on Ubuntu 16.04.

The Robot Operative System, although not an operating system, operates as a robotics
middleware. ROS offers open-source services designed for developers that need hardware
abstraction and low-level device control. Architectures in ROS are centered in applications
called rosnodes which communicate with each other creating a graph of message-passing
processes.

With ROS it is possible to receive data packets and transform them in messages that
contain data from the sensors. It is possible to manipulate this data using ROS nodes and
other tools.

Rviz

Rviz is the standard ROS tool for 3D visualization. The Rviz is one of the most important
tools as it will be used to visualize data from the ATLASCAR 2 either directly in real-time
by connecting a computer to the car or in rosbags. It will also serve as a debugging tool in
which pointcloud values can be analyzed (ROS Wiki 2018b).

Figure 3.5: Rviz GUI
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Rosbag

A rosbag is a file in ROS which contains messages saved from past events. While connected
directly to a device, or several devices, multiple topics can be subscribed at once to be recorded
into a rosbag.

The advantage of rosbags is to replicate the working environment of the ATLASCAR 2
off-line. Several rosbags were recorded throughout the process of development in this project,
either of calibration or for detection, tracking and labeling purposes.

In ROS, the rosbag package contains a set of tools for recording from and playing back to
ROS topics. It is intended to be high performance and avoid deserialization and reserialization
of the messages. It also features command line tools for working with bags as well as code
APIs to read/write and manipulate bags (ROS Wiki 2018a).

Roslaunch

The roslaunch files are used as a tool for easily launching multiple ROS nodes. A roslaunch
file sets up a roscore (os ROS master), sets parameters on the Parameter Server, and can also
execute other roslaunch files.

It includes options to automatically re-spawn processes that have already died. The
roslaunch takes in one or more XML configuration files (with the .launch extension) that
specify the parameters to set and nodes to launch.

For example, a rosbag can be given as parameter to the roslaunch which opens the Rviz
with a previous defined configuration to visualize the data from that rosbag.

In this project, roslaunch files are used to set up calibration values before launching the
Rviz and the nodes that process the data from the LIDARs and the camera. The transforma-
tions between device frames are set up using roslaunch files and static transform publishers
implemented by ROS.

The roslaunch files are also advantageous to set up the multiple drivers needed to bring
up the several devices equipped in the ATLASCAR 2. Since the sensors are connected to
a network switch, the parameters given in the driver’s roslaunch file are the IP addresses of
each of the devices. The drivers will then receive packets from the sensors and remap them
into the ROS format.

Rqt bag

The rqt bag is a GUI to replay and display ROS bag files. In this program it is possible to
show bag message contents, view image messages, plot message from selected topics, publish
messages from selected topics and export messages to a new bag. The rqt bag is useful for
the labelling process as it presents a timeline in which the user can select the time by clicking
on it.

3.4.2 LAR Toolkit

The LARTk is a software suite developed by members of LAR. The projects involved in
the LARTk are based in the development of robotic solutions namely for the ATLAS project.
The toolkit is constituted by a set of packages. Two packages in particular will be used for
this dissertation: the multi-sensor calibration package and the MTT package.
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Figure 3.6: rqt bag GUI with the several topics present in the bag, an image viewer and a
plot with readings of the ranges.

Multi-sensor calibration package

The multi-sensor calibration package is a package developed by Vieira da Silva 2016. The
package contains a GUI used to calibrate the several sensors in the ATLASCAR 2. The
package was initially developed for the ATLASCAR 1, and it was further used into the
ATLASCAR 2 since the sensors were almost the same.

The calibration package features a graphical user interface in which several sensors can
be selected to be calibrated. The available devices are the SICK LMS151 and SICK LD-
MRS mounted in the ATLASCAR 2, PointGrey cameras, Microsoft Kinects, the SwissRanger
SR4000 and the Velodyne VLP16 used in the ATLASCAR 1.

To calibrate, the user should roll a ball (see figure 4.2) in front of the sensors in order to
create a pointcloud of ball centers, and then align them. The user adds the sensors that will
be calibrated and inserts the IP address of the sensor. One of the sensors will be defined as
the reference sensor.

Some configurations can be done in the Options menu. The ball diameter can be defined
here as well as the number of calibration points and distance between points. The calibration
also has two acquisition types: automatic or user prompt.

In the automatic mode, while the ball rolls in front of the sensors the calibration programs
automatically detects the ball center and publishes it. In the user prompt mode the user
chooses when the ball should be captured.

In the end a file with the transformation matrices with the relative position of the sensors
relatively to the reference sensor will be written.
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Figure 3.7: Calibration GUI

Multi Target Tracking (MTT)

The MTT library is a set of methods and strategies developed by Soares De Almeida 2016
specially designed for the ATLASCAR project with the goal to send perception parameters
about objects captured in the LIDARs.

The MTT is capable of receiving LIDAR messages and break them in smaller groups. This
process is called clustering. Clustering separates all objects found in a scan and returns their
position. The clustering of data is an important step in the development of this dissertation
as it facilitates the detection and tracking of objects in space.

The clustering algorithm of the MTT library is based on the Nearest Neighbor Clustering
Algorithm (Luo, Habibi and Mohrenschildt 2016). It segments the received pointclouds using
a predefined distance as threshold. Each set of points in the clusters are assumed as possible
targets of interest.

The MTT then associates the targets found to a linked list of objects where the full
description of the objects are stored. This list is later used to create a motion model where
the estimated position of the objects and its velocity is calculated.

Some objects may be occluded during the sequence (for example when a car passes in
front of another). The MTT estimates the position of the occluded objects by creating a
motion model using their velocity allowing objects to be followed while they are out of the
field of view but still in the surroundings.

