Detection of the Ravigable Aoad Limits by Analysis of the Aroumulated Point Cloud Density

Daniela Rato
Oriented by Prof. Vítor Santos
University of Aveiro

INTRODUCTION AND RELATED WORK

LEVELS OF AUTONOMY ${ }^{[1]}$

ATLAS PROJECT AND ATLASCAR ${ }^{[2]}$

WHERE?

Laboratory of Automation and Robotics (LAR) in University of Aveiro (UA).

WHO?

Students and professors at the Department of Mechanical Engineering (DEM).

OBJECTIVE?

Development of advanced sensing and active systems designed for implementation in automobiles and similar platforms.

Atlascar

PROBLEM DESCRIPTION

PROBLEM

Identify road limits by analysing the accumulated point cloud density. HOW?

Define a methodology to detect physical/hard limits by applying edge detection techniques to point clouds accumulated with the car movement.

OBJECTIVES

1. Develop a robust solution for road detection;
2. Test and integrate the solution onboard of the AtlasCar2;
3. Develop a methodology to perform quantitative evaluation of road limits.

RELATED WORK

UNIVERSITY OF AVEIRO - TIAGO MARQUES ${ }^{[3]}$

CONCEPT

Accumulate a point cloud with the car movement.

ALGORITHM

Eliminate points in voxels with few neighbors in a predefined radius with a static and dynamic parameterization.

RELATED WORK

UNIVERSITY OF AVEIRO - TIAGO MARQUES ${ }^{[3]}$

PROBLEMS AND LIMITATIONS

» No accumulation when the vehicle is stopped;
» No identification of negative objects;
» Change in the LIDAR inclination when accelerating, decelerating and curving;
» Poor results at high speed;
[3] Tiago Marques. Detection of road navigability for ATLASCAR2 using LIDAR and inclinometer data, 2017.

2.

INFRASIRUGTURE

SICK LD-MRS400001

LIDAR FEATURES	
Application	Outdoor
Horizontal aperture	85°
Vertical aperture	3.2°
Scan frequency	50 Hz
Angular resolution	0.5°
Working range	$0.5-300 \mathrm{~m}$
Scanning range	50 m

WHY PLACE THE LIDAR CLOSE TO THE GROUND?

The difference of perspective, with the LIDAR placed in the front of the car, close to the ground offers a UNIQUE point of view, allowing to focus on obstacles that delimitate the road instead of looking from the top of the car.

DIFFERENCE OF PERSPECTIVE BETWEEN OUR LIDAR AND A VELODYNE

SICK LD-RMS

Novatel SPAN-IGM-A1 + Novatel GPS-702-GG

DEVELOPMENT OF A DENSITY GRID

HOW TO CONVERT POINT CLOUDS TO DENSITY?

Point clouds are computationally heavy to work with and the need to evaluate the point cloud density brings the questions...
» How to divide the space to calculate the density?
" Is it really necessary to evaluate all the points?
» What are the best dimensions for analysis?

The use of occupancy grids answer all that questions, allowing to fully parametrize a grid with the desired dimensions and resolution and place the grid in the correct place!

OCCUPANCY GRID

DEFINITION

2-D grid map in which each cell represents the probability of occupancy

DENSITY GRID

PRINCIPLES

1. The density in each cell equals the number of points within the coordinates of that cell;
2. Normalize the data vector from 0 to 100 ;
3. The altitude component is discarded;
4. The grid base frame is moving_axis;
5. The grid was defined 40 m ahead of the car and 20 m to each side of the car, making a total of 40 x 40 m .

DENSITY GRID

Camera view

Correspondent point cloud

Correspondent Occupancy Grid

HOW TO IDENTIFY NEGATIVE OBSTACLES?

(a) Positive Obstacle
(b) Negative Obstacle

DENSITY VARIATIONS

Positive obstacles \rightarrow high density zones
Negative obstacles \rightarrow shadow zones = zero density

Simple Gradient and other more complex edge detection filters are able to detect both positive and negative density changes!

DENSITY GRADIENT

$$
F_{x}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad F_{y}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad\|\vec{G}\|=\sqrt{G_{x}^{2}+G_{y}^{2}} \approx\left|G_{x}\right|+\left|G_{y}\right|
$$

Grid \rightarrow OpenCV \rightarrow Image \rightarrow 2D edge detection filters \rightarrow Threshold \rightarrow Grid

Prewitt

EDGE DETECTION TECHNIQUES

GROUND TRUTH APPLICATION

HOW TO EVALUATE THE QUALITY OF THE DETECTED LIMITS?

1. Create a KML file with the car path;
2. View the path on Google Earth and draw road limits for a section of that path;
3. Read those limits in the program;
4. Draw a grid with the real road limits;
5. Draw a grid with the detected road limits;
6. Mathematically compare the limits.

