
Universidade de Aveiro Departamento de Engenharia Mecnica
2022

DOCUMENTO
PROVISÓRIO

Pedro Andrade
Azevedo

Deteção e seguimento de alvos múltiplos a bordo
do ATLASCAR2 com Deep Learning

Detection and tracking of multiple targets aboard
ATLASCAR2 with Deep Learning

Universidade de Aveiro Departamento de Engenharia Mecnica
2022

DOCUMENTO
PROVISÓRIO

Pedro Andrade
Azevedo

Deteção e seguimento de alvos múltiplos a bordo
do ATLASCAR2 com Deep Learning

Detection and tracking of multiple targets aboard
ATLASCAR2 with Deep Learning

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Mecânica, realizada sob orientação científica de Vítor Manuel Ferreira dos
Santos, Professor Associado com Agregação da Universidade de Aveiro.

Este trabalho foi desenvolvido com recursos do IEETA - Instituto de Engenharia
Eletrónica e Informática de Aveiro, no âmbito do Projeto UIDB/00127/2020, e
usou fundos comparticipados pelo DEM/TEMA - Centro de Tecnologia Mecânica
e Automação no contexto do Projeto UIDB/00481/2020, ambos financiados pela
FCT - Fundação para a Ciência e Tecnologia.

o júri / the jury

presidente / president Prof. Doutor ...
Professor Auxiliar da Universidade de Aveiro

Vogais / Committee Doutor Cristiano Premebida
Professor Auxiliar da Universidade de Coimbra, Dept. Eng. Electrotécnica e de
Computadores

Prof. Doutor Vítor Manuel Ferreira dos Santos
Professor Associado com Agregação da Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Aos meus pais e irmão pelo amor todo que me deram desde que nasci.
Por me ensinarem a ter orgulho, não no resultado das coisas que fazemos,
mas no esforço e dedicação que colocamos na mesma, agredeço por me
ensinarem a respeitar e a amar.

Ao meu orientador Vitor Santos por inspirar a exigencia e rigor que
uma dissertação merece. Por toda a empatia e concelhos que transmitiu
ao longo deste trabalho, isto, especialmente nos momentos em que as
coisas não estavam a correr bem e um empurrãozito era necessário. A etica
de trabalho que me impôs fez me entregar a melhor tese que eu poderia
ter feito. Tenho orgulho no trabalho, que com só com a ajuda do meu
orientador, conseguia fazer. Muitos, dizem que dois orientadores não chega,
eu tinha um e valeu-me por mil.

Ao Tiago Almeida pela ajuda que prestou , pelas boas ideas que
sempre tinha e pelo seu prévio trabalho com Jetson AGX Xavier que
funcionou como meu guia.

Aos meus grandes amigos (ou animais depende de a quem perguntam),
João Veloso, Gonçalo Silva, João Marques e Marcelo Manteigas por me
levantarem quando caía, empurarem quando saltava, voarem quando eu
quando me perdia e mais importante de tudo, por me fazerem cuspir o
pulmão a rir durante estes 5 anos.

keywords Object Detection; Object Tracking; Deep Learning; ATLASCAR2; MOT;
Jetson AGX Xavier; Artificial Intelligence.

abstract There are multiple tasks involved in the development of a fully autonomous
driving system. One of the most important is the perception of the
environment. To achieve this perception, multiple techniques are used.
A special emphasis is given on computer vision namely for the tasks
of road detection, object detection and tracking; this includes objects
such as vehicles, traffic signs and pedestrians. This thesis utilizes recent
Deep Learning techniques and algorithms to deploy object detection and
tracking models to be utilized aboard ATLASCAR2, a self-driving car
project developed by the Department of Mechanical Engineering in University
of Aveiro. Different SOTA detectors such as Scaled-YOLOv4, YOLOR,
YOLOv5 were trained on the BDD100K dataset and evaluated in terms of
inference speed and accuracy. This was followed by an implementation and
evaluation of multiple SOTA trackers such as NvDCF DeepSORT and BYTE
utilizing DeepStream technology for optimized camera inference. The final
solution presents a YOLOR-CSP architecture with 70.50% mAP@50 using a
DeepSORT tracker with FP32 precision, achieving 17 FPS with a detection
interval of zero and 33 FPS with an interval of one.

palavras-chave Deteção de objetos; Seguimento de alvos; Deep Learning; ATLASCAR2;
MOT; Jetson AGX Xavier; Inteligencia Artificial.

resumo Há múltiplas tarefas envolvidas no desenvolvimento de um sistema de
condução totalmente autónomo. Um dos principais é a percepção do
ambiente. Para alcançar a percepção, são utilizadas múltiplas técnicas e
é dada muita ênfase a visão computacional. Nomeadamente para as tarefas
de detecção de estradas, detecção de objectos e seguimento de alvos (tais
como veículos e pedestres). Esta tese utiliza as técnicas e algoritmos de Deep
Learning para implementar modelos de detecção e seguimento de objectos
para serem utilizados no ATLASCAR2, um projecto de um carro autonomo
desenvolvido pelo Departamento de Engenharia Mecânica da Universidade
de Aveiro. Diferentes detectores estado da arte como o Scaled-YOLOv4,
YOLOR, YOLOv5 foram treinados no dataset BDD100K, mais tarde, foi
feita uma análise, medindo a velocidade de inferência e precisão destes
modelos. Seguiu-se uma implementação e avaliação de múltiplos algoritmos
estado da arte para seguimento de alvos , tais como NvDCF DeepSORT
e BYTE, utilizando a tecnologia DeepStream para optimizar a inferência
da câmara. A solução final apresenta uma arquitectura YOLOR-CSP com
70,50% mAP@50 com um algoritmo de seguimento DeepSORT usando
precisão FP32, atingindo 17 FPS com um intervalo de detecção de zero
e 33 FPS com um intervalo de um.

Contents

1 Introduction 1
1.1 Background and Motivation – The ATLAS Project 1
1.2 Problem description . 2
1.3 Objectives . 3

2 Related work and State of the Art 5
2.1 Deep Learning vs Machine Learning . 5
2.2 Object detection . 6

2.2.1 Key Performance indicators . 6
2.2.2 Types of Object Detectors . 9
2.2.3 A shift in the computer vision paradigm 11
2.2.4 Faster R-CNN . 12
2.2.5 Single-Shot Detector . 13
2.2.6 EfficientDet . 13
2.2.7 The YOLO Series . 13
2.2.8 Datasets for object detection . 25

2.3 Multiple Object Tracking (MOT) . 26
2.3.1 Key Metrics . 26
2.3.2 IOU Tracker . 27
2.3.3 NvDCF Tracker . 27
2.3.4 DeepSORT Tracker . 28
2.3.5 BYTE and ByteTrack Tracker . 29
2.3.6 OC-SORT . 31
2.3.7 StrongSORT . 31

3 Experimental Infrastructure 33
3.1 NVIDIA SDK . 33
3.2 Camera Hardware and Software Tools . 37

4 Solution, Experiments and Results 41
4.1 Preliminary Tests . 41

4.1.1 Memory Problems . 41
4.1.2 Deployment Technology Decision 42

4.2 Neural Network training and data pre-processing 44
4.2.1 Pre-trained models inference tests 44

i

4.2.2 Data pre-processing . 45
4.2.3 Training of the Pre-Selected Models 47

4.3 Deployment Results . 63
4.3.1 Creation of the TensorRT Engine 63
4.3.2 Tracker Inference . 64
4.3.3 Tracker Evaluation . 67
4.3.4 Camera Inference in Aveiro . 70
4.3.5 Experiments with Multi-Task Neural Networks 73

5 Conclusions 77

A Gentle Introduction to Deep Learning 81
A.1 Neural Networks in Supervised Learning 81
A.2 Training of a Neural Network . 83

A.2.1 Loss functions . 83
A.2.2 Gradient Descent . 84

A.3 Activation Functions . 85

B Configuration Files 89
B.1 YOLOv5 Hyperparameters . 89
B.2 YOLOR Hyperparameters . 90
B.3 Scaled YoloV4 HyperParameters . 91
B.4 DeepStream Configs . 92

References 97

ii

List of Tables

2.1 Initial YOLOv4 backbone considerations 17
2.2 Comparison between State-Of-The-Art models and YOLOR on COCO

test dataset . 21
2.3 Comparison between different 2D-3D models of object detection. 25
2.4 BDD100K Comparison with other street scene datasets 25
2.5 Comparison with state-of-the-art MOT methods on the MOT20 test set. . 32

4.1 Initial Inference Speed Tests. 45
4.2 Mapping between each Reference number of different YOLOv5 runs. . . . 48
4.3 Class Regrouping/Dropped performed. 53
4.4 Summary of all the YOLOV5 run. 59
4.5 Summary of All Best Model Runs of each Architecture. 62
4.6 Number of FPS of the DeepSORT tracker deployment with DeepStream

with different Detector Intervals. 65
4.7 Number of FPS of the NvDCF tracker deployment with DeepStream with

different Detector Intervals. 66
4.8 Number of FPS of the BYTE method deployment with DeepStream with

different Detector Intervals. 66
4.9 Number of FPS of the IoU tracker deployment with DeepStream with

different Detector Intervals. 67
4.10 Tracker + YOLOR-CSP evaluation results on the "0007" sequence of the

KITTI Tracking Dataset. 69
4.11 Comparison of the DeepSORT tracker performance with different models. 70

iii

.

Intentionally blank page.

List of Figures

1.1 The ALTASCAR2 vehicle . 1
1.2 Typical autonomous vehicle system overview. 2

2.1 Differences between Traditional Machine Learning and Deep Learning
feature extraction. 5

2.2 Overview of feature extraction and object detection chain 6
2.3 Visual example of different IoU values. Green box: ground truth; red box:

prediction . 7
2.4 2D vs 3D bounding box. 8
2.5 Taxonomy of object detectors with some example models 9
2.6 Architecture of a typical Object Detector 9
2.7 Two-staged vs One-stage Detectors Diagram 10
2.8 mAP of various models preforming real-time object detection on COCO . 11
2.9 mAp of top performing models in COCO dataset (regardless of inference

time) . 12
2.10 Faster R-CNN is a single, unified network for object detection. The RPN

module serves as the ‘attention’ of this unified network 13
2.11 YOLO divides the image into an S × S grid and for each grid cell predicts

B bounding boxes. 14
2.12 Example of Non-maximal suppression. 15
2.13 DenseNet Architecture . 17
2.14 EfficientNet Scaling. 17
2.15 Efficient Det FPN. In the case of YOLOV4 each of those entries P’ would

refer to one layer of the Neural Network 18
2.16 YOLOv4 Image augmentation examples 19
2.17 Mish vs ReLU . 19
2.18 Comparison between Mish and various activation functions 20
2.19 YOLOR -Multi purpose single unified network model. 20
2.20 YOLOR comparison on MS-COCO Dataset. 21
2.21 YOLOR comparison on MS-COCO Dataset 23
2.22 An evolution of the YOLO series from YOLO to YOLOv4. 24
2.23 Comparison between more recent YOLO models. 24
2.24 Statistical Distribution of object classes on BDD100k. 26
2.25 MOTA-IDF1-FPS comparisons of different trackers in the test set of MOT17. 29
2.26 Examples of the BYTE method which associates every detection box . . . 30
2.27 IDF1-MOTA-HOTA comparisons of state-of-the-art trackers with StrongSORT

and StrongSORT++ on MOT17 and MOT20 test sets. 31

v

3.1 NVIDIA Jetson Xavier AGX Development Kit. 34
3.2 NVIDIA TensorRT pipeline. 35
3.3 Deepstream Workflow. 35
3.4 Jetson systems summary scheme. 36
3.5 DeepStream SDK simplified summary scheme. 37
3.6 DeepLar Computer. 38
3.7 e-CAM130-CUXVR plugged into NVIDIA Jetson AGX Xavier. 38
3.8 SSH Remote Connection Workflow. 40

4.1 Summary of Jetson AGX Xavier characteristics. 42
4.2 Possible solution path summary on whether to use or not to use DeepStream. 43
4.3 Format conversion needed to train each different YOLO from BDD100K. . 46
4.4 Class distribution of the 100k images. 47
4.5 Run 1.1 mAP@05-0.95. 48
4.6 Run 1.1 mAP@05. 48
4.7 Run 1.7 mAP@0.5:0.95. 49
4.8 Run 1.7 mAP@0.5. 49
4.9 Run 1.7 Validation cls-loss. 49
4.10 Run 1.7 Train cls-loss. 49
4.11 Class distribution of the new BDD100K subset made with 10K images

(labels-miss-matched). 50
4.12 Run 1.2 mAP@50. 51
4.13 Run 1.2 mAP@50:95. 51
4.14 Run 1.2 Train box-loss. 51
4.15 Run 1.2 Validation box-loss. 51
4.16 Run 1.2 Train cls-loss. 52
4.17 Run 1.2 Validation cls-loss. 52
4.18 Run 1.2 Train obj-loss. 52
4.19 Run 1.2 Validation obj-loss. 52
4.20 Class distribution of the class dropped BDD100K subset (with label miss-

match). 53
4.21 Class distribution of the class dropped and Regrouped BDD100K subset. . 54
4.22 XY Label Distribution of the final dataset (with classes regrouped/dropped. 55
4.23 mAP@50 of all the YOLOv5-m runs. 55
4.24 mAP@50:95 of all the YOLOv5-m runs. 55
4.25 Run 1.5 Train box-loss. 56
4.26 Run 1.5 Validation box-loss. 56
4.27 Run 1.5 Train cls-loss. 56
4.28 Run 1.5 Validation cls-loss. 56
4.29 Run 1.5 Train obj-loss. 56
4.30 Run 1.5 Validation obj-loss. 56
4.31 Hyperparameter evolution mAP@50:95. 57
4.32 Hyperparameter evolution mAP@50. 57
4.33 Recall of YOLOv5 small-medium-large runs. 58
4.34 Precision of YOLOv5 small-medium-large runs. 58
4.35 mAP@50 of YOLOv5 small-medium-large runs. 58
4.36 mAP@50:95 of YOLOv5 small-medium-large runs. 58

vi

4.37 Confusion Matrix of the trained YOLOv5-Small (model #1.3) 60
4.38 Example of a BDD100K Ground Truth Image. 60
4.39 mAP@50 of YOLOR-CSP vs YOLOR-CSP-X. 61
4.40 mAP@50:95 of YOLOR-CSP vs YOLOR-CSP-X. 61
4.41 Precision plot of YOLOR-CSP vs YOLOR-CSP-X. 61
4.42 Recall plot of YOLOR-CSP vs YOLOR-CSP-X. 61
4.43 Train box-loss of YOLOR-CSP vs YOLOR-CSP-X. 62
4.44 Validation box-loss of YOLOR-CSP vs YOLOR-CSP-X. 62
4.45 Train cls-loss of YOLOR-CSP vs YOLOR-CSP-X. 62
4.46 Validation cls-loss of YOLOR-CSP vs YOLOR-CSP-X. 62
4.47 Train obj-loss of YOLOR-CSP vs YOLOR-CSP-X. 63
4.48 Validaiton obj-loss of YOLOR-CSP vs YOLOR-CSP-X. 63
4.49 Tracker evaluation pipeline. 68
4.50 Summary of the Hardware problems that come with different JetPack

versions. 72
4.51 Real-Time Inference tests performed on ATLASCAR2 with Logitech C70

camera with YOLOR-CSP + DeepSORT. 73
4.52 Inference on three video streams simultaneously. 74
4.53 YOLOP Architecture. 75
4.54 Inference tests with YOLOP on the University of Aveiro Campus; the green

label is given to the road, red to the road lines and the blue bounding boxes
to the cars detected. 76

A.1 Simplified example of a Neural Network. 81
A.2 Single-Neuron representation. 82
A.3 Line attempt to separate the points . 83
A.4 Typical FF Neural Network. 83
A.5 Example of Gradient Descent . 85
A.6 Sigmoid activation function . 86
A.7 ReLU and Leaky ReLU activation functions 87
A.8 Typical output of multi-class classification problem 87

vii

.

Intentionally blank page.

List of Acronyms

IDF1 Identification F1 Score. The fraction of correctly identified detections
over the average number of true and computed detections.

CUDA Compute Unified Device Architecture - Software layer that gives direct
access to the GPU’s virtual instruction set and parallel computational
elements, for the execution of compute kernels

cuFFT CUDA Fast Fourier Transform

cuBLAS CUDA Basic Linear Algebra Subroutine

AVs Autonomous Vehicles

BB Bounding Box

BDD100K Berkeley DeepDrive 100K Images Dataset

BFLOPS Billions of FLOPS

HOG Histogram of Oriented Gradients

CNN Convolutional Neural Network

COCO Common Objects in Context (Dataset with 80 Classes used to measure
the accuracy of different object detectors)

RPN Region Proposal Networks

CSP Cross Stage Partial Networks

FPN Feature Pyramid Network

BiFPN Bi-Directional Feature Pyramid Network

SORT Simple Online Real-Time Tracking

DCF Discriminative Correlation Filter

LIDAR Light Detection and Ranging

DIoU NMS Distance IoU Non Maximal Supression

DETR DEtection TRansformer

ix

DL Deep Learning

FF NN Feed Forward Neural Network

SAT Self Adversarial Training

BFLOPS Billions Floating Point Operations Per Second

FPS Frames Per Second

IoU Intersection over Union

MOT Multi Object Tracking

MOTP Multi Object Tracking Precision

MOTP Multi Object Tracking Accuracy

GPU Graphics Processing Unit

IoU Intersection over Union

LAR Laboratory of Automation and Robotic

mAP Mean Average Precision

ML Machine Learning

MOTA Multiple Object Tracking Accuracy

MOT Multiple Object Tracking

HOTA Higher Order Tracking Accuracy

NMS Non Maximal Suppression.

NN Neural Network

NW Not Working

PAN Path Integral Based Convolution for Deep Graph Neural Networks

PGIE Primary GIE (The primary detector in a DeepStream pipeline)

PNG Portable Network Graphics (type of image file format)

PRO Portuguese Robotics Open

RCNN Region-based Convolutional Neural Network

RE-ID Re-Identification

ROI Region of Interest

SDK Source Development Kit

SSD Single Shot Detector

x

SOTA State of the Art

SPP Spatial Pyramid Pooling

SSD Solid State Drive

SSH Secure Shell protocol

W&B Weights and Bias

YOLO You Only Look Once.

xi

.

Intentionally blank page.

Chapter 1

Introduction

1.1 Background and Motivation – The ATLAS Project

This dissertation occurs in the scope of the ATLAS Project, that started in 2002/2003
in the Laboratory of Automation and Robotics (LAR) in the Department of Mechanical
Engineering of the University of Aveiro with the main objective of researching technology
to be employed in autonomous driving subjects. The first success of this project was
the small-scale prototype that enrolled in the Portuguese Robotics OPEN (PRO). After
multiple awards in the various years of this competition, in 2010 the project team started
the development of a real-scale vehicle the ATLASCAR1, a Ford Escort Station Wagon
from 1998 containing several state-of-the-art sensors. This project later evolved into the
ATLASCAR2 with a more modern vehicle as seen in Figure 1.1, a Mitsubishi i-MiEV, an
electric car equipped with multiple LIDAR sensors and cameras, among others, needed
for the development of this work.

Figure 1.1: The ATLASCAR2 vehicle [1].

This dissertation focuses on the perception on the car, the ability of the car to
understand it’s surroundings, more specifically on object tracking and detection with
the use of Deep Learning. Deep Learning is a machine learning technique that teaches
computers to do what comes naturally to humans: learn by example. Deep Learning

1

2 1.Introduction

is a key technology behind driverless cars, enabling them to recognize a stop sign, or
to distinguish a pedestrian from a trafic sign [2]. This technology will be described in
detail in the next chapters and a brief introduction to Deep Learning can be found on
Appendix A for readers new to the topic. Previous work in the area of Deep Learning
was developed on LAR, the authors from [3] used Deep Learning in the classification of
road and objects with semantic segmentation. Some specific work was developed in the
object detection and tracking area, the authors from [4] used Deep Learning for object
detection of pedestrians and vehicles, the authors from [5] utilized LIDAR and Velocity
Obstacles for multi-object tracking. In the work of the authors from [4] a few studies
were done on the 2018 SOTA algorithms, since that time, a lot of progress has been
made in Deep Learning research and on the hardware available for deployment of edge
devices. This dissertation aims to bring new technological developments to complement
and enhance previous work, achieving a robust solution.

1.2 Problem description

A fully autonomous vehicle has a multitude of tasks to perform. In a simplified way we
can reduce it to these simple topics/tasks. Computer vision, Environment perception,
Sensor Fusion, Localization, Path planning and Control, Figure 1.2 shows an example on
how these can be intertwined.

Figure 1.2: A typical autonomous vehicle system overview, highlighting core
competencies [6].

To achieve environment perception with the aid of computer vision, some algorithms
are needed, mainly for object and road detection. This information is later fused with
different cameras/sensors and used to localize the car in the road; after that, a path is
planned, and control algorithms are used to drive the car itself. While humans generally
have no problem assimilating their surroundings to carry out basic functions, computers
can have difficulties with this task despite the existence of the optical systems, and a lot
of computational power and learning algorithms are required to do so. Many techniques
used to attack this problem lay on the common heading of image recognition, some of

P. A Azevedo Master Degree

1.Introduction 3

the key aspects of this include object detection, that is, processing an image to detect
and localizing objects within in [7].

With the current development of new technologies, new possible solutions have emerged
to tackle the problem of perception of the car. One of these technologies was Deep
Learning. This technology, a subset of machine learning and a form of AI, lays on the
back of neural networks which have been showing important results in multiple tasks
such as image classification, object detection, multiple class object tracking, and image
segmentation. Training such neural networks with a lot of data is a computationally
heavy process , this process however happens offline, so an algorithm can be trained
previously and deployed on the hardware without major problems. On the other hand,
the inference stage relies heavily on the hardware because that is where the segmentation
and object detection is done in real time, so a great GPU power is needed. Therefore,
specific hardware must be chosen and integrated into the vehicle system to run a Deep
Neural Network with enough speed. The new processing unit from NVIDIA, Jetson AGX
Xavier, is a good candidate and has numerous applications due to its high capacities and
versatility. Due to these capabilities, this hardware was provided for this dissertation.

1.3 Objectives

The main aim of this dissertation is to train a neural network to perform object detection
and object tracking with the help of Deep Learning techniques. Then implement these
algorithms on the ATLASCAR2 followed by controlled real scenario tests. This includes:

• Configuring the hardware

• Selecting the right detection algorithms to deploy

• Train the algorithms

• Write deployment pipelines for the models

• Implement the tracker on the models

• Test them on the ATLASCAR2

This thesis will be composed of 5 chapters, this first one gives an overview of the
problem and the motivation behind it. The second chapter describes all the related
work and state of the art. In this chapter, topics like Deep Learning, object detection
algorithms and object tracking will be described in great detail, and an analysis of urban
driving public datasets will be made; furthermore, a brief introduction to NVIDIA’s
hardware provided for this thesis will be described. In the third chapter, the experimental
infrastructure will be described; here, all the methodologies and technology stacks adopted
will be discussed in greater detail. The fourth chapter is about the proposed solution
where all the tests, data processing, model training results, and tracker implementations
will be described. The final chapter contains the conclusions regarding the solution
obtained as well as preparation for future developments.

