
Universidade de Aveiro
2024

Jorge Miguel
Ferreira da Silva

Integration of GNSS and LiDAR to perform the
georeferenced measurement of outdoor volumes
using ATLASCAR2

Integração de GNSS e LiDAR para medição georreferenci-
ada de volumes exteriores usando o ATLASCAR2





Universidade de Aveiro
2024

Jorge Miguel
Ferreira da Silva

Integration of GNSS and LiDAR to perform the
georeferenced measurement of outdoor volumes
using ATLASCAR2

Integração de GNSS e LiDAR para medição georreferenci-
ada de volumes exteriores usando o ATLASCAR2

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Mecânica, realizada sob orientação cient́ıfica de V́ıtor Manuel Ferreira dos
Santos, Professor Associado com Agregação.





o júri / the jury

presidente / president Prof. Doutor César Miguel de Almeida Vasques
Professor Auxiliar em Regime Laboral da Universidade de Aveiro

Vogais / Committee Prof. Doutor Paulo Miguel de Jesus Dias
Professor Auxiliar com Agregação da Universidade de Aveiro

Prof. Doutor V́ıtor Manuel Ferreira dos Santos
Professor Associado com Agregação da Universidade de Aveiro





agradecimentos /
acknowledgements

Um especial agradecimento ao professor V́ıtor Santos pelo apoio, rigor e
exigência colocados na orientação deste trabalho.
Ao Engenheiro Rui Heitor que se mostrou sempre dispońıvel para me ajudar.
Agradeço aos meus pais e amigos por todo o apoio.





keywords ROS; LIDAR; GNSS; ATLASCAR2; Volume Calculation; Point Cloud

abstract The industrial task of monitoring and measuring stockpile volumes is tra-
ditionally complex, relying on manual measurements that pose safety risks,
lead to financial misestimations, and disrupt supply chain management.
This dissertation addresses these challenges by developing a robust appli-
cation within the Robot Operating System (ROS) framework. The primary
objective is to automate the presentation, representation, and processing
of LIDAR and GNSS detection data. By leveraging these advanced tech-
nologies, the proposed system enhances accuracy and efficiency in volume
assessment, thus improving safety and operational efficiency in industrial en-
vironments. The implementation of this system is detailed, demonstrating
significant advancements in automating stockpile volume monitoring and
measurement.





palavras-chave ROS; LIDAR; GNSS; ATLASCAR2; Cálculo de Volumes; Nuvem de pontos

resumo A tarefa industrial de monitorar e medir volumes de pilhas de materiais é
tradicionalmente complexa, dependendo de medições manuais que represen-
tam riscos à segurança, levam a estimativas financeiras imprecisas e inter-
rompem a gestão da cadeia de suprimentos. Esta dissertação aborda esses
desafios desenvolvendo uma aplicação robusta no framework Robot Op-
erating System (ROS). O objetivo principal é automatizar a apresentação,
representação e processamento de dados de detecção de LIDAR e GNSS. Ao
aproveitar essas tecnologias avançadas, o sistema proposto melhora a pre-
cisão e eficiência na avaliação de volumes, aprimorando assim a segurança
e a eficiência operacional em ambientes industriais. A implementação deste
sistema é detalhada, demonstrando avanços significativos na automação do
monitoramento e medição de volumes de pilhas de materiais.





List of Acronyms

CAD Computer Aided Design

CAN Controller Area Network

COLLADA collaborative Design Activity

DAE Digital Asset Exchange

GNSS Global Navigation Satellite System

GPS Global Positioning System

GUI Graphical User Interface

IMU Inertial Measurement Unit

INS Inertial Navigation System

JPEG Joint Photographic Experts Group

LIDAR Light Detection and Ranging

PCD Point Cloud Data

PCL Point Cloud Library

PCM Point Cloud Measurements

PNG Portable Network Graphics

RANSAC Random Sample Consensus

ROR Radius Outlier Removal

ROS Robot Operating System

SDF Simulation Description Format

SFM Structure From Motion

SOR Statistical Outlier Removal

SPAN Synchronous Position, Attitude and Navigation

TLS Terrestrial Laser Scanning

i



UAV Unmanned Aerial Vehicle

URDF Unified Robot Description Format

VGF Voxel Grid Filtering

PTF Passthrough Filtering

ii



Contents

1 Introduction 1
1.1 ATLAS Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the Art 5
2.1 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 3D Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Filtering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Statistical Outlier Removal . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Radius Outlier Removal . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Voxel Grid Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Passthrough Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Volume Calculation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Slice Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Delaunay Triangulation . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Voxel-based volume estimation . . . . . . . . . . . . . . . . . . . . 12

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Experimental Infrastructure 15
3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 LIDAR SICK LMS151 . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Novatel SPAN-IGM-A1 and Novatel GPS-702-GG . . . . . . . . . 16
3.1.3 Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 Sensors Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 ROS - Robot Operating System . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Rviz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Rqt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.5 ROS Packages Used in This Project . . . . . . . . . . . . . . . . . 23
3.2.6 Python Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Proposed Solution 27
4.1 LIDAR Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



4.3 Sensors Bring up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1 LIDAR2D bringup . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Novatel bringup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.3 Odom bringup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Point cloud creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 The Point Cloud Measurements (PCM) Application . . . . . . . . . . . . 33
4.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.4 Algorithm for Volume Calculation . . . . . . . . . . . . . . . . . . 37

4.6 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Tests and Results 39
5.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Create worlds in Gazebo . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 Create point cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Area and volume calculation . . . . . . . . . . . . . . . . . . . . . 41

5.2 Results in Real Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Create point cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Area and volume calculation . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusions and Future Work 49
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 50

A LIDAR Support 53

B Laser Assembler 55

C The PCM application 57

iv



List of Tables

3.1 Main features of SICK LMS151 LIDAR sensor. . . . . . . . . . . . . . . . 16
3.2 Novatel SPAN-IGM-A1 specifications. . . . . . . . . . . . . . . . . . . . . 16
3.3 Novatel GPS-702-GG specifications. . . . . . . . . . . . . . . . . . . . . . 17
3.4 RI32-0/1000ER.14KB specifications. . . . . . . . . . . . . . . . . . . . . . 20

5.1 Area for each simulated object. . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Volume for each simulated object. . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Second cluster of houses volume and area results. . . . . . . . . . . . . . . 46

v



List of Figures

1.1 Example of a logistic park. . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Image of ATLSCAR2 vehicle. . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Dense cloud generated with Photoscan. . . . . . . . . . . . . . . . . . . . 6

2.2 3D point model generated with laser scan. . . . . . . . . . . . . . . . . . . 6

2.3 Step by step, measuring object volume. . . . . . . . . . . . . . . . . . . . 6

2.4 Structure from motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Example of a Point Cloud from LIDAR data. . . . . . . . . . . . . . . . . 7

2.6 Transforming laser scans into point clouds. . . . . . . . . . . . . . . . . . 8

2.7 Application of Statistical Outlier Removal. . . . . . . . . . . . . . . . . . . 9

2.8 Principle of Radius Outlier Removal. . . . . . . . . . . . . . . . . . . . . . 9

2.9 The effect of the voxel grid filter on Kinect 3D data. . . . . . . . . . . . . 10

2.10 Effect of applying the Passthrough Filter. . . . . . . . . . . . . . . . . . . 11

2.11 Illustration of the Slice Method applied to a 3D point cloud. . . . . . . . . 11

2.12 Triangle projected into XY plane. . . . . . . . . . . . . . . . . . . . . . . . 12

2.13 Voxelization of a point cloud. . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 LIDAR sensor LMS151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Novatel SPAN-IGM-A1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Novatel GPS-702-GG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 GNSS+INS Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Configuration commands to set up a NovAtel GNSS+INS system. . . . . 19

3.6 Encoder location in ATLASCAR2. . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Sensors location in ATLASCAR2. . . . . . . . . . . . . . . . . . . . . . . . 21

3.8 ROS Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.9 Rviz GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.10 Gazebo GUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Diagram of the proposed solution. . . . . . . . . . . . . . . . . . . . . . . 27

4.2 LIDAR with new supports applied. . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Overview of software architecture for the proposed solution. . . . . . . . . 29

4.4 The Point Cloud Measurements (PCM) Application to visualize the point
cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Flowchart of the Point Cloud Measurements (PCM) application. . . . . . 35

4.6 Example of a Point Cloud before filtering process. . . . . . . . . . . . . . 36

4.7 Example of a Point Cloud after filtering process. . . . . . . . . . . . . . . 36

4.8 Volume under triangle representation. . . . . . . . . . . . . . . . . . . . . 37

5.1 Cube in Gazebo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi



5.2 Truncated pyramid in Gazebo. . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Stockpile in Gazebo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Simulation in Gazebo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Stockpile point cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6 Stockpile volume and area for a simulated object. . . . . . . . . . . . . . . 42
5.7 First test location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.8 Second test location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.9 First cluster of houses point cloud. . . . . . . . . . . . . . . . . . . . . . . 45
5.10 Second cluster of houses point cloud. . . . . . . . . . . . . . . . . . . . . . 45
5.11 Second cluster of houses point cloud before crop. . . . . . . . . . . . . . . 46
5.12 Second cluster of houses point cloud after crop. . . . . . . . . . . . . . . . 46
5.13 Second cluster of houses volume and area results. . . . . . . . . . . . . . . 47

vii



.

Intentionally blank page.



Listings

4.1 Modifications in ATLASCAR2 URDF file to reflect the sensor relocation. 28
4.2 LIDAR 2D launch file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Novatel launch file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Odom launch file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Laser Assembler launch file . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



.

Intentionally blank page.



Chapter 1

Introduction

The measurement of volumes in temporary storage areas such as harbors, squares, lo-
gistics parks or other similar contexts in outdoor environments is currently performed
mostly by manual human operations and besides being tiring and slow, it is also an
imprecise process and implies labor costs dedicated to the task. These problems happen
because measurements are most often carried out by manual measurement, using a mea-
suring tape, and in some situations the surfaces are not physically delimited, suffering
frequent variations. One of the most challenging situations, like the one represented in
figure 1.1, is the storage of inert materials in bulk (sand, stone, etc.) which are arranged
in piles or heaps, whose volume varies daily, and their measurement is complex.

In this dissertation, it is intended to find an alternative solution for the problems
mentioned before, and that can be integrated in ATLASCAR2.

Figure 1.1: Example of a logistic park. [14]

1



2 1.Introduction

1.1 ATLAS Project

The ATLAS Project was created by the Group of Automation and Robotics at the
Department of Mechanical Engineering of the University of Aveiro. The main objective
of this project is to develop and enable the application of advanced sensors and active
systems designed for implementation in automobiles and platforms.

ATLASCAR2 [2] is part of this project, and it is equipped with several Light De-
tection and Ranging (LIDAR) sensors, Cameras, Global Navigation Satellite System
(GNSS) and Inertial Navigation System (INS) receiver. It is also an all-electric vehicle,
unlike the ATLASCAR1 [1], which means it is easier to modify, test and control unlike
the previous version. In figure 1.2 it is possible to see the vehicle with several sensors
mounted such as LIDAR sensors, cameras and Global Positioning System (GPS).

Figure 1.2: Image of ATLSCAR2 vehicle. [2]

1.2 Problem Description

Accuracy and speed are important characteristics for a successful process in a company.
We can guarantee these characteristics in a process of outdoor volume calculation by
exploring a georeferenced measurement solution that is easier to implement in the field.
The approach involves the use of a GPS receiver travelling through the regions to be
delimited, recording the paths, developing software to analyze and segment closed regions

Jorge Silva Master Degree



1.Introduction 3

and evaluate their area. By having one or more sensors for measuring distances, such as
a LIDAR, it is possible to collect the profile of the external dimensions of the material
stored along these paths during the execution process, and additionally estimate the
volume occupied inside the regions to be defined. These sensors, placed on board a
vehicle, provide a quick survey and potentially with great precision.

