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sempre em mim e me proporcinarem as condições necessárias para alcançar
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Abstract Traffic accidents are a major global health concern, causing millions of
deaths and injuries every year. This highlights the urgency of addressing
and enhance road safety. ADAS and Autonomous driving are emergent
technologies that have the potential to significantly reduce accidents by
leveraging efficient perception systems.
This dissertation opens the door for autonomous driving and ADAS within
the ATLASCAR2 by enhancing its perception capabilities through the instal-
lation of a 3D LiDAR and the development of a new framework named Risk
Maps that analyzes and transmits collision risks between the ATLASCAR2
and other road agents, namely pedestrians and vehicles.
Risk Maps are based on the obstacle’s instantaneous properties, namely
speed, acceleration, size, nature and orientation as well as the ATLAS-
CAR2’s speed. This involves addressing concepts like obstacle detection and
classification, point cloud segmentation, sensor calibration, image stitching,
and the combination of camera and LiDAR data.
This dissertation showcases the challenges encountered during the creation
of Risk Maps and the decisions made to overcome them. It tests the pro-
posed solution in both simulated and real world environments, addressing
common urban scenarios such as roundabouts, junctions, crosswalks, and
lane passing. The collision risk is transmitted before the potential collisions,
thereby enhancing the Risk Maps ability to provide actionable insights for
improving road safety.





Palavras-chave Deteção de obstáculos, Classifcação de obstáculos, Rastreamento de ob-
jectos, Segmentação de nuvens de pontos, Calibração de sensores, Imagem
panorama, Risco de colisão, Previsão de ocupação.

Resumo Os acidentes rodoviários são uma das principais preocupações na saúde a
ńıvel mundial, que causa milhões de mortes e lesões graves todos os anos.
Estes factos destacam a urgência de abordar e melhorar a segurança na
estrada. Os sistemas de aux́ılio ao condutor (ADAS) e a condução autonoma
são tecnologias que têm vindo a crescer consideravelmente nos últimos anos,
e possuem o potencial de reduzir significativamente os acidentes na estrada
através do uso de sistemas de perceção eficientes.
Esta dissertação abre as portas para a condução autonóma e ADAS no
ATLASCAR2, melhorando as suas capacidades de perceção através da in-
stalação de um sensor LiDAR 3D, e do desenvolvimento de uma nova in-
fraestrutura, designada “Mapas de Risco”, que analisa e transmite o risco
de colisão entre o ATLASCAR2 e outros participantes na cena, tais como
peões e véıculos.
Os “Mapas de Risco” são baseados nas propriedades instantâneas dos
obstáculos, nomeadamente a sua velocidade, aceleração, dimensões, na-
tureza e orientação, e também na velocidade do ATLASCAR2. A obtenção
destas propriedades envolve conceitos tais como, deteção e classificação de
objetos, segmentação de nuvens de pontos, calibração de sensores, criação
de panoramas e combinação da informação das camaras com a do LiDAR.
Esta dissertação demonstra os desafios encontrados ao longo da criação
dos “Mapas de Risco” e as decisões tomadas para os ultrapassar. A solução
proposta é testada tanto em ambientes de simulação como em ambientes da
vida real, abordando cenários comuns em zonas urbanas tais como rotundas,
passadeiras, cruzamentos e passagens por véıculos na via contrária. O risco
de colisão é transmitido antes de uma potencial colisão, demonstrando assim
a capacidade dos “Mapas de Risco” de fornecer informações úteis para
melhorar a segurança rodoviária.
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Chapter 1

Introduction

The growth in autonomous driving and Advanced Driver Assistance Systems (ADAS)
has revolutionized the industry, promising enhanced safety. The core section within these
technologies is the perception which brings the ability to perceive the driving environ-
ment accurately. Among the sensors utilized, cameras and Light Detection and Rang-
ing (LiDAR) are the most popular, each offering unique advantages and complementing
each other in creating a comprehensive understanding of the surroundings.

Vision systems, such as cameras, are the sensors most similar to human vision, which
provide high-resolution images with color and texture information, enabling qualitative
classification of the road obstacles. On the other hand, LiDAR systems use laser pulses
to measure distances to objects, which, depending on the sensor capacity, can create 3D
maps of the environment. These systems complement the camera’s qualitative informa-
tion very well by providing quantitative information about the obstacles, namely their
position and size in space.

The integration and combination of vision and LiDAR data enables the creation of
road maps, which can be very useful for autonomous driving and ADAS. These maps
represent the driving environment, including road obstacles and other participants, such
as pedestrians and drivers. Creating reliable maps involve several complex tasks, such
as object detection and classification, LiDAR segmentation and clustering, camera and
LiDAR data combination.

This dissertation contributes to the ATLAS project [1] by enhancing perception capa-
bilities. It involves implementing a 3D LiDAR in one of the ATLAS project prototypes,
the ATLASCAR2, to improve its environmental perception. This enhancement allows
for the creation of detailed maps that represent the vehicle’s surroundings. Therefore,
the work presented in this dissertation can advance autonomous driving and ADAS
within the ATLAS project [1].

1.1 ATLAS project

The ATLAS project [1] started in the Laboratory for Automation and Robotics
(LAR) at the department of Mechanical Engineering of the University of Aveiro. The
objective of this project is to develop and enable the proliferation of advanced sensing
and active systems, designed for implementation in automobiles and similar platforms.
The project started with autonomous navigation in controlled scenarios, but has been
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2 1.Introduction

evolving to deal with real road scenarios in the past years. In this context, the prototype
vehicle used for current experiments is the ATLASCAR2, which is described in Section
3.1.1.

1.2 Problem description

Every year, around 1.3 million lives are tragically lost due to road traffic accidents,
and an additional 20 to 50 million people endure non-fatal injuries, often resulting in
long-term disabilities. The impact of these incidents extends beyond individual suffering,
causing substantial economic burdens on affected individuals, their families, and entire
nations [2]. Autonomous cars emerge as a potential solution to this problem. By lever-
aging advanced sensor technologies, artificial intelligence, and real-time data analysis,
autonomous vehicles aim to mitigate the risks associated with human errors in driving.

Nowadays, there are several companies investing in autonomous cars such as Tesla,
General Motors and Waymo [3], that have good solutions but still far from the ideal.
In October 2023, General Motors had to remove all of their 950 autonomous cars from
the streets of California because one of their Cruise vehicles critically damaged someone.
This person was hit by another car and landed on the path of the Cruise vehicle which
made it stop at first, but then in order to get out of the traffic it pulled over and dragged
the person about six meters forward [4]. This emphasizes the urgent need to improve
current autonomous vehicles or ADAS abilities of handling hazard situations for the sake
of road safety.

A key aspect to enhance these systems is to effectively assess and mitigate the collision
risk. Collision risk refers to the probability of the ego vehicle being involved in a collision
with another road agent namely, vehicles and pedestrians. In order to support drivers,
whether human or machine, in detecting potential collisions, it is essential to formalize
and represent this risk. One way to achieve this, is by creating a sort of map that
displays the collision risk, along with some indicators or descriptors to grade it. This is
how the Risk Maps concept was developed.

The use of Risk Maps empowers both drivers and autonomous vehicles to make in-
formed, preemptive decisions. This includes adjusting speeds, changing lanes, or choos-
ing alternative routes to avert potential collisions with obstacles. The main goal is to
enhance situational awareness by providing real-time information about the surrounding
environment.

1.3 Objectives

The work developed within the scope of this dissertation has two primary objectives.
The first is to improve the perception power of the ATLASCAR2 by installing a 3D
LiDAR in its infrastructure. The second is to develop a concept to enhance ATLAS-
CAR2’s ability to perceive hazard events, by creating the Risk Maps. To accomplish
these objectives, the work is divided into the following sub goals:

� Understand the best location in the car to install the LiDAR alongside the existing
cameras;

� Find a solution to detect and classify road obstacles;
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� Find a solution to assess and display the collision risk;

1.4 Document structure

This dissertation comprises six chapters:

� Chapter 1: Presents the dissertation by providing an introduction of the work, an
overview on the background problem and the thesis objectives.

� Chapter 2: Presents the state of the art on the main concepts of the dissertation
and solutions to fulfill the objectives.

� Chapter 3: Describes the hardware and software utilized for the dissertation, and
also the concretization of the first primary objective.

� Chapter 4: Describes the development of the proposed solution, the Risk Maps. It
provides an overview of the challenges faced and the decisions that were made.

� Chapter 5: Presents the tests done on the developed solution in both simulated
and real world scenarios. Additionally, it provides an overview on extra software
configurations needed for the real world data collection.

� Chapter 6: Presents the conclusions of this dissertation and suggestions for future
works.
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Chapter 2

State of the Art

This chapter focuses on recent developments and methodologies on the various areas
that this thesis relies on. It addresses topics like LiDAR and camera perception, sensor
calibration, collision risk and damage, which are essential for autonomous systems. Thus,
it represents the exploration phase of the work that provided an understanding on the
various subjects and the discovery of essential tools.

2.1 ATLASCAR2

Fellow students and professors at the LAR at the University of Aveiro have devel-
oped projects over the years using the ATLASCAR2 for various case studies. This work
is stored in a GitHub repository [5], which currently offers several packages and features
useful for working with the ATLASCAR2 in both real world and simulation environ-
ments. Additionally, it has a detailed guide for setting up the car and a list of the
available hardware, namely:

� 2 RGB cameras

� 2 2D LiDAR

� Global Positioning System (GPS) + Inertial Measurement Unit (IMU) system

� Odometry unit

A more detailed overview of the experimental infrastructure will be addressed in in
Chapter 3.

2.2 Obstacle detection with 3D LiDAR

Since one of the goals is to install and use a 3D LiDAR in the ATLASCAR2, there’s
a need to understand how to process its data in order to detect potential obstacles on
the road. In [6] the authors used a Velodyne LiDAR [7] combined with a GPS/IMU lo-
calization system to create a framework for ground surface estimation and static/moving
obstacle detection shown in Figure 2.1.