P. A Azevedo Master Degree

.

Intentionally blank page.

Chapter 2

Related work and State of the Art

Many technologies and algorithms are used to solve multiple object detection and tracking.
These algorithms were traditionally made with human-written feature extractions and
have since evolved to Deep Learning techniques . This chapter details in depth the related
work and state of the art. To explain the connection between the traditional techniques
and Deep Learning techniques a small section comparing the two was provided in this
chapter. After this introduction in a different sub-section, object detection algorithms
will be discussed in greater detail. This sub-chapter starts by introducing what object
detection is and how Deep Learning has improved the accuracy of object detectors,
afterwords the difference between 2D and 3D object detectors will be explained followed
by an analysis of the SOTA of object detection. After this sub-section, in a similar
manner, object tracking will be approaches going in depth about the SOTA trackers.

2.1 Deep Learning vs Machine Learning

Machine Learning is a branch of artificial intelligence (AI), in a simple way it means
learning patterns from examples or sample data. The machine is given data and learns
from it. Data could be labeled, unlabeled, or a combination of both [8].

When distinguishing traditional machine learning from Deep Learning, in the case
of computer vision, we can say that Machine Learning extracts hand-crafted features
from images and performs a classification, on the other hand, Deep Learning techniques
extract the features and classify them in one step, as seen in Figure 2.1 [7].

Figure 2.1: Differences between Traditional Machine Learning and Deep Learning feature
extraction [7].

5

6 2.Related work and State of the Art

Deep Learning architectures have been used in multiple different areas like computer
vision, speech recognition, natural language processing and even in the field of medicine.
Recent developments in this area have allowed the deployment of faster algorithms that
can be used in object tracking and detection. The details on how Deep Learning affects
each of these specific subjects are described in the following sections.

2.2 Object detection

Since autonomous vehicles share the road with many other traffic participants such as
cars, pedestrians etc, fast and reliable detection of these objects is crucial [9]. The
detection pipeline typically starts with a prepossessing of the input images, followed by
a region of interest detector and, finally, a classifier that identifies the object detected.

The evolution of object detectors began with the Viola Jones detector [10] that was
used for detection in real-time. Traditionally, object detection algorithms used hand-
crafted features to capture relevant information from images and a structured classifier
to deal with spatial structures.

An example of this would be the work done in [11] where the authors propose an
algorithm based on Histogram of Orientation Gradients (HOG) and Support Vector
Machine (SVM). The algorithm is shown in Figure 2.2. Essentially, it passes the input
image through prepossessing, computes HOG features over the sliding detection window,
and uses a linear SVM classifier for detection. This algorithm captures object appearance
by purposefully designed HOG features and depends on linear SVM to deal with highly
nonlinear object articulation [9].

Figure 2.2: Overview of feature extraction and object detection chain [11]

However, these traditional approaches are not able to fully exploit the extremely large
data volume and deal with endless variations of object appearance and shape. Even
though they do not require historical data for training and are unsupervised in nature,
these techniques have many restrictions, especially when dealing with complex scenarios
like illumination effect, occlusion effect and clutter effect [7]. To fully understand the
impact of the new techniques some key performance metrics used in object detection
need to be introduced first.

2.2.1 Key Performance indicators

To establish a fair comparison between different detectors many metrics were defined
over the years, the most dominant one being mean Average Precision (mAP). A brief
introduction to other metrics is necessary to fully understand mAP so an explanation on
those is provided.

Definition of Terms:

• True Positive (TP) - Correct detection

• False Positive (FP) - Incorrect detection

P. A Azevedo Master Degree

2.Related work and State of the Art 7

• False Negative (FN) - A ground truth missed (not detected) by the detector

Intersection over Union - IoU

IoU metric evaluates the division between the area of overlap and the area of union. In
other words, it evaluates the degree of overlap between ground truth (gt) and predictions
(pd). It ranges from 0 to 1, where 1 would be a perfect overlap between the ground truth
and the prediction. [12]. In Figure 2.3 we can see the difference between a good IoU and
a bad one.

IoU(A,B) =
|A ∩B|
|A ∪B|

(2.1)

Where "A" and "B" are the predicted and ground truth bounding boxes.

Figure 2.3: Visual example of different IoU values. Green box: ground truth; red box:
prediction [13].

Precision and Recall

Precision attempts to answer the question "What proportion of positive identifications
was correct?". Recall relates the proportion of actual positives that were correctly
identified.

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

So, for example, analysing a vehicle object detector, the precision contain information
of "from all the cars predicted by the model, how many of them were actually cars"?
And recall would say "how many cars the model identified".

Average Precision (AP)

When plotting the precision recall curve evaluated at an IoU threshold, we get the Average
Precision.

AP@α =

∫ 1

0
p(r)dr (2.4)

P. A Azevedo Master Degree

8 2.Related work and State of the Art

Where "α" is the threshold value, p the precision and r the recall.

Mean Average Precision (mAP)

When considering a multi-class object detector the mAP gives us the mean AP across
all classes.

mAP =

∑Q
q=1AP(q)

Q
(2.5)

Where "AP" is the average precision of each "q" class and "Q" is the number of
classes.

In recent years, object detection performance has improved significantly, with an
increase from 30% mean Average Precision (mAP) to more than 90% in 2018 on the
PASCAL VOC benchmark (measured on the PASCAL VOC object detection public
dataset) [14]. The main driver of these improved results was the use of Deep Learning.
With the development of new technologies that allow faster and easier pipelines and the
availability of large-scale open datasets, the development of powerful models has become
a reality [7].

2D vs 3D Object Detectors

In the context of autonomous driving, both 2D and 3D object detectors are important.
2D object detectors give bounding boxes with four Degrees of Freedom (DOF) in the
form of [xmin,ymin,xmax,ymax] [13] as seen in Figure 2.4.

Figure 2.4: 2D vs 3D bounding box. [13]

This gives information of the position of the objects in the 2D plane but lacks
information about the depth of the object. This information is crucial to predict important
factors like shape, size and position of the objects in order to develop other self-driving
tasks like path planning or collision avoidance [13]. While 2D detectors use input from
images, 3D detectors use data from camera, LIDAR or radar to generate 3D bounding
boxes. There are multiple approaches to do so, but some of these detectors take advantage
of their 2D counterparts and project LIDAR/radar information, fusing it in order to
obtain depth and a 3D bounding box like [15]. Lately, some authors have been leveraging
monocular image-based to perform 2D to 3D lifting and create 3D object detection results
like [16]. A taxonomy summary can be seen in Figure 2.5.

P. A Azevedo Master Degree

2.Related work and State of the Art 9

Taxonomy of Object Detector

Type of Data

3D Object
detectors

Point-nets
Based

Point
Cloud
Based

Monocular
Image
Based

2D Object
detectors

Type of Network

Single-stage
detectors

RetinanetSSDYOLO

Two-stage
detectors

FASTER
R-CNN

FAST
R-CNNR-CNN

Figure 2.5: Taxonomy of object detectors with some example models (Adapted from [13]).

In the context of this dissertation the focus will be on 2D object detection. However,
the work from this thesis can be fused with other sensors in future projects to generate
3D bounding boxes.

2.2.2 Types of Object Detectors

Object detection tries to answer the question, "Are there any objects in the image?". If
yes, "what objects and where?”. We can divide object detectors into two main types:
One-stage and Two-stage detectors. Object detectors extract features from the input
image/video frame in two main tasks; first they find the objects (and their bounding
boxes) then they classify them. The architecture of both types can be seen in Figure 2.6.

In a two staged architecture these steps are separated; first it gets an object region
proposal then classifies it based on the features extracted from the region proposed.
These architectures achieve a very high accuracy rate but are rather slow, which makes
them unfit for real-time applications like self-driving vehicles.

Figure 2.6: Architecture of Object Detector(Adapted from [17]).

Some examples of two-stage detectors include RCNN [18], Fast-RCNN [19] and Mask-
RCNN [20]. Usually, object detectors are made with a backbone. This is typically
a network that acts as a feature generation network for object detection [8]. CNNs
are usually chosen for this task. To achieve the best accuracy and efficiency, when
building a model, we must choose the most adequate backbone. More accurate backbones
are generally tied to how deep and dense they are, some example of backbones are
ResNet [21] and ResNetXt [22]. On the other hand, if inference speed or computational

P. A Azevedo Master Degree

10 2.Related work and State of the Art

power is a concern, a lightweight backbone might be a better choice, especially in mobile
applications. When referring to real-time detection systems, we must often adapt the
detection backbone and make a fair trade-off between accuracy and speed. In short,
deeper and densely connected backbones replace the shallower and sparsely connected
ones to obtain more detection accuracy [8].

A one-stage detector predicts the bounding box over the images without a region
proposal step, achieving greater detection speeds. A sample architecture of each type of
detector can be seen in Figure 2.7; here we can see that the ROI generation step differes
from two-staged to one-stage.

Figure 2.7: Two-staged vs One-stage Detectors Diagram [13].

Some examples of one-stage detectors are YOLO [23], SSD [24] and RetinaNet [22]
EfficientDet-D7 [25].

Figure 2.8 shows an overview of the various real-time top performing models in terms
of mAP at the COCO dataset for the years between 2017 and 2022. It is important to
keep in mind that even though there is a big speed difference between one-stage to two-
stage, some two-stage detectors can actually inference in real time like Mask RCNN [20],
this is why we can see both types of detectors in Figure 2.8. The current top performing
model is a version of YOLO, there is a series of versions of this algorithm which will be
further detailed in the following sub-sections.

P. A Azevedo Master Degree

2.Related work and State of the Art 11

MA
P Mask R-CNN X-152-32x8dMask R-CNN X-152-32x8d

NAS-FPN AmoebaNet (7 @ 384) + DropBlockNAS-FPN AmoebaNet (7 @ 384) + DropBlock

EfficientDet-D7x (single-scale)EfficientDet-D7x (single-scale) YOLOR-D6YOLOR-D6

Other models Models with highest MAP

2017 2018 2019 2020 2021 2022
10

20

30

40

50

60

70

Figure 2.8: mAP of various models preforming real-time object detection on COCO
(Adapted from [26]).

2.2.3 A shift in the computer vision paradigm

The models presented on Figure 2.8 present the real time detectors; as discussed before
the inference speed of a detector on the model and architecture used. Many of the
improvements of real-time object detectors are ported from non-real time detectors once
new papers are published, so these can be seen as a "future" of where real-time object
detection could be in terms of accuracy. This makes it important to analyse not only real-
time detectors but also non-real time detectors. The backbone of traditional detectors
are typically CNN or RCNN based; with the development of new technologies such as
Transformer Neural Networks the future of object detection is taking a shift. In the 2022,
there seems to be a shift in paradigm to the use of Swin Transformers as a backbone for
object detectors [27], reaching SOTA results like DINO [28] which significantly reduces
its model size and pre-training data size while achieving better results compared to the
previous SOTA. However, at the time of writing this thesis, there is no current solution
for the use of Swin-Transformers use in real-time applications in object detection, since
its inference speed is still low (due to being a recent breakthrough). Mentioning this
type of algorithms is important, since it sets our eyes on a possible better solution in
the future; for example some sort of YOLO type detector with a transformer backbone.
The future of computer vision seems to be transformer based. Figure 2.9 shows the top
performing detectors (regardless of their inference speed).

In the following subsections multiple popular object detectors will be discussed.

P. A Azevedo Master Degree

12 2.Related work and State of the Art

Figure 2.9: mAP of top performing models in COCO dataset (regardless of being capable
of real-time inference ot not) (Adapted from [29]).

In summary: object detection model architectures

Object detectors can either be 2D or 3D; this thesis focuses on 2D object
detection. The 2D object detectors can either be one-staged or two-staged;
one-stage being faster than two-staged.

These object detectors are measured against a benchmark on different datasets.
The most popular benchmark and metric in recent papers is mAP measured in
the COCO dataset.

The current SOTA algorithms for real-time object detection are the YOLO
series.

2.2.4 Faster R-CNN

R-CNN was one of the first Deep Learning-based object detectors and used an efficient
selective search algorithm for ROI proposals as part of a two-stage detection [18]. Fast R-
CNN improved R-CNN low inference speed and accuracy. In this model the input image
is fed to a CNN, generating a feature map and ROI projection. These ROIs are then
mapped to the feature map for prediction using ROI pooling, but instead of inputting
the ROI to the CNN layers, Fast-RCNN uses the entire image directly to process the
feature maps to detect objects [30].

Faster R-CNN used a similar approach, but instead of using a selective search algorithm
for the ROI proposal, it employed a separate network that fed the ROI to the ROI pooling
layer and the feature map, which were then reshaped and used for predictions [13].
The Faster R-CNN introduces Region Proposal Networks (RPN) that share full-image
convolutional features with the detection network, this enables nearly cost-free region
proposals. An RPN is a fully convolutional network that simultaneously predicts object
bounds and object scores at each point. The RPN is trained end-to-end to generate
high-quality region proposals which are used by Fast R-CNN for detection. The authors
merged RPN and Fast-RCNN into a single network by sharing their convolutional features
with "attention" mechanisms. Essentially the RPN component tells the unified network

P. A Azevedo Master Degree

2.Related work and State of the Art 13

Figure 2.10: Faster R-CNN is a single, unified network for object detection. The RPN
module serves as the "attention" of this unified network [19].

where to look [19]. In Figure 2.10 we can how this RPN is incorporated.

2.2.5 Single-Shot Detector

Similar to YOLO, SSD is a one-stage detector. It discretizes the output space of bounding
boxes into a set of default boxes over different aspect ratios and scales per feature map
location. At prediction time, the network generates scores from the presence of each
object category in each default box and makes adjustments to the box to better match the
shape of the object. The authors of SSD managed to achieve a better mAP outperforming
Faster R-CNN [24].

2.2.6 EfficientDet

EfficientDet is a detector whose authors propose a weighted bi-directional feature pyramid
network (BiFPN), which allows easy and fast multi-scale feature fusion. In addition to
this, they propose a compound scaling method that uniformly scales the resolution,
depth, and width for all backbone, feature network, and box/class prediction networks
at the same time [31]. It achieves good accuracy but not as fast as YOLO algorithms.

2.2.7 The YOLO Series

The Original YOLO

The authors of YOLO [23] proposed a different approach to the existing object detectors
of the time. Although the models increased in accuracy each year, object detectors lacked
the speed to allow them to perform in real time. YOLO presented a new approach, instead
of re-purposing a classifier to perform object detection, YOLO [23] instead framed object
detection as a regression problem to spatially separated bounding boxes with associated
class probabilities. By doing so the entire object detection pipeline was turned into a

P. A Azevedo Master Degree

14 2.Related work and State of the Art

single network that could be optimized end-to-end directly on detection performance
(instead of having to maximize a classifier then perform classification with it).

YOLO, however, suffered from a many of limitations specially dealing with small
objects. Due to their size it is hard to separate them when they are present in groups.
YOLO works like a grid, and each grid can only detect a single object, so when objects
are presented in groups, it becomes harder to detect them. It also sacrifices accuracy for
inference speed so it is not as accurate as some of the other past SOTA models.

YOLO divides images into regular grids, as seen on Figure 2.11, and performs detection
and localization on those very same grids (Residual Blocks). These grids return three
things; the bounding box coordinate with respect to their cell coordinates, the object
label, and the probability that the object is in the cell grid [23].

Figure 2.11: YOLO [23] divides the image into an S × S grid and for each grid cell
predicts B bounding boxes.

This makes the algorithm fast and lowers computation cost since detection and
recognition is made in a single shot by the cells. One drawback of this approach is
that it creates duplicate predictions because each cell predicts a bounding box. So, many
times the same object is being predicted with multiple different bounding boxes. All
this "noise" is passed through a Non-Maximal suppression algorithm, suppressing the
bounding boxes that have lower probability scores. In summary, it divides the image
into grids of equal size, performs object detection and classification, and eliminates noise
with Non-maximal suppression. [32] That is, choosing the highest probability score and
suppress all the bounding boxes having the largest IoU with the current high probability
bounding box, then it repeats these stages in a loop until the final bounding boxes are
obtained as seen on Figure 2.12.

The architecture consists of three key components: the head, neck, and backbone.
The backbone is the part of the network made from convolutional layers to extract
key features from an image. These first layers are trained on a large dataset with low
resolution like ImageNet, then the neck uses those features with fully connected layers
to make predictions on probabilities and bounding boxes. Finally, there is the head of

P. A Azevedo Master Degree

2.Related work and State of the Art 15

Figure 2.12: Example of Non-maximal suppression [32].

the detector that can be interchanged with other layers with the same input shape for
transfer learning.

In summary: YOLO

YOLO introduced a one-stage detector capable of real time object detection with
resonable accuracy.

YOLOv2

Batch normalization is a technique used to train neural networks that prevents the
weights in the network from becoming imbalanced with extremely high or extremely
low values, since it adds normalization in the gradient process itself. This helps solve the
problems of exploding gradient and vanishing gradient, it also increases training speed
and reduces the ability of outlying large weights that will over influence the training
process. To fight the original YOLO’s low performance on small objects in groups,
YOLOv2 introduces batch normalization; this lead to improvements in convergence while
eliminating the need for other forms of regularization. On top of this, YOLOv2 also
introduces anchors. In the original YOLO if more than one object is located within the
cell YOLO would not be able to classify them both since one cell is only able to perform
one classification. On YOLOv2 [33] a single cell can perform multiple predictions since
it predicts five bounding boxes for each cell.

In summary: YOLOv2

Introduces anchors and batch normalization. This improved the YOLO
performance, especially on small objects.

P. A Azevedo Master Degree

16 2.Related work and State of the Art

YOLO900

YOLOv2 was trained on COCO, a dataset with 80 classes in very diverse scenarios that
became the standard metric to compare object detection models. In order to expand
the number of classes YOLOv2 could detect the authors of YOLO9000 [33] used labels
from both ImageNet and COCO, merging the classification and detection tasks to only
perform detection. It makes use of hierarchical classification where classes and their
sub-classes are represented in a tree-node based format. It provides a lower mAP than
YOLOv2, but can detect more than 9000 classes, making it a powerful algorithm.

In summary: YOLO900

Expands on the work of YOLOv2, allowing it to perform in many more classes.

YOLOv3

YOLOv3 [34] seeks to improve YOLOv2’s work by implementing modern CNNs that use
residual networks and skip connections. YOLOv3 used DarkNet-53 instead of DarkNet-
19 as a backbone. This architecture allows it to predict at three different scales, having
feature maps extracted from these layers. This further increases the performance of
YOLOv2 to detect smaller objects. YOLOv3 predicts 3 bounding boxes per cell (compared
to the five YOLOv2 predicts) but these are made at 3 different scales, so multiplying, it
adds up to a total of 9 anchor boxes.

In summary: YOLOv3

Improved YOLOv2 architecture using modern CNNs and multiple-scale
predictions.

YOLOv4

YOLOv4 adds weighted residual connections, Cross Mini Batch Normalization , cross
stage partial connections, self adversarial training and mish activation function to the
modern methods of regularization and data augmentation.

YOLOv4 authors initially considered the following backbones:

• CSPResNext50

• CSPDarknet53

• EfficientNet-B3

The first two are cross stage partial networks (CSP) based on DenseNet [35]. DenseNet
aimed to solve the problem of the vanishing gradient by establishing extra partial connections
between layers, as seen on Figure 2.13, to bolster feature propagation and to encourage
the network to reuse features (reducing the number of parameters).

EfficientNet [25] was created by Google Brain to study the scaling of ConvNets (depth,
input size, width etc.) as seen in Figure 2.14. This network managed to outperform other
networks of comparable size on image classification at the time. However, in the scenario

P. A Azevedo Master Degree

2.Related work and State of the Art 17

Table 2.1: Initial YOLOv4 backbone considerations [17].

Backbone
model

Input
network

resolution

Receptive
field size

Total
parameters

Average
size of layer

output
(W×H×C)

BFLOPs
(512×512
network

resolution)

FPS
(GPU
RTX
2070)

CSPResNext50 512×512 425×425 20.6M 1058 K 31 (15.5
FMA) 62

CSPDarknet53 512×512 725×725 27.6M 950 K 52 (26.0
FMA) 66

EfficientNet-B3 512×512 1311×1311 12.0M 668 K 11 (5.5
FMA) 26

Figure 2.13: DenseNet Architecture [35].

of object detection, the authors of YOLOv4 opted to implement CSPDarknet53 for the
backbone network.

Figure 2.14: EfficientNet Scaling [25].

P. A Azevedo Master Degree

18 2.Related work and State of the Art

To use the features provided by the backbone, YOLOv4 neck proposes the use of
PAN for feature aggregation and an additional SPP block to increase the receptive field
(region of space that a neuron or unit is exposed to in the input data) and separate out
the most important features from the backbone. A similar mechanism can be seen in
Figure 2.15.

Figure 2.15: Efficient Det FPN. In the case of YOLOV4 each of those entries P’ would
refer to one layer of the Neural Network [31].

The YOLOv4 head deploys the same head as YOLOv3 with the anchor-based detection
steps and three levels of detection granularity.

YOLOv4 adopts what the authors call a "Bag of Freebies" that is a bunch of changes
that directly improve the performance of the network without adding inference time in
production. Most of these changes have to do with data augmentation.

Since many of these techniques were already well known to the computer vision
community, the main contributions were related to the mosaic data augmentation as
seen on Figure 2.16. This type of augmentation tiles together four images, improving
the ability of the model to detect smaller objects. Aside from this type of augmentation,
the authors also added Self-Adversarial Training (SAT), which seeks to find the portion
of the image that the network most relies on during training.

When designing a neural network (or any type of object detector), a compromise
between inference speed and model complexity should be made. With this in mind,
the authors have provided what they call "Bag of Specials", these significantly increase
performance time while adding marginal increases to inference time, so they were deemed
worth the trade-off.

One of the changes made concerns the activation functions. Due to the nature of the
YOLOv4 architecture while passing the features from one layer to another, the problem
of vanishing gradient becomes relevant.

This makes it difficult to pass feature creations to their optimal input. As an
alternative, the authors have suggested the use of the Mish activation function. This
function a more smooth profile compared to ReLU as seen in Figure 2.17 and Figure
2.18 [36]. Given by the equation:

mish(x) = x · tanh(ln(1 + ex)) (2.6)

To separate the predicted bounding boxes DIoU NMS is used. This differs from

P. A Azevedo Master Degree

2.Related work and State of the Art 19

Figure 2.16: YOLOv4 Image augmentation examples [17].

Figure 2.17: Mish vs ReLU [36].

the original NMS since it considers not only the overlap area but also the central
point distance between boxes. This improves the algorithm performance for cases with
occlusion, since only using the overlap area produces false suppressions for cases with
occlusion [37].

For batch normalization the authors use Cross Mini-Batch Normalization and finally
they use DropBlock regularization; with the DropBlock, some sections of the image are
hidden from the first layer, forcing the network to learn additional features.