1.3 Objectives

The main objective of this dissertation is to develop a system, on ATLASCAR2, that al-
lows the representation and automatic processing of LIDAR and GNSS detection results.
To achieve this purpose, the following intermediate objectives will have to be achieved:

• Development of a solution for data collection in a simulated environment;

• Development of a technical solution in ATLASCAR2 to collect the data necessary
for the georeferenced assessment of surfaces and apparent volumes;

• Development of an application to transform the collected data into a description
of georeferenced regions and volumes and display the results of surveys and detec-
tions;

1.4 Document Structure

This document is divided in 6 chapters. This first chapter presents the context of the
problem and the objectives for this dissertation. Chapter 2 describes the state of the
art for this type of work. The hardware and software used during this dissertation are
presented in Chapter 3. Chapter 4 presents the solution developed, and the results
obtained during the experiments are discussed in Chapter 5. Finally, Chapter 6 presents
the conclusions and the work that can be developed in the future.

Jorge Silva Master Degree



.

Intentionally blank page.



Chapter 2

State of the Art

This chapter explores solutions and algorithms for 3D point cloud processing and volume
estimation. It also covers a description of the current solutions for performing the
measurement of volumes for outdoor formations. As mentioned before, it is needed
to find a solution that can georeference and calculate the volume of an object, so it is
important to investigate some work done in 3D perception, volume calculation, filtering,
and processing point clouds.

2.1 Existing Solutions

During this research, two main articles that use different techniques for volume calcula-
tion of stockpiles were found.

The article Monitoring and Computation of the Volumes of Stockpiles of Bulk Ma-
terial by Means of UAV Photogrammetric Surveying [14] explores the use of Unmanned
Aerial Vehicle (UAV)s for measuring stockpile volumes, figure 2.1, and compares this
method with Terrestrial Laser Scanning (TLS), figure 2.2. UAVs, equipped with high-
resolution cameras, capture images from multiple angles to create 3D models of stock-
piles, enabling accurate volume calculations. The study highlights that UAV photogram-
metric surveying typically achieves horizontal accuracy within 1-3 cm and vertical accu-
racy within 2-5 cm, with volume calculations often accurate to within 2-5% of the actual
volume. In contrast, TLS, which uses a laser scanner to capture detailed 3D data from a
fixed location, provides higher precision with distance measurements accurate to within
millimeters. TLS is renowned for its detailed surface mapping and high accuracy but
involves higher costs and more complex deployment. Setting up TLS can take several
hours to a day, including equipment calibration and site preparation. UAV photogram-
metric surveying generally requires a few hours for flight planning and data capture,
with processing times for generating 3D models and calculating volumes ranging from a
few hours to several days.

Also details the use of specific software for both methods, UAV data is processed
using photogrammetric software such as Pix4D or Agisoft Metashape, which converts
images into accurate 3D models and volume measurements. TLS data is processed with
software like Leica Cyclone or Faro Scene, which helps in creating precise point clouds
and detailed surface models. The article highlights the efficiency of UAVs in terms of
cost, time, and flexibility, particularly in difficult-to-access areas, while TLS serves as a
benchmark for high-precision requirements.

5



6 2.State of the Art

Figure 2.1: Dense cloud generated with Photoscan [14].

Figure 2.2: 3D point model generated with laser scan [14].

The article, Approximate Volume of Sand Materials Stockpile Based on Structure
From Motion (SFM) [9]. focuses on utilizing image processing techniques to estimate
the volume of sand stockpiles. Specifically, the study employs the SFM method, which
involves capturing images of the stockpile from various angles to create a detailed 3D
model. This 3D model is then analyzed to determine the stockpile’s volume.

The volume calculation is carried out by determining the centroid and radius distance
using the Euclidean distance algorithm, as illustrated in figure 2.3. The process involves
capturing the overall three-dimensional structure of the object with cameras positioned
around it, as shown in figure 2.4.

To evaluate the effectiveness of this method, the study measured 25 sand stockpiles.
The average accuracy of the volume estimations achieved with this technique is approx-
imately 74.21%, indicating a high level of precision in the volume measurements using
the SFM approach.

Input
Images

SFM
Process

Finding
Centroid

Euclidean
Distance

Measure
Volume

Figure 2.3: Step by step, measuring object volume [9].

Jorge Silva Master Degree



2.State of the Art 7

Figure 2.4: Structure from motion [9].

2.2 3D Perception

In recent years, 3D modeling from point-cloud data has been a popular investigation topic
by many researchers. An increasing number of applications require the use of accurate
3D models. Examples of popular applications include virtual reality, autonomous mobile
mapping, scanning of historical artifacts, gaming, 3D printing, and many others.

The primary data source for various mapping applications has been point clouds
from LIDAR sensors, figure 2.5. Processing large-scale geospatial data, especially point
clouds, can be very computationally and time-demanding because point clouds can con-
tain millions of points. Therefore, it is crucial to implement fast and accurate processing
algorithms. If applications handle unorganized point clouds, the complexity of the al-
gorithms grows due to the scanning from multiple viewpoints and subsequent merging.
The difficulty also increases with the amount of noise, outliers, and other inaccuracies.

Figure 2.5: Example of a Point Cloud from LIDAR data [22].

Jorge Silva Master Degree



8 2.State of the Art

Point Clouds

Point clouds are data sets defined by points in a given coordinate system. In a 3D Carte-
sian coordinate system, a point is identified by three coordinates that, taken together,
correlate to a precise point in space relative to the point of origin. The point cloud is
a vector-based structure, where each point has XYZ coordinates and other optional at-
tributes that can represent time, intensity, color reflectivity, etc. It is an accurate digital
record that covers the external surfaces of an object.

Point clouds can be obtained by accumulation of several laser scans. Robot Op-
erating System (ROS) has a package, laser assembler [5], represented in figure 2.6,
which is used to collect point cloud data from laser scans. It essentially accumulates
individual laser scans taken at different times and from different positions into a sin-
gle point cloud representation. This package offers significant advantages for creating
point clouds, including improved accuracy, enhanced environmental mapping, seamless
ROS integration, flexibility, real-time operation, and resource efficiency. These benefits
make it a valuable tool for robotics applications that require detailed and accurate 3D
representations of the environment.

Figure 2.6: Transforming laser scans into point clouds [5].

2.3 Filtering Methods

Filtering a point cloud is essential for ensuring data quality, reducing computational
load, improving accuracy, and preparing the data for further processing. Each filtering
method addresses specific issues such as noise, outliers, and data size, contributing to
more effective and efficient point cloud processing.

2.3.1 Statistical Outlier Removal

Statistical Outlier Removal [23], figure 2.7, is a technique designed to filter out outliers
from a point cloud based on statistical analysis of the distances between neighboring
points. The method calculates the mean distance of each point to its k nearest neighbors.

Jorge Silva Master Degree



2.State of the Art 9

If a point’s distance to these neighbors exceeds a specified threshold, it is considered an
outlier and is removed from the point cloud. This approach is particularly effective for
eliminating sparse outliers that deviate significantly from the local point density. The
simplicity of the method makes it a popular choice for cleaning up noisy point clouds.

However, Statistical Outlier Removal (SOR) has its limitations. In particular, it can
be sensitive to the distribution of points within the dataset. If the point cloud is not
uniformly distributed or contains regions with varying densities, SOR might incorrectly
classify valid points as outliers. This is because the threshold used to determine outliers is
applied uniformly, without accounting for variations in local point density. Consequently,
while SOR is effective for removing isolated outliers, careful consideration must be given
to its parameters to avoid inadvertently removing useful data.

Figure 2.7: Application of Statistical Outlier Removal [23].

2.3.2 Radius Outlier Removal

Radius Outlier Removal [17], figure 2.8, is a technique used to clean up point clouds
by identifying and removing outliers based on the density of their local neighborhoods.
For each point in the point cloud, Radius Outlier Removal (ROR) counts the number of
neighboring points within a specified spherical radius. Points with fewer neighbors than
a defined threshold are considered outliers and removed. This method is particularly
effective in scenarios where the point cloud is uniformly dense, as it can efficiently elim-
inate isolated points that deviate from the general density pattern. However, the choice
of radius is critical to the method’s success. A radius that is too small may fail to include
enough neighboring points, potentially removing valid points, while a radius that is too
large may capture too many points, leading to incorrect classification of non-outliers.
Additionally, ROR may not perform well in cases where the point cloud exhibits vary-
ing densities across different regions, as it does not account for these variations when
determining outliers.

Figure 2.8: Principle of Radius Outlier Removal [17].

Jorge Silva Master Degree



10 2.State of the Art

2.3.3 Voxel Grid Filtering

Voxel Grid Filtering [19], represented in figure 2.9, is a down-sampling technique that
reduces the number of points in a point cloud by dividing the space into a 3D grid
of cubic cells, known as voxels. All points within a voxel are replaced by a single
representative point, such as the centroid of the points within that voxel. This method
significantly decreases the number of points in the point cloud, making it easier to handle
and process large datasets. The major advantage of Voxel Grid Filtering (VGF) is its
ability to preserve the overall structure and shape of the point cloud while reducing the
point count. However, the effectiveness of VGF is highly dependent on the chosen voxel
size. A larger voxel size may lead to a loss of important details, while a smaller voxel
size might not reduce the number of points sufficiently. VGF also assumes a relatively
uniform distribution of points within each voxel, which may not always be appropriate
for point clouds with varying densities.

Figure 2.9: The effect of the voxel grid filter on Kinect 3D data [19].

2.3.4 Passthrough Filtering

Passthrough Filtering [18], represented in figure 2.10, is a simple and efficient method for
removing points that fall outside a specified range along one or more dimensions (x, y,
or z). By defining a range along a given dimension, Passthrough Filtering (PTF) filters
out points that are outside this range, effectively focusing on specific regions of interest
within the point cloud.

This method is particularly useful for isolating and examining certain areas of the
dataset. However, PTF has its limitations; it can only remove points based on their
position along a dimension and does not address internal outliers or noise within the
defined range. As such, while PTF is effective for defining bounding boxes or focusing
on particular spatial regions, it may not handle internal noise or variations within the
region of interest.

2.4 Volume Calculation Methods

Calculating the volume enclosed by a point cloud is a fundamental task with numerous
applications, including object recognition and terrain modeling. To estimate volume

Jorge Silva Master Degree



2.State of the Art 11

Figure 2.10: Effect of applying the Passthrough Filter [18].

from point clouds, several methods are available, each with its own advantages and
disadvantages. In the following subsections, it is presented these methods in detail.

2.4.1 Slice Method

The Slice Method [15] is a volumetric calculation technique that divides a 3D object into
a series of parallel slices, calculates the area of each slice, and then sums these areas to
estimate the total volume. This method is particularly effective for objects that have
a regular shape or can be approximated by a series of 2D cross-sections. Each slice is
analyzed to determine its area, and by multiplying this area by the distance between
slices, the volume of each section can be calculated and summed. Figure 2.11 illustrates
the concept of the Slice Method applied to a point cloud.

Figure 2.11: Illustration of the Slice Method applied to a 3D point cloud [15].

2.4.2 Delaunay Triangulation

Delaunay triangulation is a geometric approach that constructs a network of triangles
from the given points in the point cloud, such that no point is contained within the

Jorge Silva Master Degree



12 2.State of the Art

circumcircle of any triangle. Once the triangulation is formed, the volume can be cal-
culated in several different ways. For example, The triangle can be project onto the xy
plane to create a triangular prism, figure 2.12, also it can be used tetrahedrons formed
by each triangle and the centroid of the point cloud.

Figure 2.12: Triangle projected into XY plane [16].

Delaunay triangulation offers a more precise volume estimation compared to vox-
elization, especially for irregular point distributions and complex shapes. However, its
computational complexity increases with the number of points, making it less suitable
for large-scale point clouds [16].