The proposed approach is divided in two major steps: (1) piece-wise surface fitting
algorithm to estimate a finite set of multiple surfaces that fit the road and surrounding
area; (2) 3D voxel-based representation for obstacle modeling. For the first part, the
point-clouds given by the sensor are multiplied by transformation matrices to go from
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Figure 2.1: Frame from the KITTI dataset showing the estimated ground surface in
blue, dynamic obstacles in green and static ones in red [6]

the ego-vehicle’s to the world coordinate system. Then, a ’Box Grid Filter’ is applied
which breaks the space into voxels speeding up the point-cloud’s registration. The post-
processed point clouds (D) are transformed back into the car’s coordinate system and
go through the algorithm in Figure 2.2 which is composed by four tasks: (1) Slicing,
(2) Gating, (3) Plane fitting with RANdom SAmple Consensus (RANSAC) and (4)
Validation.

Figure 2.2: Algorithm that converts a dense point cloud D into a ground model G [6].

The resulting Ground plane points are then removed leaving only those that represent
the obstacles (O). After that, a process called voxelization is applied to the dense cloud
(D) and the obstacle points (O), turning the points into voxels D̄ and Ō with a size of
0.1m. This is followed by a segmentation to differentiate the moving from the stationary
obstacles which starts with a simple subtraction mechanism as the dynamic objects will
occupy different voxels while the stationary stay at the same ones in consecutive scans.
Later, these results are refined using an analysis based on 2DCounters, expressions
(2.1) and (2.2), and the Log-Likelihood Ratio (LLR), equation (2.3), is used to obtain
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the binary masks of the moving/stationary voxels,

Hs(x̌, y̌) =

n(x̌,y̌)∑
k=1

D̄(x̌, y̌, ž) (2.1)

Hd(x̌, y̌) =

m(x̌,y̌)∑
k=1

Ō(x̌, y̌, ž) (2.2)

where (x̌, y̌, ž) is the location of a cell in a voxel grid. Hs and Hd are the computed
static and dynamic counters, n(x̌, y̆) and m(x̌, y̆) indicate the number of voxels in the
column/bar of (x̌, y̆) in D̄ and Ō, respectively,

R(x̌, y̌) = log
max {Hd(x̌, y̌), ε}
max {Hs(x̌, y̌), ε}

(2.3)

where ε is set to 1 to prevent division by zero or taking the log of zero. By applying
a threshold on R(x̌; y̆), 2D binary masks of the stationary and moving voxels can be
obtained using the following expressions:

Bd(x̌, y̌) =

{
1 if R(x̌, y̌) > Td

0 otherwise
(2.4)

BS(x̌, y̌) =

{
1 if R(x̌, y̌) < TS

0 otherwise
(2.5)

where Ts and Td are the thresholds used to compute the 2D decision masks for detecting
the most reliable stationary and moving voxels. The static (Bs) and dynamic (Bd) binary
2D masks are applied to all levels of D̄ and Ō voxel grids to generate voxels labeled as
stationary (VS) or moving (VM ).

A similar open source software, developed within Robot Operating System (ROS)
by the author in [8], also provides tools to process 3D LiDAR data. The application
named Lidar Obstacle Detector, works by taking the raw point cloud ROS topic and
the segmentation thresholds defined by the user as the input. Then, it outputs the
ground and obstacle point cloud, and the 3D bounding boxes of the clustered objects
which contain the information of their centroid and dimensions. The object clusters
are determined using an Euclidean clustering algorithm which calculates the Euclidean
distance between neighboring points. If the distance falls within a threshold, the points
are considered part of the same cluster. Subsequently, the 3D bounding boxes are
designed using the minimum and maximum points (x, y, z) within each cluster, with
the centroid being the mean value between these points. Figure 2.3 shows the resulting
bounding boxes.

The thresholds and features of the application can be defined by the user in real time
with rqt reconfigure [9] which is a graphical interface in ROS to view and edit node
parameters. This interface is illustrated in Figure 2.4:

A brief explanation of each parameter is presented next:
use pca box is an option to build bounding boxes using Principal Component Analysis

(PCA) algorithm to estimate the orientation. Every point’s z coordinate of the
cluster is changed to be the same as the centroid’s z coordinate forming an XY
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Figure 2.3: LiDAR obstacle segmentation [8]

plane. Then, the PCA algorithm computes the principal directions of the cluster.
Finally the points are projected back to their original z position but rotated along
the PCA frame.

use tracking is an option to enable bounding box tracking. The tracking consists of
comparing bounding boxes in consecutive frames. The metrics being compared is
the euclidean distance between the centroids and the Intersection over Union (IoU)
which have their respective thresholds set in the last two parameters: displace-
ment threshold and iou threshold.

voxel grid size is the size of the voxels used in the Voxel Grid Downsampling al-
gorithm. This algorithm reduces the number of points within a point cloud by
dividing it into equally sized cubic voxels. A smaller voxel grid size results in
denser sampling of the point cloud, preserving more details but requiring more
computational resources.

roi is the region of interest in the LiDAR’s frame where bounding boxes are created.
ground threshold represents the maximum euclidean distance from a point to the es-

timated ground plane for it to be considered an inlier. Points within this threshold
distance are classified as belonging to the ground plane, while those beyond it are
considered outliers.

cluster threshold , as said above, represents the maximum euclidean distance allowed
between neighboring points for them to be considered part of the same cluster.

cluster size defines the minimum and the maximum number of points required for a
group of points to be considered a cluster.

2.3 Obstacle detection and classification with cameras

LiDAR provides accurate distance measurements of the obstacles, but struggles or
fails to identify the nature or properties of those. The integration of cameras provides
detailed visual information (e.g.: color, shape, texture, ...), which is valuable for obsta-
cle recognition. The next paragraph addresses a method of processing ATLASCAR2’s
camera data.
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Figure 2.4: LiDAR clustering parameters

In a recent LAR’s project [10, 11], Ribeiro developed a modular application with
the purpose of inferring real data provided by the ATLASCAR2 through multiple deep-
learning models. It was built within the ROS framework to facilitate the communication
since the car’s software framework is also ROS.

The application architecture is illustrated in Figure 2.5, where the yellow block rep-
resents the deep-learning model.

The architecture is designed with four main blocks, namely the Receiver, the Data
sender, the Inference node and the Input arguments:

� The Data sender block is assigned to read image or video data and send it to the
Inference node block.

� The Input arguments block send the Model file path, the Module and the Model
loader names to the Inference node block.

� The Inference node block receives the information from the blocks mentioned above
and outputs the inference results to the Receiver block. This block is divided in
two parts, the Inference solution and the Inference manager.

– The Inference solution receives the Model information from the Module and
Model loader and outputs the inference result. The first one is responsible for
handling the Model’s input requirements in terms of Data format, and adapt
the Model’s output to fit in the Inference manager. The Model loader loads
the Model an returns a variable with the Model, the Model’s framework (eg.:
PyTorch) and precision (eg.: float32).
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Figure 2.5: Inference application architecture [10]

– The Inference manager receives the data from the Data sender as well as the
inference and the Model’s parameters, and outputs the inference solution in
a standardized format to the Data receiver block.

� The Receiver block acquire the inference results and display them.

As Ribeiro’s main objective was to compare multi-tasked with multiple single-task
networks, he designed another block to evaluate the performance of various deep learn-
ing model’s in three categories: car detection, road segmentation and lane marking.
The results led to the conclusion that multi-task models are better than using multiple
single-task models. This is attributed to the slower inference speed and difficulty in
synchronization associated with the latter. The best single-task and multi-task model
for car detection is YOLOv8 [12] and YOLOPv2 [13], respectively. Figure 2.6 shows
the results of the YOLOPv2 in day-time (top images) and night-time (bottom images)
scene.

On the other hand, panorama image stitching, while not directly related to object
detection or classification, can be very useful as it enhances the overall perception of
the scene. The author in [14] developed an application to merge two video streams
into a single panoramic stream. The process is based on OpenCV’s stitching module,
which offers several built-in functions. Since it involves a video stream and the cameras
are stationary, the homography is calculated only once from the initial frames. The
process of obtaining the homography involves identifying key points or features in both
frames and then matching those that are similar. An example of this correspondence is
illustrated in Figure 2.7. Furthermore, the homography is applied to the right camera
frames allowing them to transition to a different plane in order to promote a seamless
integration with the left camera frames.
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Figure 2.6: YOLOPv2’s car detection, road segmentation and lane marking [13]

Figure 2.7: Key point detection and matching [14]
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2.4 Calibration

Both LiDAR and camera provide complementary data that enables a more robust,
accurate and versatile perception system which is necessary for building the risk maps.
In this context, calibration of these sensors is essential, aiming to improve the precision
of the geometric relationship between them.

A powerful calibration tool named Atomic Transformations Optimization Method
(ATOM) [15] was developed in LAR. This framework supports the calibration of complex
robotic systems with multiple sensors and of different modalities. For example, it allows
the simultaneous calibration of LiDAR, RGB, and RGB-D cameras in the same run.
Additionally, it works for different calibration scenarios such as sensor to sensor, sensor
in motion and sensor to coordinate frame. The software architecture is represented in
Figure 2.8:

To calibrate sensors using ATOM, a ROS bag file containing recorded data from
the sensors, as well as transformation and joint messages, is essential. Additionally,
the xacro/URDF file of the robotic system, which contains its configuration, is required.
Moreover, the calibration configuration file which contains information about the sensors
and the calibration pattern must be defined. ATOM offers a functionality that allows
the user to set an estimation of the sensors initial pose through interactive markers in
RViz, but this step can be skipped if the sensor’s pose described in the urdf or xacro
file is accurate enough. The next step is data collection which is where the user saves
various collections with different pattern or sensor poses from the bag file. After that,
there’s a labeling process that involves annotating the detected portions of the calibration
pattern. The labeling can be manual, semi-automatic and fully automatic depending
on the sensor modality. Afterwards, ATOM allows the user to play the dataset with
the corrected collections to ensure that the labeling process was successful. Finally, the
calibration step which, in a summarized way, adjusts the sensors with relation to the
pattern in order to minimize the reprojection error. Subsequently, the optimized robot
description file is generated, ready to use.