P. A Azevedo Master Degree

20 2.Related work and State of the Art

−3 −2 −1 0 1 2 3

0

1

2

3

x

y
(x
)

Mish
ReLU
Swish

Figure 2.18: Comparison between Mish and various activation functions.

In summary: YOLOv4

Shows a big increase in accuracy over YOLOv3. Uses CSP Networks as a backbone.
Utilizes "Bag of Frebies" and "Bag of Specials" to increase the model performance.

YOLOR

With the huge success of YOLOV4 more papers followed, more specifically YOLOR [38].
The goal of this network is to, with the same model, to be able to perform multiple

Figure 2.19: YOLOR -Multi purpose single unified network model [38].

tasks such as object detection, instance segmentation and panoptic segmentation with a
single network. To achieve this, the authors relied on what they call Explicit and Implicit
Knowledge fusing it on to a unified model, as seen on Figure 2.19. Explicit knowledge is
connected to the shallow layers of the neural network, which is directly correlated with
the observations that are made. Implicit knowledge is obtained by features in the deep

P. A Azevedo Master Degree

2.Related work and State of the Art 21

layers. For the explicit learning, the authors used a DETr (Detection Transformer), Non
Local Networks and a method of Kernel Selection. For implicit learning, they opted for
techniques such as:

• Manifold Space Reduction

• Kernel Alignment

• Offset refinement

• Anchor refinement

With these techniques, YOLOR achieved similar results in terms of accuracy but an
outstanding increase in performance speed compared to the other SOTA models as seen
in Figure 2.20 and Table 2.2.

Table 2.2: Comparison between State-Of-The-Art models and YOLOR on COCO test
dataset [38].

Method pre.a seg.b add.c AP test AP test
50 AP test

75 FPSV 100*

YOLOR 55.40% 73.30% 60.60% 30
ScaledYOLOv4 55.50% 73.40% 60.80% 16
EfficientDet 55.10% 74.30% 59.90% 6.5
SwinTransformer 57.70% - - -
CenterNet2 56.40% 74.00% 61.60% -
CopyPaste 57.30% - - -

a pre. : large dataset image classification pre-training.
b seg. : training with segmentation ground truth.
c add. : training with additional images.
* Measured on a TeslaV100 Graphics card

Figure 2.20: YOLOR comparison on MS-COCO Dataset [38].

P. A Azevedo Master Degree

22 2.Related work and State of the Art

YOLOv5

YOLOv5 [39] is a family of object detection architectures and models pre-trained on the
COCO dataset. Its architecture is similar to YOLOv4; having a backbone, neck and
head. For the backbone CSP (Cross Stage Partial Networks) are used (CSP-Darknet-
53) [40]. For the neck a version PANet is used [41] to extract feature pyramids, these,
help the model generalize on object scaling (big and small); in this case a CSP-PAN
and SPPF are used. The model head is identical to YOLOv3. It uses similar image
augmentation techniques including mosaic, copy paste random affines, etc. The authors
choose Leaky ReLU and Sigmoid activation function in the middle/hidden layers. There
is no official paper for the YOLOv5, however, some authors made some comparisons
between YOLOv4 and YOLOv5. The conclusions are close in terms of accuracy and
speed, although they vary from paper to paper and the size of the model. In the scope of
this dissertation, inference speed is a big factor and it is highly dependent on hardware.
The trade-off between inference speed and accuracy is the reason why some authors
like [42] opted for YOLOv5 over YOLOv4 for their autonomous aerial vehicle, since it
provided them with a better mAP with a similar inference speed. The work of [43] directly
compared YOLOv4, YOLOv5 and YOLOX. Here YOLOv5 outperformed YOLOv4-CSP
on terms of accuracy with the model of 640×640 resolution, however, this conclusion
varied depending on the resolution of the detector; as model resolution is increased
YOLOv4 seemed to outperform YOLOv5. In the context of this dissertation, perhaps
it is more fair to compare the lighter (smaller) models where YOLOv4 achieved higher
values in terms of accuracy, but YOLOv5 in terms of inference speed.

It is not clear in the literature which architecture (YOLOv4/v5) is better as they differ
on the dataset, hardware, size of the model and inference speed. A further discussion
of these topics will be made in the experiment section of this thesis. With the creation
of YOLOv5, significant value is added through its translation of the Darknet research
framework to the PyTorch framework. This, combined with the open source development,
has made YOLOV5 extremely easy to test with, train and deploy, making its usage very
friendly compared to other versions of YOLO.

In summary YOLOv5

Has similar performance to YOLOv4 but it is easier to use/train/deploy, which
allows for faster experimentation and quicker deployment.

YOLOX

YOLOX is an anchor-free version of YOLO with a simpler design but better performances.
The main difference between this model and traditional YOLO is that YOLOX is an
anchor-free algorithm that was built together with advanced detection techniques, i.e, a
decoupled head and SimOTA. This model achieves higher performance than the YOLOv4/v5.
A comparison between YOLOX and other algorithms can be seen in Figure 2.21.

Currently, additions of an anchor-free system are being made to YOLOR [38] to
create an even better model. As the results of the YOLOX and YOLOR papers were
published at a similar time, a fair comparison is not established by the authors in the
papers. However, by analyzing the mAP values in the published papers, YOLOR offers

P. A Azevedo Master Degree

2.Related work and State of the Art 23

Figure 2.21: Comparison of YOLOX with different SOTA algorithms [43].

higher values on the larger model. YOLOX, however, seems to perform very well on edge
devices using smaller model like YOLOX-Tiny and YOLOX-Nano. [43]

This version of YOLO seems to be improving, and the authors are currently working
on a version with a Swin Transformer-based backbone; another recent paper [44] has
shown that this is possible with important results. Currently, at the time of writing
this dissertation, the only transformer-based YOLO version is VitYOLO [44], but its
performance is very limited and does not compare to the other YOLO versions. However,
both YOLOX and YOLOR authors are running experiments with these transformer based
systems as it seems to be the direction were the future of computer vision is headed.

In summary YOLOX

Offers a boost in performance over YOLOv5 and YOLOv4 by using anchor-free
system and advanced detection techniques

Scaled-YOLOv4

Scaled-YOLOv4 [45] offers an extension to the traditional YOLOv4 allowing it to scale
effectively maintaining a good performance. First, the authors redesigned YOLOV4
proposing YOLOv4-CSP and later developed the scaled version.This scaling allows it to
be used in a range of different applications having a good compromise between speed and
accuracy, being able to operate in real time, as well as in embedded devices. The authors
designed a powerful scaling method for small models that can balance systematically the
computation cost and memory bandwith of a shallow CNN; and designed a simple yet
effective strategy for scaling a large object detector and analyzed the relations among all
model scaling factors.

In summary Scaled-YOLOv4

Extends the original YOLOv4 paper by giving it good scaling capabilities capable
of performing in different scenarios.

P. A Azevedo Master Degree

24 2.Related work and State of the Art

YOLO Series Summary

All these models and improvements can be hard to grasp and compare so, a small
simplified summary, is shown in Figure 2.22.

YOLO YOLOv2 YOLOv3 YOLOv4

Allows Real
Time Detection
Struggles with
small objects

Adds anchors
and Batch

Normalization.
Better with
small objects

Modern CNNs
as Backbone
Multiple scale
predictions.

Even better with
small objects

CSP Networks
Better Image
augmentation

Different
activation
function

DIoU NMS
Cross mini-Batch

Normalization
DropBlock

Regularization

Figure 2.22: An evolution of the YOLO series from YOLO to YOLOv4.

For the current SOTA of real time object detection, a small summary was also made
in Figure 2.23. The SOTA mark added refers to the largest and highest-performing model
of each algorithm (accuracy). There are many details to keep in mind when comparing
all these, especially regarding model size and inference speed, which is not addressed by
this simple diagram.

YOLOv5 Scaled-YOLOv4 YOLOX YOLOR

Not official
Similar metrics

to Yolov4,
Ease of use

Quick to run
experiments

Easy to deploy
on Edge/Mobile

A lot of community
support

Improves YOLOv4
performance.
Allows small

and big models
efficient scaling

Boost on
performance

over YOLOv5/v4
Original Releases

Anchor-free
Advanced Detection

Techniques

Applies both
Implicit and Explicit

Knowledge on a
Unified Model.

Similar Accuracy
to Scaled-YOLOv4.

A lot faster

SOTA

Figure 2.23: Comparison between more recent YOLO models.

A table comparing some of the models described in this chapter is provided by [13]
and shown in Table 2.3. The important thing to keep in mind is that all these inference

P. A Azevedo Master Degree

2.Related work and State of the Art 25

speed tests are not made on the same hardware and the author gives little descriptions
on how these were measured.

Table 2.3: Comparison between different 2D-3D models of object detection [13].

Name Year Type Dataset mAP Inference
rate (fps)

R-CNN 2014

2D

Pascal VOC 66% 0.02
Fast R-CNN 2015 Pascal VOC 68.80% 0.5
Faster R-CNN 2016 COCO 78.90% 7
YOLOv1 2016 Pascal VOC 63.40% 45
YOLOv2 2016 Pascal VOC 78.60% 67
SSD 2016 Pascal VOC 74.30% 59
RetinaNet 2018 COCO 61.10% 90
YOLOv3 2018 COCO 44.30% 95.2
YOLOv4 2020 COCO 65.70% 62
YOLOv5 2021 COCO 56.40% 140
YOLOR 2021 COCO 74.30% 30
YOLOX 2021 COCO 51.20% 57.8

Complex-YOLO 2018

3D

KITTI 64.00% 50.4
Complexer-YOLO 2019 KITTI 49.44% 100
Wen et al. 2021 KITTI 73.76% 17.8
RAANet 2021 NuScenes 62.00%

2.2.8 Datasets for object detection

When training Deep Learning models, choosing the correct dataset is a crucial task.
With the increasing interest in self-driving technologies, many new high-quality datasets
started to show up. Some of the most popular ones are KITTI, Apollo and BDD100k.
Some authors like [46] made a comparison between these datasets and found that the
best performing one was BDD100k. This is because there are more diverse situations
on the BDD100k compared to KITTI or most other datasets, since KITTI mostly uses
daily time pictures, the model fails to generalize in the real world. Table 2.4 offers a
good overview of BDD100k compared to other datasets [47].

Table 2.4: BDD100K Comparison with other street scene datasets [47].

KITTI City-
Scapes

Apollo-
Scape

Mapil-
lary BDD100k

Sequences 22 ∼50 4 N/A 100 000

Images 14 999
5000
(+2000) 143 906 25 000 120×106

Multiple Cities No Yes No Yes Yes
Multiple Weathers No No No Yes Yes
Multiple Times of Day No No No Yes Yes
Multiple Scene types Yes No No Yes Yes

P. A Azevedo Master Degree

26 2.Related work and State of the Art

In addition to this, BDD100k also offers a fair distribution of classes as seen in Figure
2.24, which prevents over-fitting the model and a better generalization, this is a problem
in some datasets like KITTI where the data distribution is not as good.

Bus Light Sign Person Bike Truck Motor Car Train Rider

102

104

106

16 505

265 906 343 777
192 262

10 229

42 963

4 296

1 021 857

179

6 461

In
st

an
ce

s

Figure 2.24: Statistical Distribution of object classes on BDD100k [47].

Deployment of Object Detectors in Autonomous Vehicles

Deep Learning-based detectors have many hardware challenges, mainly linked to the
fact that AVs typically use on-board embedded computers which have limited memory
availability and reduced processing capabilities due to stringent power caps, and high
susceptibility to faults [13]. Some techniques, however, have been proven to work in
improving the deployment efficiency like pruning, which is a widely used method for
reducing the model’s memory footprint and computational complexity. These techniques
been shown successful by some authors such as Wang et al. [48] who proposed a sparse
normalization of SSD models followed by a pruning of the channels with small scaling
factor and consequently by fine-tuning. Also, Zhao et al [49] successfully pruned YOLOv4
with some different techniques.

2.3 Multiple Object Tracking (MOT)

In this section the topic of object tracking is discussed. First, an introduction is made to
the key metrics used in the literature to compare different trackers; after this introduction,
a discussion on the SOTA algorithms of object tracking is conducted.

2.3.1 Key Metrics

MOTP - Multiple Object Tracking Precision

The Multiple Object Tracking Precision is the average dissimilarity between all true
positives and their corresponding ground truth targets. MOTP thereby gives the average
overlap between all correctly matched hypotheses and their respective objects and ranges
between 50% and 100% [50].

MOTP =

∑
t,i dt,i∑
t ct

(2.7)

where ct denotes the number of matches in frame t and dt,i is the bounding box overlap
of target i with its assigned ground truth object.

P. A Azevedo Master Degree

2.Related work and State of the Art 27

MOTA - Multiple Object Tracking Accuracy

The MOTA [51] is perhaps the most widely used metric to evaluate a tracker’s performance

MOTA = 1−
∑

t (FNt + FPt + IDSWt)∑
tGTt

(2.8)

Combining three sources of errors, where t is the index of frame and GT is the ground
truth object count. FN is the number of false negatives, IDSW is number of identity
switches the and FP is the number of false positives [50].

HOTA and IDF1

In addition to both of these metrics, HOTA (Higher Order Tracking Accuracy) and
IDF1 are also used. HOTA is a higher order metric for evaluating Multi-Object Tracking
composed of a family of sub-metrics. There are multiple sub-metrics each with multiple
equations required to calculate them. In order to save the reader from going unnecessarily
in depth into this one metric, these equations will not be shown. HOTA scores typically
align better with human visual evaluation of tracking performance [52]. The metric IDF1
is the ratio of correctly identified detections over the average number of ground-truth and
computed detections.

2.3.2 IOU Tracker

The Intersection-Over-Union (IOU) tracker uses the IOU values among the detector’s
bounding boxes between two consecutive frames to perform the association between
them or assign a new target ID if no match is found. This tracker includes a logic to
handle false positives and false negatives from the object detector. However, this can be
considered as the bare-minimum object tracker, which may serve as a baseline only to
compare other trackers [53].

2.3.3 NvDCF Tracker

NvDCF tracker is a visual tracker based on the discriminative correlation filter (DCF) [54]
which learns target-specific correlation filters and uses it to localize the same target in
the next frames. This correlation filter learning and localization is usually carried out on
a per-object basis in a typical MOT implementation, creating a potentially large number
of small CUDA kernel launches when processed on GPU. This inherently poses challenges
in maximizing GPU utilization, especially when a large number of objects from multiple
video streams are expected to be tracked on a single GPU. [53]

NvDCF addresses this issues since its GPU-accelerated operations are designed to
execute in batch processing mode to maximize the GPU utilization despite the nature of
small CUDA kernels in per-object tracking model.

The batch processing mode is applied in the entire tracking operations, including the
bounding box cropping and scaling, visual feature extraction, correlation filter learning,
and localization. This can be viewed as a similar model to the batched cuFFT (CUDA
Fast Fourier Transform) or batched cuBLAS (CUDA Basic Linear Algebra Subroutine)
calls, but it differs in the fact that the batched MOT execution model spans many

P. A Azevedo Master Degree

28 2.Related work and State of the Art

operations in a higher level. The batch processing capability is extended from multi-
object batching to the batching of multiple streams for even greater efficiency and
scalability.

This tracker is compatible with NVIDIA development kit, which makes it easier
to stack multiple detectors; this means taking the detection from a primary detector
(PGIE) and feed it to a secondary detector (SGIE). This will be further discussed in the
section talking about the NVIDIA Hardware and Software. Thanks to its visual tracking
capability, the NvDCF tracker can localize and keep track of the targets even when the
detector in PGIE misses them (i.e., false negatives) for potentially an extended period
of time caused by partial or full occlusions, resulting in more robust tracking. Shadow
Tracking is when a target is still being tracked in the background for a period of time
even when the target is not associated with a detector object. The enhanced robustness
characteristics of NvDCF allow the use of a higher maxShadowTrackingAge (max time
a object is being tracked in the background) for longer-term object tracking. In addition
to this, NvDCF also allows for PGIEs detection interval to be higher, only at the cost
of slight degradation in accuracy. In addition to the visual tracker module, the NvDCF
tracker employs a Kalman filter-based state estimator to better estimate and predict the
states of the targets [53].

NvDCF tracks each target by defining a search region around its predicted location in
the next frame large enough for the same object to be detected in that region according
to the following equations.

SearchRegion width = w + searchRegionPaddingScale ×
√
w × h (2.9)

SearchRegion height = h+ searchRegionPaddingScale ×
√
w × h (2.10)

Where the h and w are height and width of the previous frame object boundig box.
This tracker is proposed by NVIDIA and is part of the NVIDIA DeepStream SDK; this
SDK will be approached in greater detail in later chapters, this makes its integration
with NVIDIA hardware much simpler than a normal tracker, on the other hand, there
is currently no published paper with any metrics to compare it to other SOTA trackers;
however, it is described to have comparable performance to DeepSORT according to
NVIDIA Documentation.

2.3.4 DeepSORT Tracker

Simple Online and Real-time Tracking (SORT) is a pragmatic approach to multiple object
tracking with a focus on simple effective algorithms [55]. It performs Kalman filtering in
image space and frame-by-frame data association using the Hungarian method with an
association metric that measures bounding box overlap, achieving favorable performance
at high frame rates. This way, SORT manages to combine location and motion cues
in a simple way [56]. Despite this high performance, SORT returns a high number of
identity switches. DeepSORT authors improved on the classical SORT by integrating
appearance information into the SORT algorithm; by doing this, they are able to track
objects through longer periods of occlusions, reducing the number of identity switches.
This is done through an offline pre-training stage where a deep association metric is

P. A Azevedo Master Degree

2.Related work and State of the Art 29

learned on a large scale person re-identification dataset. These additions to the original
SORT improved identity switches by 45%.

2.3.5 BYTE and ByteTrack Tracker

Most methods obtain identities by associating detection boxes whose scores are higher
than a threshold. The objects with low detection scores, e.g. occluded objects, are
simply town away, which brings non-negligible true objects, missing and fragmented
trajectories. The authors of [56] propose an association method that tracks by associating
almost every detection box instead of only the high score ones. Utilizing similarities
with tracklets (small set of paths associated with individual detections in consecutive
frames) to recover true objects and filter out the background detection. This method
achieved an improvement in tracker performance on a large number of SOTA trackers.
The authors in [56] proposed a new tracker named ByteTrack, that achieved state-of-
the-art performance on MOTA17 and MOTA20 with 30 FPS running on a V100 GPU,
as shown in Figure 2.25. ByteTrack also achieved SOTA results on MOT20, HiEve and
BDD100k. This tracker is built by equipping the high-performance detector YOLOX [43]
with the association method BYTE.

Figure 2.25: MOTA-IDF1-FPS comparisons of different trackers in the test set of MOT17.
The horizontal axis is FPS (running speed), the vertical axis is MOTA, and the radius
of circle is IDF1. ByteTrack achieves 80.3 MOTA, 77.3 IDF1 on MOT17 test set with
30 FPS running speed, outperforming all previous trackers [56].

One of the great contributions of this paper come from the way it performs the data
association. To efficiently track, data association is an essential task that computes the
similarity between tracklets and detection boxes, leveraging different strategies to match
them according to the similarity. SORT combines location and motion cues by adopting a
Kalman filter to predict the location of the tracklets in the new frame, then computes the
IoU between the detection boxes and the predicted boxes as the similarity. DeepSort [55]
adopts a stand-alone RE-ID model to extract appearance features from the detection
boxes. [56]. After similarity computation, the matching strategy assigns identities to the

P. A Azevedo Master Degree

30 2.Related work and State of the Art

Figure 2.26: Examples of the method proposed in [56] which associates every detection
box. (a) shows all the detection boxes with their scores. (b) shows the tracklets obtained
by previous methods which associates detection boxes whose scores are higher than a
threshold, i.e. 0.5. The same box color represents the same identity. (c) shows the
tracklets obtained by BYTE method. The dashed boxes represent the predicted box
of the previous tracklets using Kalman Filter. The two low score detection boxes are
correctly matched to the previous tracklets based on the large IoU. [56].

objects. This can be done by the Hungarian Algorithm [57] or greedy assignment [58].
DeepSORT [55] proposes a cascaded matching strategy that first matches the detection
boxes to the most recent tracklets and then to the lost ones. Many authors proposed
even different methods to perform the matching, these methods, however, focus on how
to design better association methods. The authors of [56] argue that, the way detection
boxes are utilized, determines the upper bound of data association, so the authors focus,
instead, on how to make full use of detection boxes from high scores to low ones. The
authors call this new data association method BYTE. Using all the detection boxes; they
first associate the high score detection boxes to the tracklets. Figure 2.26 illustrates the
difference this data association method provides. Doing so, some tracklets get unmatched
because they do not match to an appropriate high score detection box, which usually
happens when occlusion, motion blur or size changing occurs. The authors then associate
the low score detection boxes and these unmatched tracklets to recover the objects in low
score detection boxes and filter out background, simultaneously. BYTE is very flexible
and can be implemented in combination with other trackers/detectors. In the paper
the authors compared DeepSORT with BYTE by using a light YOLOX model with
a modified backbone; the data association method BYTE combined with the detector

P. A Azevedo Master Degree

2.Related work and State of the Art 31

YOLOX is the foundation of what the authors call ByteTrack. This paper shows high
improvement over the current SOTA and opens new doors to explore tracking with other
SOTA detectors such as YOLOv5 and YOLOR.

2.3.6 OC-SORT

Most of current motion models in Multiple Object Tracking (MOT) typically assume that
the object motion is linear in a small time window and needs continuous observations, so
these methods are sensitive to occlusions and non-linear motion, requiring high frame-
rate videos. The work in [59] shows that a simple motion model can obtain state-
of-the-art tracking performance without other cues such as appearance. OC-SORT [59]
provides multiple innovations to SORT, it adds an Observation-centric Online Smoothing
(OOS) strategy to alleviate the error accumulation in the Kalman Filter due to lack of
observations. In addition to this, the authors also incorporated the direction consistency
of tracklets in the cost matrix for better matching between tracklets and observations.
Finally to deal with the case of objects being untracked due to occlusion in a short time
window, the authors proposed to recover them by associating their last observations with
the new observations, which they refer to as Observation-Centric Recovery (OCR). The
authors named this method Observation-Centric SORT or OC-SORT. It remains simple,
online, and real-time but improves robustness over occlusion and non-linear motion,
achieving values of 63.2 and 62.1 HOTA on MOT17 and MOT20 [59].

2.3.7 StrongSORT

The authors of [60] revisited the classical tracker DeepSORT and upgraded it from
various aspects, i.e, detection, embedding and association. The resulting tracker, called
StrongSORT sets new HOTA and IDF1 records on MOT17 and MOT20. In addition to
this the authors also propose two plug-and-play algorithms to further refine the tracking
results AFLink and Gaussian-smoothed interpolation (GSI). Applying both of this to
StrongSORT originated StrongSORT++ which ranks first on MOT17 and MOT20 in
terms of HOTA and IDF1 metrics as shown on Figure 2.27 and Table 2.5 [60].