2.4.3 Voxel-based volume estimation

In this approach [13], the 3D space is divided into a grid of small cubic elements known as
voxels. Each voxel represents a discrete volume element, similar to how pixels represent
discrete areas in 2D images. This method is efficient and straightforward, particularly
for uniformly distributed point clouds. However, the accuracy of the estimated vol-
ume can be influenced by the size of the voxels. Smaller voxels can provide a more
precise estimate, but at the cost of increased computational resources and processing
time. Conversely, larger voxels might simplify computations but can lead to inaccura-
cies, particularly for irregularly shaped point clouds. Figure 2.13 shows an example of
voxelization.

2.5 Conclusion

This chapter provided an overview of the current state-of-the-art solutions and meth-
ods for 3D point cloud processing and volume estimation, particularly in the context

Jorge Silva Master Degree



2.State of the Art 13

Figure 2.13: Voxelization of a point cloud [13].

of outdoor formations. The review covered existing solutions that employ UAVs and
photogrammetry, as well as various filtering and volume calculation methods.

Most related projects rely on UAVs for data acquisition, leveraging their ability to
cover large areas and access hard-to-reach locations. However, the inherent limitations
of UAVs, such as sensitivity to weather and limited battery life, suggest that ground-
based vehicles like ATLASCAR2 could offer a more stable and reliable platform for such
tasks.

Furthermore, while photogrammetry offers high accuracy, the complexity and ex-
pense of this approach make it less ideal for certain applications. A more stream-
lined solution might involve using LIDAR with odometry or GPS+Inertial Measurement
Unit (IMU) to simplify data collection and processing.

In the study of point cloud processing, several effective filtering methods were iden-
tified, including Passthrough Filtering and Voxel Grid Filtering. These techniques are
particularly useful for reducing noise and computational load. The Delaunay triangu-
lation method for volume calculation was also noted for its favorable balance between
accuracy and computational efficiency.

Given that stockpiles have irregular top surfaces and flat bottoms, Delaunay tri-
angulation with projection is a suitable method for modeling them. However, with a
large number of points, this process can become slow. To speed it up, it’s crucial to use
effective filtering techniques.

Based on the findings in subsection 2.3, Passthrough Filtering should be used to crop
the point cloud, isolating the relevant region and removing unwanted points. Voxel Grid
Filtering can then be applied to reduce the number of points within that region. These
methods were selected for their simplicity and minimal computational demands.

In conclusion, the insights gained from this chapter will guide the development of
a robust and efficient system for georeferencing and volume estimation using 3D point
cloud data.

Jorge Silva Master Degree



.

Intentionally blank page.



Chapter 3

Experimental Infrastructure

This chapter describes software and hardware tools used in this dissertation. The hard-
ware are the sensors used to gather all necessary data. The software includes all frame-
works used to process and visualize data.

3.1 Hardware

The most relevant sensors for this project are the LIDAR 2D, GPS + IMU, and a
odometry unit. This section provides specific characteristics of these sensors.

3.1.1 LIDAR SICK LMS151

A LIDAR sensor is a device that measures reflected light properties in order to obtain
distance and other information about a given object.

In this case, SICK LMS151 (Figure 3.1) is a 2D laser range finder designed for
both indoor and outdoor use, providing reliable data for navigation, detection, and
measurement. In Table 3.1 are described as the main features of this sensor [6].

Figure 3.1: LIDAR sensor LMS151 [6].

The current sensor setup in ATLASCAR 2 (Figure 3.7) does not allow obtaining a
3D point cloud as required for this project. Also, it is necessary to make changes to this
setup. These changes will be presented in Chapter 4.

15



16 3.Experimental Infrastructure

Feature Value

Light Source Infrared (905 nm)
Laser class 1 (IEC 60825-1:2014, EN 60825-1:2014)
Horizontal aperture angle 270◦

Scanning frequency 25 Hz ... 50Hz
Angular resolution 0.25◦, 0.5◦

Working range 0.5m ... 50m
Amount of evaluated echoes 2

Table 3.1: Main features of SICK LMS151 LIDAR sensor [6].

3.1.2 Novatel SPAN-IGM-A1 and Novatel GPS-702-GG

The Novatel SPAN-IGM-A1 [8] (Figure 3.2) is an advanced GNSS (Global Navigation
Satellite System) receiver combined with an inertial measurement unit IMU. It leverages
Synchronous Position, Attitude, and Navigation Synchronous Position, Attitude and
Navigation (SPAN) technology, which is a fusion of GNSS and inertial navigation systems
INS. This combination offers a highly precise and robust positioning solution, even in
challenging environments where GNSS signals might be weak or obstructed, such as in
urban canyons or under heavy foliage. Table 3.2 shows the equipment specifications.

Figure 3.2: Novatel SPAN-IGM-A1 [8].

Feature Value

Input voltage 10-30 VDC
Time Accuracy 20 ns RMS
Max Velocity 515 m/s
Single point L1/L2 accuracy 1.2 m
IMU measurement data rate 200 Hz
INSS solution data rate Up to 200 Hz
Dimensions 152 × 142 × 51 mm
Weight 515 g

Table 3.2: Novatel SPAN-IGM-A1 specifications [8].

Jorge Silva Master Degree



3.Experimental Infrastructure 17

The Novatel GPS-702-GG [7] (Figure 3.3) is a high-performance GNSS antenna that
is designed to work in tandem with the SPAN-IGM-A1. This antenna is capable of
receiving signals from multiple GNSS constellations, including GPS, GLONASS, and
others, providing enhanced satellite availability and positioning accuracy. Table 3.3
shows the equipment specifications.

Figure 3.3: Novatel GPS-702-GG [7].

Feature Value

Input voltage 4.5-18.0 VDC
Current (typical) 35 mA
3 dB pass band (typical) L1: 1588.5 ±23.0 MHz; L2: 1236.0 ±18.3 MHz
Noise figure (typical) 2.5 dB
L1-L2 differential propagation delay 5 ns
Diameter 185 mm
Weight 500 g

Table 3.3: Novatel GPS-702-GG specifications [7].

When combined, the Novatel SPAN-IGM-A1 and GPS-702-GG provide a powerful
and reliable positioning solution that is particularly well-suited for applications requir-
ing high precision and reliability. For instance, in the context of autonomous vehicles,
accurate positioning is critical for navigation and safety. The SPAN-IGM-A1 ensures
that the vehicle’s position is continuously tracked, even in environments where GNSS
signals might be interrupted.

In ATLASCAR2, the current setup is configured to use a GPS signal with a frequency
of 20Hz, that goes to the SPAN receiver to be processed along with IMU data, gathered
at a frequency of 200Hz. These sensors are connected to the car through RS232. The
setup was configured by P. Nova and is explained in more detail in [20].

Initial configuration and calibration of GNSS system needs to be performed to en-
sure synchronization and accuracy before launching the novatel bringup, described in
section 4.3.2. Figure 3.4 shows the placement of the device in the car.

To configure the system, a few commands need to be sent to the sensor, Novatel
SPAN-IGM-A1. This process can be performed graphically through the NovAtel Con-
nect application or directly from a serial terminal. In this thesis, it was used the Cutecom
terminal to send the commands.

Figure 3.5 shows which commands were sent to the sensor. The configuration com-
mands are used to set up a NovAtel GNSS+INS system, establishing communication

Jorge Silva Master Degree



18 3.Experimental Infrastructure

Figure 3.4: GNSS+INS Installation - vehicle’s axis system in green and the sensor’s axis
system in red.

parameters, orientation, and offsets essential for accurate navigation and positioning.
The SERIALCONFIG commands configure two serial ports (COM1 and COM2) with a
baud rate of 230400, no parity, 8 data bits, 1 stop bit, no flow control, and enable these
ports. The SETIMUORIENTATION command sets the IMU orientation mode to a predefined
setting. The VEHICLEBODYROTATION and APPLYVEHICLEBODYROTATION commands adjust
and apply a 180-degree yaw rotation and a slight roll adjustment to the vehicle body
relative to a reference frame, so we can obtain the configuration represented in figure
3.4. The SETIMUTOANTOFFSET command specifies the positional offset between the IMU
and the GNSS antenna, along with its associated uncertainties, while SETINSOFFSET de-
fines the INS offset relative to the vehicle body. The ALIGNMENTMODE command sets the
system to operate in an unaided alignment mode, and finally, SAVECONFIG saves these
settings to non-volatile memory, ensuring they persist after a restart.

After the completed configuration, it is recommended to perform an alignment with-
out turning off the sensor. This process should be conducted in an open and flat area,

Jorge Silva Master Degree



3.Experimental Infrastructure 19

allowing the vehicle to travel in a straight line from 20 to 25 km/h around 20 seconds.

Figure 3.5: Configuration commands to set up a NovAtel GNSS+INS system.

3.1.3 Odometry

The odometry solution developed for the ATLASCAR2 involves several stages, from
hardware installation to software computation. This solution utilizes the Controller
Area Network (CAN) to acquire necessary data from the vehicle. It uses an encoder
RI32-0/1000ER.14KB [3] (Figure 3.6), is an incremental rotary encoder, commonly used
in industrial automation and control systems to measure rotational position and speed.
Table 3.4 shows the encoder specifications.

In ATLASCAR2, this encoder is used to obtain odometry information. Odometry is

Jorge Silva Master Degree



20 3.Experimental Infrastructure

Figure 3.6: Encoder location in ATLASCAR2 [21].

Feature Value

Type Incremental
IP rating IP40, IP50
Diameter 30 mm
Shaft Length 10 mm
Shaft Diameter 5 mm
Max rotational speed 6000 rpm
No. of Channels 3

Table 3.4: RI32-0/1000ER.14KB specifications [3].

useful to accurately track the position and speed of the vehicle. The setup was configured
by Sara Pombinho and is explained in [21].

3.1.4 Sensors Placement

As mentioned in Chapter 1, the ATLASCAR2 vehicle is equipped with multiple devices.
Besides the sensors mentioned before, it also has four optoelectronics sensors Sick DT20
Hi that assist in the inclinometry module. There is also a PointGrey cameras to perform
road perception with artificial vision, a velodyne LIDAR and a SICK 3D LIDAR.

The Sick DT20 Hi are currently configured with 2.5 ms response time (400Hz) and
a measuring range between 200 mm and 700 mm and are connected to an Arduino that
internally calculates the inclinometry of the car.

The placement of each device in ATLASCAR2 is represented in Figure 3.7.

Jorge Silva Master Degree



3.Experimental Infrastructure 21

Figure 3.7: Sensors location in ATLASCAR2 [21].

3.2 Software

This section provides information about ROS and its packages, as well as the python
libraries used.

3.2.1 ROS - Robot Operating System

ROS, created in 2007 at Stanford University, is an environment designed to help build
large scale robotics projects, by focusing on modularity of different systems and having
tools to interconnect them [11].

These modules are called nodes in ROS nomenclature, and they communicate with
each other using predefined data structures called messages, published and received
through the topics that connect the nodes of the program. Nodes are also grouped
in packages, that can contain several nodes, or just one, and are defined by a single
CMakeList.txt file, where the specifications necessary to compile the package are de-
fined.

An example of the architecture for program developed in ROS is represented in
Figure 3.8.

The ATLASCAR2 is currently developed using ROS platform, so in order for this
work to be integrated in the ATLAS project, all the code that will be developed in the
context of this dissertation will also follow the ROS framework.

Jorge Silva Master Degree



22 3.Experimental Infrastructure

Figure 3.8: ROS Diagram [22].

3.2.2 Rviz

Rviz (Figure 3.9) is a 3D visualization tool for ROS. It provides a Graphical User
Interface (GUI) for the visualization of robotic platforms and of a wide range of sensor’s
data types. Rviz also includes a library that allows most of its functionalities to be used
by other applications [12].

In this work, Rviz will be used to display the processed data from the LIDARs.

Figure 3.9: Rviz GUI [16].

3.2.3 Gazebo

Gazebo (Figure 3.10) is an open source 3D robotics simulator. It uses a physical engine
for illumination, gravity, inertia, etc. It is possible to evaluate and test robots in different
scenarios and model sensors, such as laser range finders, cameras, Kinect style sensors,
etc. [4].

Gazebo will be used to simulate the data collection.