2.5 Combination of LiDAR with Camera

There are two main approaches to combine LiDAR data with RGB camera data.
It is either to project the LiDAR 3D points into the camera image, or to project the
image pixels into the 3D point cloud. The biggest advantage of this approach is the
ability to classify objects detected by the LiDAR in the 3D space. Depending on the
LiDAR’s resolution, an estimation of the object’s nature can be made. This estimation
can then be refined or supplemented by classifiers operating on camera images. In [17]
the authors use the technique of projecting LiDAR’s points into the camera image for
object classification. The process starts by calibrating the camera intrinsic parameters
and then both camera’s and LiDAR’s extrinsic parameters. Subsequently, the LiDAR’s
points are mapped into the image using these parameters. Figure 2.9 shows the result
of this union:
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Figure 2.8: ATOM architecture [16]

2.6 Collision risk

Collision risk is paramount in the autonomous driving world as it allows Autonomous
Vehicles (AV) or drivers to avoid potentially dangerous situations by giving information
of a future event based on the actual state of every participant in the surrounding scene.
As the environment complexity increases, the more difficult it is to assess an effective
risk metric due to the increased number of interactions involved [18] and, consequently
a more sophisticated methodology is needed.

Figure 2.10 presents the most used and researched methods to determine the collision
risk [19], [18]s.
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Figure 2.9: LiDAR and RGB camera data combination. The green bounding boxes
indicate objects identified by the object classifier, while the orange points represent
LiDAR clusters. [17]

Risk Assessment Methods

Co-operative V2V

AI

SINADRA

BConvLSTM

Bayesian Network

Model

SSM

Risk Repulsion

Process HARA

Probabilistic

Occupancy prediction

CMCDOT

Figure 2.10: Classification of risk assessment methods by approach, according to [18, 19]

2.6.1 CMCDOT (Conditional Monte Carlo Dense Occupancy Tracker)

This method outputs the probability of collision risk between the vehicle and a
identified object in the scene [20]. It is structured with four main steps. In the first
step (state representation) the algorithm models the state distributions of cells in a grid
where each is potentially occupied by a static object (s), dynamic object (d), empty (e)
or undefined (u). The second step (Prediction) consists of state prediction for each of
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the mentioned above (s, d, e, u). After the model is projected in time the particle vectors
are transformed (rotated and translated) in order to be expressed in the new frames.
The third step (Evaluation) evaluates the updated distributions of the states in each
cell of the grid. The fourth step (Particle re-sampling) is the dynamic part sampling
which generates new particles for the newly dynamic parts to reassign the right amount
of particles per cell. The collision risk occurs when grids are overlapped in the future
prediction of the vehicle movement and the object.

2.6.2 Occupancy Maps

In [21] the authors proposed an open source method to evaluate the collision risk
based on motion prediction of vehicles and pedestrians through the stochastic models:
radial and angular distribution. These models account for uncertainties in sensing as
the final result is a probabilistic distribution of the future heading. The distributions
are different for vehicles and pedestrians as they have different motion models. These
distributions are represented in Figure 2.11 where the probability goes from 0 (blue) to
1 (red):

Figure 2.11: Probabilistic distributions for vehicles (top) and pedestrians (bottom) [21]

In order to compute the probabilistic distributions, information about the obstacles
and the ego vehicle is needed, namely:

� Position (x, y) relative to the ego’s vehicle coordinate frame

� Speed (vx, vy)
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� Acceleration (ax, ay)

� Orientation angle (yaw)

� Dimensions (x, y)

� Obstacle’s nature (e.g. pedestrian, car, ...)

� Ego vehicle speed (vx, vy)

� Time horizon (time in the future for which the prediction is made)

The ego vehicle trajectory is computed using a simple motion equation where the
distance that it will cover is obtained from the product of its speed by the time horizon.
This trajectory is represented in Figure 2.12 as a red rectangular shaped area.

The collision risk is obtained through the intersection of the ego’s trajectory with the
obstacle’s distributions. The maximum value of probability intersected is the collision
risk.

Figure 2.12: Urban scene with predicted probabilistic distributions of pedestrians [21]

2.6.3 HARA

The Hazard Analysis and Risk Assessment (HARA) methodology is normally used
during the development of the vehicle where possible hazards can be identified from
malfunction behaviours. Following that, the risk is calculated to evaluate the likelihood
of each hazard resulting in different scenarios. From here, adjustments are made to
ensure the safety goals [22]. This iterative approach is represented in Figure 2.13:

While this dissertation does not directly focus on HARA, as it does not rely on
sensor data for collision risk assessment, its significance in the world of collision risk
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Figure 2.13: The HARA method of risk assessment [22]

management cannot be overlooked. By proactively addressing potential hazards and
their associated risks, HARA plays a crucial role in preventing and mitigating collisions.

2.6.4 Risk Repulsion

The model of Risk Repulsion is based on the field theory of traffic flow which describes
traffic interactions with physical expressions [23]. In the longitudinal car-following sce-
nario when the driver approaches the front car at high speed, a force is perceived in a
way that makes the driver decelerate to keep a safe distance. The authors in [24] called
this force as risk repulsion which is inversely proportional with Time to Collision (TTC)
and also takes in consideration the time headway between the two cars, relative speed
and safe following distance.

2.6.5 SSM

Surrogate Safety Measures is a framework of metrics that are used to measure the
nearness to a collision of traffic events [25]. These are divided into four categories,
namely time-based, distance-based, deceleration-based and energy-based, as shown in
Table 2.1:

2.6.6 Bayesian Network

A Bayesian network is a probabilistic model that represents the causal relationship
among various variables by using conditional probabilities. In [26] the authors used
a Bayesian hierarchical model for real-time prediction of the collision risk at highway
entrances and exits. The model has tree layers: the first layer is the vehicle physical
state, that includes its kinematics and dynamic characteristics, such as position, speed
and acceleration; the second layer is related to the vehicle interaction, which takes into
account motion variances like changes in distance, speed and steering angle between the
interacting vehicles; the third layer is used to represent the risk probability of the collision
occurrence. To conclude, this model allows for real time evaluation of the collision risk
of multi-vehicle interaction.
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Table 2.1: Classification of SSM indicators

Category Indicator Definition

TTC (Time to Collision)
Time for two cars to crash at their
current speed and direction

Time-based
PET (Post-Encroachment
Time)

Time interval between one party
leaving and the other arriving at
the conflict zone

TET (Time Exposed
Time-to-Collision)

Total time period when TTC is
below the threshold

SDI (Stop Distance Index)

Minimum distance required to
avoid collision with a front vehicle
when it decelerates at the
maximum deceleration rate until
stops

Distance-based
PICUD (Potential Index for
Collision with Urgent
Deceleration)

Distance between two vehicles after
they complete emergency braking

DSS (Difference of Space
distance and Stopping
distance)

Same as PICUD plus the friction

Deceleration-based

DRAC (Deceleration Rate to
Avoid the Crash

Speed difference between two
vehicles divided by TTC

CPI (Crash Potential Index)
Extended version of DRAC that
considers vehicle’s maximum
deceleration rate

Energy-based
Delta V

Velocity changes in vehicle
trajectory before and after the
collision

CFI (Conflit Index)

Kinetic energy released during
collisions is estimated by combining
PET with speed, mass and relative
angle

2.6.7 BConvLSTM (Bayesian Convolutional Long Short Term Memory)

This artificial intelligence approach for the collision risk assessment is based on deep
learning techniques [27]. The model employed, known as the Deep Predictive model,
utilizes sequences of image sensor data, vehicle state information, and driver action
commands as its input variables. This information is then processed in both space
and time to predict future collisions. Unlike other similar methods, this one estimates
uncertainty in the predictions generated which are then used to improve the quality and
accuracy of the method’s output. The architecture is represented in Figure 2.14.

2.6.8 Situation-Aware Dynamic Risk Assessment (SINADRA)

SINADRA [28] is an open source solution that evaluates the collision risk in 4 steps:
i) identification of the ego vehicle and its class; ii) behaviour prediction of every party
in the scene; iii) transformation of the behaviours into trajectories; and, iv) calculate
the risk. The first three steps are based on data sources such as research data sets, sim-
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Figure 2.14: Architecture of the Deep Predictive model [27]

ulation, accident and driving behaviour research. Figure 2.15 illustrates the method’s
architecture. In the first step, the ego vehicle is placed in a class that the authors

Figure 2.15: SINADRA’S architecture [28]

call Operational Design Domain (ODD). Each ODD has predefined a set of ego be-
haviours, other road users behaviours and environmental conditions. The second step is
an application of the Bayesian network method (explained in 2.6.6) to predict behaviour
intents of all the participants based on the actual ODD’s behaviours and knowledge
about decision-making in traffic. The third step is a generation of a trajectory based on
each predicted behaviour through behaviour-specific motion models. With the predicted
trajectories of both ego and other road users, the risk can then be computed with any
risk assessment metric such as TTC (Table 2.1).

R.F. Oliveira Masters Degree



20 2.State of the Art

2.6.9 Risk assessment from V2V framework

The Vehicle to Vehicle (V2V) framework relies on wireless communication between
vehicles allowing information transfer such as vehicle position, direction, speed and ac-
celeration [29]. This information is then fused with sensor’s and radar’s scans providing
location and motion estimation of the other vehicles. The outcome goes through Model
Predictive Control (MPC) that makes predictions for both latitudinal and longitudinal
aspects of the targets. Having targets movement predictions, it is possible to estimate
the collision risk. The model’s architecture is illustrated in Figure 2.16. An interesting
feature about V2V is that a global collision risk can be assessed if all the vehicles share
their perceived risk values. It is called the augmented collision risk and represents the
entire scene.

Figure 2.16: Collision risk algorithm based on V2V communication [29]

This method is particularly valuable in occluded scenarios, where the ego vehicle
lacks information about potential obstacles that may be obscured from its sensors. In
such situations, another vehicle from a different perspective may have access to cru-
cial information and can communicate it to the ego vehicle, thereby preventing certain
collision scenarios.