Figure 2.27: IDF1-MOTA-HOTA comparisons of state-of-the-art trackers with
StrongSORT and StrongSORT++ on MOT17 and MOT20 test sets [60]. The radius
of the circle is HOTA.

P. A Azevedo Master Degree

32 2.Related work and State of the Art

Table 2.5: Comparison with state-of-the-art MOT methods on the MOT20 test set. The
"*” represents [60] reproduced version. The two best results for each metric are bolded
and highlighted in red and blue [60].

Method Ref. H
O

T
A

(↑) ID
F
1

(↑) M
O

T
A

(↑) A
ss

A

(↑) D
et

A

(↑) ID
s

(↓) F
P

S

(↑)
SORT ICIP2016 34 39.8 43.1 31.8 37 4,852 143.3
DAN TPAMI2019 39.3 49.5 52.4 36.3 43.1 8,431 6.3
TPM PR2020 41.5 52.6 54.2 40.9 42.5 1,824 0.8
DeepMOT CVPR2020 42.4 53.8 53.7 42.7 42.5 1,947 4.9
Tracktor++ ICCV2019 44.8 55.1 56.3 45.1 44.9 1,987 1.5
TubeTK CVPR2020 48 58.6 63 45.1 51.4 4,137 3
ArTIST CVPR2021 48.9 59.7 62.3 48.3 50 2,062 4.5
MPNTrack CVPR2020 49 61.7 58.8 51.1 47.3 1,185 6.5
CenterTrack ECCV2020 52.2 64.7 67.8 51 53.8 3,039 3.8
TransTrack arxiv2021 54.1 63.5 75.2 47.9 61.6 3,603 59.2
TransCenter arxiv2021 54.5 62.2 73.2 49.7 60.1 4,614 1
GSDT ICRA2021 55.5 68.7 66.2 54.8 56.4 3,318 4.9
PermaTrack ICCV2021 55.5 68.9 73.8 53.1 58.5 3,699 11.9
MAT NC2022 56 69.2 67.1 57.2 55.1 1,279 11.5
CSTrack arxiv2020 59.3 72.6 74.9 57.9 61.1 3,567 15.8
FairMOT IJCV2021 59.3 72.3 73.7 58 60.9 3,303 25.9
ReMOT IVC2021 59.7 72 77 57.1 62.8 2,853 1.8
CrowdTrack AVSS2021 60.3 73.6 75.6 59.3 61.5 2,544 140.8
CorrTracker CVPR2021 60.7 73.6 76.5 58.9 62.9 3,369 15.6
RelationTrack arxiv2021 61 74.7 73.8 61.5 60.6 1,374 8.5
TransMOT arxiv2021 61.7 75.1 76.7 59.9 63.7 2,346 1.1
GRTU ICCV2021 62 75 74.9 62.1 62.1 1,812 3.6
MAATrack WACVw2022 62 75.9 79.4 60.2 64.2 1,452 189.1
BytcTrack arxiv2021 63.1 77.3 80.3 62 64.5 2,196 29.6
DeepSORT* ICIP2017 61.2 74.5 78 59.7 63.1 1,821 13.8
StrongSORT 63.5 78.5 78.3 63.7 63.6 1,446 7.5
StrongSORT+ 63.7 79 78.3 64.1 63.6 1,401 7.4
StrongSORT++ 64.4 79.5 79.6 64.4 64.6 1,194 7.1

P. A Azevedo Master Degree

Chapter 3

Experimental Infrastructure

In this chapter, the experimental infrastructure used in the development of this dissertation
is discussed; both software and hardware components utilized are described. It starts
with an introduction to the NVIDIA hardware utilized and its associated SDKs, followed
by an analysis of all the software tools utilized to train and deploy the models.

3.1 NVIDIA SDK

Self-driving cars and other autonomous machines benefit from portable compact edge
devices, these are, physical devices where the algorithms run at the local level (where
the data is being collected, as opposed to a cloud remote service). It is not easy to fit
a big computer into many types of autonomous systems, which is especially true when
talking about cars; so, high-capability portable solutions are needed to deploy algorithms
that can run in real-time. For this dissertation a specific hardware was provided. This
hardware comes with several advantages and disadvantages which are explored in this
section.

Jetson AGX Xavier

The NVIDIA Jetson AGX Xavier developer kit shown in Figure 3.1 is a solution made
by NVIDIA to easily deploy end-to-end AI robotics applications for robots, drones, and
other autonomous machines. It is supported by NVIDIA JetPack and DeepStream SDKs,
as well as CUDA, CUDNN and TensorRT. It offers the performance of a high-end GPU
workstation, in under 30 W, capable of more than 30 trillion operations per second,
perfect for Deep Learning and computer vision tasks.

JetPack

JetPack SDK is the SDK pre-packaged with any Jetson NVIDIA device; it includes:

• Sample Linux filesystem with NVIDIA drivers

• AI and Computer Vision libraries and APIs

• Developer tools

JetPack also comes with following Libraries:

33

34 3.Experimental Infrastructure

Figure 3.1: NVIDIA Jetson Xavier AGX Development Kit.

• TensorRT and cuDNN for high performance Deep Learning applications

• CUDA for GPU accelerated applications across multiple domains

• Multimedia API package for camera applications and sensor driver development

• VisionWorks and OpenCV for visual computing applications

JetPack uses L4T (Linux for Tegra), an NVIDIA Jetson Linux driver package with
Linux operating system based on Ubuntu 18.04 and comes with CUDA-X accelerated
libraries and APIs for Deep Learning, Computer Vision, and Accelerated Computing.

JetPack includes TensorRT which is an SDK for high performance Deep Learning
inference; it includes a Deep Learning inference optimizer that delivers low latency and
high throughput, this can be used for example, in image classification, segmentation,
and object detection Neural Networks. NVIDIA TensorRT-based models perform up to
36 times faster than CPU-only platforms during inference [61]. Figure 3.2 shows the
TensorRT pipeline in the deployment of a Neural Network.

The cuDNN (CUDA Deep Neural Network library) provides high-performance primitives
for Deep Learning frameworks. It provides highly tuned implementations for standard
routines such as forward and backward convolution, pooling, normalization, and activation
layers. Along with these features JetPack also comes with the support of DeepStream
SDK.

DeepStream SDK

The NVIDIA DeepStream SDK is a streaming analytics toolkit developed by NVIDIA.
The DeepStream SDK accelerates development of scalable applications, making it easier
for developers to build core deep learning networks instead of designing end-to-end
applications from scratch. The SDK is an extensible collection of hardware-accelerated
plugins that interact with low-level libraries to optimize performance. Figure 3.3 shows
a simplified scheme of the DeepStream pipeline.

DeepStream introduces Deep Neural Networks and other complex processing tasks
directly into a stream processing pipeline. This enables near real-time analytics on video
and other sensor data. A DeepStream "application" is a set of modular plugins connected

P. A Azevedo Master Degree

3.Experimental Infrastructure 35

Figure 3.2: NVIDIA TensorRT pipeline.

Figure 3.3: Deepstream Workflow [53].

to form a processing pipeline. Each plugin represents a functional block. Examples of
these functional blocks include multi-stream batching, inference using TensorRT, and
decoding. Hardware accelerated plugins interact with the underlying hardware to deliver
maximum performance [53].

As an added bonus, the DeepStream SDK comes packed with integrated trackers.
These trackers are made compatible with DeepStream by NVIDIA. This brings numerous
advantages since it means they are optimized to work on the DeepStream pipeline with
inference speed and accuracy in mind; in addition to this, it makes the integration
of different trackers with different detectors much easier. Considering the amount of
detectors and trackers required to be tested to take meaningful conclusions, DeepStream
is a great candidate technology to develop the final solution.

Since all the connections between these low-level libraries, SDKs and hardware technicalities,
can be hard to understand, a simplified summary of the of the Jetson hardware can be
seen in Figure 3.4.

P. A Azevedo Master Degree

36 3.Experimental Infrastructure

Figure 3.4: Jetson systems summary scheme.

TAO Toolkit

The NVIDIA TAO Toolkit is a CLI (command line interface) and Jupyter notebook based
solution, that abstracts away the AI/Deep Learning framework complexity, allowing the
fine-tuning on high-quality NVIDIA pre-trained AI models with only a fraction of the
data compared to training from scratch [53]. With all these topics introduced a simple
summary of the DeepStream SDK is provided in Figure 3.5.

P. A Azevedo Master Degree

3.Experimental Infrastructure 37

AI optimized to
stream video

Some models and
trackers pre-included

Uses TensorRT

Multiple source
inference

TAO toolkit

Image Scaling

Optimize video
decode/encode

Seamless Development
in C++/Python

Faster inference speed

Great to use multiple camera angles

Easier to train/deploy models

Figure 3.5: DeepStream SDK simplified summary scheme.

3.2 Camera Hardware and Software Tools

JupyterLab

JupyterLab is a web-based interactive development environment for notebooks, code,
and data. When training Deep Learning models and deployment pipelines, a lot of re-
occurring commands and data plots need to be done. Jupyter-Notebooks with Python
snippets allow for a quick seamless interaction with Python code and Python plots.

DeepLar

The Laboratory of Automation and Robotics (LAR) has a computer, shown in Figure 3.6,
explicitly crafted for Deep Learning tasks; because of its high GPU power, this computer
allows for the training of large Deep Learning models.

The computer specs are the following:

• 4x NVIDIA RTX2080TI

• AMD Thradripper 2850 Extreme

• 128Gb DDR4 RAM

• 512Gb SSD + 4Tb HDD

Cameras

Multiple tests were done with different cameras, some of them were performed with the
e-CAM130-CUXVR. Four Synchronized 4K Cameras for Jetson AGX Xavier shown in
Figure 3.7. These cameras have up to four 13 MP 4-Lane MIPI CSI-2 camera boards, and

P. A Azevedo Master Degree

38 3.Experimental Infrastructure

Figure 3.6: DeepLar Computer.

Figure 3.7: e-CAM130-CUXVR plugged into NVIDIA Jetson AGX Xavier.

4-lane MIPI camera modules that can be synchronously streamed in 4K resolution, which
will be the best fit for a high-end multi-camera solution; they also offer Gstreamer-1.0
support for video recording and network streaming [62].

SSD

To adress the AGX Xavier low available memory storage problem, a NVMe M2 SSD was
installed and mounted.

PyTorch

PyTorch is an open-source machine learning framework that accelerates the path from
research prototyping to production deployment. This framework was chosen due to its
"dominance" in the research field. According to a study data from "paperswithcode",
in March 2022, 63% of the papers submitted utilized PyTorch while only 7% utilized
TensorFlow [63]. Most recent papers have PyTorch implementations, therefore PyTorch

P. A Azevedo Master Degree

3.Experimental Infrastructure 39

was selected over TensorFlow as the framework of choice. This came with the added
bonus of having containers developed by NVIDIA that can be used as a base to deploy
the final solution.

Docker and NVIDIA Docker

Installing libraries, frameworks, packages or compilers sometimes can be difficult, especially
when working with different computer architectures. Docker uses OS-level virtualization
to deliver software in packages called containers. These containers can be used to quickly
deploy code across machines and often eliminate the problem of complicated installations
when setting up a development environment. Docker proved especially helpful when
training multiple Deep Learning algorithms, which required different dependencies /
different PyTorch versions and different compilers. These are problems that could not
be easily solved with typical virtual environments. It also allowed quick deployment and
testing on Jetson AGX Xavier and DeepLar. To utilize the power of DeepLar’s GPUs
inside the Docker containers, nvidia-docker had to be installed.

Notion

Notion is a project management and note-taking software designed to help members of a
company or organization coordinate deadlines, objectives, and assignments for the sake
of efficiency and productivity. In the context of this dissertation, it was used as a tool to
communicate between the student and the professor. Multiple documentation files were
written on it, including guides, notes, and a database with the model’s results. This was
chosen over a conventional blog due to its ease of use, snippet of code integration, and
automatic web deployment/markdown/HTML exports. For further reference check the
"Journal"1 created.

WSL2

Windows Subsystem for Linux 2 (WSL2) lets developers run a GNU/Linux environment
including most command-line tools, utilities, and applications directly on Windows,
unmodified, without the overhead of a traditional virtual machine or dual-boot setup.
Since the laptop used on this dissertation had some hardware limitations and incompatibilities
with the old Ubuntu versions needed to work with the Jetson (due to Unity / NVIDIA
incompatibilities), WSL2 was used. Doing so, avoided the need for dual booting, allowing
rapid development, seamlessly switching through Ubuntu versions, and sharing of the
Windows/Linux file system.

SSH Workflow

A good workflow needed to be established to efficiently train multiple models with
multiple dependencies. Remote connection to the DeepLar was required, as well as
docker containers with the numerous packages needed to train each algorithm. A remote
connection through the Host and Remote PC was established through SSH, where the

1https://narrow-sled-25f.notion.site/d86245b298de4d6c90620a76004c87d4?v=
9531e3a47bb04e8fba0672138e26e524

P. A Azevedo Master Degree

https://narrow-sled-25f.notion.site/d86245b298de4d6c90620a76004c87d4?v=9531e3a47bb04e8fba0672138e26e524
https://narrow-sled-25f.notion.site/d86245b298de4d6c90620a76004c87d4?v=9531e3a47bb04e8fba0672138e26e524
https://narrow-sled-25f.notion.site/d86245b298de4d6c90620a76004c87d4?v=9531e3a47bb04e8fba0672138e26e524

40 3.Experimental Infrastructure

Remote PC had the GPUs, which were accessed with Docker. A visual chart of this can
be seen in Figure 3.8.

Local
computer

Remote
host

GPU
Docker

ssh

Figure 3.8: SSH Remote Connection Workflow.

W&B – Weights and Bias

With the current DeepLar setup it was impossible to analyse the model metrics in real-
time; first, the user would have to wait until the training was finished, then create the
plots, and then transfer them over to a local PC to open the plots. To allow researchers
to collaborate and respond to the model metric easily, a W&B integration was done on
DeepLar. This platform allows the user to access the plots of the model in real time,
check GPU usage and allow multiple users to collaborate on interactive plots (with zoom
and editable axis capability) maintaining all the information that would be lost in the
typical image file plot. For further references on how to set up a Weights and Bias work
environment check the official W&B documentation2.

2https://wandb.ai/site

P. A Azevedo Master Degree

https://wandb.ai/site
https://wandb.ai/site

Chapter 4

Solution, Experiments and Results

This chapter contains all the tests and procedures used to develop the final solution; this
includes an in-depth description of all the choices taken based on the results of the tests.
The chapter starts with the preliminary tests and set-ups, which includes an explanation
of the technology stacks used and the set-up of the workflow environment. In addition
to this, since there are several dependencies limitations and conflicts that may appear
with the hardware utilized, some preliminary tests were performed. The aim of these
tests was to determine which algorithms could be successfully deployed in the NVIDIA
Jetson AGX Xavier and evaluate their inference speed.

With the results of these tests, some model architectures were selected based on their
inference speed. The training of these models and all the data pre-processing required
to train them are presented in the following subsections. Finally, the results of the
deployment of these models is shown in the last section, this includes the creation of the
necessary engines, the implementation of the tracking algorithms and a qualitative/quantitative
analysis of the solution proposed.

4.1 Preliminary Tests

When designing a solution for the problem of object detection in tracking in ATLASCAR2,
multiple things have to be considered. The desired properties of the solution for this thesis
would have in mind the following:

• Find a solution that optimizes the unique features of the hardware used.

• Find an optimal trade-off between accuracy and speed.

• Find a solution with longevity (allowing future updates).

• Find a solution that allows easy sharing of metadata (for further development of
other robotic systems).

• Within the scope of a given solution, optimize it and fine-tune it for better performance.

4.1.1 Memory Problems

With these purposes in mind, the first step was to analyze the characteristics of the
Jetson AGX Xavier. A summary of this analysis is shown in Figure 4.1. Since the

41

42 4.Solution, Experiments and Results

Jetson AGX Xavier has some unique characteristics and custom NVIDIA optimization
technologies, performing an analysis on its characteristics is important when deciding
which technologies to use and which development methodologies to use.

Optimized for
Deep Learning

DeepStream Compatible

Has only 30GB
Memory Space

Makes it harder to
test multiple models

Can be fixed with
the addition of a SSD

Very portable. Ideal for
robotic applications.

Has Jetpack

Figure 4.1: Summary of Jetson AGX Xavier characteristics.

One of the problems linked with this equipment is the low storage memory, this
makes it harder to compile and test multiple models or even impossible to install the
dependencies needed to run some of them. In addition to this, due to the different system
architecture of the Jetson, even if there is enough space to install the dependencies, their
installation is still difficult or sometimes impossible due to incompatibilities. To address
this issue, first, an SSD was installed and mounted on the Jetson AGX Xavier. After
this installation, some issues remain. Even though model files can be booted from the
SSD, all the installation requirements (packages, libraries, etc.) are still being installed
into the main storage drive and their installation is still a difficult process.

To fix this, Docker containers were used to set up all the dependencies needed, and a
mapping was created from the Docker Daemon directly to the SSD storage, allowing the
deployment of multiple containers with the required libraries all directly from the SSD,
solving the storage problem and the dependencies installation problem.

4.1.2 Deployment Technology Decision

After addressing the storage problem, the next stage was to determine the technology
stacked in which to deploy the final solution. There are multiple options for this stack,
the code could be deployed directly, using raw PyTorch, or using an optimization engine
such as TensorRT combined with an optimized camera streaming pipeline, such has
DeepStream. This choice is important because it drastically affects performance speed,
the development decisions, and the time required to implement the algorithms. With
real-time optimized camera inference in mind an analysis was performed on whether or
not DeepStream should be used; the results of this analysis are summarized in Figure
4.2.

The conclusion was that, to develop a flexible code with longevity, choosing DeepStream
would provide great benefit. The DeepStream pipeline works like "Lego modules", which
makes it easier to swap a portion of the code (for example a detector or a tracker) while
keeping the rest of the pipeline intact; this abstraction lowers the code complexity and
allows solutions to evolve over the years more easily without breaking the entire pipeline.
As the technology progresses, more and more models will be added to the DeepStream
SDK; these can be swapped with the ones used in this dissertation, and the same goes

P. A Azevedo Master Degree

4.Solution, Experiments and Results 43

Figure 4.2: Possible solution path summary on whether to use or not to use DeepStream.

for the trackers. With this approach, the code written can be updated frequently with
the most recent algorithms and models with minimal effort.

It is worth keeping in mind that many of the solutions tested in this thesis were not
included in the DeepStream SDK and custom implementations were used. However, it is
expected that these algorithms will eventually be implemented in the DeepStream SDK
since it is in NVIDIA’s best interest to keep updating its products. Since DeepStream is
specifically designed to optimize the streaming of video services on NVIDIA hardware,

P. A Azevedo Master Degree

44 4.Solution, Experiments and Results

choosing DeepStream maximizes the hardware capabilities.
Multiple camera testing was also in the scope of this dissertation; deploying multiple

camera streams outside DeepStream requires additional configurations and writing additional
code for each specific algorithm. In addition to this, doing the implementation manually
from scratch can risk a possible bottleneck in the inference speed when the multiple
camera streams are not optimized on different computer threads. Considering the time
frame of this thesis, developing code for multiple camera inferences for each specific
algorithm would be too time-consuming, taking time away from more important things
such as optimizing the models and running different experiments to determine the best
trade-offs between speed and accuracy. The DeepStream SDK also comes with pre-
compatible SOTA trackers and a tracker inference plugin; this makes it easy to implement
different trackers with different detectors; the three trackers included are NvDCF, IoU
and DeepSORT. Since this thesis aims to find the best solution for object detection and
tracking, testing different models with different trackers is necessary; this makes using
DeepStream the best choice to make it possible.

4.2 Neural Network training and data pre-processing

This section addresses all the topics related to the training of the Neural Networks as
well as all the data pre-processing required to train them.

4.2.1 Pre-trained models inference tests

After the decision to use DeepStream was made, the next logical step was to test the
models, presented in the SOTA chapter, that have DeepStream compatibility and have
reasonable accuracy. The results of the DeepStream deployment of TensorRT FP32
(floating point precision of 32 bits) models with a video stream are shown in Table 4.1.

During these tests, different inference intervals were tested; this means turning the
detector off for a specific batch interval then turning it on again. A few important things
to keep in mind are that the mAP presented is evaluated in the COCO dataset with
the pre-trained models offered by some of the authors, and not the on an urban driving
dataset like BDD100K. The Faster-RCNN with a VGG16 backbone pre-trained model
had no mAP provided by the author; however, through a qualitative analysis, the model
was discarded from further evaluations since many detections were missing despite its
higher resolution; in addition to this, the FPS were very low. One of the models (yolov5-
n6) could not infer in the DeepStream pipeline, possibly due to some incompatibility in
the model architecture and the DeepStream inference plugin. Through this early analysis,
it was concluded that:

• YOLOR-CSP* ,YOLOv5-m and Scaled-YOLOv4 were the best model architecture
options to consider.

• Changing the inference interval drastically boosts the FPS.

• Resolutions higher than 640 pixels wide are not the best fit since they can only
perform at low FPS using the Jetson AGX Xavier.

• When changing the resolution of YOLOv4, there seems to be a considerable increase
in speed when dropping the resolution from 608x608 to 512x512.

P. A Azevedo Master Degree

4.Solution, Experiments and Results 45

Table 4.1: Initial Inference Speed Tests. mAP@50 is the mAP value measured on the
COCO datasets of these pre-trained weights provided by the original authors. Int means
the Inference interval (On-Off). NW means "Non-Working"; ND means "No Detections".

Model Name Algorithm Reso-
lution

FPS
Int=0

FPS
Int=2

mAP@50
1

yoloR_p6 yolor 1280 4.44 13 73.30%
yoloR_csp_X* yolor 512 10.75 31.84 69.90%
yoloR_csp_X yolor 512 10.83 31.73 69.60%
yoloR_csp yolor 512 19.44 53.39 67.60%
yoloR_csp* yolor 512 19.35 53.83 68.70%
yolov4-csp-x-swish Scaled yolov4 640 19.43 54.15 69.90%
yolov4-p6 Scaled yolov4 1280 2.17 6.85 72.10%
yolov4-csp-swish Scaled yolov4 640 11.3 32.18 68.70%
yolov4-csp Scaled yolov4 512 19.55 52.44 64.80%
yolov4-csp Scaled yolov4 640 10.88 31.69 67.40%
yolov4 yolov4 608 10.11 29.33 65.70%
yolov4 yolov4 512 17.15 47.4 64.90%
yolov4 yolov4 416 20.14 55.6 62.80%
yolov4 yolov4 320 27.15 60.69 60 %
yolov4-tiny yolov4-tiny 416 60.27 60.93 40.20%
yolov5-n yolov5 640 60.3 61.6 45.70%
yolov5-s yolov5 640 53.56 60.47 56.80%
yolov5-m yolov5 640 22.17 60.43 64.10%
yolov5-l yolov5 640 12.1 35.31 67.30%
yolov5-n6 yolov5 1280 NW ND 54.40%
Faster-RCNN VGG16 faster-rcnn 1920×1080 7.81 14.4 -

1 Measured on the COCO dataset.
* The "*" is how the authors of [38] assigned the new training strategy they are currently
developing.