Jorge Silva Master Degree



3.Experimental Infrastructure 23

Figure 3.10: Gazebo GUI [4].

3.2.4 Rqt

The Rqt is a software framework of ROS that implements various GUI tools. The tools
used in this project were rqt graph to visualize topics and nodes, and the robot steering,
which publishes a Twist message in a topic.

3.2.5 ROS Packages Used in This Project

The ROS packages listed below are detailed in [11].

LMS1xx

The LMS1xx package supports every Sick LMS1xx laser scanner. This package includes
the LIDARs Unified Robot Description Format (URDF).

novatel gps driver

The novatel gps driver package is designed for Novatel GPSs and includes features such
as choosing the device type (Ethernet or USB) and the messages the user wants to
publish. Using USB, the user can choose the baudrate, sample rate, and device port of
the sensor, without needing to use the ”Novatel Connect” application.

laser assembler

The laser assembler package listens to streams of scans and uses them to assemble them
into Cartesian coordinates point cloud. This package is used in this project to accumulate
laser scan messages, GPS, and odometry.

laser to pcl

The laser to pcl package converts the point cloud assembled into Point Cloud Library
(PCL) format.

Jorge Silva Master Degree



24 3.Experimental Infrastructure

The ROS packages outlined in this section play crucial roles in enabling the experi-
mental infrastructure for the ATLASCAR2 project. The LMS1xx package provides sup-
port for the SICK LMS1xx laser scanners, facilitating the integration and use of LIDAR
data within the ROS ecosystem.

swri transform util

This package offers essential utilities for handling transformations between different co-
ordinate frames, including translation, rotation, and conversion between various repre-
sentations such as matrices, quaternions, and Euler angles. This package plays a crucial
role in tasks such as sensor fusion, motion planning, and robot navigation by providing
robust tools for computing and applying transforms.

static transform publisher

It is designed to publish fixed, unchanging transformations between coordinate frames. It
allows users to define and broadcast static transforms, which represent a constant spatial
relationship between two frames, such as the position and orientation of sensors relative
to a robot’s base. This package is typically configured via command-line parameters to
specify translation and rotation values.

3.2.6 Python Libraries

To develop the Point Cloud Measures application discussed in section 4.5, the following
Python libraries were utilized. Detailed information about these libraries can be found
in [10].

PyQt5

PyQt5 is a set of Python bindings for the Qt application framework developed by the
Qt Company. It allows Python programmers to create cross-platform applications with
a native look and feel. In this project, PyQt5 is used to design the GUI components of
the point cloud visualization and analysis tool.

matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive vi-
sualizations in Python. It provides a MATLAB-like interface for generating plots and
graphs, including support for 2D and 3D plotting. Here, matplotlib is employed to create
3D scatter plots for visualizing point cloud data.

numpy

NumPy is a fundamental package for scientific computing in Python. It provides support
for large, multi-dimensional arrays and matrices, along with a collection of mathemat-
ical functions to operate on these arrays efficiently. In this project, numpy is used for
handling and manipulating point cloud data represented as arrays.

Jorge Silva Master Degree



3.Experimental Infrastructure 25

Open3D

Open3D is a modern library for 3D data processing. It offers functions for 3D visual-
ization, including point cloud visualization, geometry processing, surface reconstruction,
and registration. Open3D is utilized in this project to read point cloud files and perform
operations such as voxel downsampling and filtering.

scipy

SciPy is a library used for scientific and technical computing in Python. It provides
modules for optimization, linear algebra, integration, interpolation, signal and image
processing, and other tasks. In this project, scipy’s Delaunay module is used to compute
the Delaunay triangulation of the point cloud, which is essential for volume and area
calculations.

mpl toolkits

mpl toolkits is Matplotlib’s toolkit for 3D plotting. It extends the capabilities of mat-
plotlib to support three-dimensional plotting, including functions and classes for creating
3D axes, plots, and visualizations. In this project, mpl toolkits is utilized to create 3D
scatter plots and visualize the point cloud data.

3.3 Conclusion

This chapter outlines the experimental infrastructure established for this dissertation,
detailing the essential hardware and software components for data acquisition, process-
ing, and visualization.

The hardware configuration includes the SICK LMS151 2D LIDAR, the Novatel
SPAN-IGM-A1 with GPS-702-GG, and an odometry system. Each component is crucial
for ensuring accurate data collection and positioning, which are vital for the effective
operation of autonomous vehicles. The limitations of the current sensor setup and the
necessary modifications are also examined.

On the software side, ROS is employed for system integration, Rviz for data vi-
sualization, Gazebo for simulation, and various Python libraries for data processing.
These tools collectively enable effective data handling and visualization, supporting the
research objectives of the dissertation.

The integration of these hardware and software tools establishes a robust experimen-
tal infrastructure, providing a solid foundation for the development and evaluation of
solutions presented in the subsequent chapters.

Jorge Silva Master Degree



.

Intentionally blank page.



Chapter 4

Proposed Solution

As stated earlier, the main objective of this dissertation is to develop a system, installed
on ATLASCAR2, that allows the representation and automatic processing of LIDAR
and GNSS detection results. To achieve this goal, the proposed solution involves the use
of a vertical orientation LIDAR sensor to capture a detailed 3D point cloud of the sur-
rounding environment. By moving the vehicle around the object of interest, the LIDAR
continuously scans and collects data from different angles, which are then integrated
to form a comprehensive three-dimensional model. The vehicle’s precise localization is
achieved through a combination of GPS and IMU data, or alternatively, through odom-
etry, which tracks the movement and position based on previous positions and motion
measurements. This integration of LIDAR scanning and robust localization techniques
ensures accurate mapping and modeling of the environment. Figure 4.1 illustrates this
proposed solution.

Figure 4.1: Diagram of the proposed solution.

Also, an interactive application was created that allows the user to visualize, filter
and calculate the volume and area of a chosen point cloud.

27



28 4.Proposed Solution

4.1 LIDAR Installation

The current 2D LIDAR sensor setup in ATLASCAR2 does not generate a 3D point cloud
in the required format for the primary objective of this work. To address this limitation,
modifications to the LIDAR sensor’s orientation and mounting are necessary.

The optimal solution involves rotating the LIDAR sensor by 90 degrees, enabling it to
capture laser scan data from different segments of an object’s surface. As ATLASCAR2
moves, these laser scans can be accumulated to form a comprehensive 3D point cloud.

To implement this solution, a new support structure was designed, as shown in Figure
4.2, allowing the reorientation of the LIDAR sensor.

Figure 4.2: LIDAR with new supports applied.

Additionally, modifications were required in the ATLASCAR2 URDF file to accu-
rately reflect the sensor’s new orientation on the physical vehicle. These adjustments
ensure that the simulation mirrors the real-world setup, thereby enhancing the accuracy
of sensor data used during testing and development. By aligning the virtual sensor’s
orientation with its physical counterpart, the simulated laser scans will more accurately
represent the actual environment. This alignment is crucial for improving the reliability
and validity of tasks such as mapping, obstacle detection, and navigation. The neces-
sary changes in the ATLASCAR2 URDF file are shown in Listing 4.1, where the sensor’s
orientation parameters are updated to reflect the 90-degree rotation.

...

<!-- left lms151 laser -->

<xacro:sick_lms1xx_joints frame="left_laser" topic="/left_laser/

scan" parent="base_link"

x="${ length /2␣+␣length_offset␣-␣0.08}" y="0.76" z="${0.27+
height_offset}"

rol="${1.5708}" pit="0" yaw="${1.5708}"/>
...

Listing 4.1: Modifications in ATLASCAR2 URDF file to reflect the sensor relocation.

Jorge Silva Master Degree



4.Proposed Solution 29

4.2 Architecture

The architecture of this solution is depicted in Figure 4.3. It is built upon the new
ATLASCAR2 architecture developed by Sara Pombinho in [21], incorporating specific
modifications to the GNSS and 2D LIDAR components. This architecture is organized
into three main categories: sensor initialization, point cloud creation, and information
management and processing for result generation. The subsequent sections will provide
a detailed explanation of each component.

Although the primary focus of this thesis is on utilizing GNSS for displacement
measurement, the architecture also accommodates the use of odometry for displacement
purposes. This flexibility allows for the integration of different measurement techniques
depending on the application requirements and available sensors.

Figure 4.3: Overview of software architecture for the proposed solution.

4.3 Sensors Bring up

The ”Sensors Bring Up” procedure acquires all data from the sensors GPS+IMU, LIDAR
2D and odometry.

4.3.1 LIDAR2D bringup

The Laser 2D bringup launch file is designed to initialize and configure one of the 2D
LIDAR sensors mounted on the bumper of the ATLASCAR2. This file is versatile,
allowing users to specify which LIDAR (left or right) to launch via an argument (name).
By default, it is set to initialize the left LIDAR. Within the configuration, the file
includes another launch file (lms1xx.launch), figure 4.2, setting the IP address and
frame ID specifically for the left LIDAR. The inclusion is wrapped in a conditional
group that checks if the name argument is set to ’left’, ensuring the correct sensor

Jorge Silva Master Degree



30 4.Proposed Solution

configuration. This setup, ensures the LIDAR data is accurately captured and correctly
referenced within the vehicle’s coordinate frame.

<launch >

<arg name="name" default="left" doc="lidar␣type␣[left ,right]"/>

<group if="$(eval␣arg(’name ’)␣==␣’left ’)">
<include file="$(find␣atlascar2_bringup)/launch/include/

lms1xx.launch">

<arg name="port" value="192.168.0.4" />

<arg name="frame_id" value="left_laser" />

</include >

</group>

<group if="$(eval␣arg(’name ’)␣==␣’right ’)">
<include file="$(find␣atlascar2_bringup)/launch/include/

lms1xx.launch">

<arg name="port" value="192.168.0.5" />

<arg name="frame_id" value="right_laser" />

</include >

</group>

</launch >

Listing 4.2: LIDAR 2D launch file

4.3.2 Novatel bringup

The novatel launch file, figure 4.3, was developed by Pedro Bouça Nova [20] and changed
to perform in the new ATLASCAR2 architecture. It is used to initialize and configure the
Novatel GPS and IMU sensors for accurate positioning and orientation data in the AT-
LASCAR2. The configuration section sets up two separate nodelets: one for processing
GPS data from the device connected to /dev/ttyUSB0, and another for handling IMU
data from the device on /dev/ttyUSB1. Key parameters are specified for each nodelet to
control the types of messages published, such as GPS positions, NMEA messages, IMU
data, and diagnostics. Additionally, the launch file includes nodes for publishing geo-
metric transformations using GPS and combined GPS+IMU data to enhance accuracy
during low-speed or stationary conditions. A static transform publisher establishes a
fixed frame relationship, and an initialization node sets the local coordinate frame origin
based on the first GPS fix received. This setup ensures robust and accurate localization.

<launch >

<!-- Node novatel position commands -->

<node name="novatel_position" pkg="nodelet" type="nodelet"

args="standalone␣novatel_gps_driver/novatel_gps_nodelet">

<rosparam >

connection_type: serial

device: /dev/ttyUSB0

...

</rosparam >

</node>

<!-- Node novatel IMU -->

<node name="novatel_imu" pkg="nodelet" type="nodelet" args="

standalone␣novatel_gps_driver/novatel_gps_nodelet">

<rosparam >

Jorge Silva Master Degree



4.Proposed Solution 31

connection_type: serial

device: /dev/ttyUSB1

...