CREATING THE CAR PATH

1. Subscribe to the Igps topic to gather the car coordinates information;
2. Create a KML file with the correct headings;
3. In each frame the values of latitude and longitude are added to the file;
4. Close the file handler in the end of the program;
5. Visualize the data on Google Earth.

MARKING OF A GROUND TRUTH

1. Convert the car latitude and longitude to the Universal Transverse Mercator (UTM) frame;
2. Convert every road limit point to the UTM frame;
3. Calculate the difference in meters between each point coordinates and the car coordinates;
4. Rotate the obtained coordinates to the moving_axis orientation (z rotation of the car azimuth);
5. Add 2.925 m to the x coordinate of each point (translation between the ground frame and the moving_axis frame);
6. Create a continuous line between points with an interpolation function.

$$
\left\{\begin{array}{c}
x_{\text {correct }} \\
y_{\text {correct }} \\
1
\end{array}\right\}=\left[\begin{array}{ccc}
\cos (\text { yaw }) & \sin (\text { yaw }) & 0 \\
-\sin (\text { yaw }) & \cos (\text { yaw }) & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left\{\begin{array}{c}
x_{u t m_{-} \text {point }}-x_{u t m_{\text {_ }} \text { car }} \\
y_{u t m_{-} \text {point }}-y_{u t m_{_} \text {car }} \\
1
\end{array}\right\}
$$

NAVIGABLE SPACE

Space within road limits, where the car can, allegedly, navigate with safety.

HOW TO CREATE A GRID WITH THE NAVIGABLE SPACE DETECTED WITH AN ALGORITHM?

1. Choose the algorithm to evaluate;
2. Remove road noise due to excessive accumulation (depending on the filter);
3. Apply an algorithm to only keep the closest limits to the car on either side of the car;
4. Fill those limits to create the navigable space.

GROUND TRUTH VISUALIZATION

Ground truth lines

Ground truth of navigable space

Example of navigable space for Laplace operator

QUANTITATIVE EVALUATION

CONCEPT

CONCEPT
Binary evaluation based on positives and negatives.

DEFINITIONS

» True Positive (TP): a cell that is correctly identified as being from the inside of the navigable space
» False Positive (FP): a cell that is falsely identified as being from inside of the navigable space
» True Negative (TN): a cell that is correctly identified as being outside the road limits
» False Negative (FN): a cell that is falsely identified as being outside the road limits

QUANTITATIVE EVALUATION

inolcators

Precision $/ \mathrm{PPV}=\frac{T P}{T P+F P}$

$$
N P V=\frac{T N}{T N+F N}
$$

Specificity $/ T N R=\frac{T N}{T N+F P}$

$$
\mathrm{F} \text {-measure }=\left(1+\beta^{2}\right) \frac{\text { Precision } \times \text { Recall }}{\beta^{2} \times \text { Precision }+ \text { Recall }}
$$

Recall/Sensitivity $/ \mathrm{TPR}=\frac{T P}{T P+F N}$

$$
\text { Accuracy }=\frac{T P+T N}{T P+F P+T N+F N}
$$

LIMITATIONS

1. There is an excessive accumulation of points in the first 10 m in front of the car due to the LIDAR inclination
2. The ground truth application is not prepared to contemplate curve situations

3.

TESTS AND RESULIS

QUALITATIVE EVALUATION

QUALITATIVE EVALUATION

CONCLUSIONS

" Although being the only one that results relatively well close to the car, Canny produces poor results when more distant from the car, with lots of gaps in the detection.
» All the edge detectors, apart from Canny produce poor results in the 10 m ahead of the car.
" The simple Gradient filter is the one with fewer gaps in the detection and more clear road, apart from the initial meters.
» Laplace and Prewitt produce similar results with some gaps in the middle of the road.
» Sobel and Kirsch produce a defined road but further away from the car than the rest of the algorithms.

QUANTITATIVE EVALUATION algorithm's Performance

Filter	Precision		Specificity		NPV	Sensitivity	F-measure
Accuracy							
Laplace	84.1	90.5	70.7	60.5	70.0	75.9	
Gradient	83.8	86.6	84.5	83.3	83.0	84.6	
Sobel	83.9	89.8	71.8	63.1	71.7	76.7	
Prewitt	81.6	87.5	78.9	72.6	76.0	80.2	
Kirsh	86.9	89.9	72.3	66.7	75.4	78.1	
Canny	86.0	91.5	66.6	52.3	62.5	71.7	

Table 2: Statistical indicators in each algorithm's performance with $0.4 \mathrm{~m} /$ cell and no threshold applied (10 m to 30 m).