2.7 Collision damage

Similarly to collision risk assessment, potential collision damage or severity estima-
tion is an important metric to ensure people’s safety on the road. This is relevant,
especially in scenarios where a collision is unavoidable, having the option to choose a
trajectory that minimizes damage or reduces the risk of injury, becomes particularly
valuable.

The authors in [30] address this exact situation. They developed a MPC-based
motion planner that gives the trajectory with the lowest crash severity when collision is
inevitable. The part of this method that has the most interest for this dissertation is the
calculation of the crash severity, which is based on three factors: relative speed, relative
heading angle and mass ratio between the collision vehicles.

1. Relative Speed ∆V : velocity metric to measure Potential Crash Severity Index
(PCSI):

PCSI(∆V ) =
∆V

D
(2.6)
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where, ∆V and D are the approaching velocity and the distance between the ego
vehicle and the obstacle, respectively.

2. Relative Heading Angle θ: Heading angle towards each vehicle that goes from 0◦

to 180◦ in six steps: 0◦ – 15◦ 15◦ – 45◦, 45◦ – 90◦, 90◦ – 135◦, 135◦ – 165◦, and
165◦ – 180◦. The PCSI index related to the relative angle θ is given by (2.7).

PCSI(θ) =


1 θ = 0◦&180◦

4 θ = 0◦ ∼ 15◦&165◦ ∼ 180◦

3 θ = 15◦ ∼ 45◦&135◦ ∼ 165◦

2 θ = 45◦ ∼ 90◦&90◦ ∼ 135◦

(2.7)

3. Mass Ratio Wo/W : Mass ratio between the weights of the obstacle vehicle Wo

and the ego vehicle W :

PCSI(W ) =
Wo

W
(2.8)

The total PCSI is defined as:

PCSI = k∆v PCSI(∆V ) + kθPCSI(θ) + kw PCSI(W )W (2.9)

where k∆v, kθ, and kw are the weights of PCSI related to the relative speed, relative
heading angle, and mass ratio, respectively.

In [31] the authors also proposed a motion planning approach that outputs the trajec-
tory associated with the minimum collision severity for the passengers of the ego vehicle.
They used real accident data [32] to establish a relationship between the impact location
and the severity of injuries. The considered data only includes accidents at junctions. In
this scenario at least one passenger car was involved in the accident, and the collisions
involved only passenger cars against other vehicles.

The impact location classification is illustrated in Figure 2.17. The relationship
between the accident data and the collision location is defined in Table 2.2 for three
injury metrics: fatal, severe and minor.

Table 2.2: Relationship between the accident data and the collision location

Collision
Location

Description Fatal Severe Minor ORFS

B0 Rear compartment 2 1 10 0.61
D0 Distributed across entire side 4 4 13 1.30
F0 Front compartment 7 25 72 0.91
L0 1/4 from left side 0 0 6 0.0
L1 1/3 from left side 0 0 1 0.0
P0 All of passenger compartment 24 11 52 1.54
P1 Passenger compartment-front seat 1 3 17 0.48
P2 Passenger compartment-rear seat 1 0 10 0.20
R0 1/4 from right side 0 0 6 0.0
R1 1/3 from right side 0 0 1 0.0
Y0 Front and passenger compartment 10 15 33 1.71
Y1 Front compartment and front seat 7 6 32 0.83
Z0 Rear and passenger compartment 9 6 31 1.01
Z1 Rear compartment and rear seat 2 6 17 0.98
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Figure 2.17: Horizontal collision location classification [31]

The Odds Ratio for Fatal and Severe (ORFS) metric which ranks collisions based on
the impacted location is calculated with expression (2.10):

ORFS =
a/b

c/d
, (2.10)

where a, b, c, d are specified in Table 2.3 as an example for the collision location P0.

Table 2.3: Example of the ORFS calculation for location P0

Collision location Fatal and severe Minor

P0 a b
All other locations c d

The final severity classification named by the authors as the cost function F (Pn(tc))
is presented in the equation (2.11), where the cost values are derived based on ORFS
values. In this context, equation (2.11), 1 and 12 represent the lowest and highest ORFS
values, respectively.

To identify the impact location and assess the severity according to equation (2.11),
the authors proposed a division of each vehicle into ten polygons where polygon 10 and
5 represent the front and rear of the car, respectively. The polygon division is illustrated
in Figure 2.18. Finally, there is a need to determine which vehicle is the impacted one
in order to evaluate the collision location. For this matter, the authors designated the
polygon 10 as the impact polygon. For instance in Figure 2.18 the red car’s polygon 10 is
overlapping the blue car’s polygon 8 meaning that the blue car is the impacted one and
the collision location is blue car’s polygon 8. This location corresponds to a passenger
compartment-front seat (P1) category in equation (2.11), therefore the output severity
for this example is four.
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F (P (tc)) =



12 front and passenger compartment (Y0)

11 all of passenger compartment (P0)

10 distributed across entire side (D0)

9 rear and passenger compartment (Z0)

8 rear compartment and rear seat (Z1)

7 front compartment (F0)

6 front compartment and front seat (Y1)

5 rear compartment (B0)

4 passenger compartment-front seat (P1)

3 passenger compartment-rear seat (P2)

2 front to front collision

1 front to rear collision

(2.11)

Figure 2.18: Example of P1 collision between ego vehicle (red) and other vehicle (blue)

2.8 Summary

In this chapter, an analysis of solutions across three main fields, including perception,
collision risk, and collision damage, was undertaken.

The perception field is subdivided into four domains, each requiring its own solution:

� Obstacle detection with 3D LiDAR: Two methods were analyzed. While
both share similar features, the Lidar Obstacle Detector application stands out as
it is open source, making it ideal to explore.

� Obstacle detection and classification with cameras: Ribeiro’s application
is ideal to explore because it allows to experiment various deep learning models.
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� Panorama Stitch: Image Stitching could be very useful as it improves the field
of view for the image detector and classifier.

� Calibration: ATOM was already used to calibrate sensors in the ATLASCAR2
before. It is ideal because it allows to calibrate various sensors with different
modalities at the same time.

� LiDAR camera combination: The solution analyzed is useful to combine the
LiDAR’s data with the image’s classifier data and it fits well within this disserta-
tion.

In the collision risk field from all the methods analyzed the ones who have more
interest for this dissertation are the open source methods. In this context, the Occupancy
Map and the SINADRA solutions are ideal to explore.

In the collision damage field two methods were analyzed. The first method has an
equation to evaluate the severity of a crash which could be a potential solution for this
dissertation. As for the second method, more specific information is needed, such as the
vehicle people occupancy or detailed impact location, which would require additional
information and more sensor power.
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Chapter 3

Experimental infrastructure

This chapter describes the tools used in this dissertation, both in hardware and soft-
ware. Hardware wise, two main units were used: ROG laptop and the ATLASCAR2.
The latter includes the sensors (two cameras, 3D LiDAR) and an odometry unit. Soft-
ware wise, a variety of applications such as ROS, Gazebo, RViz, and others were used
to process data and achieve results. Additionally, it shows the new hardware implemen-
tation and setup in the ATLASCAR2’s infrastructure.

3.1 Hardware

This section provides an overview of all the hardware components used in this dis-
sertation and their characteristics.

3.1.1 ATLASCAR2

ATLASCAR2 is a fully electric Mitsubishi i-MiEV [33] destined exclusively for in-
vestigation purposes in the Mechanical Engineering department at the Aveiro university
(Figure 3.1). The vehicle is equipped with various sensors. The sensors installed in
the ATLASCAR2 that have the most interest for this dissertation are described in the
following subsections.

Figure 3.1: ATLASCAR2
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3.1.1.1 Camera Point Grey FL3-GE-28S4-C

The Point Grey FL3-GE-28S4-C (Figure 3.2) is a 2.8 Megapixel color GigE Vision
digital camera that uses a Sony ICX687 EXview HAD CCD II image sensor to deliver
high resolution, high-quality images in a compact and low-cost package. At its highest
resolution of 1928 Ö 1448, the camera runs at 15 FPS. However, it is possible to decrease
its region of interest to obtain more frames per second [34]. Table 3.1 describes the main
specifications of this sensor.

Figure 3.2: Camera Point Grey FL3-GE-28S4-C [34]

Table 3.1: Point Grey FL3-GE-28S4-C specifications

Specifications

Resolution 1928× 1448
Frame rate 15 FPS @ 1928 Ö 1448
Megapixels 2.8 MP
Chroma Color
Sensor Sony ICX687 EXview HAD CCD II
Dimensions 29× 29× 30 mm
Weight 38 g

3.1.1.2 Camera Logitech C270 HD

The Logitech C270 webcam [35] (Figure 3.3) is a versatile camera designed to meet
various needs. Its sleek and compact design allows for easy portability, making it easy to
use in various environments. Featuring a resolution of 720p HD, it delivers clear video
quality. Additionally, it is a plug-and-play camera which does not require drivers or
software installations, making the setup quick and easy. Table 3.2 describes the main
specifications of this sensor.

Table 3.2: Logitech C270 HD specifications

Specifications

Resolution 1280× 960 1.2 MP
Frame rate 30 FPS @ 640× 480
FOV 60◦

Focal length 4mm
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Figure 3.3: Logitech C270 HD

3.1.1.3 Odometry unit

The odometry unit was developed for the ATLASCAR2 as part of Sara Pombinho’s
master’s dissertation [36]. This unit comprises a RI32-0/1000ER.14KB wheel encoder
[37], an Arduino UNO wifi rev2 [38] with a CAN-BUS shield [39], and a CANalyze device
[40]. The Arduino counts the electrical pulses transmitted by the encoder, incrementing
or decrementing a position variable depending on the rotation direction of the encoder.
This position data is then sent via the CAN-BUS shield to the CANalyze device. Ad-
ditionally, the Controller Area Network (CAN) messages from ATLASCAR2 are also
provided to the CANalyze device. This device processes the CAN packets transforming
them into ROS messages. Pombinho combined the steering angle information from the
vehicle’s CAN bus with the encoder’s positions to compute the odometry. The odome-
try messages include the ATLASCAR2’s speed, which is the piece of information needed
from this unit for this dissertation. The ATLASCAR2’s speed (V ) is obtained through
the following equations (3.1), (3.2), (3.3):

PPS =
∆Pulses

∆t
(3.1)

RPS =
PPS

PPR
(3.2)

V = RPS × P (3.3)

where PPS is the encoder rotational speed obtained by the difference between two
consecutive encoder positions ∆Pulses divided by the correspondent time interval ∆t.
RPS is the number of rotations per second obtained by dividing the encoder rotational
speed by the maximum number of rotations per second PPR. Lastly, the speed V is
obtained by multiplying the number of rotations per second by the wheel’s perimeter P .