</rosparam >

</node>

<node pkg="swri_transform_util" type="gps_transform_publisher"

name="gps_transform_publisher" output="screen"/>

<node pkg="swri_transform_util" type="imu_transform_publisher"

name="imu_transform_publisher" output="screen"/>

<node pkg="tf" type="static_transform_publisher" name="

swri_transform" args="0␣0␣0␣1.5708␣0␣0␣/world␣/map␣100"/>

<node pkg="swri_transform_util" type="initialize_origin.py" name

="initialize_origin" output="screen">

<param name="local_xy_frame" value="/world"/>

<param name="local_xy_origin" value="auto"/>

<remap from="gps" to="/gps/fix"/>

</node>

</launch >

Listing 4.3: Novatel launch file

4.3.3 Odom bringup

The odom launch file, figure 4.4 developed by Sara Pombinho [21], is designed to ini-
tialize the odometry system for the ATLASCAR2, which is essential for tracking the
vehicle’s position and movement over time. The configuration section sets an argument,
remote running, which determines whether the system should use simulated time, cru-
cial for operations involving pre-recorded data (bag files). This parameter is dynami-
cally set based on the argument’s value. The execution section launches two key nodes:
can ros msgs to ackermann and ackermann to odom. The first node converts CAN
bus messages from the vehicle into Ackermann steering messages, which are a standard
format for steering data in automotive applications. The second node processes these
Ackermann messages to compute the vehicle’s odometry, providing detailed information
about its position and orientation. This setup ensures that the vehicle’s movement data
is accurately captured and represented, facilitating effective navigation and control in
both real-time and simulated environments.

<launch >

<arg name="remote_running" default="false"/>

<param name="/use_sim_time" value="$(arg␣remote_running)"/>

<node pkg="atlascar2_odom" type="can_ros_msgs_to_ackermann.py"

name="can_ros_msgs_to_ackermann" output="screen"/>

<node pkg="atlascar2_odom" type="ackermann_to_odom.py" name="

ackermann_to_odom" output="screen"/>

</launch >

Listing 4.4: Odom launch file

Jorge Silva Master Degree



32 4.Proposed Solution

4.4 Point cloud creation

The conversion of laser scan data into a point cloud format and subsequently saving this
data to a file involves several key components and configurations. The primary tools
utilized in this process are the laser assembler package, a custom Python script, and
the pcl ros package. This section provides a comprehensive guide on setting up and
executing the necessary nodes to achieve this transformation.

4.4.1 Configuration

The process begins with the configuration of the laser assembler.launch file. This
file initiates the laser scan assembler node, responsible for collecting and assembling
laser scans into a point cloud. The key parameters in this configuration are max scans,
which defines the maximum number of scans to assemble, and fixed frame, which sets
the reference frame for the point cloud.

The next component is the laser to pcl.py script. This script initializes a node
named assemble scans to cloud and sets up a service proxy to the assemble scans2

service, which assembles laser scans into a point cloud. The script then creates a pub-
lisher to send PointCloud2 messages to the /laser pointcloud topic. Inside the main
loop, which runs at 10Hz, the script calls the service to assemble scans from the begin-
ning of time to the current time, logs the number of points in the resulting cloud, and
publishes the point cloud. If the service call fails, an error is logged. The loop ensures
continuous operation until the node is shut down, handling any interruptions.

Finally, we have the pointcloud to pcd.launch file that is configured to start
the pointcloud to pcd node from the pcl ros package. This node subscribes to the
/laser pointcloud topic and saves the incoming point cloud messages to Point Cloud
Data (PCD) files.

The key parameters here include prefix, which defines the prefix for the saved PCD
files, and folder, which specifies the directory where the PCD files will be saved. As
the point cloud data is received, it is automatically saved to the designated folder with
filenames starting with the defined prefix.

<launch >

<node type="point_cloud2_assembler" pkg="laser_assembler"

name="pcl_assembler_server">

<remap from="cloud" to="laserPointCloud"/>

<param name="max_clouds" type="int" value="15000" />

<param name="fixed_frame" type="string" value="odom" />

</node>

</launch >

Listing 4.5: Laser Assembler launch file

4.4.2 Execution

To execute the entire process, the first step is to launch the laser assembler.launch file.
This action initiates the laser scan assembler and custom laser to pcl.py nodes.
These nodes work to assemble laser scans into a point cloud and publish the data to the
/laser pointcloud topic.

Jorge Silva Master Degree



4.Proposed Solution 33

The next step is to launch the pointcloud to pcd.launch file to start the pointcloud to pcd

node. This node subscribes to the /laser pointcloud topic and saves the received point
cloud messages to PCD files in the specified directory.

By following these steps in this order, laser scan data is effectively converted into a
point cloud, and the results are saved as PCD files.

4.5 The Point Cloud Measurements (PCM) Application

This section presents an interactive application, Point Cloud Measurements (PCM), cre-
ated for visualization, filtering, volume and area calculation of the point cloud collected.

4.5.1 Architecture

The PCM application (Figure 4.4) was built in python using PyQt5 to create a GUI with
sliders to control the points, windows to visualize the points and the triangulation mesh,
buttons to apply visualization and to calculate the volume.

This tool is designed to be platform-independent, run seamlessly on different oper-
ating systems, optimize processing performance while handling large-scale point cloud
datasets. Efficient algorithms, data structures, and parallel processing techniques are
employed to ensure scalability and responsiveness, even with substantial amounts of
data. Also, incorporates mechanisms for providing feedback to users, such as warning
and information messages using QMessageBox.

The architecture adopts a modular design approach, and each component encapsu-
lates specific functionality. This modular structure enhances the codebase’s readability,
maintainability, and extensibility, allowing for easy integration of new features or im-
provements in the future.

Figure 4.4: The PCM Application to visualize the point cloud.

Jorge Silva Master Degree



34 4.Proposed Solution

4.5.2 User Interface

The main window of the application consists of three sections. The Control Panel on the
left contains buttons, sliders, and labels for file selection and filtering. The Visualization
Area in the center displays the 3D plot of the point cloud. The Footer at the bottom
displays the creator’s information. This layout ensures that all the necessary controls
are easily accessible while providing a clear view of the point cloud visualization.

To choose a point cloud file, click the ”Choose File” button in the Control Panel.
A file dialog will open, allowing you to select a PCD file from your computer. Once
selected, the file path will be displayed next to the button, confirming that the file has
been loaded successfully.

For visualizing the point cloud, adjust the Number of Points, Height, XY Minimum,
and XY Maximum sliders to your desired settings. Then, click the ”Visualize” button to
display the point cloud in the Visualization Area. The point cloud will be read from the
file and filtered based on the slider values, and the filtered point cloud will be displayed
as a 3D plot.

To filter the point cloud further, adjust the Z Min/Max, YMin/Max, and XMin/Max
sliders in the Control Panel. These sliders allow you to set the desired range for filtering
the point cloud along each axis. After adjusting the sliders, click the ”Visualize” button
again to update the visualization based on the new filter settings.

To calculate the volume and surface area of the filtered point cloud, click the ”Cal-
culate Volume and Area” button. A waiting message will appear while the application
performs Delaunay triangulation and calculates the volume and surface area. Once the
calculation is complete, the results will be displayed in a message box, and the 3D plot
will be updated to show the triangulation.

To save the current visualization, click the ”Save Visualization” button. A file dialog
will open, allowing you to select the location and format (Portable Network Graphics
(PNG) or Joint Photographic Experts Group (JPEG)) to save the plot. Once saved, the
plot will be available as an image file in the chosen location. Similarly, to export the
results of the volume and area calculations, click the ”Export Results” button. A file
dialog will open, allowing you to select the location to save the results. The volume and
area calculations will be saved as a text file in the chosen location.

Figure 4.5 shows the process for volume and area calculation of the PCM application.

4.5.3 Visualization

The process begins with loading a point cloud file selected by the user, typically in
the PCD format. The open3d library facilitates this process by parsing the file and
extracting the point cloud data, including the spatial coordinates of each point.

Users are provided with options to generate synthetic points based on specific pa-
rameters, such as the number of points, height, and XY bounds. Numpy integration
is leveraged to generate synthetic points, utilizing random values within the specified
bounds to simulate additional points.

Two different methods for filtering are used Passthrough Filtering and Voxel

Grid Filtering. Voxel Grid Filtering is used to reduce the global number of points
with a standard voxel size of 0.05 m, this value was chosen by testing different values
and different objects, so the performance can be quick, and the layout stays the same.
Passthrough Filtering to delete unwanted points. This application offers adjustable

Jorge Silva Master Degree



4.Proposed Solution 35

Figure 4.5: Flowchart of the Point Cloud Measurements (PCM) application.

Jorge Silva Master Degree



36 4.Proposed Solution

sliders for users to dynamically adjust filtering parameters. These parameters include the
minimum and maximum bounds along the XYZ axes for cropping the point cloud data.
Figures 4.6 and 4.7 show a point cloud before filtering and after filtering. Additionally,
voxel downsampling and passthrough filtering techniques are applied to refine the
point cloud data, reducing noise and computational overhead while preserving essential
features.

The visualization process occurs in real-time, allowing users to observe immediate
changes resulting from parameter adjustments or filtering operations. Matplotlib’s ren-
dering engine efficiently handles the rendering of large point cloud datasets, ensuring
smooth performance even with substantial amounts of data.

Figure 4.6: Example of a Point Cloud before the filtering process.

Figure 4.7: Example of a Point Cloud after the filtering process.

Jorge Silva Master Degree



4.Proposed Solution 37

4.5.4 Algorithm for Volume Calculation

In Chapter 2 different types of volume calculation algorithms were studied, and it was
concluded that Delaunay triangulation combined with projection method is the most
suitable for this project. So, this method was chosen to integrate this application.

The process involves several steps. First, the point cloud data is prepared by extract-
ing the XY coordinates of each point. Then, the Delaunay triangulation is computed
using the scipy.spatial.Delaunay module, which generates a triangulated surface
from the point cloud data.

The resulting triangulated surface is visualized using matplotlib 3D plot function-
ality, with each triangle represented as a set of connected vertices. Once the Delaunay
triangulation is computed, the calculation layer iterates through the triangles formed by
the triangulation to calculate the volume and surface area of the point cloud data.

To calculate the volume under a triangle (Figure 4.8), the vertices are retrieved, and
projected in the XY plane, by removing the Z value. Then the area of the triangle is

Figure 4.8: Volume under triangle representation.

computed using a suitable method, such as the shoelace formula (4.1). Additionally,
the height of the corresponding triangular prism is determined as the average of the
z-coordinates of the triangle’s vertices:

Ai =
1

2
|(xi1yi2 + xi2yi3 + xi3yi1)− (xi1yi3 + xi2yi1 + xi3yi2)| (4.1)

Hi =
1

3
(zi1 + zi2 + zi3) (4.2)

where i = 1, 2, . . . , N and N is the total number of triangles in the Delaunay triangula-
tion. A(xi1, yi1, zi1), B(xi2, yi2, zi2), and C(xi3, yi3, zi3) are the vertices for each triangle.

Jorge Silva Master Degree



38 4.Proposed Solution

Once the area and height are obtained, the volume of the triangular prism is calcu-
lated as the product of its area and height:

Vi = Ai ×Hi (4.3)

To obtain the total volume Vtotal of the point cloud, it is necessary to sum the volumes
under all triangles:

Vtotal =

N∑
i=1

Vi (4.4)

The calculated volume and area are then displayed in a message box, providing users
with quantitative information about the point cloud data’s characteristics.

4.6 Documentation

All documents are stored in the GitHub repository https://github.com/jorgemfs06/

Thesis.git.

Jorge Silva Master Degree

https://github.com/jorgemfs06/Thesis.git
https://github.com/jorgemfs06/Thesis.git


Chapter 5

Tests and Results

This chapter is divided in two types of results. First, the solution was tested in a
simulation environment and then using real data collected from field experiments.

5.1 Simulation Results

The first phase of testing and the acquisition of results was carried out in a simulation
environment using Gazebo, an open-source simulation software. In this phase, a world
file was created that contains specific objects designed to simulate stockpiles. A point
cloud was generated for these objects, and their volumes were subsequently calculated.
This preliminary testing provided a controlled environment to validate the system’s
functionality and refine the algorithms used for data processing and volume calculation.