4.2.2 Data pre-processing

The COCO dataset includes the traffic object classes (car, pedestrian, traffic sings, etc.)
so, in theory, the COCO pre-trained weights could be used on the final solution. However,
COCO was not created with the urban driving scenario in mind, due to this, it does not
include the different weather conditions and extreme edge cases that are normally faced
in a real life urban environment. For this reason, choosing a large dataset, with different
scenarios is important for model accuracy in a real life scenario.

According to the dataset analysis made in Chapter 2, BDD100k was a great candidate
for the training and validation of the models. So, this ended up being the chosen dataset
for this dissertation. It is important to select a dataset that reflects an urban scenario
since this is the environment ATLASCAR2 will be driving at.

The BDD100K dataset requires some preparation to be trained with YOLO algorithms;
some of the YOLO implementations are on Darknet (an open-source Neural Network
framework built in C by the author of the original YOLO) and the others on PyTorch;

P. A Azevedo Master Degree

46 4.Solution, Experiments and Results

YOLOv4 Darknet uses a different format from Scaled-YOLOv4 PyTorch, which uses a
different format from YOLOv5 PyTorch and YOLOR. So, conversion scripts had to be
created to pre-process these labels into the specific algorithms/frameworks formats.

BDD100K
Format

(Modified Darknet)
Scaled-YOLOV4

(VOX Format)
YOLOX

(Darknet)
YOLOV4

(Modified Darknet)
YOLOv5

(Modified Darknet)
YOLOR

Figure 4.3: Format conversion needed to train each different YOLO from BDD100K.

As seen in Figure 4.3, each YOLO has its own format; in the case of YOLOv5, YOLOR
and Scaled-YOLOv4, the format is the same; this format rises from the conversion of the
Darknet framework to PyTorch by YOLOv5 Authors. A specific Darknet format must
be used to train YOLOv4; on the other hand, YOLOX uses the VOX dataset format. A
script to convert to each of these formats was created. With this script, the conditions
to train the algorithms were set.

Portainer and Dockerized YOLOs with W&B

The training rig provided for this thesis was DeepLar, so some setup work had to be done
in order to train the algorithms. DeepLar is installed with OpenSuse and some legacy
versions of required packages/libraries like pip and Python. To train some of these
algorithms newer versions had to be installed; on top of this, since some of the YOLOs
require the installation of the mish activation function with CUDA support (to allow the
GPUs to be used during training), creating a simple python virtual environment was not
enough since extra NVIDIA drivers had to be installed. Installing these packages/drivers
on a normal computer would be feasible; however, when dealing with a server utilized
by multiple people, the odds of an installation corrupting or breaking the entire system
are large. To address this issue, a Docker-Based solution was selected. With the type
of virtualization provided by Docker, each individual using DeepLar could work with
a PyTorch image with their respective libraries without worrying about breaking the
system. After this setup, Docker containers were created with the dependencies of each
of the YOLOs pre-selected before; in addition to this, Docker-Volumes were created
containing the dataset; this way, the dataset could be accessed inside the containers.

DeepLar does not have a GUI, so, visualization of different plots is difficult; to address
this issue a virtual JupyterLab was created for better testing and visualization (testing
different batch sizes etc..). Before this, the users of DeepLar would have to create the
plots with a Python script on the command line then transfer them trough SSH to their
computer and, finally, open them. With JupyterLab, the plots can be opened directly
on the browser of the local PC.

To create an intuitive easy to use work environment some extra tools were utilized.
Portainer is a container management tool that was utilized for easier visibility of the
multiple Docker containers status; the Portainer setup was performed according to the

P. A Azevedo Master Degree

4.Solution, Experiments and Results 47

official documentation1. In addition to this, a W&B connection to DeepLar was established;
this way, the model training plots could be accessed in real-time, through a cellphone or
any other remote PC, with an interactive GUI.

4.2.3 Training of the Pre-Selected Models

This subsection goes in-depth about the decisions made during the training of multiple
models.

First Trained model

YOLOv5 was the model of choice for the first run since it offered greater community
support and more mature documentation. For this run, the entire BDD100K dataset was
used, that is, the 100 000 images. As seen in Figure 4.4, some of the classes are severely

0 1 2 3 4 5 6 7

·105

car

traffic light

traffic sign

rider

pedestrian

motorcycle

truck

bus

bicycle

train

other vehicle

trailer

other person

Instances

Figure 4.4: Class distribution of the 100k images.

underrepresented while others are over-represented (car). Different approaches were
considered when training these models; a set with each reference is shown in Table 4.2.
This table should be seen as a reference guide for easier analyse of the plots shown in
the rest of this chapter.

1https://docs.portainer.io/start/install/server/docker/linux

P. A Azevedo Master Degree

https://docs.portainer.io/start/install/server/docker/linux
https://docs.portainer.io/start/install/server/docker/linux

48 4.Solution, Experiments and Results

Table 4.2: Mapping between each Reference number of different YOLOv5 runs.

Name Ref

yolov5m-Low batch size - All GPUS 1.1
yolov5-m - 10K Images - No Regroup 1.2
yolov5-s-regrouped-high-aug 1.3
yolov5-l-high-aug 1.4
yolov5-m Re-grouped/Dropped High-Augmentation 1.5
yolov5-m Dropped-Labels 1.6
yolov5-m Full-100K Images - No Cache 1.7

Figure 4.5: Run 1.1 mAP@05-0.95. Figure 4.6: Run 1.1 mAP@05.

The first run was trained with 4 GPUs. At first, a batch size of 64 was selected. With
these settings, the training kept crashing during the first epoch. After some debugging,
it was found that the problem layed in the GPU memory capacity; despite having a
combined memory of 27 GB, the GPUs RAM was running out, crashing the training. To
fix this problem, the batch size was reduced from 64 to just 16; this allowed for the first
results seen in Figure 4.5 and 4.6. This training took 5 hours to run 22 epochs, reaching
a mAP@50 of 7.5%. A typical YOLOv5 training takes a minimum of 300 epochs and can
reach up to 1000 or more; this means that, to fully train a model with one combination
of hyperparameters, it would take at least ten days. Training with these settings makes
it impossible to run any meaningful tests in the time frame of the thesis. In addition
to this, 4 GPUs were used during this run; this is not always possible since multiple
researchers collaborate on DeepLar, so at least one GPU must be left free. To address
these issues the batch size was increased to the maximum the GPUs memory allowed.
NVIDIA mandates that the batch size is a multiple of the GPUs; therefore, a total batch
size of 30 was the highest possible without the training crashing.

The results of this new run are presented in Figures 4.7 and 4.8, taking 45 hours to
finish 300 epochs. Even with this long training, the model could not reach 10% mAP@50.
A further analysis on the training plots was performed. YOLO has multiple components
to its loss function.

• box-loss — bounding box regression loss (Mean Squared Error).

P. A Azevedo Master Degree

4.Solution, Experiments and Results 49

Figure 4.7: Run 1.7 mAP@0.5:0.95. Figure 4.8: Run 1.7 mAP@0.5.

Figure 4.9: Run 1.7 Validation cls-loss. Figure 4.10: Run 1.7 Train cls-loss.

• obj-loss — the confidence of object presence (whether or not there is an object in
the bounding box) is the objectness loss (Binary Cross Entropy).

• cls-loss — the classification loss (Cross-Entropy).

The model seems to be overfitting on the cls-loss as seen in Figures 4.9 and 4.10. This
is seen by the patterns in the validation and training losses; if the validation loss increases
while the training loss decreases it means the model is overfitting. It is important to
keep in mind that the scale of these graphs and absolute values are not as relevant as
the "change or evolution" of any given variable across the epochs.

The cls-loss value measures the correctness of the classification of each predicted
bounding box. This means the model is having trouble in correctly classifying each
class. This high validation cls-loss and the low mAP values might be related to the class
distribution on the dataset; since some classes are severely underrepresented and the
mAP is calculated by the mean of each class precision, the poorly represented classes
like train or trailer might be affecting the mAP value too negatively. In addition to this,
since the dataset is large, 300 epochs don’t seem to be enough, and running experiments
for 1000+ epochs is impossible within the time frame of the thesis. This training speed

P. A Azevedo Master Degree

50 4.Solution, Experiments and Results

is restricted by the number of GPUs, the batch size and, more importantly, how the data
loader loads the dataset. What seems to be happening is that the GPUs have to load
the 100 000 images, from the disk, every time an epoch starts, slowing down the training
process considerably. A possible solution would be to cache the data on the GPUs RAM,
but due to the large dataset size, this was impossible without the training crashing.

BDD100k sub-set

To address thes issues caused by a large dataset, a different approach was taken; the
BDD100K was subsampled into a sub-set of 10K images. To allow an easier replication
of the results by other researchers, the validation set of the original BDD100K was used.
This new sub-set was then divided into a train-val split of 80/20. This new sub-set had
the distribution shown in Figure 4.11.

0 1 2 3 4 5 6 7 8

·104

pedestrian

traffic sign

traffic light

bicycle

train

other vehicle

trailer

truck

other person

bus

car

rider

motorcycle

Instances

Figure 4.11: Class distribution of the new BDD100K subset made with 10K images
(labels-miss-matched).

The maximum number of instances seen in Figure 4.11 is 80 000, compared to the
previous 700 000. This reduction creates new problems; some of the classes are even
more severely underrepresented, with classes such as motorcycle having less than 400
instances which is not enough (the recommended minimum by the YOLOv5 authors is
10 000 instances per class). Alongside this issue, there was a problem with the label-
matching when performing the format conversions and sub-set division that lead to a

P. A Azevedo Master Degree

4.Solution, Experiments and Results 51

label swap (for example pedestrians label was swapped with car).

Figure 4.12: Run 1.2 mAP@50. Figure 4.13: Run 1.2 mAP@50:95.

Figure 4.14: Run 1.2 Train box-loss. Figure 4.15: Run 1.2 Validation box-loss.

Looking at Figures 4.12 and 4.13 an increase in mAP is noticeable when comparing
to the run with 100K images, more specifically an increase of over 30% in mAP@50; in
addition to this, the model only took 18 hours to complete the 1000 epochs. However,
the model seems to be overfitting on the obj-loss component (Binary Cross Entropy) as
seen in Figures 4.18 and 4.19, and overfitting slightly on cls-loss as seen on Figures 4.16
and 4.17. This run was made with the hyperparameters shown in Appendice B; these
hyperparameters are set with low augmentation parameters.

A mAP peak is seen on epoch 1000 in Figure 4.12. This peak was first diagnosed as
the model leaving a local minimum. With this diagnose in mind, the following runs were
trained with more than 1000 epochs in hopes of achieving a better accuracy. A second
analysis was performed after all the models in this chapter were trained; it was found
that this minimum was due to a PyTorch bug. This bug forced the last epoch weights
to be equal to the weights with best mAP of the respective run, this resulted in a point
with false measurements.

P. A Azevedo Master Degree

52 4.Solution, Experiments and Results

Figure 4.16: Run 1.2 Train cls-loss. Figure 4.17: Run 1.2 Validation cls-loss.

Figure 4.18: Run 1.2 Train obj-loss. Figure 4.19: Run 1.2 Validation obj-loss.

Class dropping and Regrouping classes

To address some of the issues of the previous run, some adjustments were made. More
specifically, some of the classes were dropped. The new class distribution is shown in
Figure 4.20.

The new class distribution increased the mAP@50 by almost 20%, as seen in Figure
4.23. However, the model still overfitted in the same areas as the previous run. Some of
the classes were still severely underrepresented and with swapped labels, so, a different
approach had to be taken. Since some of the classes had a low number of instances, like
motorcycle, which only has 400 instances, a regrouping was made between the classes.
This regrouping is shown in Table 4.3. The car and pedestrian classes are to be seen as
"super classes", a more accurate name would be vehicle or person. The name was kept
the same so the same labels could still be used, facilitating the development, validation
and analysis of the result.

In an ideal world, with sufficiently large and balanced data, our model would be able
to detect all classes efficiently, but since the data set is imperfect and some hardware

P. A Azevedo Master Degree

4.Solution, Experiments and Results 53

0 1 2 3 4 5 6 7 8

·104

pedestrian

traffic sign

traffic light

bicycle

car

motorcycle

Instances

Figure 4.20: Class distribution of the class dropped BDD100K subset (with label miss-
match).

Table 4.3: Class Regrouping/Dropped performed.

Groupings

car
car
truck
bus
motorcycle

pedestrian pedestrian
bicycle
rider

dropped

other vehicle
train
trailer
other person

limitations are imposed, a compromise must be made. The labels can either be dropped
(the algorithm doesn’t train on them) or re-labeled. Due to the low number of instances
of classes like "other vehicle, train, trailer, other person", it would be difficult (or even
impossible) for the model to generalize well enough to detect them; besides this, the
presence of these classes would affect the values of the weights, possibly, converging to a
worse solution. On top of this, they would make the value of mAP a miss-representation
of our model’s accuracy. On the other hand, it is important to keep some of the other
labels to avoid missing important detections. So, classes like bus, truck and motorcycle
were merged into a vehicle superclass named "car". This way, our model is still able
to detect them, mitigating the effect under-represented classes have on the weights and
mAP values; the same strategy was applied to pedestrians, bicycles and riders. The final
class distribution after the re-labeling / label dropping is seen in Figure 4.21.

P. A Azevedo Master Degree

54 4.Solution, Experiments and Results

0 2 4 6 8

·104

car

pedestrian

traffic light

traffic sign

Instances

Figure 4.21: Class distribution of the class dropped and Regrouped BDD100K subset.

Dataset Manipulation Summary

Using the entire BDD100K led to poor mAP results and memory issues due to
hardware limitations. It also resulted in a longer training that made it impossible
to experiment in the time frame of the thesis.

A subset of the larger dataset was then used, totaling 10K images. The
model trained much quicker from this sub-set, achieving better mAP values in
the process; however, the model still overfitted.

The underrepresented classes were causing problems, making the model
converge to a worse solution and misleading the representation of mAP, so a new
dataset was made with class dropping and class regrouping.

When performing the label regrouping, the bug causing the label swapping problem
was found and fixed. These adjustments to the class distribution allowed for the recommended
10 000 instances per class that YOLOv5 authors recommend. In Figure 4.22 we can see
the label distribution across the xy axis of the image; since most of the BDD100K
represents an urban driving scenario, often there is a car directly in front of the camera,
so we see a larger density of labels in the center of the image as expected.

In addition to the changes in the dataset, more strategies were chosen to address
the overfitting issue. The loss function of YOLO is composed of the three components
previously described (box, obj and clss) loss; the specific "gain" or contribution of these
values to the loss function can be adjusted. As seen in Figure 4.19, the runs with
10k images overfitted on obj-loss, so the "gain" of this value was manually reduced
in the hyperparameters of the future runs; in addition to this, more aggressive data
augmentation was used.

Figures 4.23 and 4.24 show the difference in mAP of each of these different runs.
Deleting and regrouping the labels combined with more aggressive data augmentation
and lowering the "gain" of obj-loss (model 1.5) led to an increase of almost 30% mAP@05
compared to the run of the raw 10K images (model 1.2), 7% compared to label-dropping
with low augmentation (model 1.6), and a 58% increase since the first run with 100k
images. However, as seen in Figures 4.29 and 4.30, the model is still overfitting heavily
on obj-loss. The other two values of loss are still overfitting, but not as aggressively; this

P. A Azevedo Master Degree

4.Solution, Experiments and Results 55

Figure 4.22: XY Label Distribution of the final dataset (with classes regrouped/dropped.

Figure 4.23: mAP@50 of all the YOLOv5-
m runs.

Figure 4.24: mAP@50:95 of all the
YOLOv5-m runs.

can be seen in Figures 4.25, 4.26, 4.27 and 4.28.

A question then emerges of what is the best adjustment of hyperparameters and
augmentation that allows the model to perform better. Running multiple runs is expensive
and takes a lot of time. Despite the success of the manual adjustment made on the run
1.5, these hyperparameters are extremely hard to adjust manually, some industry experts
have an intuition on which values to change, but it is a very complex task due to the
large number of hyperparameters (in the case of YOLOv5 more than 13). However, these
hyperparameters can be adjusted computationally using optimization algorithms. To
explore the best hyperparameters for YOLOv5, a genetic algorithm was used. A fitness
function (a type of objective function) had to be defined to use this algorithm. A fitness
function considering the mAP@50 and mAP@50:95 was defined as seen in Equation 4.1.

P. A Azevedo Master Degree

56 4.Solution, Experiments and Results

Figure 4.25: Run 1.5 Train box-loss. Figure 4.26: Run 1.5 Validation box-loss.

Figure 4.27: Run 1.5 Train cls-loss. Figure 4.28: Run 1.5 Validation cls-loss.

Figure 4.29: Run 1.5 Train obj-loss. Figure 4.30: Run 1.5 Validation obj-loss.

P. A Azevedo Master Degree

4.Solution, Experiments and Results 57

fitness = 0.1mAP05 + 0.9mAP05:095 (4.1)

The genetic algorithm runs a "base scenario" multiple times to maximize the fitness
function; in this case, the base case selected was a ten epoch run of the re-grouped and
re-labeled dataset. Ideally, this hyperparameter evolution should be made with a large
base scenario, but since the genetic algorithm has to run the base scenario for at least 300
generations, increasing the number of epochs is too computationally and time expensive,
so, a ten epoch base scenario was chosen.

Figure 4.31: Hyperparameter evolution
mAP@50:95.

Figure 4.32: Hyperparameter evolution
mAP@50.

As seen in the Figures 4.31 and 4.32, different combinations of hyperparameters
offer different values of mAP, and it is only expected that these differences will grow
wider as the model trains on more data. This evolution ran for three days with a total
of 8 runs in which two of them crashed. Since the minimum required for meaningful
evolution of hyperparameters is 300 generations [39], finishing the evolution was not
possible considering the deadlines of the thesis. There is a chance the evolution took
longer because two of the runs crashed; they might have crashed due to memory issues
on the GPUs or something different; it is hard to pinpoint. Despite showing promise,
the hyperparameter evolution was put on hold while training the other models.

Different Model size comparisons between YOLOv5s

Since all the training and deployment pipelines were already set, some more experiments
were run with the same hyperparameters on different model sizes. A comparison between
the small, medium and large models was then performed. The metrics for these comparisons
can be seen in Figures 4.33, 4.34, 4.35 and 4.36.

As seen in Figure 4.35 an increase of almost 2% in mAP was obtained by the larger
model compared to the medium one; however, the biggest difference is in the small to
medium models with a difference close to 4% in mAP@50. Table 4.4 shows a summary
of all the runs made on YOLOv5.

In addition to this, an analysis of the confusion matrix of one of the models (in this
case, YOLOv5-Small) was performed. This matrix can be seen in Figure 4.37.

P. A Azevedo Master Degree

58 4.Solution, Experiments and Results

Figure 4.33: Recall of YOLOv5 small-
medium-large runs.

Figure 4.34: Precision of YOLOv5 small-
medium-large runs.

Figure 4.35: mAP@50 of YOLOv5 small-
medium-large runs.

Figure 4.36: mAP@50:95 of YOLOv5
small-medium-large runs.

As expected, the classifications of pedestrians were considerably worse than the car
ones; this is most likely due to the class distribution. On the other hand, the number
of False Positives on cars is considerably high; this might be due to the extremely
difficult scenarios found on the BDD100K dataset. Dealing with these extreme scenarios
is probably problematic with only 10 000 images, for example, when cars are partially
occluded or at night time, as shown in Figure 4.38.

P. A Azevedo Master Degree

4.Solution, Experiments and Results 59

Table 4.4: Summary of all the YOLOV5 run.

Strategy Runtime
(hh:mm) epochs model

weights
best

epoch

best
mAP
@0.5

best mAP
@0.5: 0.95

best
preci-
sion

best
recall

▶ Low
batch size -
All GPUS

04:50 100 yolov5m.pt 0 8.7% 4.7% 0.387 0.152

▶ 10K
Images - No
Regroup

18:32 1000 yolov5m.pt 187 39.6% 22.1% 0.787 0.347

▶ s-
Regrouped
High-Aug

05:21 500 yolov5s.pt 378 63.2% 30.8% 0.712 0.578

▶
l-Regrouped
High-Aug

14:04 500 yolov5l.pt 185 69.0% 35.8% 0.763 0.628

▶ m-
Regrouped -
High-Aug

21:16 1500 yolov5m.pt 269 67.1% 34.4% 0.749 0.611

▶ Dropped
- Labels 35:00 3000 yolov5m.pt 227 60.8% 30.8% 0.726 0.555

▶ 100K
Images - No
Cache

45:00 500 yolov5m.pt 0 8.7% 4.6% 0.309 0.163

YOLOv5 Training summary

The Dataset pre-manipulation improved the mAP values but the model still
overfitted.

The hyperparameters were then adjusted manually to provide more aggressive
data augmentation. In addition to this, since the model was overfitting on
objectness loss, the gain of this value on the loss function was changed. This
adjustment, delayed overfitting leading to better mAP values.

Further manipulation and tuning of these hyperparameters (and augmentation
parameters) needed to be done, so a genetic algorithm was used to provide
hyperparameter evolution. However, this proved to take too long, making its use
impossible with the current hardware setup and time constraints.

YOLOR

After the runs with YOLOv5, two different architectures were trained, YOLOR-CSP and
YOLOR-CSP-X. These are the smallest architectures of YOLOR algorithm, YOLOR-
CSP-X being the largest of the two. Using the same processed dataset selected in
YOLOv5 and with similar hyperparameters. YOLOR was constructed on top of the
YOLOv5 PyTorch version of Darknet code. This makes most of the code infrastructure

P. A Azevedo Master Degree

60 4.Solution, Experiments and Results

Car 76 1 58

Pedestrian 49 7

Traffic light 62 1 16

Traffic sign 1 64 19

Background FP 24

Car

49

Pe
de

str
ian

38

Tr
affi

c lig
ht

35

Tr
affi

c sig
n

Bac
kg

rou
nd

FN

Figure 4.37: Confusion Matrix of the trained YOLOv5-Small (model run #1.3). The
values of the matrix are the rounded percentages, Background FP is equivalent to
"detection only" and Background FN is equivalent to "ground truth only"

Figure 4.38: Example of a BDD100K Ground Truth Image.

similar and, as a result, the hyperparameter files are quite similar to configure.
As seen in Figures 4.40 and 4.39, using these similar hyperparameters/augmentations,

YOLOR performs better than YOLOv5, achieving higher mAP values. These models also
overfit less, as seen in Figures 4.43, 4.44, 4.45, 4.46 and 4.47 and achieving a slightly higher
mAP. YOLOR-CSP-X shows a slight improvement in mAP values over the YOLOR-CSP
version, as we can see in Figure 4.39. In addition to this, the overfitting is delayed in

P. A Azevedo Master Degree

4.Solution, Experiments and Results 61

Figure 4.39: mAP@50 of YOLOR-CSP vs
YOLOR-CSP-X.

Figure 4.40: mAP@50:95 of YOLOR-CSP
vs YOLOR-CSP-X.