3.1.2 Asus ROG Strix G15 G512LI-70AT5PB1 laptop

The Asus ROG Strix G15 G512LI-70AT5PB1 laptop [41], illustrated in Figure 3.4,
serves as the cornerstone hardware element within this dissertation. It enabled the
reading and processing of all the sensor data, allowing the development of the proposed
solution (Chapter 4). The laptop’s main characteristics are presented in Table 3.3.
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Figure 3.4: Asus ROG Strix G15 G512LI-70AT5PB1

Table 3.3: Asus ROG Strix G15 G512LI-70AT5PB1 laptop’s specifications

Specifications

CPU Intel® Core� i7-10750H Hexa Core
GPU NVIDIA GeForce GTX 1650 Ti
RAM 16 GB
Storage 1 TB SSD

3.2 Software

The software described in this section represents the primary tools utilized in this
dissertation. Other specifics, such as ROS packages, which were also used, are detailed
in Chapter 4.

3.2.1 Robot Operating System

ROS is an open-source framework [42] designed to facilitate robot software develop-
ment. It provides tools, libraries, and conventions that help software developers create
and manage complex robotic systems. One of the key elements of ROS is its distributed
computing architecture. It utilizes a graph-like structure where nodes, which are indi-
vidual software processes, communicate with each other through topics, services, and
actions. This communication is facilitated by a publish-subscribe messaging system,
allowing nodes to send and receive data efficiently. Figure 3.5 shows an example of the
ROS communication between two nodes. The node talker publishes a message ”Hello,
World” through the topic /talker to which the node listener subscribes.

3.2.2 ROS Visualization

ROS Visualization (RViz) [43] is a ROS graphical interface that allows the user to
visualize sensor data, robot models, and other information in a 3D environment. The
user can configure and customize visualizations, change perspectives and overlay different
types of data, helping the analysis and debug of complex robotic systems. Figure 3.6
shows an example of the RViz interface. On the left there’s the display section where
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Figure 3.5: Schematic example of the use of ROS

global definitions are set and ROS topics are subscribed for visualization. In this case,
there’s an image, a point cloud and a robot model being displayed. On the right side,
there’s a section where the user can choose the view being used.

3.2.3 Gazebo Simulator

Gazebo [44] is an open-source 3D robotics simulator widely used in research, edu-
cation, and industry. It provides a versatile platform for creating virtual environments,
designing robots, and conducting simulations to assess the performance of robotic sys-
tems. With Gazebo, users can simulate realistic interactions between robots and their
environments, including dynamic physics, sensor feedback, and environmental factors
such as lighting and terrain. One of Gazebo’s key strengths is its support for the in-
tegration of multiple sensors, plugins, and other tools, allowing developers to create
complex robotic systems and test them in a simulated environment. Figure 3.7 shows
an example of a scenario in Gazebo Simulator.

3.3 3D LiDAR implementation and setup in the ATLAS-
CAR2’s infrastructure

The 3D sensor named Velodyne LiDAR’s Puck [45] is a small and compact LiDAR
with sixteen channels (Figure 3.8) used across a variety of applications ranging from
automotive, mapping, robotics and more. It provides surround 3D view in a form of a
point cloud. The range goes up till 100m, across a 360◦ horizontal field of view and a
30◦ vertical field of view. Moreover, it has an integrated web server for monitoring and
configuration. Table 3.4 shows the LiDAR’s main properties.
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Figure 3.6: Example of an RViz interface used for real data collection with the ATLAS-
CAR2

Table 3.4: Velodyne Puck VLP-16 specifications

Specifications

Channels 16
Measurement range 100m
Range accuracy ±3 cm
Vertical FOV 15◦ to −15◦ (30◦)
Vertical angular resolution 2◦

Horizontal FOV 360◦

Horizontal angular resolution 0.1◦ – 0.4◦

Rotation rate 5Hz to 20Hz
Operating voltage 9 – 32 V

In the setup, an important concern was to place the Velodyne LiDAR as high as
possible, positioning it centrally between the two cameras without occluding its channels
by the cameras position. Figure 3.9 illustrates the proposed setup, where all the sensors
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Figure 3.7: Example of a scenario in Gazebo simulator

Figure 3.8: Velodyne Puck VLP-16

were attached to an aluminium profile, which was in turn fixed within the two existing
profiles on the car’s roof. The length of the aluminium profile was also checked for
possible scan occlusion. Both right (Point Grey) and left (USB) cameras were placed
under the profile for the same purpose. Additionally, the cameras were positioned to
maximize the field of view while ensuring sufficient overlap for the stitching method
(Section 2.3) to function effectively.

In terms of connectivity, the Point Grey camera and the Velodyne LiDAR connect to
the car roof’s Ethernet switch, while the USB camera connects directly to the computer.
The IPs set of the former and the laptop are:

� Point Grey camera: 169.254.0.5

� Velodyne LiDAR: 169.254.0.4

� Computer: 169.254.0.3

In terms of power supply, the Point Grey camera is connected to the 12V supply
placed near the roof switch, that comes from the electrical panel. As for the Velodyne
LiDAR, a temporary solution was adopted, involving its connection to the power inverter
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Figure 3.9: Velodyne and cameras setup in the ATLASCAR2

(12 DC – 220 AC). The optimal solution would involve directly connecting the LiDAR
to the 12V power supply, mirroring the setup of the Point Grey camera, but the lack of
time made it impossible.

In terms of sensor parameters, the Velodyne LiDAR was set to the default. As for
the cameras, similar resolutions and frame rates were chosen to ensure consistent data
and facilitate the synchronization procedure. Table 3.5 show the proposed settings.

Table 3.5: Point Grey and USB camera proposed parameters

Parameter Point Grey USB

Resolution 964× 724 960× 720
Frame Rate 10 fps 10 fps
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Chapter 4

Proposed solution

This chapter focuses on a solution to address the central problem of this dissertation:
a new concept named Risk Maps which displays the collision zones that a vehicle may face
in specific scenarios, along with quantitative metrics that indicate the probability of these
events. Given that this feature is novel in ATLASCAR2, with no similar applications
developed in the past, this chapter proceeds to explore the whole process that led to
the conception and implementation of the Risk Maps. It was developed in the Gazebo
simulator [44] since the ATLASCAR2 repository (Section 2.1) had already packages and
tools for this environment.

4.1 Collision Risk method

From the two open source methods of the state of the art (Chapter 2) about collision
risk assessment methods, one was best aligned with the goals of the dissertation. The
method is the Occupancy Map referred in section 2.6.2. It was chosen because it provides
a predicted occupancy map for the future positions of obstacles and the ego vehicle in
the scene, and the authors [21] made available their code [46], which was a good starting
point for the intended Risk Maps. Additionally, the construction of the Occupancy Map
only relies on instantaneous information about the obstacles, which is obtainable from
the sensors.

In the first solution [21], the authors tested the Occupancy Map approach on two
different scenarios: a simulated environment using CARLA [47], and ROS bags from
the KITTI dataset [48]. In both situations the authors did not use sensors to obtain
information about the obstacles, as that information was given by the simulator or
present in the ROS bag files. In contrast, this dissertation utilizes obstacle information
gathered from sensors installed in the ATLASCAR2. Section 4.2 provides an insight into
how this information is obtained.

The above mentioned Occupancy Map is displayed using the Grid Map ROS package
[49] in RViz as a 3D surface plot. The grid size for the proposed solution is 40×40 meters
with 0.1m cell resolution, meaning that 10 cells equal 1 meter. Each cell holds a numeric
value ranging from 0 to 1, with the height of the cells directly related to their value.
Figure 4.1 shows the mentioned Grid Map and the location of the ATLASCAR2 in it.

In [21], three distinct methods are presented for calculating probability values for
various entities: one for vehicles, one for pedestrians and the last for the ego vehicle tra-
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jectory. The authors consider any obstacle with a speed below 1m s−1 to be stationary,
regardless of whether it is a vehicle or a pedestrian, and for these cases they mention
that simple kinematics projections can be used, which is not a case addressed in their
work. Additionally, the predicted obstacle distributions are represented in the world
frame rather than the car’s frame.

40 m

4
0
m

Figure 4.1: Grid map in Rviz with ATLASCAR2 robot model

Follows a detailed description of each model:

� Vehicle model: As illustrated in Figure 2.11, there are two types of occupancy
distributions: radial and angular. The cell probability values for these distributions
are achieved through equations (4.1) and (4.4), respectively:

P (Dactual | u, a) =
1

KR

(
1− ∆D2

σR

)
(4.1)

where KR is a normalizing constant, ∆D and σR (radial support) are defined in
equations (4.2), (4.3):

∆D = ui · t+ 0.5 · ai · t2 (4.2)

σR =
1

cf

(
ui · t ·

ui − 1

ui + 1
+
ai · t2

2
· ai − 1

ai + 1

)
(4.3)

with ui and ai as instantaneous values of the speed (m/s) and acceleration (m/s2),
t as the time horizon (s) and cf as a constant that depends on the class of the
vehicle. The angular distribution is given by expression (4.4):

P (∆θ | u, a, ψ̇) = 1

KA

(
1− (∆θ − ψ̇t)2

σA

)
(4.4)
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where KA is a normalizing constant, ∆θ is the difference between current heading
and next heading (rad), ψ̇ is the angular velocity (rad/s) and σA is the angular
support [21], in this case as a constant.
The final cell probabilities result from the product between radial and angular
probability. Furthermore, for each cell with a value higher than 0, an oriented
rectangle is formed with the dimensions of the vehicle’s bounding box. The final
distribution comes from the overlapping area of all the rectangles. Figure 4.2 shows
an example of the final distribution for a car at constant speed of 2.5m/s and time
horizon of 2 s.