5.1.1 Create worlds in Gazebo

Three different types of objects were created for the simulation: a cube, a truncated
pyramid, and an object with a stockpile format. These objects were initially designed
using SolidWorks, a Computer Aided Design (CAD) software. The designs were then
exported to a Digital Asset Exchange (DAE) format. The DAE file format, based on
the collaborative Design Activity (COLLADA) standard, is widely used for storing and
exchanging digital assets, including 3D models, textures, animations, and other related
data. These files are essential in Gazebo for defining 3D models of objects, robots, and
entire environments.

After the 3D models were created and exported, they were incorporated into world
format files in Gazebo. These world files, written in Simulation Description Format
(SDF), are crucial as they define the environment for the simulation. The SDF files
describe various elements of the simulation environment such as the terrain, lighting,
objects, robots, and their initial configurations.

Figures 5.1, 5.2 and 5.3 show the objects that were created in the Gazebo environ-
ment.

5.1.2 Create point cloud

As mentioned in Section 4.4, creating a point cloud requires setting a fixed frame of
reference. In this simulation, the fixed frame was set to the topic odom, as it was already

39



40 5.Tests and Results

Figure 5.1: Cube in Gazebo.

Figure 5.2: Truncated pyramid in Gazebo.

Figure 5.3: Stockpile in Gazebo.

implemented in the ATLASCAR2 repository. The data was gathered by publishing a
Twist message on the ackermann steering controller/cmd vel topic using the rqt

Jorge Silva Master Degree



5.Tests and Results 41

ROS tool, which allows the user to control the robot. Figure 5.4 shows the created
simulation environment with the stockpile object in place.

Figure 5.4: Simulation in Gazebo.

By using the laser assembler launch mentioned in section 4.4 it is possible to obtain
a point cloud. Figure 5.5 shows the point cloud of the stockpile object.

Figure 5.5: Stockpile point cloud.

5.1.3 Area and volume calculation

Upon generating a point cloud, the volume and area can be obtained using the applica-
tion described in Section 4.5.

Jorge Silva Master Degree



42 5.Tests and Results

Figure 5.6 shows the volume and area of the stockpile object.

Figure 5.6: Stockpile volume and area for a simulated object.

Object Solidworks
Area (m2)

Point Cloud
Area (m2)

Absolute
Error (m2)

Relative
Error (%)

Cube 1 1.031 0.031 3.1
Truncated pyramid 18 17.999 0.001 0.05
Stockpile 15.068 15.194 0.126 0.84

Table 5.1: Area for each simulated object.

Object Solidworks
Volume (m3)

Point Cloud
Volume (m3)

Absolute
Error (m3)

Relative
Error (%)

Cube 1 0.98 0.020 2
Truncated pyramid 26 25.97 0.030 0.11
Stockpile 17.630 17.521 0.109 0.61

Table 5.2: Volume for each simulated object.

The error analysis presented in table 5.1 and table 5.2 indicates that the point cloud
method for calculating area and volume is generally accurate, with most relative errors
being quite small.

For the cube, the area and volume calculations have relative errors of 3.1% and 2%,
respectively, which are slightly higher compared to the other objects but still within an
acceptable range.

Jorge Silva Master Degree



5.Tests and Results 43

The truncated pyramid shows the highest accuracy, with minimal errors: a relative
error of 0.05% for the area and 0.11% for the volume. This suggests that the method is
highly reliable for geometric shapes with well-defined surfaces.

The stockpile, which has a more complex and irregular shape, shows a relative error
of 0.84% for the area and 0.61% for the volume, indicating that while the method remains
precise, the complexity of the object’s shape can slightly increase the error margins.

Overall, the point cloud method demonstrates robust performance across different
objects, with the errors remaining relatively low and within practical limits for most
applications.

5.2 Results in Real Scenarios

Following the successful validation in the simulation environment, we proceeded to the
second phase of testing in a real-world setting to further substantiate our findings and
evaluate the system’s performance under actual operating conditions. Due to logistical
constraints, it was not possible to test the system on a stockpile as initially planned.
Instead, two locations were identified, figure 5.7 and figure 5.8, with clusters of houses
that allowed for complete navigation around them, making them suitable substitutes for
stockpiles.

Figure 5.7: First test location.

Jorge Silva Master Degree



44 5.Tests and Results

Figure 5.8: Second test location.

5.2.1 Create point cloud

The collected LIDAR and GNSS data is processed with laser assembler launch men-
tioned in section 4.4. Figure 5.9 and figure 5.10 shows the point clouds for the clusters
of houses.

In the first location, a test was conducted on a road with varying inclinations to assess
the performance of the LIDAR 2D sensor and GNSS system under different terrain
conditions. This site provided a challenging environment to evaluate how changes in
elevation and slope affected the accuracy of the point cloud data and subsequent volume
calculations. During this test, it was observed that the position of the laser encountered
issues, likely because of the uneven terrain that affected the stability and alignment of
the sensor. In contrast, the second location featured a flat road with no inclinations,
providing a more controlled environment to test the system’s performance without the
added variable of changing inclinations. The comparison between these two environments
highlighted the impact of road inclinations on the data collection process and the overall
accuracy of the system.

Jorge Silva Master Degree



5.Tests and Results 45

Figure 5.9: First cluster of houses point cloud.

Figure 5.10: Second cluster of houses point cloud.

5.2.2 Area and volume calculation

Once the point cloud is generated, the volume and area can be obtained using the
application described in section 4.5.

Figure 5.11 shows the point cloud of the second cluster of houses before cropping
and figure 5.12 after applying the crop.

The result for the volume and area calculation is represented in figure 5.13. Also, Ta-
ble 5.3 summarizes and compares results with reference values for the second experiment,
whose point cloud is depicted in Figure 5.10.

According to Google Earth, the cluster has an area of approximately 2749.27m2. The
PCM application calculated an area of 2760.109m2 and a volume of 14 323.622m3. The

Jorge Silva Master Degree



46 5.Tests and Results

Figure 5.11: Second cluster of houses point cloud before crop.

Figure 5.12: Second cluster of houses point cloud after crop.

Parameter
Reference
Value

Calculated
Value

Percentage
Error (%)

Area (m2) 2749.27 2760.109 0.39
Volume (m3) 13 746.35 14 323.622 4.20

Table 5.3: Second cluster of houses volume and area results.

Jorge Silva Master Degree



5.Tests and Results 47

Figure 5.13: Second cluster of houses volume and area results.

difference in area is 10.839m2, a percentage error of approximately 0.39%, indicating
high accuracy in area calculation. For volume calculation, assuming an average height
of 5 meters for single-story houses (considering floor heights between 2.5 to 3 meters
and roof heights between 1.5 to 2.5 meters, resulting in total heights between 4 to 5.5
meters), the expected volume is around 13 746.35m3. The calculated volume results in
a percentage error of approximately 4.20%, suggesting reasonable accuracy.

Overall, the PCM application proves to be a reliable tool for calculating the area
and volume of clusters of single-story houses using point cloud data, with results con-
sistent with expected values from external measurements. Future enhancements could
improve volume accuracy by integrating more detailed height data and refining point
cloud processing algorithms.

Jorge Silva Master Degree



.

Intentionally blank page.



Chapter 6

Conclusions and Future Work

This chapter is a summary of the work developed to fulfill the objectives of this thesis.
Based on these conclusions, a few proposals for future works are presented next.

6.1 Conclusions

This thesis presents a comprehensive solution for georeferenced outdoor volume mea-
surement using LIDAR and GNSS technologies mounted on the ATLASCAR2 vehi-
cle. The system integrates a SICK LMS151 LIDAR sensor and a Novatel SPAN-IGM-
A1 GNSS/INS system to capture high-resolution point cloud data, which is processed
through a Python-based application that incorporates PyQt5 for a graphical user inter-
face (GUI) and algorithms for point cloud manipulation and volume estimation.

The methodology developed included both simulation and real-world testing. In the
simulation phase, the system was tested on geometrically simple objects (cube, truncated
pyramid, and stockpile) using the Gazebo environment. The data was collected through
ROS-based control of the ATLASCAR2, with point clouds generated for each object.
The subsequent area and volume calculations demonstrated excellent accuracy, partic-
ularly with the truncated pyramid, which had an error margin of 0.05% for area and
0.11% for volume. Even for the more irregularly shaped stockpile, the system achieved
a relative error of 0.84% for area and 0.61% for volume, showing that the method can
handle complex geometries effectively.

In real-world tests, two locations with clusters of houses were used as substitutes for
stockpiles due to logistical constraints. Volume calculations were slightly less accurate,
with an error margin of 4.20% in real-world settings and between 0.61% and 2% in
simulation. The results demonstrated that flat surfaces yielded more consistent and
accurate data, while uneven terrain affected sensor stability and data quality. This
highlights the importance of terrain analysis in future implementations.

The Delaunay Triangulation algorithm for volume estimation was chosen due to
its robustness in handling irregular and complex surfaces. This algorithm connects
non-collinear points into triangles, forming a smooth surface reconstruction suitable for
volumetric calculations. In simulations, Delaunay Triangulation achieved precision with
error margins consistently below 1% for simple geometries and under 2% for complex
shapes, making it ideal for stockpile volume estimation. In real-world tests, minor losses
in accuracy were noted due to sensor noise and terrain variability, but the algorithm
remained effective in moderately complex environments.

49



50 6.Conclusions and Future Work

For point cloud filtering, two primary algorithms were chosen: Voxel Grid Filtering
and Passthrough Filtering. Voxel Grid Filtering was used to reduce the number of points
in the point cloud, which optimized the computational load without sacrificing geomet-
rical accuracy. This was essential for handling large datasets efficiently. Passthrough
Filtering allowed the system to focus on specific areas of interest in removing irrelevant
data outside a predefined range. These two filters worked together to enhance point cloud
clarity, ensuring high-quality data was passed to the Delaunay Triangulation algorithm
for volume calculation.

The system’s modular design allows it to efficiently process large point cloud datasets,
making it applicable for various real-world uses, particularly in environmental mapping,
stockpile volume estimation, and other large-scale volumetric analysis tasks. Future
improvements could enhance accuracy, particularly in real-world environments, by con-
ducting tests with more controlled object geometries rather than clusters of buildings.

In summary, the integration of GNSS and LIDAR on ATLASCAR2, along with the
use of the Delaunay Triangulation algorithm and effective filtering methods such as Voxel
Grid and Passthrough Filtering, provides a robust and reliable system for volume and
area estimation. This system shows promising potential for further development and
broader applications in the field of geospatial measurement.

6.2 Future work

To further enhance the system, several areas of improvement and expansion are proposed:

• Incorporating inclinometers to get the inclination of the terrain.

• Further development and refinement of the point cloud processing algorithms could
improve both the accuracy and efficiency of the system.

• Improve navigation of ATLASCAR2 by merging GPS+IMU data, odometry and
inclinometers.

• Developing real-time processing capabilities would enable the system to be used
in dynamic environments, providing immediate feedback and results.

• Conducting more extensive tests in varied environments and conditions would help
validate and improve the robustness of the system.

• Improving the user interface to be more intuitive and user-friendly can facilitate
broader adoption and easier operation by non-technical users.

Finally, expanding the system’s application to other types of structures and environ-
ments can open up new use cases and enhance its versatility.

Jorge Silva Master Degree



References

[1] ATLASCAR1 Description. https://atlas.web.ua.pt.

[2] ATLASCAR2 Description. https://github.com/lardemua/atlascar2.

[3] Farnell. ri32-0/1000er.14kb. https://pt.farnell.com/hengstler/

ri32-0-1000er-14kb/encoder-rotary/dp/615985.

[4] Gazebo. https://gazebosim.org/home.

[5] Laser Assembler Package. http://wiki.ros.org/laser_assembler.

[6] LMS151-10100 — Detection and ranging solutions — SICK. https://www.sick.

com/us/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1xx/

lms151-10100/p/p141840.

[7] Novatel. Gps-702-gg-n antenna. https://portal.hexagon.com/public/Novatel/
assets/Documents/Manuals/om-20000095.

[8] Novatel. Span-igm user manual. https://portal.hexagon.com/public/Novatel/
assets/Documents/Manuals/OM-20000141.