The MTT defines targets that keep information about the object and its velocity plus
their position and obstacle lines.

3.4.3 PCL

The PCL is a library that implements methods to process pointcloud data. The PCL
framework contains numerous state of the art algorithms including filtering, feature esti-
mation, surface reconstruction, registration, model fitting and segmentation (Point Cloud
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Library 2018). Some of these algorithms are used throughout this thesis an were also used
by the MTT library.
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Chapter 4

Improvement of the Calibration
Process in ATLASCAR2

Using sensors to recognize the environment is of most importance for vehicles to become
fully autonomous. A car equipped with several sensors needs to know the position of each
sensor so that the readings can be aligned and exact perception can be obtained.

One of the main tasks for this dissertation is to be improve the extrinsic camera calibration
process. Multi sensor calibration in ATLASCAR 2 is done using a ball as a target. One of
the limitations of the approach in Vieira da Silva 2016 is the use of filtering the image using
HSV values to detect the ball.

While moving the ball around the sensors, a point cloud of ball centers is created for
each sensor. These point clouds are aligned so that the estimate pose of each sensor can be
obtained using an arbitrary sensor as reference.

4.1 New Ball Detector Algorithm

This section describes the progress introduced in the development of the ball detector.

Background
Selection

Background
subtractions

Color Filtering

Frames 

Noise Filtering Results 

Figure 4.1: New ball detection algorithm simplified diagram

In figure 4.1 a diagram showing the detection procedure is presented. As the frames are
received, a background is selected to apply a background subtraction method. The noise from
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the resultant binary image is filtered and a color filtering method using the image color is
applied to locate the ball by its color.

The ball detection upgrade begins by retrieving the video stream frames from the Point-
Grey camera. The image obtained was worked in a rosbag used for testing in order for the
development to be made outside the ATLASCAR 2. The ball used in the tests is shown in
figure 4.2.

Figure 4.2: Ball used for calibration testing

To acquire the images, the ball detector node creates a subscriber to get messages from the
camera topic. ROS subscribers take the message in the topic and send it to a callback function
in order to it to be processed. After obtaining information from the camera’s message, it is
needed to convert the RGB values into the HSV color space so that the image can be easily
manipulated.

4.1.1 Background Subtraction

The first thing to do with the frames is to apply background subtraction. The vehicle is
supposed to be still when the calibration process is being done, so the background subtraction
is a good method to apply.

When the capture starts, the first received frame will be the default background (see figure
4.3). The background removal is a process used in many vision based applications with static
cameras, in which a frame is captured and defined as the background of a sequence of images.
Therefore, when an objects enters the scene (figure 4.4), by subtracting the background with
the actual frame it is possible to detect easily where the object is (OpenCV 2018a).

In simple words, background subtraction extracts the foreground from the static back-
ground. Most times, the background is modified by applying Gaussian blur to it. When
subtracting the foreground with the background, a value is obtained for each pixel.

In most cases the pixel values will not get to zero because of minor changes to the back-
ground (caused by shadows) which need to be ignored. In the resulting image a threshold is
applied. If a pixel presents a value under the threshold, then it is set to zero (black), otherwise
it is set to one (white). In the end, it is obtained a binary image containing some noise due
to shadows or other lightning changes, and potentially an area with more concentrated white
values where new objects appear. The result is a binary image as seen in figure 4.5.

Nuno Miguel Soares Silva



4.Improvement of the Calibration Process in ATLASCAR2 35

Figure 4.3: Background in test rosbag used for testing

4.1.2 Noise Filtering

After the background removal technique is applied, the resulting image may possibly
contain some noise. Some pixels may be left white in the background due to lightning changes
when the ball passes in front of the camera. These white pixels are noise and must be removed.

An erosion algorithm is implemented where for each pixel the neighbor pixels are counted.
The image is processed left-to-right, top-to-bottom, so the matrix corresponding to the frame
is iterated throughout its lines. A counter is added to check if the previous pixels contained
white pixels (with value of 1).

As the kernel is scanned over the image, the algorithm computes the minimal pixel value
overlapped by the kernel and replaces the image pixel under the anchor point with that
minimal value (OpenCV 2.4.13.6 documentation 2018). The result is the image in figure 4.6.

4.1.3 Color Filtering

After the noise filtering, the ball stands out in the image. The next step is to separate
the ball using color filtering. This step is necessary to make the detection usable when a
person appears in the image to displace the ball. This way, the person will not appear in the
resulting image.

The selected color by default is red. To set the ball color, the user needs to click in the ball
to capture its hue. A mouse event is triggered and an handler function is called. The handler
localizes the mouse click and retrieves the RGB values of the pixel in those coordinates. These
values are converted to a hue value of the HSV color space. The selected hue is the color used
to filter the ball from the rest of the image. By applying certain thresholds it is possible to
define an interval of color. The image will then be filtered by an interval centered in that hue
value and the ball is now filtered from the rest of the image.

Master’s Thesis



36 4.Improvement of the Calibration Process in ATLASCAR2

Figure 4.4: Frame with ball rolling in front of the camera

Figure 4.5: Background subtraction result with noise
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4.1.4 Bounding Box

A bounding box is drawn around the ball if there is a number of white pixels bigger than a
predefined threshold. To do this, the image is iterated like in this erosion phase, left-to-right
and top-to-bottom. The algorithm saves the coordinates of all white pixels. An average x
and y are calculated, finding the ball center in the image. The size of the bounding box is
given by how much white is in an specific area. Supposing there is a possibility of a white
pixel to appear as noise, that pixel will have low weight in the algorithm considering that
the pixels around it are black. Therefore, white pixels gathered in a larger area have greater
weight. Hence, the width and height of the bounding box are given by the maximum distance
between the pixels with higher weight.