Figure 4.41: Precision plot of YOLOR-CSP
vs YOLOR-CSP-X.

Figure 4.42: Recall plot of YOLOR-CSP vs
YOLOR-CSP-X.

YOLOR-CSP-X compared to YOLOR-CSP; this change might be due to the larger model
YOLOR-CSP-X architecture offers.

Scaled-YOLOv4

Similar runs with similar hyperparameters were performed on Scaled-YOLOv4 using
PyTorch, and the final results of all the best models from all the different algorithms are
shown in Table 4.5. YOLOR provides the best mAP results despite the lower resolution of
the detector, YOLOv5-m and Scaled-YOLOv4 have similar performances. The inference
speed of these models will be tested in later sections.

P. A Azevedo Master Degree

62 4.Solution, Experiments and Results

Figure 4.43: Train box-loss of YOLOR-CSP
vs YOLOR-CSP-X.

Figure 4.44: Validation box-loss of
YOLOR-CSP vs YOLOR-CSP-X.

Figure 4.45: Train cls-loss of YOLOR-CSP
vs YOLOR-CSP-X.

Figure 4.46: Validation cls-loss of YOLOR-
CSP vs YOLOR-CSP-X.

Table 4.5: Summary of All Best Model Runs of each Architecture.

Model Detector Resolution mAP@50 mAP@95

Scaled-YOLOv4 512×512 67.2 % 33.80%
YOLOv5-S 640×640 63.19% 30.81%
YOLOv5-M 640×640 67.12% 34.37%
YOLOv5-L 640×640 68.99% 35.81%
YOLOR-CSP 512×512 69.70% 35.85%
YOLOR-CSP-X 512×512 70.50% 36.60%

Some further tests were intended with YOLOX in mind, but many dependencies
problems arose because of the different system architecture of NVIDIA Jetson AGX
Xavier. Because of this different architecture, even though the model could be trained at

P. A Azevedo Master Degree

4.Solution, Experiments and Results 63

Figure 4.47: Train obj-loss of YOLOR-CSP
vs YOLOR-CSP-X.

Figure 4.48: Validaiton obj-loss of YOLOR-
CSP vs YOLOR-CSP-X.

DeepLar, the deployment with TensorRT needed for real-time inference was not possible;
this, was due to library incompatibilities when installing YOLOX on the Jetson. Not
being able to deploy with TensorRT, all further tests involving YOLOX were dropped.

Overall summary

Scaled YOLOv4 offered comparable results to YOLOv5 with the medium-sized
model, and despite the lower resolution, YOLOR achieved a better mAP. The
larger models performed better, with YOLOR-CSP-X achieving a mAP of over
70%.

4.3 Deployment Results

This section presents the deployment results. Starting from the creation of the optimized
TensorRT engine to the implementation of the Trackers on the DeepStream pipeline and
its inference results. These results are then followed by an evaluation and a real-time
analysis on Aveiro’s roads.

4.3.1 Creation of the TensorRT Engine

With the models trained, the next step was to deploy them; a conversion to a TensorRT
engine is needed since it is a pre-requisite for the DeepStream platform. To perform this
conversion, first, the weight files need to be converted from the PyTorch format to the
Darknet weights format (from .pt to .weights). In the case of YOLOv5 and YOLOR,
a conversion was already provided by either the research community or the authors of
the algorithms; however, in the case of Scaled-YoloV4, this conversion was not provided,
so a custom one had to be made. A few days were spent developing this conversion,
but without in-depth knowledge of both PyTorch and Darknet frameworks, creating this
conversion from scratch is challenging, especially in the time frame provided, so this idea
was abandoned. Since YOLOv5 offered similar results to Scaled-YoloV4, there was no

P. A Azevedo Master Degree

64 4.Solution, Experiments and Results

great benefit to keep investing time in it. One possible alternative would be to re-train
Scaled-YoloV4 on the Darknet framework in C instead of the PyTorch framework; this
way, the models could be converted to TensorRT and deployed on DeepStream since the
Darknet formats are already compatible with TensorRT deployment.

4.3.2 Tracker Inference

Modern SOTA trackers perform tracking by detection. This means they leverage the
powerful existing detectors to do object tracking. The previous section discussed all
subjects related the training of the object detectors, followed up by the creation of the
engine required to deploy them on the Jetson AGX Xavier. After the engines were
created and deployed on DeepStream, the trackers needed to be implemented. Due to
the modular nature of DeepStream, once the tracker is implemented, changing between
model engines is fairly easy. As discussed previously, the DeepStream SDK comes with
pre-integrated compatible trackers. With the tracking algorithms introduced and the
DeepStream SDK explained, an overview of the SOTA trackers and their relationship
with DeepStream is presented for better readability:

Object tracking with DeepStream overview

The NVIDIA DeepStream SDK offers reliable solutions for object tracking
with an object tracking plugin and pre-compatible trackers (IoU, NvDCF and
DeepSORT). DeepSORT and NvDCF seem to have similar performance metrics.

ByteTrack is an improvement on all these, achieving better FPS and a
higher MOTA. However, it is not included in the DeepStream SDK due to being
too recent.

StrongSORT and OC-SORT both improve on the SORT/DeepSORT,
increasing their metrics. However, the papers are too recent, so no public
code implementation is available by the authors. As a result there is no TensorRT
compatibility or DeepStream integration.

The three trackers compatible with DeepStream SDK were coded and deployed (IoU
Tracker, NvDCF and DeepSORT). NvDCF allows for configurations where trade-offs
between accuracy and performance can be made, for example, different tracker resolutions
or a different maxShadowTrackingAge. The configuration files used for this tracker are
shown in Appendix B. These configurations are accuracy-based (they try to maximize
the tracker’s accuracy). DeepSORT allows custom Re-ID models; these are models that
can be trained on large datasets to allow for a fine-tuned Re-Identification. The Re-ID
model used was the one provided by the original DeepSORT authors since it was trained
on a large dataset that included urban environments. When all of these trackers were
successfully deployed, in hopes of bringing the solution even closer to the state of the
art, a BYTE algorithm implementation was attempted on DeepStream. The previous
three trackers were made compatible by NVIDIA on the DeepStream SDK; however, the
use of external "more recent" trackers required custom implementation. ByteTracker,
StrongSORT and OC-SORT currently offer SOTA results; however, these last two are
too recent at the time of writing this thesis, so there is either no public code available or

P. A Azevedo Master Degree

4.Solution, Experiments and Results 65

no documentation on how to run them. In addition to this, TensorRT deployment is pre-
required to work with DeepStream, and none of the StrongSORT or OC-SORT authors
provided a deployment pipeline for real-time inference. On the other hand, ByteTracker
had a TensorRT deployment pipeline available in C++, so this was used to develop a
BYTE method DeepStream implementation. There were some previous efforts to bring
this Tracker to the DeepStream platform by another researcher. After some contact,
this researcher made his solution to DeepStream 5.0 publically available, so minimal
code adjustment was needed to port it to DeepStream 6.1 (The version chosen for this
dissertation due to its improved tracker library). The BYTE engine and deployment
code made in collaboration with this researcher can be found in [64].

With the deployment code finished, all that is left is to run inferences on the models.
The deployment was made for every model with each different tracker. Multiple tactics
were used to study different ways to boost the FPS of the tracking. A change in the
precision of the floating points (testing FP32 and FP16, trading off precision for speed)
and a difference in the detection interval. The detection interval dictates the interval
between batches where the detector forms a detection; for example, with an interval
of one, the detector would be on every other batch [ON-OFF], and with an interval of
two, the detector would be [ON-OFF-OFF]. Since the NvDCF utilizes visual features
to identify targets, it still works fairly well when the detection interval is different from
zero. The same happens with DeepSORT (due to the Re-ID model) and BYTE due
to its data association methods; the IOU tracker, on the other hand, performs poorly
with an interval different of zero. By testing these different intervals, we can achieve an
optimal compromise of inference speed without sacrificing much accuracy, allowing the
use of more accurate detectors with bigger-sized models with greater inference speeds.

Table 4.6: Number of FPS (Frames per Second) of the DeepSORT tracker deployment
with DeepStream with different Detector Intervals.

Name Precision Int=0 Int=1 Int=2 Int=3 Int=4 Int=5

yolor-csp-x

FP32

10.4 20.41 30.94 37.94 46.76 55.35
yolor-csp 17.06 33.3 50.65 59.58 73.52 85.08
yolov5-l 11.29 22.42 34.21 41.6 51.7 60.46
yolov5-m 20.53 39.08 59.12 66.18 84.81 99.42
yolov5-s 42.08 74.13 99.23 111.47 141.17 159.69

yolor-csp-x

FP16

30.29 61.06 90.95 67.52 82.48 96.97
yolor-csp 36.46 65.76 85.56 100.38 126.76 146.03
yolov5-l 29.53 54.97 87.4 94.07 101.95 124.31
yolov5-m 44.51 77.99 107.01 115.45 143.81 164.82
yolov5-s 68.05 90.5 165.72 160.51 193.23 211.42

All the experiments were performed with one video input stream, more specifically,
a sample video of an urban driving setting that is publicly available on the DeepStream
SDK; choosing a video as an input stream for the experiments offers a better metric since
the hardware of the cameras does not limit it, and since the video is publicly available
any researcher can reproduce the results and use them as a base for future work. Tables
4.6, 4.7, 4.8 and 4.9, show an analysis of the FPS with different detection intervals and

P. A Azevedo Master Degree

66 4.Solution, Experiments and Results

Table 4.7: Number of FPS (Frames per Second) of the NvDCF tracker deployment with
DeepStream with different Detector Intervals.

Name Precision Int=0 Int=1 Int=2 Int=3 Int=4 Int=5

yolor-csp-x

FP32

10.45 19.28 26.64 33.44 39.76 46.18
yolor-csp 17.47 30.43 40.29 49.47 57.89 64.62
yolov5-l 11.76 21.38 29.39 36.76 43.37 48.74
yolov5-m 20.77 35.06 46.95 56.11 65.71 73.25
yolov5-s 43.13 64.26 76.87 87.79 97.05 103.75

yolor-csp-x

FP16

24.01 39.86 51.71 61.5 71.64 78.65
yolor-csp 38.53 58.08 70.76 80.6 89.8 97.18
yolov5-l 31.29 50.29 62.36 71.8 81.46 87.93
yolov5-m 45.34 66.5 78.98 89.7 99.68 107.34
yolov5-s 73.21 96.7 104.43 116.7 124.06 129.87

Table 4.8: Number of FPS (Frames per Second) of the BYTE method deployment with
DeepStream with different Detector Intervals.

Name Precision Int=0 Int=1 Int=2 Int=3 Int=4 Int=5

yolor-csp-x

FP32

11.5 23.13 34.94 41.04 50.31 59.2
yolor-csp 20.62 41.57 62.28 67.3 82.15 91.93
yolov5-l 13.03 26.1 39.41 45.86 56.23 66.04
yolov5-m 25.02 50.52 75.43 79.47 93.23 109.85
yolov5-s 64.3 129.69 192.97 148.01 174.49 200.26

yolor-csp-x

FP16

30.05 60.69 91.71 88.18 105.72 125.46
yolor-csp 55.31 112.44 168.65 137.29 160.54 184.66
yolov5-l 41.92 84.93 127.29 113.99 133.24 157.31
yolov5-m 68.19 137.5 204.98 155.17 180.18 205.36
yolov5-s 117.53 230.81 307.5 233.65 259.64 290.96

precisions. The detection FPS is similar across all trackers for when the interval equals
zero. A boost in speed is shown when lowering the precision, as expected, however, many
detections are missed, more particularly when detecting occluded objects in the distance.
In 2020, Tesla, had their object detector running at around 17-18 FPS, so, in hopes of
bridging the gap between this dissertation and the industry, 17 FPS was set as the bar
for minimum FPS needed for real-time inference in ATLASCAR2. With an interval of
zero, YOLOR-CSP-X model reached around 10 FPS; the same goes for YOLOv5-l; this
is possibly due to their larger model architecture. The two highest mAP models that
could infer at least 17 FPS were YOLOR-CSP and YOLOv5-m.

After a visual analysis, it seems that an interval of five was the highest the trackers
could go without losing important detections. However, an interval of two offered
the best compromise between model accuracy and inference speed. When analyzing
an interval of two, as shown in Table 4.6 DeepSORT offers a higher frame rate than
NvDCF as shown in Table 4.7. The BYTE method offers an even higher FPS, as seen

P. A Azevedo Master Degree

4.Solution, Experiments and Results 67

Table 4.9: Number of FPS (Frames per Second) of the IoU tracker deployment with
DeepStream with different Detector Intervals.

Name Precision Int=0 Int=1

yolor-csp-x

FP32

11.73 23.39
yolor-csp 21.01 41.87
yolov5-l 13.4 26.63
yolov5-m 25.37 50.52
yolov5-s 65.94 129.86

yolor-csp-x

FP16

30.38 60.82
yolor-csp 55.87 113.54
yolov5-l 42.39 84.93
yolov5-m 68.69 138.79
yolov5-s 158.71 276.68

in Table 4.8, however, a visual analysis of the inference noted that many detections were
missing compared to the previous two. This is the opposite of what is expected since
BYTE offered better performance metrics in the literature compared to DeepSORT. The
problem seems to be related to the BYTE implementation. ByteTracker is a composition
of the detector YOLOX and the method BYTE. In our inference scenario, we have an
even higher performance detector YOLOR; it would be expected that this combination
would lead to an improvement over the current SOTA. However, the implementation of
the BYTE method was made by a third party and not the original authors; since all the
processes in DeepStream have to be extremely well optimized, the current implementation
seems to have some flaws performing significantly worse than DeepSORT or NvDCF.
Unfortunately, without in-depth knowledge of both C++ optimization, the DeepStream
platform, and the BYTE method, a better solution could not be executed in time.
This leaves DeepSORT and NvDCF as the two working solutions for real-time inference.
NVIDIA lacked values for evaluation metrics between the trackers; however, after some
communication with the chief engineers of the tracking department, NVIDIA communicated
that both DeepSORT and NvDCF have similar MOTA values with NvDCF performing
slightly better; these were, however, internal numbers of the NVIDIA team so they could
not be discussed in public. This leaves the problem of evaluating the trackers with
quantitative metrics; in the literature, we have a rough estimate of DeepSORT MOTA
values; however there is currently no way of evaluating a Tracker within the DeepStream
platform other than a visual appreciation.

4.3.3 Tracker Evaluation

To address the lack of support for Tracker evaluation on the DeepStream SDK a custom
implementation was created by extracting the Tracker metadata from DeepStream trough
evaluation scripts. Most recent trackers are evaluated on multiple datasets on the HOTA
and MOTA metric, for example, on the MOTChallenge dataset or the KITTI dataset.
The evaluation code [65] for these challenges is public. To use these evaluation platforms,
first the metadata was extracted; DeepStream SDK has a built in function that outputs
the data in a similar format to KITTI.

P. A Azevedo Master Degree

68 4.Solution, Experiments and Results

One alternative would be to try to convert this metadata into another existing
format from the official evaluation [65] supported formats and run it on a custom Aveiro
dataset. However, currently, a labeled Aveiro dataset does not exist, and creating one
would require a considerable amount of hours in labeling (hundreds or more). Another
alternative would be to use an existing dataset that reflects an urban driving scenario.
KITTI offers a tracking dataset in an urban driving scenario so, it can be used to evaluate
the trackers discussed in the previous subsection. With this in mind, scripts were created
to convert the output files from the DeepStream output format to the evaluation format
for the KITTI dataset; however, a problem still needed to be solved before the tracking
data could be evaluated. DeepStream only works with video streams, not image frames.
The public tracking datasets that exist are available with the image frames with an
associated label text file. To solve this issue, first, the image frames needed to be
converted to video; this video could be used as an input stream for the DeepStream
platform, allowing for the metadata extraction that could be then formatted for the
evaluation platform [65]. The FPS in which the data was recorded is necessary to create
a video from the frames, however, the KITTI dataset does not have this information
publicly available. After reaching out to the creator of the official tracker evaluation
algorithm for the KITTI dataset, it was communicated that the KITTI dataset was shot
at 10 FPS per second. With this information the video could be created. After the video
was created and processed in the DeepStream pipeline, the metadata was formatted with
custom scripts to the new KITTI evaluation format. This pipeline is shown in Figure
4.49.

KITTI Tracking
Dataset

Feed the Video to
DeepStream Pipeline

Convert sequence
frames to video

Extract
Metadata

Convert
to KITTI

Evaluate

Figure 4.49: Tracker evaluation pipeline.

KITTI tracker dataset is composed of twenty sequences, most of them on pedestrian
dense environments. Since our model over-fitted strongly on pedestrian detection, it
would be more fair to compare the different trackers on car dense scenarios, so the
sequence "0007" of the KITTI dataset was chosen to create the video; this sequence is
made of 800 frames on a car dense environment. The results of the evaluation on this
sequence is shown in Table 4.10. This evaluation was performed with the YOLOR-CSP
detector since it offered the best compromise between speed and accuracy.

From the results shown in Table 4.10, we can see that DeepSORT and NvDCF have
similar performance metrics. When the detection interval is zero, DeepSORT offers a
slightly higher MOTA and IDF1 scores, however, this is probably due to the number of
detections by the model being different from the ground truth labels (in theory, with
a perfect detector/tracker they should be the same). On the KITTI tracking dataset

P. A Azevedo Master Degree

4.Solution, Experiments and Results 69

Table 4.10: Tracker + YOLOR-CSP evaluation results on the "0007" sequence of the
KITTI Tracking dataset. Gt means Ground Truth, Dets means detections.

Tracker Int HOTA MOTA MOTP IDF1 Dets Gt-Dets IDs GT-Ids

DeepSORT
Int=0

51.81 47.38 69.11 72.53 2067 1967 87 53
NvDCF 51.38 43.37 72.85 69.25 2157 1967 112 53
BYTE 48.07 37.21 77.38 61.29 2611 1967 164 53

DeepSORT
Int=1

39.33 22.36 64.86 56.45 1739 1967 91 53
NvDCF 43.81 31.88 69.30 61.68 1921 1967 121 53
BYTE 3.66 0.20 94.78 0.50 6 1967 2 53

DeepSORT
Int=2

32.28 6.35 64.51 43.41 1548 1967 97 53
NvDCF 35.98 15.20 67.51 48.39 1951 1967 168 53
BYTE 2.17 0.10 94.27 0.30 4 1967 2 53

multiple objects are labeled with the label "Don’t Care", these are objects that are
located very far away from the camera and are difficult to label. The authors of KITTI
decided to not evaluate on these extreme scenarios, however since our model was trained
on a more challenging dataset (BDD100K), it is able to detect these most extreme
scenarios. Despite the fact that the model correctly detected these objects, the ground
truth labeling of KITTI does not contain these challenging objects, which means that,
"in the eyes" of the tracker evaluation algorithm, the DeepStream Tracker is outputting
False Positives. These False Positives affect the metric results creating scenarios where
better Trackers are penalized for their higher accuracy and number of detections. When
changing inference intervals, the values of HOTA and MOTA drop drastically while
MOTP remains very close. These type of metrics heavily penalize missing or extra
detections. When the inference interval is different from zero, it is possible that detections
are missed in frames where an object partially enters the scene; these missed detections
heavily weigh on the HOTA and MOTA values. Although these metrics are important
and provide meaningful results, tracking evaluating metrics keep evolving and are not
perfect. While the metrics for HOTA and MOTA dropped when changing the inference
interval, a visual (subjective) analysis show that this difference is negligible being almost
impossible to distinguish between a detection interval of zero and two. Since tracking
is measured on a time sequence, a video illustrates its operation better, so as an aid to
the reader, videos were provided on Youtube. To further demonstrate the fragility of
these metrics, the DeepSORT tracker was tested with different object detection models.
A comparision was made between one of the highest performing models (YOLOR-CSP)
and one of the lowest accuracy models (YOLOv5-Small). This comparison is shown in
Table 4.11. As shown, despite having a better detector, the tracker with YOLOR-CSP
obtained lower HOTA and MOTP scores.

Table 4.10 shows that, with an increase of the detection interval, NvDCF performs
better than DeepSORT. This is possibly due to the visual features NvDCF uses when Re-
Identifying the objects. This is important to know when scaling the solution to multiple
cameras. With a single camera and an interval of zero, DeepSORT provides enough
FPS and a more accurate solution, however, when scaling for multiple cameras, different
detection intervals provide differences in inference speed, the redundant detection of

P. A Azevedo Master Degree

https://www.youtube.com/user/TheMomentumhd

70 4.Solution, Experiments and Results

Table 4.11: Comparison of the DeepSORT tracker performance with different models.

Model Int HOTA MOTA MOTP IDF1 Dets Gt-Dets IDs GT Ids

YOLOv5-Small 0 53.317 44.992 70.877 71.44 1888 1967 80 53
YOLOR-CSP 0 51.81 47.38 69.11 72.53 2067 1967 87 53

partially overlapped cameras address the small accuracy loss created by this interval.
As expected from a qualitative analysis performed previously during the inference speed
tests, the BYTE implementation is flawed. While it offers the highest MOTP of all three
trackers its MOTA, HOTA values and IDF1 scores are lower. The IDF1 score reflects the
identity switches the tracker performs. We can see that, the total tracking IDs of BYTE
are triple of the ground truth when the interval is zero, this means BYTE possibly is
having trouble re-associating the IDS of objects that were occluded. In addiction to this,
this implementation of BYTE can not be used with different inference intervals since a
lot of detections are missed. Despite BYTE outperforming DeepSORT in the literature,
since this implementation of BYTE in DeepStream was not made by the original authors,
it is currently not as optimized, leading to worse results.

4.3.4 Camera Inference in Aveiro

All of the tests run so far were on video (mp4) streams. This brings the advantage
of making the work reproducible by other researchers providing consistent results; in
addition to this, using a video stream, instead of camera live stream, means there is
no speed bottleneck originating from the cameras selected. However, real-time camera
inference is also necessary to deploy it in an autonomous driving scenario. The cameras
provided for this thesis were the e-cam130_CUXVR. This camera comes with many
advantages, having four cameras with 4k resolution, being fabricated and specifically
optimized for the NVIDIA Jetson AGX Xavier. This allows for better perception all
around the car in contrast to a solution with one frontal camera. With the aim of
exploring multiple camera solutions and since the hardware was already provided, the
camera set-up was attempted on the NVIDIA Jetson AGX Xavier. These cameras offer
the installation package in the form of an image that can be flashed. This approach had
some problems; the system was being flashed with an old operating system with an older
version of JetPack. This meant that to install the cameras the way the manufacturer
recommended, the version of JetPack would be forced to an older one; with this older
version, the most recent versions of DeepStream would not be available, therefore none
of the SOTA detectors and trackers could be used. To avoid this problem, multiple
attempts to install the camera drivers from source were performed; with this approach,
more problems followed; dependencies conflicts that took around two weeks to solve.
Each different attempt to install the camera drivers normally required the Jetson to be
flashed from scratch, which took around 2-3 hours considering the time to install all the
dependencies necessary to test the code.