[9] Putra, Chrystia Aji and Wahyu Syaifullah, J. S. and Adila, Mar’Atul, Approximate
volume of sand materials stockpile based on structure from motion (SFM). Pro-
ceeding - 6th Information Technology International Seminar, ITIS 2020. https:

//www.researchgate.net/publication/348673018_Approximate_Volume_of_

Sand_Materials_Stockpile_Based_on_Structure_From_Motion_SFM.

[10] The python standard library. https://docs.python.org/3/library/index.html.

[11] Ros/introduction - ros wiki. http://wiki.ros.org/ROS/Introduction.

[12] rviz - ROS Wiki. http://wiki.ros.org/rviz.

[13] Siwen Quan, Jie Ma, Fangyu Hu, Bin Fang and Tao Ma, Local voxelized structure
for 3D binary feature representation and robust registration of point clouds from
low-cost sensors, 2018. https://www.sciencedirect.com/science/article/

abs/pii/S0020025518301646.

[14] Tucci, Grazia and Gebbia, Antonio and Conti, Alessandro and Fiorini, Lidia
and Lubello, Claudio, Monitoring and computation of the volumes of stock-
piles of bulk material by means of UAV photogrammetric surveying, 2019.
https://www.researchgate.net/publication/333937847_Monitoring_and_

51

https://atlas.web.ua.pt
https://github.com/lardemua/atlascar2
https://pt.farnell.com/hengstler/ri32-0-1000er-14kb/encoder-rotary/dp/615985
https://pt.farnell.com/hengstler/ri32-0-1000er-14kb/encoder-rotary/dp/615985
https://gazebosim.org/home
http://wiki.ros.org/laser_assembler
https://www.sick.com/us/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1xx/lms151-10100/p/p141840
https://www.sick.com/us/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1xx/lms151-10100/p/p141840
https://www.sick.com/us/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1xx/lms151-10100/p/p141840
https://portal.hexagon.com/public/Novatel/assets/Documents/Manuals/om-20000095
https://portal.hexagon.com/public/Novatel/assets/Documents/Manuals/om-20000095
https://portal.hexagon.com/public/Novatel/assets/Documents/Manuals/OM-20000141
https://portal.hexagon.com/public/Novatel/assets/Documents/Manuals/OM-20000141
https://www.researchgate.net/publication/348673018_Approximate_Volume_of_Sand_Materials_Stockpile_Based_on_Structure_From_Motion_SFM 
https://www.researchgate.net/publication/348673018_Approximate_Volume_of_Sand_Materials_Stockpile_Based_on_Structure_From_Motion_SFM 
https://www.researchgate.net/publication/348673018_Approximate_Volume_of_Sand_Materials_Stockpile_Based_on_Structure_From_Motion_SFM 
https://docs.python.org/3/library/index.html
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/rviz
https://www.sciencedirect.com/science/article/abs/pii/S0020025518301646
https://www.sciencedirect.com/science/article/abs/pii/S0020025518301646
https://www.researchgate.net/publication/333937847_Monitoring_and_Computation_of_the_Volumes_of_Stockpiles_of_Bulk_Material_by_Means_of_UAV_Photogrammetric_Surveying
https://www.researchgate.net/publication/333937847_Monitoring_and_Computation_of_the_Volumes_of_Stockpiles_of_Bulk_Material_by_Means_of_UAV_Photogrammetric_Surveying


52 REFERENCES

Computation_of_the_Volumes_of_Stockpiles_of_Bulk_Material_by_Means_

of_UAV_Photogrammetric_Surveying.

[15] Wen-Chung Chang and Chia-Hung Wu, Object Volume Estimation Based on 3D
Point Cloud, 2017. https://ieeexplore.ieee.org/document/8284244.

[16] Yong Liu and Yanwei Zheng, Accurate Volume Calculation Driven by Delau-
nay Triangulation for Coal Measurement, 2021. https://www.researchgate.

net/publication/350935996_Accurate_Volume_Calculation_Driven_by_

Delaunay_Triangulation_for_Coal_Measurement.

[17] Yusen Geng, Yuankai Zhang, Xincheng Tian, Xiaorui Shi, Xiujing Wang, and
Yigang Cui. A method of welding path planning of steel mesh based on point
cloud for welding robot. 2021. https://www.researchgate.net/publication/

350716828_A_Method_of_Welding_Path_Planning_of_Steel_Mesh_Based_on_

Point_Cloud_for_Welding_Robot.

[18] Rocio Mora, Jose A. Jimenez, Susana Lagüela, and Diego González-Aguilera.
Automatic point-cloud registration for quality control in building works.
2021. https://www.researchgate.net/publication/349121563_Automatic_

Point-Cloud_Registration_for_Quality_Control_in_Building_Works.

[19] Matteo Munaro, Filippo Basso, Stefano Michieletto, Enrico Pagello, and Emanuele
Menegatti. A software architecture for rgb-d people tracking based on ros frame-
work for a mobile robot. 2013. https://www.researchgate.net/publication/

286624443_A_Software_Architecture_for_RGB-D_People_Tracking_Based_

on_ROS_Framework_for_a_Mobile_Robot.

[20] Pedro Miguel Bouça Nova. Localização e navegação global do atlascar2 usando
gnss e interface com mapas on-line. Master’s thesis, Universidade de Aveiro, 2018.
http://hdl.handle.net/10773/29002.

[21] Sara Pombinho. Integrated software architecture in atlascar2. Master’s thesis,
Universidade de Aveiro, 2022. http://hdl.handle.net/10773/34924.

[22] Gigih Priyandoko, T. Ming, and M.S. Achmad. Mapping of unknown industrial
plant using ros-based navigation mobile robot. IOP Conference Series: Materials
Science and Engineering, 257, 10 2017.

[23] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In
2011 IEEE International Conference on Robotics and Automation, pages 1–4, 2011.

Jorge Silva Master Degree

https://www.researchgate.net/publication/333937847_Monitoring_and_Computation_of_the_Volumes_of_Stockpiles_of_Bulk_Material_by_Means_of_UAV_Photogrammetric_Surveying
https://www.researchgate.net/publication/333937847_Monitoring_and_Computation_of_the_Volumes_of_Stockpiles_of_Bulk_Material_by_Means_of_UAV_Photogrammetric_Surveying
https://www.researchgate.net/publication/333937847_Monitoring_and_Computation_of_the_Volumes_of_Stockpiles_of_Bulk_Material_by_Means_of_UAV_Photogrammetric_Surveying
https://www.researchgate.net/publication/333937847_Monitoring_and_Computation_of_the_Volumes_of_Stockpiles_of_Bulk_Material_by_Means_of_UAV_Photogrammetric_Surveying
https://ieeexplore.ieee.org/document/8284244
https://www.researchgate.net/publication/350935996_Accurate_Volume_Calculation_Driven_by_Delaunay_Triangulation_for_Coal_Measurement
https://www.researchgate.net/publication/350935996_Accurate_Volume_Calculation_Driven_by_Delaunay_Triangulation_for_Coal_Measurement
https://www.researchgate.net/publication/350935996_Accurate_Volume_Calculation_Driven_by_Delaunay_Triangulation_for_Coal_Measurement
https://www.researchgate.net/publication/350716828_A_Method_of_Welding_Path_Planning_of_Steel_Mesh_Based_on_Point_Cloud_for_Welding_Robot
https://www.researchgate.net/publication/350716828_A_Method_of_Welding_Path_Planning_of_Steel_Mesh_Based_on_Point_Cloud_for_Welding_Robot
https://www.researchgate.net/publication/350716828_A_Method_of_Welding_Path_Planning_of_Steel_Mesh_Based_on_Point_Cloud_for_Welding_Robot
https://www.researchgate.net/publication/349121563_Automatic_Point-Cloud_Registration_for_Quality_Control_in_Building_Works
https://www.researchgate.net/publication/349121563_Automatic_Point-Cloud_Registration_for_Quality_Control_in_Building_Works
https://www.researchgate.net/publication/286624443_A_Software_Architecture_for_RGB-D_People_Tracking_Based_on_ROS_Framework_for_a_Mobile_Robot
https://www.researchgate.net/publication/286624443_A_Software_Architecture_for_RGB-D_People_Tracking_Based_on_ROS_Framework_for_a_Mobile_Robot
https://www.researchgate.net/publication/286624443_A_Software_Architecture_for_RGB-D_People_Tracking_Based_on_ROS_Framework_for_a_Mobile_Robot
http://hdl.handle.net/10773/29002
http://hdl.handle.net/10773/34924


Appendix A

LIDAR Support

53



54 A.LIDAR Support

Jorge Silva Master Degree



Appendix B

Laser Assembler

import rospy

from laser_assembler.srv import AssembleScans2

from sensor_msgs.msg import PointCloud2

def assemble_and_publish ():

rospy.init_node("assemble_scans_to_cloud")

rospy.wait_for_service("assemble_scans2")

assemble_scans = rospy.ServiceProxy(’assemble_scans2 ’,

AssembleScans2)

pub = rospy.Publisher ("/laser_pointcloud", PointCloud2 ,

queue_size =1)

rate = rospy.Rate (0.1) # Adjust the loop rate as needed

while not rospy.is_shutdown ():

try:

resp = assemble_scans(rospy.Time (0), rospy.get_rostime

())

rospy.loginfo("Got␣cloud␣with␣%u␣points" % len(resp.

cloud.data))

pub.publish(resp.cloud)

except rospy.ServiceException as e:

rospy.logerr("Service␣call␣failed:␣%s" % e)

rate.sleep ()

if __name__ == "__main__":

try:

assemble_and_publish ()

except rospy.ROSInterruptException:

pass

55



.

Intentionally blank page.



Appendix C

The PCM application

import sys

import matplotlib.pyplot as plt

from PyQt5.QtWidgets import (

QApplication , QMainWindow , QWidget , QVBoxLayout ,

QHBoxLayout , QLabel , QFileDialog , QPushButton ,

QSlider , QMessageBox

)

import open3d as o3d

import numpy as np

from scipy.spatial import Delaunay

from functools import reduce

from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg

as FigureCanvas

from mpl_toolkits.mplot3d import Axes3D

class PointCloudVisualizer(QMainWindow):

def __init__(self):

super().__init__ ()

self.setWindowTitle("Volume␣Calculation␣of␣a␣Point␣Cloud")

self.showMaximized ()

self.central_widget = QWidget ()

self.setCentralWidget(self.central_widget)

self.main_layout = QVBoxLayout ()

self.central_widget.setLayout(self.main_layout)

# Create widget for buttons and sliders

self.control_widget = QWidget ()

self.control_layout = QVBoxLayout ()

self.control_widget.setLayout(self.control_layout)

self.control_widget.setStyleSheet("background -color:␣#

e6e6e6;")

# Left side layout for sliders and buttons

self.left_layout = QHBoxLayout ()

self.control_layout.addLayout(self.left_layout)

# Right side layout for plots

self.right_layout = QVBoxLayout ()

57



58 C.The PCM application

self.control_layout.addLayout(self.right_layout)

# Layout for buttons

self.button_layout = QVBoxLayout ()

self.create_points_layout = QVBoxLayout ()

self.create_points_layout.addWidget(QLabel("Filter␣point␣

cloud"))

self.number_points_slider = self.create_slider("Number␣of␣

Points", 0, 500, 500)

self.height_slider = self.create_slider("Height", 0, 50,

25)

self.xy_min_slider = self.create_slider("XY␣minimum",

-100, 100, 25)

self.xy_max_slider = self.create_slider("XY␣maximum",

-100, 100, 25)

self.left_layout.addLayout(self.create_points_layout)

self.filter_layout = QVBoxLayout ()

self.z_max_slider = self.create_slider("Z␣Max", -100, 100,

100)

self.z_min_slider = self.create_slider("Z␣Min", -100, 100,

0)

self.y_max_slider = self.create_slider("Y␣Max", -100, 100,

100)

self.y_min_slider = self.create_slider("Y␣Min", -100, 100,

-100)

self.x_max_slider = self.create_slider("X␣Max", -100, 100,

100)

self.x_min_slider = self.create_slider("X␣Min", -100, 100,

-100)

self.left_layout.addLayout(self.filter_layout)