Figure 4.6: Ball detected with bounding box

4.2 Modifying the calibration package

The calibration package used to calibrate the several sensors in ALTASCAR 2 uses
multiple nodes, one for each kind of sensor. The camera node in the package is called
point grey camera and it uses the source file point grey camera.cpp. This file was modified
in order to add the implemented features into the calibration package.

The point grey camera node receives the camera image by subscribing to the camera
topic with ROS. The camera sends images in a ROS message format to be interpreted and
processed by a callback function. The image processing algorithm follows the steps explained
in the previous section. After performing the ball detection, the center of the bounding box
matching the center of the ball is retrieved. The ball center is published into the calibration
package main node calibration gui.

The radius of the ball is passed as an argument so it is possible to calculate the distance
from the camera to it. The centroids are obtained with a method based on the circle radius
and they are published as PointStamped ROS points to be presented in the calibration GUI.
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Chapter 5

Object Detection, Tracking and
Labelling

This chapter explains how the object detection, tracking and labelling application was
implemented. First, it will be described how this is performed in the 2D image.

Secondly, the implementation of the tracking of targets using LIDAR sensors will be
explained. Lastly, the combination of the 2D image and the LIDAR data is explained.

The image sequences and laser scan data obtained for the development of this stage of
the dissertation were recorded into rosbags using the ATLASCAR 2 sensors.

5.1 Image Tracking

The development of object detection, tracking and labelling starts by processing and
analyzing the image sequences. A labelling node was created in ROS where the features in
this chapter were implemented.

Object Click Template Selection

Apply Template
Matching methodTemplate Update

Frames 

Figure 5.1: Image tracking algorithm diagram

Figure 5.1 presents an overview of the image tracking algorithm. It starts by receiving
frames and by selecting a target on the images. Finally, template matching is applied to
follow the object.

To obtain the image frames, this node subscribes the camera images through its rostopic.
The image is converted from the ROS message format into an OpenCV format so it can be
easily manipulated. OpenCV treats images as matrices of pixel with (x, y) coordinates and
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RGB values. As the image sequences arrive, they are stored into a queue. This queue will be
used later to look back to the previous frames and back-track the object.

When the node starts, a window opens (see figure 5.2) for the user to view the video
stream recorded in the bag. The node also functions in real-time. In other words, the node
can be executed by connecting the computer directly to the car, obtaining the images in
immediately. In this window, the user can click on objects that may appear.

Figure 5.2: Window view with image sequences appearing

When the user clicks on an object, a callback function is triggered to process the mouse
event and a bounding box with a predefined size appears around the click position.

During this process, when the image is iterated the upper third-part of the image is ignored
as it is considered to be irrelevant content as most of it will be tall objects like trees or objects
in the sky, like clouds.

The bounding box follows the selected target. To accomplish this, template matching
techniques are used. Firstly, the previous frames are saved. The node will check the queue of
previous frames and store them to use them later.

The template matching strategy is used to track the selected target in the next frames.
It begins by copying the source image to display to another OpenCV matrix and also creates
a result matrix. The matching is now performed using a method implemented by OpenCV
called matchTemplate which takes the source image, the patch (which is the Region of Interest
(ROI) inside the bounding box), the result matrix and a matching method.

Template matching is a technique for finding areas of an image that match (are similar)
to a template image (patch). A resulting image is calculated by iterating the source image
and comparing the template with the area in that position (see figure 5.3). For each position
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a score is assigned representing how good the match is in that position.

Figure 5.3: Template matching example result matrix

It is important to note that after each frame is received, the patch used for the next
template matching cycle will be the ROI acquired in the previous frame. This means that
the patch is updated when a new frame is received to obtain better accuracy of the object’s
next pose.

This step concludes the front tracking. It is important to notice that this application
features tracking of the objects not only for the next frames but also for the previous. The
tracking for the next and previous frames is respectively the front and back tracking.

After the whole tracking is done, the back tracking is now performed. The reason why
the back tracking is done after the front tracking is mainly because of processing times. If the
back tracking began when a target is selected in the image before the front tracking, some
time would be wasted to process the previous frames, losing some of the next frames used for
the front tracking.

With a queue, the last frames are saved and at the moment of object selection those
frames are copied and saved to be processed posteriorly. After the front tracking, the node
gets the frames stored before the target selection and applies template matching. With this,
the tracking is done in both directions. In figure 5.4 an example of the tracking is presented.

5.2 Range Based Tracking

To improve the tracking, the image process is combined using the LIDAR scanners in the
ATLASCAR 2. To develop this part, a continuation to the previous labelling node is added
where the capabilities of the laser scans will be explored.

In figure 5.5 an overview of the range based detector algorithm is presented. It starts by
receiving data from the LIDAR sensors and converting it to a pointcloud object. Finally, the
detection is done by clustering the pointcloud where each cluster will represent a detected
object. The clustering is performed with the MTT library developed by Soares De Almeida
2016.

The MTT works with planar scanners to obtain perception although it receives a point-
cloud as input. The MTT library supposes that the objects are all at the same height so
the pointclouds are flattened. For the scope of this project this is no problem as most of the
scanners used are planar except for the SICK LD-MRS. Assuming that the readings of this
LIDAR are at the same height does not influence the results as the difference of the measures
are minimal.

Master’s Thesis



42 5.Object Detection, Tracking and Labelling

Figure 5.4: Example of back tracking and front tracking: the picture in the middle is the
selected frame, the two upper frames show the back tracking and the two lower frames show
to front tracking.