With the dependencies problems solved, the manufacturer software, made specifically
to test the cameras, was run; this software was run with the most recent version of JetPack
successfully. However, even though a normal USB camera could be used in this software,
the 4k cameras still did not work. At first, the problem looked to be originated from the

P. A Azevedo Master Degree

4.Solution, Experiments and Results 71

camera hardware and not the software, so an attempt to flash the Jetson with an older
version of JetPack was attempted. With this older operating system the cameras worked
so the problem was not hardware-related. Knowing this, the camera manufacturers were
contacted; according to them, the drivers available on their website were not the most
recent ones, so the new drivers were personally sent by email. However, even with the new
updated packages, the cameras still could not be detected, so the contact was kept with
the camera manufacturers for around 4 weeks. During these 4 weeks, multiple attempts
were tested, after having re-flashed the Jetson over 30 times trying different approaches
without success, a confirmation from the manufacturers was recieved. This confirmation
stated that the camera drivers of these cameras reached End-Of-Life and there were no
new updated drivers. This information was exactly the opposite of the information given
during the first contact. Having spent all this time without any results, a decision had
to be made regarding the JetPack version to use, the advantages and disadvantages of
each can be seen in Figure 4.50. To use the newest version of JetPack and DeepStream
another camera would have to be used. Previous works in the ATLASCAR2 used a
Logitech C170 webcam, since this camera was already available in the laboratory it was
chosen as an alternative temporary solution. This camera is not as optimized for the
Jetson, offers a lower resolution and does not have multiple streams (since it is just one
camera). Considering the e-CAM130 has reached its End-Of-Life any future software
updates on the Jetson AGX Xavier would render the code made on this dissertation
useless and frozen in time. So JetPack 4.6 was opted as the operating system for this
dissertation with the Logitech C170 as an intermediate solution that could be changed
in future works.

The results of the real-time inference with this camera are shown in Figure 4.51. These
tests were performed near the University of Aveiro in different scenarios; the inference
speed was similar to the tests above, with a slight (1-2 FPS) drop when using the webcam.
Figure 4.51 (a) shows a car approaching from a distance in a very crowded parking lot;
despite the numerous detections performed; the model still manage to track the cars,
for example Car 5056 represented in yellow, with the same ID since the moment it
became visible to the moment it left the camera view. In Figure 4.51 (b) two pedestrians
were crossing each other at different speeds, the one closest to the camera walking and
the one further away running. Regardless of the total occlusion the pedestrian further
away suffered while crossing the road, the model still manages to attach the correct
IDs, maintaining the correct ones all trough-out the interaction. In Figure 4.51 (c)
tracking is performed over longer time periods, with car 473 being tracked for a longer
distance, leaving the camera view; in the opposite direction car 488 is being tracked at
the same time, in a similar scenario, but in an opposite direction, and all of this while
still performing the detection and tracking of the cars parked on the right. The tracker
successfully performed tracking through occlusions, dense traffic scenarios and during
long periods of time. This detection, however, exhibited a lot of jittering on the videos.
When detecting distant objects often the label IDs get swaped. This is due to the lower
camera resolution that makes objects further away completely blurred in the input image
to detect.

To explore the possibility of multi-camera inference some extra tests were performed.
The e-CAM130 cameras did not work with the most recent software but, they were used
in a past dissertation [3] to collect video data. This video stream data was then passed to
the DeepStream pipeline simultaneously, simulating a multi-camera inference scenario.

P. A Azevedo Master Degree

72 4.Solution, Experiments and Results

Figure 4.50: Summary of the Hardware problems that come with different JetPack
versions.

In the works of [3] the three cameras were used to create a panorama; in Figure 4.52 the
real-time simultaneous inference of these three video streams can be seen. These tests
prove that multi-camera inference is possible. It is also possible to see that the model can
still detect motorcycles as shown in Figure 4.52 (b) (this is important to notice since this
class was merged into the car class in the previous subsections to improve the detection
capability). The traffic sign detection is successful even when they are situated very far
away as seen in Figure 4.52 (c). This shows an improvement over the live camera inference
performed previously on objects situated further away, this difference is most likely due
to the difference in resolution of the cameras. A false detection seems to appear in Figure
4.52 (b) nearby the black car in the center of the image, however, the model is detecting
the reflection of the car in the window. This test was performed with YOLOR-CSP,
despite being the best detector, for single camera inference, when scaling to multiple
cameras, the FPS drop to around 12 FPS with an interval of one and 17.5 FPS with an
interval of three. This shows that perhaps, as more cameras are used the smaller the
model architecture needs to be, assuming the case of three cameras, YOLOv5-m would
provide better trade-off between speed and accuracy. This also opens the door for future
studies for example, the resolution of the frontal camera does not need to be the same as
the lateral cameras because the main purpose of these cameras is to provide redundancy.
So, for example, YOLOR-CSP could be used in the frontal camera and YOLOv5-s could
be used in the side cameras.

P. A Azevedo Master Degree

4.Solution, Experiments and Results 73

(a) Car aproaching from the distance in a parking lot with many cars

(b) Pedestrians crossing each other with complete occlusion

(c) Tracking of multiple cars on a large time-frame with many cars

Figure 4.51: Real-Time Inference tests performed on ATLASCAR2 with Logitech C70
camera with YOLOR-CSP + DeepSORT. The bounding boxes in red are the outputs of
the model, the ones in yellow were edited to illustrate the tracking to the reader.

4.3.5 Experiments with Multi-Task Neural Networks

Experiments with multi-task networks were run to explore possible future paths for the
visual perception on ATLASCAR2. These solutions offer outputs for multiple tasks
required for autonomous driving using a single neural network. This multi-tasking is the
main idea behind YOLOR paper, although, at the time of writing this thesis, its only

P. A Azevedo Master Degree

74 4.Solution, Experiments and Results

(a)

(b)

(c)

Figure 4.52: Inference on three video streams simultaneously. Each image (a),(b) and
(c) represent a rendered tiled display with the three streams concatenated. Running at
12.5 FPS with YOLOR-CSP+NvDCF and detection interval of one.

output task is object detection. On the other hand, authors like [66] have proven that a
single neural network can perform detection while outputting semantic segmentation and
lane segmentation simultaneously, as seen by its architecture in Figure 4.53. The authors
of [66] achieved similar results to the YOLOv5-Small detector while maintaining inference
speeds of 20+ FPS on a Jetson TX2 and a Zebra camera. It was also trained on the
BDD100K. This means that the pre-trained model provided by the author reflected an
urban driving scenario. This specific algorithm (YOLOP) gives an inferior (less accurate)
solution than the current DeepStream YOLOR + Tracker solution, but it shows a possible
path for future solutions on the ATLASCAR2 system.

The results of the tests can be seen in Figure 4.54. These results were performed at
the University of Aveiro campus where the goal of the Neural Network was to output
car detections, segmentation of the road and detect the road lines. As shown in 4.54
(c), the model offers promising results, however, it is far from perfect. For example, the
model has some trouble with speed bumps, making the semantic segmentation of the
road perform worse compared to the less challenging scenarios found in Figure 4.54 (g).

P. A Azevedo Master Degree

4.Solution, Experiments and Results 75

Figure 4.53: YOLOP Architecture [66].

It also had troubles in Figure 4.54 (a) to detect the lines of the bicycle lane; this might
be due to the difference between roads markings in north America (where BDD100K was
recorded) compared to the ones in Aveiro. This specific model is only outputting car
detections on this test even though it has the capability for more.

The tests were done without a TensorRT engine deployment (run on pure PyTorch),
so it was not an optimized deployment, therefore, the inference speed was very poor (4
FPS). However, the results were promising, achieving notable car and lane detections.
With TensorRT deployment and further optimization these Neural Networks open the
doors to future works.

This chapter started with the training and deployment of the object detectors and
all the decisions around their training. Starting with a techonlogy analysis, a dataset
analysis, a model architecture and inference speed analysis and, finally, the model training
and deployment. The best object detector achitecture in terms of accuracy and inference
speed was the YOLOR-CSP. With the detectors working, the trackers were implemented
and evaluated. With all the models and trackers tested and deployed, the one with the
best compromise between speed an accuracy was the YOLOR-CSP reaching a mAP@50 of
70.50% implemented with DeepSORT in DeepStream, achieving 17 FPS with a detection
interval of zero and 33.3 FPS with a detection interval of one evaluated on a single
stream. When exploring multi-camera solutions YOLOR-CSP does not seem to be the
best fit since there is a drop in FPS when running multiple streams. On the other hand,
YOLOv5-m + NvDCF seems to be a better option since it is a lighter model and NvDCF
works better with inference intervals different than zero; this is especially relevant because
the redundancy achieved by multiple cameras allows for bigger inference intervals while
loosing only a few detections. Multi-Task Neural Networks also showed promising results
for future developments. These conclusions will be approached in greater detail in the
next chapter.

P. A Azevedo Master Degree

76 4.Solution, Experiments and Results

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.54: Inference tests with YOLOP on the University of Aveiro Campus; the green
label is given to the road, red to the road lines and the blue bounding boxes to the cars
detected.

P. A Azevedo Master Degree

Chapter 5

Conclusions

Thesis overview and final results

This thesis started out first with an introduction to the problem of object detection
and tracking in the context of perception for a self-driving car. After this, it followed
an introduction and explanation to the different SOTA technologies and algorithms for
object detection and tracking. This was followed by an analysis of the experimental
setting used (hardware and software) and finally the proposed solution with tests and
results. In Chapter 4, first, the advantages and disadvantages of the NVIDIA Jetson AGX
Xavier were analysed. Secondly, an analysis was performed regarding which technologies
to use when developing the final solution. The technology of choice ended up being
DeepStream since it allowed for faster development, modular integration, tracking plugins
included in the SDK and, most importantly, it offered optimized solutions for video
streams, allowing faster inference times and the ability to scale for multi-camera solutions.

With the technology stack chosen, multiple deployments were carried out on the
Jetson AGX Xavier using many of the SOTA algorithms using the pre-trained weights.
From these deployments, inference speed tests were run; these tests allowed for a pre-
selection of the model architectures that could infer in real-time using the current hardware.
With these architectures selected, the training dataset was chosen. Since an Aveiro
dataset does not exist, an open dataset was used. Multiple datasets of urban driving
scenarios were analysed; from these datasets BDD100K was chosen since it offered a
larger number of scenarios with a better class distribution. To allow the models to
train on this dataset, multiple format conversions were performed from the BDD100K
format to the multiple formats that each model and framework required. Having the
dataset in the right format, an experimental and training setup was created on DeepLar
with the use of NVIDIA-Docker containers, SSH and W&B. After this, the first models
were trained; however, the training was taking too long (multiple weeks to test one set
of hyperparameters) and achieving poor mAP results. To combat this issue, different
approaches were considered, including reducing the dataset size, caching the images
on the GPUs RAM, more aggressive data augmentation and class-dropping/regrouping.
Having performed all these adjustments, better accuracy was obtained in all the models
trained; however, due to the smaller dataset size used, the model overfitted and was
not able to detect pedestrians as accurately as cars or traffic signs. These multiple
models were then deployed on the Jetson AGX Xavier but, unfortunately, since Scaled-
YoloV4 could not be deployed as it was trained on PyTorch instead of Darknet, this

77

78 5.Conclusions

made its weights not compatible with the TensorRT engine conversion code currently
available for YoloV4. With the remaining models deployed; different trackers were
implemented. Afterwords, different inference speed tests were performed with different
detection intervals and both a visual and quantitative analysis of the trackers accuracy
was performed. DeepSORT and NvDCF both provide similar accuracy with DeepSORT
achieving slightly higher metrics, however, NvDCF scaled better for multi-camera solutions
since it works better with different detection intervals. The current BYTE implementation
is not as well optimized, lacking in performance when compared to the other trackers
implemented. YOLOR-CSP architecture offers the best compromise between accuracy
and speed, allowing for real-time detection and tracking. The visual and quantitative
analysis did not always arrive to the same conclusion. For example, when comparing a
model with lower accuracy YOLOv5-Small with YOLOR-CSP. There is some fragility in
the current tracking evaluation metrics and they are still evolving. The initially intended
hardware for deployment on ATLASCAR2 were the e-CAM130 cameras; however, these
cameras had driver incompatibilities with the most recent software and ordering new
ones in time for testing was not possible, so a Logitech C170 webcam was used instead.
Finally some final tests were performed with Multi-Task Neural Networks. With all the
models and trackers tested and deployed, the one with the best compromise between
speed and accuracy was the YOLOR-CSP reaching a mAP@50 of 70.50% implemented
with DeepSORT in DeepStream, achieving 17 FPS with an detection interval of zero and
33.3 FPS with a detection interval of one. The results of this solution are currently being
explored for an article to be submitted in the "Autonomous Driving and Driver Assistance
Systems" session which is part of the fifth Iberian Robotics Conference, ROBOT2022.
The proposed solution:

• maximized the provided hardware capabilities, by utilizing the most recent optimization
techniques and technologies;

• utilized the most recent SOTA algorithms and techniques, deploying it to a physical
system that could infer in real time;

• through multiple tests, achieved the most optimal compromise between speed and
accuracy;

• provided a modular solution for a pipeline that can evolve as time goes on, allowing
for code longevity and for future upgrades as the SOTA progresses.

• provided datasets conversions of the BDD100K format to all YOLO formats so the
research community can benefit from it as a whole. Speeding up the testing and
development of future algorithms;

• Provided multiple inference speed tests with different floating point percisions
and detection intervals in the NVIDIA Jetson AGX Xavier. This information
is valuable to the research community since it tests multiple SOTA detectors on
recent hardware that can be used on other diverse autonomous systems other than
autonomous driving;

• Created the first DeepStream evaluation pipeline in the KITTI dataset for a DeepStream
Tracker. Achieving the first public comparisons metrics between DeepSORT and
NvDCF.

P. A Azevedo Master Degree

5.Conclusions 79

Future Work

Multiple future paths were open with this thesis. From a hardware standpoint, the
current solution used a Logitech C170, its 720p resolution and slower bus makes it not
being the best fit, especially when analysing distant objects; different camera options
can be considered in the future. When considering these cameras, an analysis has to be
performed on the camera(s) positioning. In addition to this, solutions involving multiple
detectors running simultaneously could be explored, for example, YOLOR-CSP running
on the main frontal camera and YOLO-S running on the lateral cameras. The current
solution placed the NVIDIA Jetson AGX Xavier module on the car seat, this needs to be
changed; a support must be created and attached to the ATLASCAR2 with the NVIDIA
Jetson AGX Xavier in mind.

From a software standpoint, this 2D object detection could be used to perform 3D
detection by performing sensor fusion with the rest of ALTASCAR2 sensors. In addition
to this, stereo cameras could be used to gather a tracked object speed. Finishing the
hyperparameter evolution would provide an accuracy increase, the same goes for using
these hyperparameters to train on the full BDD100K dataset again, hopefully increasing
the effectiveness of pedestrian detection. Finally, multi-tasked neural networks could be
further explored and deployed on the Jetson AGX Xavier.

P. A Azevedo Master Degree

80 5.Conclusions

P. A Azevedo Master Degree

Appendix A

Gentle Introduction to Deep
Learning

This chapter introduces some Deep Learning concepts starting with Supervised Learning,
followed by an explanation on Neural Networks and linear models.

A.1 Neural Networks in Supervised Learning

Supervised Learning

Machine Learning is divided in to two main fields, supervised learning and unsupersived
learning. This thesis focuses on supervised learning; supervised learning is a type of
learning where the algorithm trains on labeled (supervised) data. After training, the
algorithm tries to predict, given a specific input, as close to possible to the ground truth
labels. Neural Networks can be explained with higher-level abstractions that facilitate
their understanding. The simplest way to understand them is to start from a linear
model.

Figure A.1: Simplified example of a Neural Network.

A linear model can be thought of as a simple function where y = mx+ b, given some
input data x the model tries to obtain an output y. The transformation between output
and input can be thought of as a series of mathematical operations.

81

82 A.Gentle Introduction to Deep Learning

In supervised learning, the output is compared with the desired output by a comparator,
with the results of this comparison the weights and bias of the network are adjusted. So,
for example, when considering a cat classication model (model that classifies images of
cats) that receives as an input x a RGB image of a cat. The output of this model would
be the probability of x being a cat. If the image provided is, in fact, an image of a cat; the
desired output of our model t would be 1 for the class cat (or in practical terms 0.999...),
assuming the model predicted an output y of 0.7 these two values are compared and
then the parameters m and b are adjusted in order to obtain a more accurate model. A
scheme to illustrate the relashionsips between input and output is shown in Figure A.1.
In reality, a model of a Deep Neural Network is lot more complicated, instead of simple
parameters m and b we have matrices with sometimes millions of parameters. These are
usually called weights and bias.

Neural Networks

Neural networks, also known as artificial neural networks (ANNs), are a subset of machine
learning. They received their name and structure from the inspiration of the human brain
itself, mimicking the way biological neurons signal to each other. They are composed of
layers, containing an input layer, one or more hidden layers, and an output layer. Each
neuron connects to another neuron and has an associated weight [67].

Considering the model of a simple neuron shown in Figure A.2, the inputs x weights
+ bias are all summed up originating an output. It is a simple model that works well on
linearly separable problems.

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure A.2: Single-Neuron representation.

A geometric interpretation of a single neuron would be a line that can best separate
the data clusters as shown in Figure A.3.

Neural Networks are made with different layers of neurons. They can have multiple
hidden layers with millions of layers, the name Deep Neural Network derives from the
depth of layers in the network. Figure A.4 shows a representation of a Deep Feed Forward
Neural Network.

In the example of this simple Neural Network, neurons of the same type are grouped
into layers, there are no connections between neurons in one layer, in the case of a Feed
Forward Neural Networks (one of the simplest types of Neural Networks), each neuron
of the previous layer is connected with each neuron of the next layer. The number of

P. A Azevedo Master Degree

A.Gentle Introduction to Deep Learning 83

Figure A.3: Line attempt to separate the points; adapted from [68].

x0

x1

x2

x3

Input
layer

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden
layer 1

h
(2)
1

h
(2)
2

h
(2)
3

Hidden
layer 2

ŷ1

ŷ2

Output
layer

Figure A.4: Typical FF Neural Network.

inputs is dictated by the input data, the number of outputs depends on the problem at
hand, the number of hidden layers is considered a hyperparameter. Working with the
size and shape of a network is one of the problems in trying to find an optimal solution.

A.2 Training of a Neural Network

When connecting larger models with multiple neurons, we must define a certain threshold
for the neuron, this will dictate if the neuron is active or not, for that we use activation
functions.

In order to achieve a comparison between output and desired output a "mechanism"
needs to be defined. The mechanism to perform this comparison is defined as a loss
function.

A.2.1 Loss functions

A loss function measures the difference between the desired output values and the actual
output, this loss should be as small as possible (ideally 0), this would mean that the

P. A Azevedo Master Degree

84 A.Gentle Introduction to Deep Learning

Neural Network outputs are equal to the target outputs.

Mean Squared Error Loss

• The standard loss function to perform regression tasks

For N training objects and one real output, MSE is given by the following:

J(θ) =
1

N

∑(
yi − ti

)2 (A.1)

Where y and t are the output and desired output as shown in Figure A.1. The same
nomenculature will be used when defining following functions.

Multiclass (categorical) Cross-Entropy loss

• Standard loss function for multiclass classification tasks

For N training objects and K classes:

J(θ) =
1

N

N∑
i=1

K∑
k=1

[
−t

(i)
k log

(
y
(i)
k

)]
(A.2)

J(θ) =
1

N

N∑
i=1

−t(i) logy(i) (A.3)

This way, the model has exactly K outputs.

Binary Cross-Entropy loss

• For binary classification problems

• The type of output unit should be between 0-1

The cross-entropy formula has the following form:

J(θ) = − 1

N

N∑
i=1

[
t(i) log

(
y(i)

)
+
(
1− t(i)

)
log

(
1− y(i)

)]
(A.4)

A.2.2 Gradient Descent

Given some training data, a parameterized model, and a chosen loss function; the goal
is to change the parameters such that the loss function achieves a global minimum. This
can be thought of as finding the global minimum of a multidimensional function.

This can be achieved in a number of ways, but the most popular solution is gradient-
based learning shown in Figure A.5.

Essentially, the local steepness of the function (its gradient) is calculated and a small
increment step in the direction of the steepest descent is taken. This requires however
that the function is differentiable in every point. A good way to think about it would
be a continuous and smooth multidimensional function. So, for example, the error rate
could not be chosen as a loss function because it is not smooth/differentiable.

P. A Azevedo Master Degree

A.Gentle Introduction to Deep Learning 85

−4 −3 −2 −1 0 1 2 3−4

−2

0

2
−1

−0.5

0

0.5

1

Figure A.5: Example of Gradient Descent; the black arrow represents the iteration steps.

A gradient is a vector of all partial derivatives of a function and all its arguments.

∇(J(θ) =
∂J

∂θ
=

∂J
∂θ1
∂J
∂θ2
...
∂J
∂θp

 . (A.5)

Gradient descent is an iterative method for finding the local minimum of a function.
It is represented by the following:

θi+1 = θi − α∇(J(θ)) (A.6)

α is the learning rate, a small scalar that essentially defines how fast the increment
steps are taken, or, in other words, ’how fast the Neural Network learns’.

A.3 Activation Functions

When passing information to one neuron to another an activation function needs to be
chosen. Activation functions transform the weighted sum of the previous neuron (or
group of neurons) in to an input for the following neuron; the output of this function
dictates if the neuron is active or not.

Logistic Sigmoid Activation Function

Is given by the following expression:

σ(z) =
1

1 + e−z
(A.7)

The plot of this function is shown in Figure A.6.
This activation function “compacts” the output of a neuron in a regime between

0 and 1. This is useful when calculating the gradient because the large difference in
weights could cause the output of each neuron to fire out of proportion causing some
problems while calculating the gradient. This function is also differentiable everywhere

P. A Azevedo Master Degree

86 A.Gentle Introduction to Deep Learning

−10 −5 5 10

0.2

0.4

0.6

0.8

1

x

y

Figure A.6: Sigmoid activation function

which allows to calculate the gradient. One disadvantage is that, since it does not have
negative values, when the when the values of the gradient approach zero the Neural
Network the weights do not updated; this is called vanishing gradient problem. Due to
it is 0-1 nature, its typically used as:

• a single output unit for binary classification problems

• as one of the output units in an output vector (for multilabel classification problems)

• In nets with sub components working as differentiable gates

ReLu Activation Function

The ReLU activation function or Rectified Linear Unit, now, the most common (default)
activation function used has some advantages in comparison to sigmoid. Its easier to
compute and performs well, although it has a non-differentiable point, it is negligible.