# Add buttons and sliders to the left layout

self.point_cloud_file_label = QLabel("")

self.point_cloud_file_path = ""

self.point_cloud_file_button = QPushButton("Choose␣File")

self.point_cloud_file_button.clicked.connect(self.

choose_point_cloud_file)

self.button_layout.addWidget(self.point_cloud_file_label)

self.button_layout.addWidget(self.point_cloud_file_button)

self.visualize_button = QPushButton("Visualize")

self.visualize_button.clicked.connect(self.

visualize_point_cloud)

self.button_layout.addWidget(self.visualize_button)

self.calculate_volume_delaunay_button = QPushButton("

Calculate␣Volume␣and␣Area")

self.calculate_volume_delaunay_button.clicked.connect(self

.calculate_volume_delaunay)

self.button_layout.addWidget(self.

calculate_volume_delaunay_button)

Jorge Silva Master Degree



C.The PCM application 59

self.save_visualization_button = QPushButton("Save␣

Visualization")

self.save_visualization_button.clicked.connect(self.

save_visualization)

self.button_layout.addWidget(self.

save_visualization_button)

self.export_results_button = QPushButton("Export␣Results")

self.export_results_button.clicked.connect(self.

export_results)

self.button_layout.addWidget(self.export_results_button)

self.left_layout.addLayout(self.button_layout)

# Add the control widget to the main layout

self.main_layout.addWidget(self.control_widget)

# Placeholder for point cloud visualization widget

self.point_cloud_widget = QWidget ()

self.point_cloud_layout = QHBoxLayout ()

self.point_cloud_widget.setLayout(self.point_cloud_layout)

self.main_layout.addWidget(self.point_cloud_widget)

# Placeholder for footer widget

self.footer_widget = QWidget ()

self.footer_layout = QHBoxLayout ()

self.footer_widget.setStyleSheet("background -color:␣#8699

a1")

self.footer_layout.addWidget(QLabel("Created␣by␣Jorge␣

Silva␣DEM␣Universidade␣de␣Aveiro␣2024"))

self.footer_widget.setLayout(self.footer_layout)

self.main_layout.addWidget(self.footer_widget)

# Adjusting the stretch factor to ensure proper resizing

self.main_layout.setStretchFactor(self.control_widget , 0)

self.main_layout.setStretchFactor(self.point_cloud_widget ,

1)

self.main_layout.setStretchFactor(self.footer_widget , 0)

def create_slider(self , label , min_val , max_val , default_val):

slider_layout = QHBoxLayout ()

label_widget = QLabel(label)

slider = QSlider ()

slider.setOrientation (1) # Vertical orientation

slider.setMinimum(min_val * 1000) # Adjusted for

increments of 0.1

slider.setMaximum(max_val * 1000) # Adjusted for

increments of 0.1

slider.setValue(default_val * 1000) # Adjusted for

increments of 0.1

slider.setSingleStep (1) # Set single step to 1

slider.setTickPosition(QSlider.TicksBelow)

Jorge Silva Master Degree



60 C.The PCM application

slider.setTickInterval (( max_val - min_val) // 1000)

slider_label = QLabel(str(default_val)) # Display the

initial value

slider.valueChanged.connect(lambda val , label=slider_label

: label.setText(str(val / 1000)))

slider_layout.addWidget(label_widget)

slider_layout.addWidget(slider)

slider_layout.addWidget(slider_label)

self.create_points_layout.addLayout(slider_layout)

return slider

def choose_point_cloud_file(self):

file_dialog = QFileDialog ()

file_dialog.setNameFilter("Point␣Cloud␣Files␣(*. pcd)")

if file_dialog.exec_():

self.point_cloud_file_path = file_dialog.selectedFiles

()[0]

self.point_cloud_file_label.setText(self.

point_cloud_file_path)

def visualize_point_cloud(self):

if not self.point_cloud_file_path:

QMessageBox.warning(self , "Warning", "Please␣choose␣a␣

point␣cloud␣file.")

return None

# Clear existing plot , if any

for i in reversed(range(self.point_cloud_layout.count())):

widget = self.point_cloud_layout.itemAt(i).widget ()

if widget is not None:

widget.deleteLater ()

pcd = o3d.io.read_point_cloud(self.point_cloud_file_path)

print("Point␣cloud␣loaded:", pcd)

if pcd.is_empty ():

QMessageBox.warning(self , "Warning", "The␣point␣cloud␣

file␣is␣empty␣or␣could␣not␣be␣loaded.")

return None

number_points = self.number_points_slider.value ()

p1_load = np.asarray(pcd.points)

rand_xy = np.random.uniform(self.xy_min_slider.value() /

1000, self.xy_max_slider.value() / 1000,

(number_points , 2))

rand_z = np.full((1, number_points), self.height_slider.

value() / 1000)

p1 = np.concatenate ((rand_xy , rand_z.T), axis =1)

pointSet = o3d.geometry.PointCloud ()

pointSet.points = o3d.utility.Vector3dVector(p1)

Jorge Silva Master Degree



C.The PCM application 61

p3_load = np.concatenate ((p1_load , p1), axis =0)

pcd1 = o3d.geometry.PointCloud ()

pcd1.points = o3d.utility.Vector3dVector(p3_load)

# Find the minimum Z value

min_z = np.min(np.asarray(pcd1.points)[:, 2])

# Translate points so that the lowest point is at Z = 0

translation = np.array ([0, 0, -min_z ])

pcd1.translate(translation)

x_min , x_max = self.x_min_slider.value() / 1000, self.

x_max_slider.value() / 1000

y_min , y_max = self.y_min_slider.value() / 1000, self.

y_max_slider.value() / 1000

z_min , z_max = self.z_min_slider.value() / 1000, self.

z_max_slider.value() / 1000

voxel_size = 0.05

pcd1_downsampled = pcd1.voxel_down_sample(voxel_size)

passthrough = o3d.geometry.PointCloud ()

passthrough.points = o3d.utility.Vector3dVector ([[x, y, z]

for [x, y, z] in pcd1_downsampled.points if

x_min <=

x <=

x_max

and

y_min

<= y

<=

y_max

and

z_min

<= z

<=

z_max

])

points = np.asarray(passthrough.points)

print("Filtered␣points:", points)

if points.size == 0:

QMessageBox.warning(self , "Warning", "No␣points␣remain

␣after␣filtering.")

return None

self.figure = plt.figure ()

self.ax = self.figure.add_subplot (111, projection=’3d’)

self.ax.scatter(points[:, 0], points[:, 1], points[:, 2],

s=1)

self.ax.set_xlabel(’X’)

Jorge Silva Master Degree



62 C.The PCM application

self.ax.set_ylabel(’Y’)

self.ax.set_zlabel(’Z’)

self.ax.set_title(’Point␣Cloud␣Visualization ’)

canvas = FigureCanvas(self.figure)

self.point_cloud_layout.addWidget(canvas)

self.latest_fig = self.figure

return points

def calculate_volume_delaunay(self):

# Show a "Waiting" message

waiting_message = QMessageBox(self)

waiting_message.setWindowTitle("Processing")

waiting_message.setText("Please␣wait␣while␣the␣Delaunay␣

triangulation␣is␣being␣processed ...")

waiting_message.show()

QApplication.processEvents () # Ensure the message is

displayed immediately

for i in reversed(range(self.point_cloud_layout.count())):

widget = self.point_cloud_layout.itemAt(i).widget ()

if widget is not None:

widget.deleteLater ()

extract_xy = []

points = self.visualize_point_cloud ()

for point in points:

extract_xy.append ([point [0], point [1]])

index = Delaunay(np.array(extract_xy))

# Update visualization to show Delaunay triangulation

fig = plt.figure ()

ax = fig.add_subplot (111, projection=’3d’)

def get_triangles_vertices(triangles , vertices):

triangles_vertices = []

for triangle in triangles:

new_triangles_vertices = [vertices[triangle [0]],

vertices[triangle [1]], vertices[triangle [2]]]

triangles_vertices.append(new_triangles_vertices)

return np.array(triangles_vertices)

def volume_triangular_prism(triangle):

p1 , p2 , p3 = triangle

x1 , y1 , z1 = p1

x2 , y2 , z2 = p2

x3 , y3 , z3 = p3

area = (1 / 2) * (x1 * y2 - x2 * y1 + x2 * y3 - x3 *

y2 + x3 * y1 - x1 * y3)

height = (1 / 3) * (z1 + z2 + z3)

volume = area * height

return area , volume

Jorge Silva Master Degree



C.The PCM application 63

# Plot the triangles

triangles_vertices = get_triangles_vertices(index.

simplices , points)

for triangle in triangles_vertices:

x = [point [0] for point in triangle]

y = [point [1] for point in triangle]

z = [point [2] for point in triangle]

ax.plot(x + [x[0]], y + [y[0]], z + [z[0]], color=’red

’,

linewidth =0.2) # Connect the last point to

the first to close the triangle

total_area = 0

total_volume = 0

for triangle in triangles_vertices:

area , volume = volume_triangular_prism(triangle)

total_area += area

total_volume += volume

ax.set_xlabel(’X’)

ax.set_ylabel(’Y’)

ax.set_zlabel(’Z’)

canvas = FigureCanvas(fig)

self.point_cloud_layout.addWidget(canvas)

# Close the "Waiting" message

waiting_message.close ()

QMessageBox.information(self , "Volume␣and␣Area␣Calculation

",

f"The␣volume␣is␣{round(

total_volume ,␣3)}␣m^3\n"

f"The␣surface␣area␣is␣{round(

total_area ,␣3)}␣m^2")

return total_volume , total_area

def save_visualization(self):

file_dialog = QFileDialog ()

file_path , _ = file_dialog.getSaveFileName(self , "Save␣

File", "", "PNG␣(*. png);;JPEG␣(*. jpg␣*.jpeg)")

if file_path:

self.latest_fig.savefig(file_path)

def export_results(self):

file_dialog = QFileDialog ()

file_path , _ = file_dialog.getSaveFileName(self , "Save␣

File", "", "Text␣Files␣(*. txt)")

if file_path:

with open(file_path , ’w’) as file:

file.write(f"Volume:␣{round(self.calculated_volume

,␣3)}␣m^3\n")

Jorge Silva Master Degree



64 C.The PCM application

if __name__ == ’__main__ ’:

app = QApplication(sys.argv)

window = PointCloudVisualizer ()

window.show()

sys.exit(app.exec_())

Jorge Silva Master Degree


	Introduction
	ATLAS Project
	Problem Description
	Objectives
	Document Structure

	State of the Art
	Existing Solutions
	3D Perception
	Filtering Methods
	Statistical Outlier Removal
	Radius Outlier Removal
	Voxel Grid Filtering
	Passthrough Filtering

	Volume Calculation Methods
	Slice Method
	Delaunay Triangulation
	Voxel-based volume estimation

	Conclusion

	Experimental Infrastructure
	Hardware
	LIDAR SICK LMS151
	Novatel SPAN-IGM-A1 and Novatel GPS-702-GG
	Odometry
	Sensors Placement

	Software
	ROS - Robot Operating System
	Rviz
	Gazebo
	Rqt
	ROS Packages Used in This Project
	Python Libraries

	Conclusion

	Proposed Solution
	LIDAR Installation
	Architecture
	Sensors Bring up
	LIDAR2D bringup
	Novatel bringup
	Odom bringup

	Point cloud creation
	Configuration
	Execution

	The Point Cloud Measurements (PCM) Application
	Architecture
	User Interface
	Visualization
	Algorithm for Volume Calculation 

	Documentation

	Tests and Results
	Simulation Results
	Create worlds in Gazebo
	Create point cloud
	Area and volume calculation

	Results in Real Scenarios
	Create point cloud
	Area and volume calculation


	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	LIDAR Support
	Laser Assembler
	The PCM application