Figure 4.2: Car probabilistic distribution prediction. The brown bounding box indicates
the current position, while the black arrow shows the orientation

� Pedestrian model: Similarly to the vehicle model, for pedestrians there is also
a radial and an angular distribution combination, but with different equations as
the motion model for a pedestrian is different from the one of a vehicle. The
speed limits for the pedestrian model defined by the authors are 1 and 3m/s, as
minimum and maximum. According to [50], the average walking speed ranges from
0.94 to 1.43m s−1. To cover for more situations, particularly for older individuals,
the minimum threshold was set to 0.9m/s. Equations (4.5) and (4.6) give the
probability value for the radial and angular distribution, respectively.

P (d | D) =
1

KP

(
1− (d−D)2

Dmax

)
(4.5)

P (∆θ | θt) =
1

KN

(
1−

∣∣∣∣sin(∆θ

2

)∣∣∣∣) (4.6)

with both KP and KN as normalizing constants, d,D,Dmax as the current, ex-
pected and maximum distances to be covered by the pedestrian (Figure 2.11), ∆θ
as the variation in heading angles between current and future position.
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The final cell probabilities result from the product between radial and angular
probability, as stated in the author’s paper [21]. Figure 4.3 shows an example of
the final distribution for a pedestrian at constant speed of 0.9m/s and time horizon
of 2 s.

Figure 4.3: Pedestrian probabilistic distribution prediction. The brown bounding box
indicates the current position, while the black arrow shows the orientation

� Ego vehicle trajectory: The authors use both vx and vy of the ego vehicle
to display its trajectory. However, in the proposed solution for this dissertation,
considering vy is unnecessary. Therefore, equation (4.7) is used to calculate the
distance (in cells) that the ego vehicle will cover in the given time horizon. Then,
for every x value of that distance a range of cells in y, proportional to the car’s
width, have value of 1. Figure 4.4 illustrates the mentioned trajectory for a speed
of 4m/s with a 2 s time horizon.

dx = vsx · n · t (4.7)

where vsx is the ego vehicle’s speed in x direction, n is the number of cells per
meter, and t the time horizon.
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Figure 4.4: ATLASCAR2’s trajectory

The problem with this representation is that the vehicle is not actually occupying
the whole path covered at the moment of 2 s. Instead, a representation of the
ATLASCAR2’s occupation for the given time horizon is more accurate. Figure 4.5
portrays the mentioned occupation chosen for the proposed solution.

Figure 4.5: ATLASCAR2’s future occupancy

An additional model was developed for the proposed solution which represents the
probabilistic distribution of stopped obstacles. The model only considers the obstacle’s
bounding box dimensions and centroid. Figure 4.6 illustrates the stopped model for the
probabilistic distribution. The inner red rectangle represents the obstacle’s bounding box
and the outer black rectangle represents the probabilistic distribution. The difference in
width and length is 5 cells in each direction. This cell value provides a reasonable offset
for the bounding box.

As expected, since the obstacles are stopped, the final cell probabilities have the
value of 1. Figure 4.7 shows the stopped model distribution of a car in Gazebo.

Lastly, in the original author’s method, the collision risk is determined by identifying
the maximum value within the intersecting cells of the ATLASCAR2’s distribution and
the obstacle’s distribution for the specified time horizon. In this dissertation other
metrics will be explored aside the maximum metric in Chapter 5. Figure 4.8 shows the
mentioned intersection for a 2 s time horizon.
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Figure 4.6: Stopped obstacles model (Bb stands for Bounding box)

Figure 4.7: Stopped probabilistic distribution of a car, with the bounding box illustrated
in blue
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Figure 4.8: ATLASCAR2’s distribution intercepting another car’s distribution for a 2 s
time horizon

4.2 Perception

This section provides an overview of how information about road obstacles is obtained
through the sensors on the ATLASCAR2. This data serves as input for the Occupancy
map discussed above. As stated in Section 2.6.2, the needed data is:

� Position (x, y) relative to the ATLASCAR2

� Speed (vx, vy)

� Acceleration (ax, ay)

� Orientation angle (yaw)

� Dimensions (x, y)

� Obstacle’s nature (e.g. pedestrian, car, ...)

� ATLASCAR2’s speed (vx)

� Time horizon (time in the future for which the prediction is made)

ATLASCAR2’s speed is obtained through the ROS package called Ackermann steer-
ing controller [51] which commands the vehicle movement from velocity “Twist” mes-
sages [52]. Furthermore, this controller publishes the vehicle’s odometry data through
“Odometry” messages [53], allowing for the retrieval of the vehicle’s speed from these
messages. The user sets the time horizon, while the remaining topics are determined
by data collected from sensors. Figure 4.9 shows the ROS framework visualized using
rqt graph, a tool provided by ROS [54]. This tool displays how nodes and topics are
hierarchically connected, starting with Gazebo and ending in a Risk Maps grid.

4.2.1 LiDAR

As described in Section 2.2, the Lidar obstacle detector application outputs the 3D
bounding boxes of the segmented obstacles as a ROS topic. The messages published
in this topic have the information about the obstacle’s centroid position (x, y, z), the
bounding box’s ID, and its dimensions (x, y, z). Having the position and the time interval
between messages it is possible to get the speed and acceleration. The perception of
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/obstacle detector/jsk bboxes

/data combiner

/lidar boxes /fused detection

/gazebo

/top laser/cloud

/top left camera/image raw

/ackermann steering controller/odom

/top right camera/image raw

/yolo detection

/obstacle detector node

/obstacle detector/cloud clusters

/panorama

/panorama img

/inference node

/risk maps

/rspaceGrid

Figure 4.9: Risk Maps ROS framework showcasing the connections between nodes (round
shapes) and topics (rectangular shapes)

speed varies depending on the frame of reference used, whether it is the world frame
or the car frame. Absolute speed is derived from the combined velocities of obstacles
and ATLASCAR2. Similarly, relative orientation is determined by consecutive relative
positions in the car frame, whereas in the world frame, it is inferred from the speed
vector.

The point cloud segmentation exhibits fluctuations, particularly in the boundary zone
between ground and obstacle points. As a result, erroneous bounding boxes may appear
in areas without obstacles. The way to tackle this issue was ensuring that bounding boxes
having a centroid with a negative z value are not taken into account in further processing
actions. Figure 4.10 shows the best fit parameters for the obstacle segmentation.

In comparison with Figure 2.4, the parameters defining the region of interest in
Figure 4.10 were adjusted to align with the grid dimensions (Figure 4.1), with a slight
modification in the roi max x from 40 to 30 due to uncertainty. The roi min z and
ground threshold values were set accordingly in order to minimize the fluctuations. The
cluster threshold was set to its maximum value to ensure that objects located farther
away from the car, where there are fewer points defining the cluster, are encompassed
within a single bounding box. The voxel grid size was reduced slightly, to improve
obstacle definition. Additionally, the tracking formulation regarding the iou threshold
suffered a minor change where the z component was removed. The calculation of the IoU
is carried through the equation present in Algorithm 1. With iou threshold set to 1, it
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Figure 4.10: Proposed LiDAR clustering parameters

indicates that the dimensions of the current bounding box can be as small as one-third
of the dimensions of the previous bounding box, reaching the limit. This allows for good
tracking in general, except in the transition zones between LiDAR channels where the
bounding box height can drop to 0, leading to tracking failures. Therefore, removing the
z dimension from Algorithm 1 solved this exceptional problem, enabling good tracking
overall. Figure 4.11 shows the resulting bounding boxes.

Algorithm 1 Tracking IoU calculation

Require: Previous bounding box a, Current bounding box b
1: for each bounding box dimension in {x, y, z} do
2: adim = a.dimension
3: bdim = b.dimension

4: IoUdim = 2
(
adim−bdim
adim+bdim

)
5: end for

4.2.2 Camera

The purpose of the cameras is to identify the nature of road obstacles, which is
the final feature required for the Occupancy map (Section 4.1). Within this frame-
work, Ribeiro’s application [11], as described in Section 2.3, allows to experiment var-
ious deep learning models for object detection and classification. Three models were
tested: YOLOv5 [55], YOLOv7 [56] and YOLOv8 [12]. Since YOLOv7 exhibited the
best detection performance across different classes, it was the chosen model.

Another matter related to the camera was the fact that ATLASCAR2 had two RGB
cameras installed in its infrastructure. However, the initial field of view was sub-optimal,
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Figure 4.11: Example of Lidar Obstacle Detector object segmentation: Pedestrian on
the left, car on the right.

failing to fully utilize the potential of having two cameras. For this reason, the cameras
position was changed. Figure 4.12 shows the initial and the proposed setup.

(a) Initial setup (b) Proposed setup

Figure 4.12: Changes in cameras setup and their respective field of view

The issue with the new setup is that the front area of the ATLASCAR2 is poorly
defined in each camera filed of view, which can lead to failed obstacle detections as
only parts of obstacles are visible. To address this issue, the idea was to apply the
image stitching method described in Section 2.3, to transform the two camera images
into a single panoramic view. Algorithm 2 describes the stitching process based on the
OpenCV library [57]. Before running the algorithm, synchronization of both camera’s
image is mandatory. To achieve this, ROS message filters [58] were used, specifically
the “TimeSynchronizer” function. This function queues the images from both cameras
and invokes the callback function only when it finds a pair of images with matching
timestamps. In simulation, this step is not necessary, but it will be very valuable when
processing real data.
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Algorithm 2 begins by detecting keypoints and extracting features from the input
images using the detect() function. These keypoints and features are then matched
between the images using the match() function. If four good matches are found (com-
puting the homography requires at least four matches), then the algorithm proceeds to
estimate a homography transformation using the matched keypoints. This homography
is then used to warp the right image so that the transition between the left and right
images is smooth. The resulted panorama is outputted and showed to the user for each
new frame.