Converting
LaserScans to

PointCloud
ClusteringLIDAR data Objects Detected 

Figure 5.5: Range Based Detector Algorithm Diagram
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The node starts by subscribing to all topics where laserScans can be found. There are
two SICK LMS151, one on each side of the ATLASCAR 2, giving two planar scans with a 270
degree aperture. The SICK LD-MRS features four planar scans. Each scan is submitted into
a ROS topic totaling six topics, one for each SICK LMS151 and four topics for the SICK LD-
MRS. The six topics are subscribed and the sensor messages are given to a callback function
in the ROS format.

This callback functions gets the laser frame ID. This frame is the transformation frame,
not to be misunderstood with an image frame. The frame ID is used to identify the laser scan
in the callback function. The callback function converts the laserScan in to a pointcloud.

Figure 5.6: All the separated laserScans visualized with Rviz

In figure 5.6 the laserScans can be observed individually. The readings from the central
SICK LD-MRS are given by the white points. The two SICK LMS151 are distinguished by
the red and green colors for the left and right respectively. The colors are chosen regarding
nautical and aeronautical navigation lights for port and starboard positions.

In the image callback function, when an image frame arrives it creates a full pointcloud
by merging the pointclouds of all laserScans. To do this, a transform listener is created to
calculate the transforms at that given time between the two SICK LMS151 and the SICK
LD-MRS. The PCL library is used here to blend the different laserScans. The PCL can
concatenate pointclouds making it easy to merge them all together.

Finally, the pointcloud is filtered to a squared area in front of the car in order to avoid
unwanted objects to appear such as roadsides on the highway. The pointclouds are converted
from the ROS format to PCL format, concatenated, and ready to be processed by the MTT
library.

The next step is to cluster the different objects found in the pointcloud. The clustering
strategy is implemented by the MTT library and it is based on the Nearest Neighbor Clus-
tering algorithm (Yu et al. 2018). The MTT takes the full data and initializes a vector of
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clusters. Clusters are formed by points and its structure contains an id of the cluster, start
and end points, total number of points, length of the cluster, among other variables and flags
used for occlusion detection. If the distance between points is larger than a given threshold,
then a cluster is formed and an object is most likely to be there.

To make it easier to visualize, markers are created and placed in the location of the
objects. For each object in the target list, a marker is created with the ID of the object. The
ID increments by one as a new object is found.

Figure 5.7: Visualization of a detected car with MTT in Rviz

In the position of the object, a visual marker is placed. There are also markers in the
form of line strips in order to visualize the connection between the points of the pointcloud.
An addition to the marker creation method was made, where 3D bounding boxes with a
predefined static size are created in the location of the objects.

The information in figure 5.7 was visualized using the Rviz tool. The MTT creates by
default a marker at the origin where usually the front of the ATLASCAR 2 is (depending on
the transformations). The processed pointcloud can be seen, where the LIDAR laserScans

messages are all merged and a green 3D bounding box with the ID 103 is shown meaning that
an object was found at that location. The object was in fact a car traveling in front of the
ATLASCAR 2. The roadsides are not detected since the pointcloud was filtered to a squared
area in front of the car in order to avoid objects with no interest. Only part of the pointcloud
in figure 5.7 is processed by the MTT.

5.3 Sensor Data Fusion

To accomplish sensor data fusion, a multi-modal approach was utilized, combining data
retrieved from several ranged based and visual sensors.
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Since the detection, tracking and labelling can be done independently with the 2D image
and with the LIDAR data, this section will explain how the combination of both can be done.

MTT Clustering Template
Matching 

Early Fusion 
Image Reprojection 

Object Tracking

Ranged Data Image Data 

Figure 5.8: Overview of the multi-modal approach.

Figure 5.8 depicts the process of the multi-modal approach. In sensor fusion, ranged
based information is combined with the image data allowing augmented perception of the
surroundings. With the ability to have basic cognition of the environment, it is possible to
detect and track objects in motion (Spinello, Triebel and Siegwart 2010).

5.3.1 Dynamic 2D Bounding Box Size

Previously, the bounding box size was static but using the 3D position given by the MTT
it is possible to implement dynamic bounding box size.

The 2D bounding box size is given by the distance to the object. If the distance is greater,
the bounding box will be smaller and vice-versa. The distance to the object is given by the
tri-dimensional spacial coordinates given by the MTT algorithm.

Figure 5.9: Example of near (left) and far (right) car with dynamic bounding box size

Figure 5.9 depicts an example of the dynamic bounding box as the target moves away.

5.3.2 Pointcloud Projection

By combining the sensor data with the image it is possible to check where the pointcloud
is relatively to the camera position. To accomplish this it is needed to firstly make the
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1 image_width: 1624

2 image_height: 1224

3 camera_name: 0

4 camera_matrix:

5 rows: 3

6 cols: 3

7 data: [1454.423376687359 , 0, 822.9545738617143 , 0,

1458.005828758985 , 590.5652711935882 , 0, 0, 1]

8 distortion_model: plumb_bob

9 distortion_coefficients:

10 rows: 1

11 cols: 5

12 data: [ -0.2015966527847064 , 0.1516937421259596 ,

-0.0009340794635090795 , -0.0006787308984611241 , 0]

13 rectification_matrix:

14 rows: 3

15 cols: 3

16 data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

17 projection_matrix:

18 rows: 3

19 cols: 4

20 data: [1379.264282226562 , 0, 822.6802277325623 , 0, 0,

1410.231689453125 , 588.4764252277164 , 0, 0, 0, 1, 0]

Listing 5.1: Intrinsic Calibration Result

intrinsic calibration of the camera, and then proceed to the implementation of the pointcloud
projection. By using a ROS node in the package camera calibration, the intrinsic values of
the camera and the distortion coefficients are obtained (see listing 5.1).