ReLU(z) =

{
0 if z < 0
z if z ≥ 0

(A.8)

The plot of this function is shown in Figure A.7 (a).
As demonstrated, if the neuron outputs a value less then zero it will be turned

off. This type of activation function works better than sigmoid in the hidden layers
of the model since it does not have the problem of the shrinking gradient. The problem
with sigmoid is that its local gradient is less than 1 and often very close to zero, when
preforming gradient descent often it becomes so small it vanishes. On the other hand,
the local gradient of ReLU in the active region is 1. In the inactive region is 0 which
presents another problem, when all examples from training data are not activating the
ReLU the neural it will not change its weights and it will remain inactive, we call this
problem the dying ReLU. Therefore, other activation functions started to be used in
addiction to normal ReLU like Leaky ReLU. This function is represented in Figure A.7
(b).

P. A Azevedo Master Degree

A.Gentle Introduction to Deep Learning 87

−6 −4 −2 2 4 6

1

2

3

4

5

x

y

(a) ReLU activation function

−6 −4 −2 2 4 6

2

4

x

y

(b) Leaky ReLU

Figure A.7: ReLU and Leaky ReLU activation functions

SoftMax output activation/layer

It’s mainly used for classification tasks. It can be thought of as an activation function,
but instead of being applied to a single neuron, it is applied to all the neurons in the
layer at once. Typically For multi-class single label classification.

σ(zi) =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . ,K (A.9)

This function is very helpful since it assures that all the outputs are positive, and the
sum of all outputs is equal to 1. This allows for a visual interpretation of the outputs as
probabilities. To further illustrate this point, considering a classification problem where
yk is the probability that the input belongs to class k.

Figure A.8: Typical output of multi-class classification problem

We can directly correlate the number of the output to a probability of a class, so
in the case of figure A.8 the input would be most likely a car since it has the highest
probability. However, with a very low level of confidence (0.5).

P. A Azevedo Master Degree

.

Intentionally blank page.

Appendix B

Configuration Files

Here are presented the configuration files used in the training.

B.1 YOLOv5 Hyperparameters

High Augmentation Hyperparameters:

lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.1 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.9 # image scale (+/- gain)
shear: 0.1 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.1 # image mixup (probability)
copy_paste: 0.1 # segment copy-paste (probability)

89

90 B.Configuration Files

Low Augmentation Hyperparameters:

lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)

B.2 YOLOR Hyperparameters

warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.7 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)

P. A Azevedo Master Degree

B.Configuration Files 91

degrees: 0.8 # image rotation (+/- deg)
translate: 0.5 # image translation (+/- fraction)
scale: 0.8 # image scale (+/- gain)
shear: 0.1 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.2 # image mixup (probability)

B.3 Scaled YoloV4 HyperParameters

lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
giou: 0.05 # GIoU loss gain
cls: 0.3 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 0.62 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.8 # image rotation (+/- deg)
translate: 0.5 # image translation (+/- fraction)
scale: 0.9 # image scale (+/- gain)
shear: 0.1 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mixup: 0.2 # image mixup (probability)

P. A Azevedo Master Degree

92 B.Configuration Files

B.4 DeepStream Configs

[application]
enable-perf-measurement=1
perf-measurement-interval-sec=5
kitti-track-output-dir=/xavier_ssd/Tracker_Info
#gie-kitti-output-dir=/xavier_ssd/Tracker_Info

[tiled-display]
enable=1
rows=1
columns=1
width=1280
height=720
gpu-id=0
nvbuf-memory-type=0

#Video Source
[source0]
enable=1
type=3
#uri=file:///opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4
uri=file:///opt/nvidia/deepstream/deepstream/samples/streams/sample_qHD_short.mp4
num-sources=1
gpu-id=0
cudadec-memtype=0

#Camera Source
#[source0]
#enable=0
Type – 1=CameraV4L2 2=URI 3=MultiURI
#type=1
#camera-width=640
#camera-height=480
#camera-fps-n=30
#camera-fps-d=1
#camera-v4l2-dev-node=0
#num-sources=1

#Camera Source
[source1]
enable=0
Type – 1=CameraV4L2 2=URI 3=MultiURI
type=1
camera-width=640
camera-height=480
camera-fps-n=30

P. A Azevedo Master Degree

B.Configuration Files 93

camera-fps-d=1
camera-v4l2-dev-node=1
num-sources=1

[sink0]
enable=1
type=2
sync=0
gpu-id=0
nvbuf-memory-type=0

[sink1]
enable=1
type=3
container=1
sync=0
codec=1
bitrate=2000000
output-file=out.mp4

[osd]
enable=1
gpu-id=0
border-width=5
text-size=15
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
show-clock=0
clock-x-offset=800
clock-y-offset=820
clock-text-size=12
clock-color=1;0;0;0
nvbuf-memory-type=0

[streammux]
gpu-id=0
live-source=0
batch-size=1
batched-push-timeout=40000
width=1920
height=1080
enable-padding=0
nvbuf-memory-type=0

[primary-gie]
enable=1

P. A Azevedo Master Degree

94 B.Configuration Files

gpu-id=0
interval=0
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_infer_primary_yolor.txt

[tracker]
enable=1
tracker-width=640
tracker-height=384
-- Change Tracker height for better perform
#tracker-height=640
gpu-id=0
#ll-lib-file=/opt/nvidia/deepstream/deepstream/lib/libByteTracker.so
ll-lib-file=/opt/nvidia/deepstream/deepstream/lib/libnvds_nvmultiobjecttracker.so
#ll-lib-file=/opt/nvidia/deepstream/deepstream/lib/libnvds_nvdcf.so
#ll-config-file=/opt/nvidia/deepstream/deepstream/samples/...
.../configs/deepstream-app/config_tracker_DeepSORT.yml
#enable-past-frame=1
enable-batch-process=1

#[img-save]
#enable=1
#output-folder-path=/xavier_ssd/output
#save-img-cropped-obj=0
#save-img-full-frame=1
#frame-to-skip-rules-path=capture_time_rules.csv
#second-to-skip-interval=600
#min-confidence=0.9
#max-confidence=1.0
#min-box-width=5
#min-box-height=5

[tests]
file-loop=0

P. A Azevedo Master Degree

Glossary

Batch Size number of training examples utilized in one iteration..

Cross mini-Batch Normalization method of batch normalization that can be applied
to small batches..

DeepLar Model training machine at LAR..

DeepStream SDK A Development kit made by NVIDIA to rapidly develop and deploy
Vision AI applications and services..

DenseNet Type of convolutional neural network that utilises dense connections between
layers..

Docker Volumes Mechanism for persisting data generated by and used by Docker
containers..

DropBlock Regularization A form of structured dropout, where units in a contiguous
region of a feature map are dropped together..

e-CAM130-CUXVR Set of 4 MPI Cameras that integrate on the Jetson Xavier AGX.

Edge Devices Physical devices where algorithms are run at the "edge", this means
nearby the sensors in which the real data is being collected..

EfficientDet type of object detection model which utilizes several optimization and
backbone tweaks and a compound scaling method that uniformly scales the resolution,
depth and width..

EfficientNet convolutional neural network architecture and scaling method that uniformly
scales all dimensions of depth/width/resolution using a compound coeficcient..

Epoch complete pass of the training dataset trough the algorithm..

Mask-RCNN framework for object instance segmentation that extends Faster R-CNN
by adding a branch for predicting an object mask in parallel with the existing
branch for bounding box recognition..

maxShadowTrackingAge The maximum time an object is being tracked after being
completely occluded.

Mish Activation function used by YOLOV4.

95

96 Glossary

Receptive Field Size of the region in the input that produces the feature..

ReLU Popular activation function (used for example in YoloV5).

Shadow Tracking target is still being tracked in the background for a period of time
even when the target is not associated with a detector object..

Tracklets small set of paths associated with individual detections in consecutive frames..

Transformers Transformer is a Deep Learning model that uses the mechanism of self-
attention, deferentially weighting the significance of each part of the input data..

Vanishing Gradient Problem caused by the derivative of the activation function used
to create the Neural Network. The Networks are unable to back propagate the
gradient information to the model..

P. A Azevedo Master Degree

References

[1] D. Figueiredo, “Remote control for operation and driving of atlascar2,” UA Master
Thesis, 2020.

[2] MathWorks. What is deep learning? | how it works, techniques &
applications - matlab & simulink. Acessed: 01/06/2022. [Online]. Available:
https://www.mathworks.com/discovery/deep-learning.html

[3] R. D. F. da Costa, “Detection and classification of road and objects in panoramic
images on board the atlascar2 using deep learning,” UA Master Thesis, 2020.

[4] T. S. D. Freitas and F. Osório, “Deteção de objectos para carros e pedestres através
de deep learning - object detection for cars and pedestrians using deep learning,”
UA Master Thesis, 2018.

[5] R. P. L. C. Costa, “Multi target tracking and detection using lidar and velocity
obstacles for real time definition of collision zones,” UA Master Thesis, 2020.

[6] S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H. Eng, D. Rus,
and M. H. Ang, “Perception, planning, control, and coordination for autonomous
vehicles,” Machines, vol. 5, 3 2017.

[7] S. Chung, K. Shek, J. Butterfield, A. Murphy, J. Butterfield, and I. Spence,
“Current state of the art in object detection for autonomous systems,” 2021.
[Online]. Available: https://www.researchgate.net/publication/354786902

[8] S. K. Pal, A. Pramanik, J. Maiti, and P. Mitra, “Deep learning in multi-object
detection and tracking: state of the art,” Applied Intelligence, vol. 51, pp. 6400–
6429, 9 2021.

[9] S. Liu, L. Li, J. Tang, S. Wu, and J.-L. Gaudiot, “Creating autonomous vehicle
systems,” Synthesis Lectures on Computer Science, vol. 8, no. 2, pp. i–216, 2020.

[10] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple
features,” in Proceedings of the 2001 IEEE computer society conference on computer
vision and pattern recognition. CVPR 2001, vol. 1. IEEE, 2001, pp. I–I.

[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), vol. 1, 2005, pp. 886–893 vol. 1.

97

https://www.mathworks.com/discovery/deep-learning.html
https://www.researchgate.net/publication/354786902

98 REFERENCES

[12] M. Mayank. Convolutional neural networks, explained | towards data science.
Acessed: 08/02/2022. [Online]. Available: https://towardsdatascience.com/
convolutional-neural-networks-explained-9cc5188c4939

[13] A. Balasubramaniam and S. Pasricha, “Object detection in autonomous vehicles:
Status and open challenges,” arXiv preprint arXiv:2201.07706, 2022.

[14] M. Research. Image recognition: Current challenges and emerging
opportunities - microsoft research. Acessed: 08/02/2022. [Online]. Available:
https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/
image-recognition-current-challenges-and-emerging-opportunities/

[15] F. Nobis, M. Geisslinger, M. Weber, J. Betz, and M. Lienkamp, “A deep
learning-based radar and camera sensor fusion architecture for object detection,”
2019 Symposium on Sensor Data Fusion: Trends, Solutions, Applications, SDF
2019, 5 2020. [Online]. Available: https://arxiv.org/abs/2005.07431v1

[16] T. Wang, X. Zhu, J. Pang, and D. Lin, “Fcos3d: Fully convolutional
one-stage monocular 3d object detection,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 913–922. [Online].
Available: https://github.com/open-mmlab/mmdetection3d.

[17] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020. [Online].
Available: https://github.com/AlexeyAB/darknet.

[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 580–587.

[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” Advances in neural information processing
systems, vol. 28, 2015.

[20] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the
IEEE international conference on computer vision, 2017, pp. 2961–2969.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[22] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 1492–1500. [Online]. Available:
https://github.com/facebookresearch/ResNeXt

[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 779–788.

P. A Azevedo Master Degree

https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/image-recognition-current-challenges-and-emerging-opportunities/
https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/image-recognition-current-challenges-and-emerging-opportunities/
https://arxiv.org/abs/2005.07431v1
https://github.com/open-mmlab/mmdetection3d.
https://github.com/AlexeyAB/darknet.
https://github.com/facebookresearch/ResNeXt

REFERENCES 99

[24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in European conference on computer vision.
Springer, 2016, pp. 21–37.

[25] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in International conference on machine learning. PMLR, 2019, pp.
6105–6114.

[26] P. W. Code. Coco benchmark (real-time object detection) | papers with code.
Acessed: 08/02/2022. [Online]. Available: https://paperswithcode.com/sota/
real-time-object-detection-on-coco

[27] Y. Fang, S. Yang, S. Wang, Y. Ge, Y. Shan, and X. Wang, “Unleashing vanilla
vision transformer with masked image modeling for object detection,” arXiv preprint
arXiv:2204.02964, 2022.

[28] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. M. Ni, and H.-Y. Shum, “Dino:
Detr with improved denoising anchor boxes for end-to-end object detection,” arXiv
preprint arXiv:2203.03605, 2022.

[29] P. W. Code. Coco test-dev benchmark (object detection) | papers with code.
Acessed: 08/02/2022. [Online]. Available: https://paperswithcode.com/sota/
object-detection-on-coco

[30] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1440–1448.

[31] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object detection,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[32] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis, “Soft-nms–improving object
detection with one line of code,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 5561–5569.

[33] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp. 7263–7271.

[34] J. R. A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.

[35] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 4700–4708. [Online]. Available:
https://github.com/liuzhuang13/DenseNet.

[36] D. Misra, “Mish: A self regularized non-monotonic activation function,”
arXiv preprint arXiv:1908.08681, 2019. [Online]. Available: https://github.com/
digantamisra98/Mish.

P. A Azevedo Master Degree

https://paperswithcode.com/sota/real-time-object-detection-on-coco
https://paperswithcode.com/sota/real-time-object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco
https://paperswithcode.com/sota/object-detection-on-coco
https://github.com/liuzhuang13/DenseNet.
https://github.com/digantamisra98/Mish.
https://github.com/digantamisra98/Mish.

100 REFERENCES

[37] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-iou loss: Faster and
better learning for bounding box regression,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 12 993–13 000.

[38] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “You only learn one representation:
Unified network for multiple tasks,” arXiv preprint arXiv:2105.04206, 2021.

[39] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon,
TaoXie, J. Fang, imyhxy, K. Michael, Lorna, A. V, D. Montes, J. Nadar,
Laughing, tkianai, yxNONG, P. Skalski, Z. Wang, A. Hogan, C. Fati,
L. Mammana, AlexWang1900, D. Patel, D. Yiwei, F. You, J. Hajek, L. Diaconu,
and M. T. Minh, “ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge
TPU and OpenVINO Export and Inference,” Feb. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.6222936

[40] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H.
Yeh, “Cspnet: A new backbone that can enhance learning capability of cnn,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
workshops, 2020, pp. 390–391.

[41] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance
segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 8759–8768.

[42] U. Nepal and H. Eslamiat, “Comparing yolov3, yolov4 and yolov5 for autonomous
landing spot detection in faulty uavs,” Sensors, vol. 22, no. 2, p. 464, 2022.

[43] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series in 2021,”
arXiv preprint arXiv:2107.08430, 2021.

[44] Z. Zhang, X. Lu, G. Cao, Y. Yang, L. Jiao, and F. Liu, “Vit-yolo: Transformer-based
yolo for object detection,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 2799–2808.

[45] C. Wang, A. Bochkovskiy, and H. Liao, “Scaled-yolov4: Scaling cross stage
partial network,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer Society, jun
2021, pp. 13 024–13 033. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/CVPR46437.2021.01283

[46] Z. Lyu, “Dataset bias analysis on autonomous driving,” 2018. [Online]. Available:
https://cs230.stanford.edu/projects_spring_2018/reports/8289902.pdf

[47] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and
T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous multitask
learning,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 2636–2645.

[48] Q. Wang, H. Zhang, X. Hong, and Q. Zhou, “Small object detection based on
modified fssd and model compression,” arXiv preprint arXiv:2108.10503, 2021.

P. A Azevedo Master Degree

https://doi.org/10.5281/zenodo.6222936
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.01283
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.01283
https://cs230.stanford.edu/projects_spring_2018/reports/8289902.pdf

REFERENCES 101

[49] P. Zhao, W. Niu, G. Yuan, Y. Cai, B. Ren, Y. Wang, and X. Lin, “Achieving real-
time object detection on mobiledevices with neural pruning search,” arXiv preprint
arXiv:2106.14943, 2021.

[50] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “Mot16: A benchmark
for multi-object tracking,” arXiv preprint arXiv:1603.00831, 2016.

[51] R. Stiefelhagen, K. Bernardin, R. Bowers, J. Garofolo, D. Mostefa, and
P. Soundararajan, “The clear 2006 evaluation,” in International evaluation workshop
on classification of events, activities and relationships. Springer, 2006, pp. 1–44.

[52] J. Luiten, A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixe, and B. Leibe,
“Hota: A higher order metric for evaluating multi-object tracking,” International
Journal of Computer Vision, vol. 129, pp. 548–578, 9 2020. [Online]. Available:
http://arxiv.org/abs/2009.07736http://dx.doi.org/10.1007/s11263-020-01375-2

[53] NVIDIA. (2022) Deepstream 6.0.1 release documentation. Acessed: 10/04/2022.
[Online]. Available: https://docs.nvidia.com/metropolis/deepstream/dev-guide/
text/DS_plugin_gst-nvtracker.html#nvdcf-tracker

[54] A. Lukežič, T. Vojíř, L. Zajc, J. Matas, and M. Kristan, “Discriminative
correlation filter tracker with channel and spatial reliability,” International
Journal of Computer Vision, vol. 126, pp. 671–688, 2018. [Online]. Available:
https://doi.org/10.1007/s11263-017-1061-3

[55] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a
deep association metric,” in 2017 IEEE international conference on image processing
(ICIP). IEEE, 2017, pp. 3645–3649.

[56] Y. Zhang, P. Sun, Y. Jiang, D. Yu, Z. Yuan, P. Luo, W. Liu, and X. Wang,
“Bytetrack: Multi-object tracking by associating every detection box,” arXiv
preprint arXiv:2110.06864, 2021.

[57] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 3 1955. [Online].
Available: https://onlinelibrary.wiley.com/doi/full/10.1002/nav.3800020109https:
//onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109https://onlinelibrary.
wiley.com/doi/10.1002/nav.3800020109

[58] X. Zhou, V. Koltun, and P. Krähenbühl, “Tracking objects as points,” in European
Conference on Computer Vision. Springer, 2020, pp. 474–490. [Online]. Available:
https://github.com/xingyizhou/CenterTrack.

[59] J. Cao, X. Weng, R. Khirodkar, J. Pang, and K. Kitani, “Observation-centric sort:
Rethinking sort for robust multi-object tracking,” arXiv preprint arXiv:2203.14360,
2022. [Online]. Available: https://github.com/noahcao/OC_SORT.

[60] Y. Du, Y. Song, B. Yang, and Y. Zhao, “Strongsort: Make deepsort great again,”
arXiv preprint arXiv:2202.13514, 2022.

[61] NVIDIA. Jetpack sdk 4.6 release page | nvidia developer. Acessed: 10/04/2022.
[Online]. Available: https://developer.nvidia.com/jetpack-sdk-46

P. A Azevedo Master Degree

http://arxiv.org/abs/2009.07736 http://dx.doi.org/10.1007/s11263-020-01375-2
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvtracker.html#nvdcf-tracker
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvtracker.html#nvdcf-tracker
https://doi.org/10.1007/s11263-017-1061-3
https://onlinelibrary.wiley.com/doi/full/10.1002/nav.3800020109 https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109 https://onlinelibrary.wiley.com/doi/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/full/10.1002/nav.3800020109 https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109 https://onlinelibrary.wiley.com/doi/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/full/10.1002/nav.3800020109 https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109 https://onlinelibrary.wiley.com/doi/10.1002/nav.3800020109
https://github.com/xingyizhou/CenterTrack.
https://github.com/noahcao/OC_SORT.
https://developer.nvidia.com/jetpack-sdk-46

102 REFERENCES

[62] e-con Systems. Four synchronized 4k cameras for nvidia® jetson agx xavier™.
Acessed: 05/06/2022. [Online]. Available: https://www.e-consystems.com/
nvidia-cameras/jetson-agx-xavier-cameras/four-synchronized-4k-cameras.asp

[63] paperswithcode. (2022) Paper implementations grouped by framework. Acessed:
09/06/2022. [Online]. Available: https://paperswithcode.com/trends

[64] S. Chirag. Byte-deepstream. Acessed: 02/06/2022. [Online]. Available: https:
//github.com/chirag4798/Byte-Deepstream

[65] A. H. Jonathon Luiten, “Trackeval,” https://github.com/JonathonLuiten/
TrackEval, 2020.

[66] D. Wu, M. Liao, W. Zhang, and X. Wang, “Yolop: You only look once for panoptic
driving perception,” arXiv preprint arXiv:2108.11250, 2021.

[67] IBM. What are neural networks? | ibm. Acessed: 11/02/2022. [Online]. Available:
https://www.ibm.com/cloud/learn/neural-networks

[68] S. Kadam. Neural network part1: Inside a single neuron by shweta kadam analytics
vidhya - medium. Acessed: 10/02/2022. [Online]. Available: https://medium.com/
analytics-vidhya/neural-network-part1-inside-a-single-neuron-fee5e44f1e

P. A Azevedo Master Degree

https://www.e-consystems.com/nvidia-cameras/jetson-agx-xavier-cameras/four-synchronized-4k-cameras.asp
https://www.e-consystems.com/nvidia-cameras/jetson-agx-xavier-cameras/four-synchronized-4k-cameras.asp
https://paperswithcode.com/trends
https://github.com/chirag4798/Byte-Deepstream
https://github.com/chirag4798/Byte-Deepstream
https://github.com/JonathonLuiten/TrackEval
https://github.com/JonathonLuiten/TrackEval
https://www.ibm.com/cloud/learn/neural-networks
https://medium.com/analytics-vidhya/neural-network-part1-inside-a-single-neuron-fee5e44f1e
https://medium.com/analytics-vidhya/neural-network-part1-inside-a-single-neuron-fee5e44f1e

	Introduction
	Background and Motivation – The ATLAS Project
	Problem description
	Objectives

	Related work and State of the Art
	Deep Learning vs Machine Learning
	Object detection
	Key Performance indicators
	Types of Object Detectors
	A shift in the computer vision paradigm
	Faster R-CNN
	Single-Shot Detector
	EfficientDet
	The YOLO Series
	Datasets for object detection

	Multiple Object Tracking (MOT)
	Key Metrics
	IOU Tracker
	NvDCF Tracker
	DeepSORT Tracker
	BYTE and ByteTrack Tracker
	OC-SORT
	StrongSORT

	Experimental Infrastructure
	NVIDIA SDK
	Camera Hardware and Software Tools

	Solution, Experiments and Results
	Preliminary Tests
	Memory Problems
	Deployment Technology Decision

	Neural Network training and data pre-processing
	Pre-trained models inference tests
	Data pre-processing
	Training of the Pre-Selected Models

	Deployment Results
	Creation of the TensorRT Engine
	Tracker Inference
	Tracker Evaluation
	Camera Inference in Aveiro
	Experiments with Multi-Task Neural Networks

	Conclusions
	Gentle Introduction to Deep Learning
	Neural Networks in Supervised Learning
	Training of a Neural Network
	Loss functions
	Gradient Descent

	Activation Functions

	Configuration Files
	YOLOv5 Hyperparameters
	YOLOR Hyperparameters
	Scaled YoloV4 HyperParameters
	DeepStream Configs

	References