Algorithm 2 Panorama Stitching Algorithm

Require: Two input images image1 and image2
Ensure: Panorama image panorama
1: Function detect(image):
2: keypoints, features← cv2.SIFT create().detectAndCompute(image,None)
3:

4: return keypoints, features
5:

6: Function match(features1, features2):
7: matcher ← cv2.DescriptorMatcher create(”BruteForce”)
8: matches← matcher.match(features1, features2)
9: good matches← filter matches to keep only the best ones

10: if len(good matches) ≥ 4 then
11: src points← keypoints from image1 corresponding to good matches
12: dst points← keypoints from image2 corresponding to good matches
13: homography ← cv2.findHomography(src points, dst points)
14:

15: return homography
16: end if
17:

18: Function stitch(image1, image2):
19: keypoints1, features1← detect(image1)
20: keypoints2, features2← detect(image2)
21: homography ← match(features1, features2)
22: if homography ̸= None then
23: sum width = image1.width+ image2.width
24: max height = max(image1.height, image2.height)
25: panorama.size = (sum width,max height)
26: panorama← cv2.warpPerspective(image2, homography, panorama.size)
27: panorama[0 : max height, 0 : image1.width] = image1
28:

29: return panorama
30: end if

Once the transition appeared smooth, the process was stopped, and the homography
matrix was saved. The homography matrix obtained for the proposed solution is present
in equation (4.8).

R.F. Oliveira Masters Degree



44 4.Proposed solution

Homography matrix =

 0.458 −0.137 870.350
−0.061 0.920 14.989
0.000 0.000 1.000

 (4.8)

To evaluate qualitatively the transition smoothness, pedestrians were chosen as they
provide a clear indication of the transition while also posing the most challenging obstacle
for stitching. Figure 4.13 shows the setup for the stitching process, and Figure 4.14 shows
the resulting panorama image.

(a) Left camera image (b) Right camera image

Figure 4.13: Setup for the panorama stitching method

Figure 4.14: Panorama image

A new problem appeared when passing the panorama image to the YOLOv7 for the
object detection and classification leading to failed detections. The panorama image
has the same height but has a width approximately equal to the sum of the widths of
each image. Consequently, when YOLOv7 resizes to 640 × 640, as it does for every
image before detection, the objects become shrunk (highly distorted aspect ratio), and
YOLOv7 does no longer recognize them. Figure 4.15 shows the difference in the display
of a person in the left camera image and in the panorama image when resized to 640×640
by YOLOv7.
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(a) Left camera image 640× 640 (b) Panorama image 640× 640

Figure 4.15: Comparison of person’s display between left camera image and panorama
image when resized to 640× 640

The approach to solve this issue was to divide the panorama into two images both
covering well the front area of the ATLASCAR2 (75% of the panorama), as shown in
Figure 4.16. Since the panorama is smaller in each rectangle the object aspect ratio
change is not so marked, and YOLOv7 is able to recognize it. Figure 4.17 shows the
difference in the person display between the original panorama and the red rectangle
panorama.

Afterwards, YOLOv7 performs object detection and classification in each rectangle
image. Subsequently, redundant detections are eliminated by comparing the corner
points of bounding boxes in both images. Boxes with matching heights and widths
differing by less than 5 pixels are discarded. The resulting detections and classifications of
the four relevant classes for the proposed solution in the panorama image are represented
in Figure 4.18.

4.2.3 Camera-LiDAR data combination

The final step of the perception section involves associating each detected object class
with its corresponding bounding box. The method analyzed in Section 2.5 achieves this
by projecting the LiDAR cluster points into the image frame and matching them with
classifier’s bounding boxes, which fits well the proposed solution. As illustrated in Figure
4.9, the 3 topics arriving to the data combiner node are /obstacle detector/jsk boxes,
/obstacle detector/cloud clusters and the /yolo detection. The first two trans-
port the LiDAR bounding boxes and the point cloud of the clusters, respectively. The
latter transports the YOLO detections on the panorama image, as well as the corre-
sponding images for those detections. It is on this image frames that the LiDAR points
will be projected, avoiding the need for an extra synchronization. ROS message filters
are used again to synchronize these three topics, which is necessary, because the YOLO
inference is slightly slower than the LiDAR obstacle detector.
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Figure 4.16: Division of the panorama image into two images represented by the red and
green rectangle

(a) Panorama image 640× 640 (b) Red rectangle panorama image 640×640

Figure 4.17: Comparison of person’s display between panorama image and red rectangle
panorama image when resized to 640× 640

The initial step involves associating the points in the cluster point cloud with their
respective bounding box. Algorithm 3 describes this process. It starts by finding the
maximum and minimum values of the eight 3D bounding box corners in each coordinate
(x, y, z). Then, it iterates over every point in the cluster point cloud and appends the
points that fit within those limits.

Furthermore, the associated cluster points are projected onto the panorama image.
Algorithm 4 describes this process which starts by projecting points within the left half
of the panorama image onto the left camera image plane, and points within the right
half onto the right camera image plane, followed by transformation into the homography
plane. The projection onto both camera images is obtained through equation (4.9). In
the case of the right half of the image, an additional multiplication by the homography
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Figure 4.18: YOLOv7 obstacle detection and classification on the panorama image

matrix follows equation (4.9).uv
w

 =

fx 0 cx
0 fy cy
0 0 1


︸ ︷︷ ︸
Intrinsic Matrix

·

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz


︸ ︷︷ ︸

Extrinsic Matrix

·


X
Y
Z
1

 (4.9)

Algorithm 3 Cluster-to-BoundingBox Association

Require: Cluster points Pc = {pc1, pc2, . . . , pcn}, 3D bounding box corner points Pb =
{pb1, pb2, . . . , pb8}

Ensure: Cluster points within bounding box Pc′

1: Minx,Maxx = Pb[0][0]
2: Miny,Maxy = Pb[0][1]
3: Minz,Maxz = Pb[0][2]
4: for all corner ∈ P b do
5: x, y, z = corner
6: Minx = min(Minx, x)
7: Maxx = max(Maxx, x)
8: Miny = min(Miny, y)
9: Maxy = max(Maxy, y)

10: Minz = min(Minz, z)
11: Maxz = max(Maxz, z)
12: end for
13: Pc′ ← empty list
14: for each point pc ∈ Pc do
15: if Minx ≤ pc.x ≤ Maxx and Miny ≤ pc.y ≤ Maxy and Minz ≤ pc.z ≤ Maxz

then
16: Append pc to Pc′

17: end if
18: end for
19: return Associated cluster points Pc′
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where X, Y , and Z are the 3D point coordinates; rij are the elements of the rotation
matrix; tx, ty, and tz are the translation parameters; fx and fy are the focal lengths; cx
and cy are the principal point offsets; u and v are the image homogeneous coordinates.

Algorithm 4 LiDAR Cluster Points Projection onto Panorama Image

Require: LiDAR points Plidar, Extrinsic matrices Tleft, Tright, Intrinsic matrices
Kleft,Kright, Homography matrix H, Panorama width Wpanorama

Ensure: Projected cluster points Pc

1: Pc ← empty list
2: for all plidar ∈ Plidar do
3: pleft cam = Tleft · plidar {Extrinsic transformation to left camera frame}
4: pright cam = Tright · plidar {Extrinsic transformation to right camera frame}
5: pleft img = Kleft · pleft cam {Intrinsic transformation to left image}
6: pright img = Kright · pright cam {Intrinsic transformation to right image}
7: pright hom = H · pright img {Homography transformation to homography plane}
8: if 0 ≤ pleft img.x <

Wpanorama

2 then
9: Pc ← Pc ∪ {pleft img}

10: end if
11: if

Wpanorama

2 ≤ pright hom.x < Wpanorama then
12: Pc ← Pc ∪ {pright hom}
13: end if
14: end for
15: return Pc

After the associated cluster points are projected onto the panorama image, a 2D
bounding box is formed using the minimum and maximum pixel coordinates obtained
from the projection.

The 2D bounding box formation process could be easier and faster by directly pro-
jecting the corner points of the 3D LiDAR bounding box. The problem with this method
lies in the axis-aligned nature of the 3D bounding box, which may not accurately rep-
resent the object’s orientation in the real world. Consequently, when projected into
2D, this alignment discrepancy can lead to a bounding box that exceeds the segmented
object’s boundaries. Figure 4.19 shows the difference between the 2D bounding box de-
rived from the 3D bounding box corners (orange box) and those formed from the cluster
points (green box).

The combination of the mentioned green bounding boxes with the YOLOv7 bounding
boxes is achieved with the metric IoU and is described in Algorithm 5. For each LiDAR
bounding box, IoU is calculated with all YOLOv7 bounding boxes. If the value exceeds
0.4, the YOLOv7 class is added to the LiDAR bounding box dictionary as a key with
value 1. The key value is incremented by 1 every time the IoU threshold is exceeded.
Therefore, the YOLOv7 class assigned is the one with the highest value in the LiDAR
bounding box label dictionary. This approach prevents the erroneous class attribution
when YOLOv7 misidentifies an object, assuming that YOLOv7 has good classification
accuracy. The threshold was assigned considering the LiDAR bounding box size changes
depending on the distance to the sensor. Figure 4.20 shows the mentioned combination
on three different classes.
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Figure 4.19: Corners derived bounding box (orange), cluster points derived bounding
box (green), projected 3D bounding box corners (blue) and cluster points (red)

Figure 4.20: LiDAR’s and YOLOv7’s bounding boxes combination through IoU

4.3 Risk Maps

Risk Maps is the pivotal concept of this dissertation which is also a novel application
introduced in the ATLASCAR2. It is based on the Occupancy Maps (Section 4.1) and for
this reason, a deeper look into the author’s [46] implementation is mandatory. They have
two main similar functions that are responsible for applying the methods and equations
described in Section 4.1. One function outputs the cell probabilities for the entire grid,
while the other outputs the collision risk. The first function is defined as follows:

@njit(f64[:](int8,int8, int8, f64[:,:], f32, f32, int8), nogil=True, fastmath=

↪→ True, cache=True)

def prob_machine_gridgen(f, originX, originY, objectList, vsx, vsy, t):