In this file it is possible to see the image dimensions, the intrinsic values and distortions
coefficients of the camera as well as the rectification and projection matrix. These values are
used to reproject the points of the pointcloud into the camera’s image. To do so, OpenCV
implements a method called projectPoints (OpenCV 2018b) that is used in the labelling
node.

Firstly, the labelling node reads the file in listing 5.1 to calibrate the camera. Then, the
full pointcloud is taken and a vector of the points is retrieved. The projectPoints method
takes the calibration file parameters and the points vector and generates another vector with
the (x, y) coordinates of the points in the image.

The next step is simply to draw those points in the image using the function circle

implemented by OpenCV. The final result is as seen on the left in figure 5.10.

With the pointclouds points projected in the image it is possible to associate the 3D
clusters to the 2D image templates.
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Figure 5.10: Example of the pointcloud projection (left) in comparison with the Rviz 3D view
(right)

5.3.3 Suggestion of Objects of Interest

Using the algorithms previously developed it is possible to track objects in the 2D image
using the position of the 3D clusters by picking up their points and following them.

A semi-automatic algorithm was developed where the tracking can be done manually by
clicking while the semi-automatic system suggests objects of interest that may appear in the
field of view. A simplified diagram of the algorithm is found in figure 5.11.

Converting
LaserScans to

PointCloud
Clustering

Find the
nearest object

Reproject 3D
Box in Image

Object of interest? Save Discard

LIDAR data 

Frames 

yes                                    no

Figure 5.11: Simplified diagram of the tracking with sensor fusion

To begin, the full pointcloud data is gathered and passed into the MTT algorithm. The
MTT library implements methods that handle detection and tracking of objects and outputs
the coordinates of the found objects.

A function polls the MTT algorithm and raises a flag when an object is found. If more
than an object is found, the nearest object is tracked. The coordinates of the objects relatively
to the vehicle are found so the distances can be calculated. The object with shortest distance
is chosen to track.

Having the coordinates of the tracked object, a cube with a fixed size is drawn centered
in the point given by the MTT algorithm by setting the cube vertices and using the line
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function implemented by OpenCV to join them.
Then, the cube is projected to the image using OpenCV’s projectPoints. Figure 5.12

shows a 3D bounding box being projected around the detected car.

Figure 5.12: Example of 3D bounding box tracking a car

5.3.4 Improvement of the Manual Labelling

When the manual mode is active, the user selects the target to follow by clicking the
image. In that location, the labelling node checks for an object found by the MTT algorithm.

Figure 5.13: MTT exposing all found targets in the image

All targets found by the MTT are exposed in the image (see figure 5.13) and if the click
is inside of one of the target’s areas, the tracking is done using the MTT. Otherwise, the
tracking is done using template matching.
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1 struct BBox

2 {

3 int x;

4 int y;

5 int width;

6 int height;

7 int id;

8 string label;

9 };

Listing 5.2: BBox struct definition used for 2D datasets.

1 FRAME_ID

2 BOX_X BOX_Y WIDTH HEIGHT LABEL ID

3 ...

4 1083

5 815 663 155 104 car 4

6 1084

7 816 662 155 104 car 4

8 1142

9 482 584 152 150 van 5

10 1143

11 512 589 152 150 van 5

12 ...

Listing 5.3: 2D dataset example snippet

5.4 Output Datasets

5.4.1 2D Dataset

While tracking objects, the user is prompted to insert a label to the object. The user
enters a class to which the object belongs to. The node saves several bounding boxes for each
frame. To accomplish this, a bounding box data structure called BBox was implemented.

The BBox struct definition is presented in listing 5.2. The BBox presents its x and y
coordinates, its width and height, an id, and a label. While the tracking is performed, several
instances of BBox are created and stored in a map that relates the frame with the BBox.

When the tracking is complete, the user can opt to save the results or to discard them.
If the frames are to be saved, the users enters the object label and a folder will be created
with patches of the frames where the object appears. The user can also choose to label the
objects without saving the templates. In the end, a set of BBox instances are created and a
dataset file can be created.

The dataset contains, for each frame, a set of bounding boxes that are defined by their
coordinates, size, label and object ID. The map where the set of BBox is stored is iterated
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1 struct BBox

2 {

3 int x;

4 int y;

5 int width;

6 int height;

7 int id;

8 string label;

9 // 3D position

10 double x3d , y3d , z3d;

11 };

Listing 5.4: BBox struct definition with 3D capabilities

1 FRAME_ID

2 BOX_X BOX_Y WIDTH HEIGHT LABEL ID 3D_X 3D_Y 3D_Z

3 ...

4 1063

5 693 600 218 218 car 1 19.1706 1.64176 0.5

6 1064

7 692 597 218 218 car 1 19.5359 1.61985 0.5

8 1144

9 570 597 145 145 van 2 25.7349 2.61821 0.5

10 1145

11 590 602 145 145 van 2 25.7349 2.61821 0.5

12 ...

Listing 5.5: Snippet of the dataset with 3D capabilities

and printed to a file similar to the snippet in listing 5.3.

5.4.2 3D Datasets

To develop datasets and include the 3D information of the tracked targets, some changes
have been made to the structure of the BBox (see listing 5.4) in which the 3D coordinates of
the objects have been added.