QUANTITATIVE EVALUATION
 effect of type ill curbs - negative obstacles

Type I

Type II

Filter	Precision		Specificity		NPV	Sensitivity
Laplace	94.6	97.9	76.0	52.8	67.6	80.1
Gradient	85.0	91.8	83.6	72.0	77.9	84.0
Sobel	91.0	96.9	76.2	51.4	65.5	79.4
Prewitt	86.9	93.8	79.5	63.0	73.0	81.6
Kirsh	94.6	97.8	78.9	59.6	73.0	82.7
Canny	78.9	95.2	67.5	27.3	39.6	68.8

Table 3: Performance of algorithms in the presence of Type III curbs with $0.4 \mathrm{~m} /$ cell and no threshold applied (10 m to 30 m)

QUANTITATIVE EVALUATION effect of occupancy grid resolution

- Precision
-․․․ • Specificity
--0.. NPV
- A. Sensitivity
- *- F-measure
- Accuracy

Graphic 1: Effect of occupancy grid resolution for the Simple Gradient algorithm with no threshold..

QUANTITATIVE EVALUATION

effect of car velocity

Graphic 2: Effect of car velocity for the Simple Gradient algorithm with no threshold and $0.4 \mathrm{~m} /$ cell of resolution.

QUANTITATIVE EVALUATION EFFECT OF GRADIENT THRESHOLD

QUANTITATIVE EVALUATION ALGORITHM'S PERFORMANCE WITH OPTIMIZE PARAMETERS

Filter	Precision	Specificity	NPV	Sensitivity	F-measure	Accuracy
Laplace	88.9	88.1	84.8	85.6	87.1	86.8
Gradient	89.4	89.0	83.4	83.9	86.5	86.3
Sobel	87.1	87.6	80.4	79.6	83.0	83.5
Prewitt	87.6	88.5	77.2	74.4	80.0	81.4
Kirsh	86.6	86.0	84.8	85.3	85.9	85.7
Canny	87.3	91.1	67.5	56.0	66.3	73.2

Table 5: Result of the performance of the algorithms with the improved parameters.

CONGLUSION AND FUTURE WORK

PERFORMANCE

» The Simple Gradient produced the best results detecting the navigable space in all situations tested.
» The Kirsch and Laplace edge detectors also proved to produce good detection results.
» The algorithm threshold that optimizes detection is different from filter to filter due to the characteristics of the same and noise sensitivity.
» The algorithms have a stable performance up to $50 \mathbf{k m} / \mathrm{h}$ and from that value the performance, although acceptable, begins to decrease.
» The cell resolution that optimizes the detection of the navigable space is $\mathbf{0 . 4}$ $\mathrm{m} / \mathrm{cell}$.

CONCLUSIONS

CONTRIBUTIONS

» The use gradient as a tool to detect hard limits of the road in a moving car;
" Development of a method able to detect all types of curbs;
» Development of a tool to evaluate algorithms performance;
» Test and prove the efficacy of the method in real time;
" Reduce computational effort of point cloud accumulation.
» An article submitted in the Fourth Iberian Robotics Conference named "Detection of Road Limits using Gradients of the Accumulated Point Cloud Density".

FUTURE WORK

DEFINITION

» Combine the work developed in lane detection using cameras and create a multi-sensorial algorithm with the possibly to create an occupancy grid with different levels of probability according to the detected features;
» Fuse the results of several edge detection algorithms may also be interesting to obtain more complete and robust information;
" Find a solution to the behavior of the accumulated point cloud in roundabouts;
» Add one or more LIDARs to cover a bigger range of road and setting the sensors to asynchronous times for more reliability at higher velocities;
» Improve the quantitative evaluation program to contemplate more situations.

THANKS! Any questions?

You can find me at
" danielarato@ua.pt
» https://www.linkedin.com/in/daniela-rato/

RELATED WORK

other work - Xu et al. ${ }^{[4]}$

APPROACH

Calculating the difference of density in adjacent voxels in 2D and then adding the 3rd dimension as the difference of elevation between voxels.

METHODOLOGY FOR ROAD CLASSIFICATION

» One large gradient \rightarrow voxel within one surface;
» Two large gradients \rightarrow voxel in the intersection of two surfaces;
» Three large aradients \rightarrow voxel in the intersection of three mutually non-parallel surface;

RELATED WORK

other work - huang et al. ${ }^{[5]}$

APPROACH

A prediction method is used to find the height difference between two points and create an elevation map with the predicted measures.

$$
\Delta H=Z_{C}-Z_{B}-\left(Z_{B}-Z_{A}\right) * \frac{d_{B C}}{d_{A B}}
$$

EVOLUTION