While tracking an object in the image, an object in the MTT of ranged based sensors
is selected and its ID is retrieved. This object is followed and its position is given to the
labelling node to print a dataset file (see listing 5.5) with the full information about the
objects whereabouts.

The dataset header was updated to contain the 3D information and the contents now
present the coordinates in space of the object regarding the ATLASCAR 2 position. Analyzing
the snippet in listing 5.5, the 3D Z values can be seen set to 0.5. The explanation for this
is that the MTT library implements perception for planar sensors which only give x and y
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coordinates. For this reason, the height for all objects is forced to 0.5 (half a meter).

5.5 UI Tools for Labelling

In this section it will be described some extra tools and features implemented in addition
to the detection, tracking and labelling of objects. Most features presented in this section are
used to aid and complement what has been previously done.

5.5.1 Labelling Interface

The labelling node features a simplified GUI where the user can do several operations.

Figure 5.14: Labelling Node GUI

The GUI features an interactive window where the image sequences appear and the user
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may select targets. There is also a window with six buttons where multiple actions can be
performed.

• Label Object - Pauses the rosbag and asks the user for a label of the target. Ends the
tracking.

• Save Templates - Pauses the rosbag and asks the user for a label of the target. Saves
the image templates in all frames where the target appeared.

• Clear Image - End the tracking and clears the bounding box from the image.

• Semi-Automatic/Manual Mode - Switches between manual mode and semi auto-
matic mode.

• Print Dataset - Saves the dataset created during the whole labelling process.

• Quit - Exits the program.

After successfully completing a full tracking, the user will be prompted with a window to
enter a label for the target. The user may also discard the target instead of saving it.

Figure 5.15: Prompt window to select a label and save or discard.

5.5.2 Automatic Pause for the rqt bag

A problem encountered during the labelling process was that the execution of the ROS
bag file continued when the tracking was complete. The user needed to insert a label to the
followed target and after the object is labelled the ROS bag continued creating a gap (see
figure 5.16).

 
 

Tracking

 
 

Labelling Gap

Tracking begins Tracking ends User inputs label

Figure 5.16: A gap is created while the user is prompted to input a label because the ROS
bag execution does not pause

To solve this problem, the rqt bag package was adapted. A ROS service was implemented
in the rqt bag node to receive messages from the outside. The labelling node sends a request
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to pause the rqt bag when the tracking ends. After the user inserts a label the labelling node
sends a message to the rqt bag node to resume the bag execution.

5.5.3 Playback

An extra rosnode was developed with the aim to play the rosbag and identify the objects
in the images using the dataset created previously while the rosbag plays in the background.

This rosnode starts similarly to the previous one, by subscribing to the camera ROS topic
and send the image message to a callback function where it is processed.

The message is converted into OpenCV format and the dataset file is read. A map similar
to the previous is also created to be filled with the dataset information where it relates the
objects in the bounding boxes to the frames in the sequence.

When a frame is received, its frame ID is retrieved. This ID is used to check which boxes
in this frame. If this frame contains objects, a rectangle is draw in the image representing
the bounding box acquired before. The box also features a legend with the object label and
its ID. The color of the bounding box is randomly assigned, depending on its label.

In other words, objects with the same label will have the same box color, making it easy
to identify objects if the image has several different boxes. The resulting image is presented
in figure 5.17. The image is then converted again into the ROS format and published to a
topic.

Figure 5.17: Playback example with a car
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Chapter 6

Results

This chapter presents the results of the improvement of the calibration process and object
detection, tracking and labelling system.

6.1 Camera Calibration

Figure 6.1 presents the multisensor calibration GUI. One of the SICK LMS151 LIDARs
was used as point of reference for the purpose of demonstration and to have a comparator
point to the camera.

Figure 6.1: Calibration GUI with calibration result

During the calibration procedure, the ball rolls in front of the camera and sensors. The
range based sensors and the camera obtain a pointcloud of centroids of the ball during this
activity. In the end, the transforms for each sensor are calculated, aligning the pointclouds
of the several devices with each other.
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1 -0.0563334 -0.998402 0.00440481 -1.07636

2 0.997797 -0.0561436 0.0353294 1.08224

3 -0.0350256 0.00638533 0.999366 0.0617893

4 0 0 0 1

Listing 6.1: Calibration output file.

In listing 6.1 an example output file of the calibration can be observed. The file contains a
4x4 matrix that indicates the transforms for the given sensor. Each sensor in the calibration
will output its own file containing its transformation matrix relatively to the reference sensor.
The reference sensor does not create a transform because it is assumed that this sensor is
in the origin, unrotated. This file is stored in a folder with the calibration results inside the
calibration package directory.

Figure 6.2: ATLASCAR2 model with sensors transformation frames

Figure 6.2 presents an ATLASCAR2 3D model with the several sensors and their respective
transformation frames after applying the output file to a frame publisher.

6.2 Detection, Tracking and Labelling

This section will present the detection, tracking and labelling results with two rosbags
recorded and used for the testing of the detection, tracking and labelling algorithms. Two
rosbags were recorded in October 17, 2017, in the afternoon:

• The first rosbag starts at Alboi. The car follows a path into the A25 highway until the
first exit.
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– There are mostly cars in this rosbag and it was better to start with some tests in
tracking objects.

• The second rosbag was recorded while leaving Universidade de Aveiro. The car traveled
around the campus and visited the Alboi neighborhood.

– In this bag there are cars, vans, cyclists and pedestrians. It is a bag where the car
also runs into slopes. It is a rosbag with more detail which was used later in the
project.

Each rosbag produced a dataset where the objects found were registered. Looking into the
datasets can show how the algorithm behaves. Several objects were found in the sequences.
The discarded objects or the objects wrongly suggested by the semi-automatic methods are
still saved but labelled as DontCare. The main labels used are car, van, people, bicycle,
sign (street signs) and misc (miscellaneous objects in the streets like dumpsters, bushes and
trees).

6.2.1 Dataset 1 - Highway / A25

The first dataset was produced from the highway rosbag. The rosbag duration is 3:37s
(217s), has a size of 8.6 GB and includes 62352 messages.

The labelling was done with semi-automatic methods using sensor fusion and also manu-
ally by pointing and clicking on an object when the sensors don’t find it. The semi-automatic
methods suggest the user an object of interest and asks for a label from the user.

Table 6.1: Highway dataset annotation metrics

Metric Count

Right Suggestions 12

Wrong Suggestions 6

Manual Entries Saved 1

Manual Entries Discarded 0

Maximum Objects in One Frame 1

Table 6.2: Highway dataset object amounts

Label car van people bicycle sign misc DontCare total

Count 7 1 0 0 4 1 6 19

In table 6.1 some statistics about the dataset are presented. Only one manual entry (figure
6.4) was saved because the target was too far and the semi-automatic methods in that place
suggested the roadsides. As this sequence presents few objects at a time, most semi-automatic
suggestions were accepted. The semi-automatic system works better in areas with reduced
movement so the readings of the sensors are more accurate.

Figure 6.3 shows four examples in which three were right suggestions (car, sign and
misc) and one was wrong (DontCare). Table 6.2 shows how many objects of each category
appear in the sequence.
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Figure 6.3: Targets acquired using the MTT labelled as car (top-left), sign (top-right), misc
(bottom-left) and DontCare (bottom-right)
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Figure 6.4: Example of car with manual entry.

6.2.2 Dataset 2 - Aveiro City Urban Area

The second dataset was generated from the rosbag at an urban area in Aveiro city. The
rosbag duration is 7:06s (456s), has a size of 18.0 GB and includes 135379 messages.

The labelling in this rosbag was done using the semi-automatic methods and the manual
methods separately. The reason for this is to compare the behavior of the semi-automatic
suggestions and the manual method in a different environment.

Dataset 2.1 - Semi-Automatic Method

The dataset produced with the semi-automatic method the labelling metric listed in table
6.3.

Table 6.3: Urban area dataset with semi-automatic methods annotation metrics

Metric Count

Right Suggestions 36

Wrong Suggestions 74

Maximum Objects In One Frame 1

The Urban area is a zone with high-traffic and because there are more objects (sidewalks,
roadsides, walls, etc...), the semi-automatic method is more likely to mistake an object of
interest with something with no significance in the dataset scope.

The metrics show that nearly 2 out of 3 suggestions are something that has no interest
for the dataset. In table 6.4 the amount of objects found is presented and figure 6.5 shows
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five examples of suggestions given by the tracking system where four are correct (car, van,
people and sign). One of the example is a wrong suggestion (DontCare).

Table 6.4: Urban area dataset with semi-automatic methods object amounts

Label car van people bicycle sign misc DontCare total

Count 29 2 4 0 1 0 74 110

Dataset 2.2 - Manual Method

To test the manual method, one must click on the object and control the rosbag (pause,
resume, go back and forward, etc...) to obtain maximum precision on the detection and
tracking.

Table 6.5: Urban area dataset with manual methods annotation metrics

Metric Count

Entries Saved 89

Entries Discarded 31

Maximum Objects In One Frame 4

In table 6.5 some annotation metrics are shown. Despite the high traffic zone, the metrics
in the manual methods show that nearly 3 out of 4 clicks result in a good detection and
tracking of the object.

Because the annotation was done manually, it is possible to enter more than one object at
the same time whereas in the semi-automatic that is not possible because when the sensors
suggest an object in sight, the algorithm always outputs the object that is closer to the vehicle.
In table 6.6 it is possible to see the amount of each object in this dataset.

Table 6.6: Urban area dataset with manual methods object amounts

Label car van people bicycle sign misc DontCare total

Count 63 10 10 2 1 3 31 120

By analyzing table 6.6 it is possible to conclude that with manual methods one can freely
enter with more detail the detected objects. In comparison to the semi-automatic methods,
with the manual strategy it is easier to enter objects like people and bicycles as it seems to
be difficult to cluster such small objects in the given sensor data.

Figure 6.6 shows six examples of manual entries (car, van, people, bicycle, sign and
misc).
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Figure 6.5: Example of suggestions given by the semi-automatic methods in dataset 2: car

(top-left), van (top-right), people (middle-left), sign (middle-right) and DontCare (bottom)

Master’s Thesis



62 6.Results

Figure 6.6: Example of templates with the manual methods in dataset 2: car (top-left),
van (top-right), people (middle-left), bicycle (middle-right), sign (bottom-left) and misc

(bottom-right)
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Chapter 7

Conclusions and Future Work

This chapter concludes the work done during this dissertation regarding the creating of
a ROS package, improvement of the ball detection node and the labelling node. Having this
conclusions as a foundation, a few related future works will be proposed in the scope of the
ATLASCAR2 project and the AD and ADAS paradigm.

7.1 Conclusions

AD and ADAS fields are a research area prioritized by many car manufacturers. Building
perception of the environment surrounding a vehicle is the solution to create anti collision
systems, path planning systems, among other applications. Platforms are usually equipped
with several sensors to gather information from the environment. With a fully equipped
vehicle the data can be manipulated and several applications can be built. Before, any use
of the sensors data can be done, an extrinsic calibration is necessary to obtain the several
devices relative positions.

To improve the ball detection in the calibration process the major improvement made was
based on the background removal technique. Erosion processes were made to filter noise and
color filtering was done by selecting the color of the ball. In addiction to the previous work
done on the calibration package, the ball detection was improved and the GUI was simplified.
The old GUI featured sliders to choose the HSV values of the ball whereas now those values
can be obtain by simply clicking in the ball on the image.

With the sensors fully calibrated the ATLASCAR2 is ready to gather data. Labelling of
objects is an important subject the AD and ADAS since it is linked with the recognition of
objects. It is important for an autonomous vehicle to know what object is in front of them and
act according to them. To build the labelling system, it was first implemented ways to detect
and track objects using the image and sensor data. Tracking using the visual information
was done with template matching where an object is selected by clicking on the target and
the tracking is made by iteratively updating the patch used in the matching method. Since
the camera is mounted in a vehicle in constant movement, some methods such as optical
flow were not appropriate and the template matching strategy was the one that produced
better results. The range based tracking was accomplished thanks to the MTT library which
implemented algorithms that used the pointcloud generated by the several sensors and applied
data clustering to separate the found objects. The spacial coordinates of the found objects
are outputted by the MTT algorithm and the 3D tracking is realized. To obtain maximum
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accuracy with the tracking the sensor data and the images are merged. The data fusion is used
to create detection and tracking applications and the system may also become semi-automatic
with the aid of both information from the LIDARs and the camera. While tracking objects,
it is important to classify them and this is why it is assigned to each object a label. In the
end, datasets are created with a fully annotated sequence showing where objects are found
and to what class they belong.

7.2 Future Work

The possibilities of future work on ATLASCAR2 regarding AD and ADAS are many. Some
interesting and worth mentioning projects would be the development of a more automatic
detection and tracking system used for labelling in order to create more robust suggestions
and datasets as an extension to the work on this dissertation.

The Machine Learning is a essential study field for the AD and ADAS projects. So,
the image templates and datasets produced by this dissertation can serve as input for a
learning algorithm that may implement a full detection, tracking and recognition system for
the ATLASCAR2.

The scope of this dissertation was based on objects such as cars, people and some mis-
cellaneous objects on the streets. To expand this, a street sign detection system would be
important for the ATLASCAR2 to become fully autonomous.

Using augmented reality glassed would also be an interesting project to develop a detec-
tion, tracking and labelling system.
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Appendix A

Augmented Perception Package

The Augmented Perception package is a ROS package built specifically for the ATLAS-
CAR 2 with the aim to develop a better ball detection for the calibration package and a
detection, tracking and labelling system.

The package features 3 main nodes:

• ball detection node

– Node used for the development of the camera calibration ball detection algorithm
improvement

• labelling node

– Core of the package. Contains all tools related to detection, tracking and labelling.

• dataset playback node

– Extra feature that is used to check the datasets printed out by the labelling node.

In order to visualize package functionalities and to , some roslaunch files were created:

• ball detection playback

– Launches the Rviz and plays the rosbag used for calibration tests.

– The ball detection node is executed and the detection of the ball can be seen in
the Rviz.

• calibration playback

– Launches the Rviz and plays the rosbag used for calibration tests.

– The calibration gui from the calibration gui package is executed and the ball
in the rosbag is used to simulate calibration.

• drivers

– Launches the drivers of all sensors and camera.

• static transform publisher
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– Launches the frame publisher

• labelling

– Sets up environment for the labelling node. Launches the Rviz, the transform
publisher and plays the rosbag passed by parameter using the improved rqt bag.

This dissertation code is available on github to be used by possible next contributors in
the ATLASCAR project:

• https://github.com/nmssilva/augmented perception

A.1 Ball Detection Node Interface

This node is the core to the camera calibration’s ball detection. The node is launched
with the following command:

1 rosrun augmented_perception ball_detection_node

The interface uses keyboard and mouse inputs:

• SPACEBAR - Update the background frame

• P - Pause the actual frame

• Mouse Left Click - Picks the color used in the color fitlering

– Used to click in the ball to get its color

A.2 Labelling Node Interface

This node is the core of the augmented perception package. The node is launched with
the following command:

1 rosrun augmented_perception labelling_node

The interface uses keyboard and mouse inputs:

• Q - Quit / Close Application

• C - Clear Image

– Used to clear the bounding box when tracking an object.

• L - Label object

– When the tracking is done, the object is labelled.

• S - Save Templates
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– When the tracking is done, the templates of the objects tracked can be stored in
the labelling folder.

• M - Manual Mode On / Off

– Switch between manual mode and semi-automatic mode.

• P - Print the dataset

– When the sequence of annotations is done a dataset can be printed out and stored
in the datasets folder.

• Left Mouse Click - Choose the target to follow

– When on semi-automatic mode, this switches the tracking to manual mode tem-
porarily until the tracking of this object is done.

A.3 Playback

The playback node is used to preview the dataset while the rosbag runs in background.
To execute the node run the following command:

1 rosrun augmented_perception dataset_playback_node <dataset

file >

A.4 Dataset Stats Script

A small python script was implemented to check the stats of the datasets. To run it
execute the following command

1 rosrun augmented_perception dataset_stats.py <dataset file >

The output of the script should present the possible labels and the amount of each one in
the given dataset. In listing A.1 an example of the output can be seen.

1 (’car: ’, 63)

2 (’van: ’, 10)

3 (’people: ’, 10)

4 (’bicycle: ’, 2)

5 (’sign: ’, 1)

6 (’misc: ’, 3)

7 (’DontCare: ’, 31)

Listing A.1: Output of the Dataset Stats Script.
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