# function implementation goes here

return rspaceDat

The first two lines before the function definition (def . . . ) specify a njit decorator
from the Numba library [59], which is used to compile Python functions into machine
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Algorithm 5 IoU Calculation for Bounding Box Matching

Require: YOLO bounding box By = (xy1, yy1, xy2, yy2), Cluster bounding box Bc =
(xc1, yc1, xc2, yc2), YOLO class Cy, Cluster bounding box label dictionary boxes dict

Ensure: IoU score and frequency dictionary boxes dict
1: xleft = max(xy1, xc1) {Left top corner of the intersection area}
2: ytop = max(yy1, yc1)
3: xright = min(xy2, xc2) {Right bottom corner of the intersection area}
4: ybottom = min(yy2, yc2)
5: if xleft < xright and ytop < ybottom then
6: Iarea = (xright − xleft)× (ybottom − ytop)
7: else
8: Iarea = 0
9: end if

10: Ay = (xy2 − xy1)× (yy2 − yy1) {YOLO bounding box area}
11: Ac = (xc2 − xc1)× (yc2 − yc1) {Cluster bounding box area}
12: Uarea = Ay +Ac − Iarea {Union area}
13: if Uarea > 0 then
14: IoU = Iarea

Uarea

15: else
16: IoU = 0
17: end if
18: if IoU > 0.4 then
19: if Bc.label /∈ boxes dict then
20: boxes dict[Bc.label] = {’unknown’ : 0} {Initialize label entry if not present}
21: end if
22: if Cy /∈ boxes dict[Bc.label] then
23: boxes dict[Bc.label][Cy] = 1 {Initialize YOLO class count if not present}
24: else
25: boxes dict[Bc.label][Cy]+ = 1 {Increment YOLO class count if present}
26: end if
27: end if
28: return IoU, boxes dict {Return the IoU score and the updated dictionary}

code at runtime for execution speed. It outlines the function’s arguments types and
certain options to increase compilation speed.

Follows a detailed overview of the function’s input and output parameters:

f (int8): 8-bit integer that represents the number of obstacles.
originX (int8): 8-bit integer that represents the grid x origin in relation to the ego

vehicle.
originY (int8): 8-bit integer that represents the grid y origin in relation to the ego

vehicle.
objectList (f64[:,:]): 2-dimensional Numpy [60] array of type float64 that has the

obstacles properties such as speed, dimensions, etc.
vsx (f32): 32-bit floating-point number that represents the ego’s vehicle speed in x

direction.
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vsy (f32): 32-bit floating-point number that represents the ego’s vehicle speed in y
direction.

t (int8): 8-bit integer that represents the time horizon.
rspaceDat (f64[:]): 1-dimensional Numpy array of type float64 that has all the grid

cell’s probability values.
The other function, which outputs the collision risk has the same input arguments.

The collision risk is the maximum probability within the cells that are in a collision
zone, as stated in Section 4.1. In order to use other metrics to evaluate the risk, a slight
modification was made to the code. Instead of returning only the maximum value, all
probability values within the collision zone are now returned as a 1-dimensional Numpy
array. This information is crucial for understanding the data structure required to utilize
the functions effectively.

As illustrated in Figure 4.9, the obstacle information arrives to the risk maps node
through the topic /fused detection. This topic carries messages of type “MarkerAr-
ray” [61] which is a group of markers, each representing an obstacle. This type of message
is very convenient as it allows to transport the obstacle’s information and also enables
the visualization of obstacle classes as text in RViz. The properties of the “Marker”
message utilized are shown in the following code-snippet:

marker = Marker()

marker.header = lidar_box.header

marker.color.a = 0.8 # Transparency value

marker.id = lidar_box.label

marker.type = Marker.TEXT_VIEW_FACING

marker.action = Marker.ADD

marker.color.r = 0 # Black color

marker.color.g = 0

marker.color.b = 0

marker.pose.position.x = lidar_box.centroid.position.x

marker.pose.position.y = lidar_box.centroid.position.y

marker.pose.position.z = lidar_box.dimensions.z + 1 # 1 unit above the box

marker.pose.orientation.w = 1 # Align with world coordinates

marker.scale = lidar_box.dimensions

marker.text = "YOLO class"

Moreover, some processing is needed in order to get the markers information into a
2-dimensional Numpy array so that it can be used in the functions mentioned above.
Referring to the array as the object list, its first dimension is filled with the various
obstacles, while its second dimension comprises their properties. To iterate over the
markers in the “MarkerArray” message, using marker.id is the best option because it
uniquely identifies each marker. While other properties of the markers (eg.: position,
scale, . . . ) may change, the id remains constant unless the bounding box tracking fails.
As mentioned before, the marker.id is derived from the LiDAR bounding box label
and is assigned randomly. This means that one bounding box might have an id of 20,
while another might have an id of 1140. For this reason, there is a need to remap
the ids to organize them systematically. This is crucial for using them as indexes for
the object list, allowing the assignment of values to the object list within the same
iteration loop. Algorithm 6 describes this process where the id to new id dictionary
is responsible for keeping the correspondence between the old and new ids, while the
new markers dictionary stores the markers with the new ids.
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Algorithm 6 ID Mapping

Require: Marker messages
1: Initialize:
2: id to new id ← {}
3: new markers ← {}
4: new id counter ← 0
5: for marker in message.markers do
6: if marker.id not in id to new id then
7: id to new id[marker.id] = new id counter
8: new id counter = new id counter + 1
9: end if

10: new markers[id to new id[marker.id]] = marker
11: end for

Another feature, that could also be addressed in the data combination section (Sec-
tion 4.2.3), is the assignment of an obstacle class based on the bounding box volume.
While the obstacle is not in the cameras field of view, its marker.text is “Unknown”.
In this situations, the obstacle class is attributed based on the pedestrian’s bounding
box volume which is approximately 0.148m3. Therefore, if the marker.scale volume is
lower or equal to 0.148m3, the class is ”pedestrian”, else the class is ”vehicle”. This
estimation is then confirmed by the marker.text when the obstacle enters the cameras
field of view.

Three obstacle’s properties still need to be calculated and assigned to the object list:
speed, acceleration, and orientation. The first paragraph of Section 4.2.1 provides a
brief overview on how these properties are obtained. Algorithm 7 describes the process
in greater detail, showing the mentioned calculations and also the assignment of all
the obstacle’s properties to the object array. A mean filter was used to smooth the
orientation values by averaging the last three measurements. Testing was conducted
with both three and five values for the average, indicating that the former led to slightly
faster orientation adjustment, thus becoming the chosen option.

Once the functions arguments are set, the probabilities of the grid cells are retrieved
for a given time horizon. This approach limits the real evaluation of risk in the scenario,
because it only considers the intersections (space based approach) for a collision event
to happen. This is not sufficient, because a collision scenario at a 3 s time horizon might
have a low probability of collision, but at a 2 s time horizon (which naturally occurs
earlier), it might indicate a clear collision with a probability near 1. In this context, the
interceptions (time based approach) were also included by representing the distributions
of several time horizons simultaneously, which mathematically, equals to the sum of the
arrays containing the cell probabilities of each time horizon. By proposing the name
”Intersection Maps” to the output of the collision risk function, the formalization of the
Risk Maps and Temporal Occupancy Maps is presented in expressions (4.10), (4.11).

Temporal Occupancy Maps =

n∑
k=1

Occupancy Maps(tk) (4.10)
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Algorithm 7 Assignment of Obstacle Properties to Object List

Require: Marker messages
1: Initialize: objectList← zeros(16, 16, dtype=np.float64)
2: for i in new markers do
3: marker = new markers[i]
4: current time = marker.header.stamp
5: if objectList[i][12] ̸= 0 then
6: elapsed time = current time− objectList[i][12]
7: if elapsed time > 0 then
8: x = marker.pose.position.x
9: y = marker.pose.position.y

10: vx = (x− objectList[i][3])/elapsed time
11: vy = (y − objectList[i][4])/elapsed time
12: vx = vx+ vxmy {Add ATLASCAR2’s speed for absolute value}
13: vy = vy + vymy
14: yaw = atan2(vy, vx) {Orientation}
15: smoothed yaw ← mean filter(yaw)
16: ax = (vx− objectList[i][8])/elapsed time
17: ay = (vy − objectList[i][9])/elapsed time
18: objectList[i][12] = current time
19: else
20: vx = objectList[i][8]
21: vy = objectList[i][9]
22: ax = objectList[i][1]
23: ay = objectList[i][2]
24: x = objectList[i][3]
25: y = objectList[i][4]
26: smoothed yaw = objectList[i][5]
27: end if
28: objectList[i][0] = marker.id
29: objectList[i][1] = ax
30: objectList[i][2] = ay
31: objectList[i][3] = x
32: objectList[i][4] = y
33: objectList[i][5] = smoothed yaw
34: objectList[i][6] = type {1 for vehicle, 4 for pedestrian}
35: objectList[i][8] = vx
36: objectList[i][9] = vy
37: objectList[i][10] = marker.scale.x
38: objectList[i][11] = marker.scale.y
39: else
40: objectList[i][12] = current time
41: end if
42: end for
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Risk Maps =
n∑

k=1

Intersection Maps(tk) (4.11)

where t is the time horizon and k ∈ {1, . . . , n}.
The maximum time horizon chosen for the Risk Maps is 3 s. This value was selected

because, at low speeds, the distribution of time horizons beyond 3 seconds is not well
defined due to the large uncertainty of the motion models. At high speeds, a time horizon
longer than 3 seconds is not useful because of the limitations of the LiDAR sensor. As
stated in Section 4.2.1 and shown in Figure 4.10, the LiDAR can recognize obstacles
without loosing its track within 20m to each side and 30m in front of the ATLASCAR2.
For example, if the ATLASCAR2 is traveling at 10m s−1, the 3 s future occupancy would
be at the 30m limit. This means that for this speed, a time horizon of 3 s is not useful,
as the ATLASCAR2’s occupancy does not intersect any obstacle’s occupancy. At higher
speeds, the time horizon window reduces even further. In this dissertation, the Risk
Maps are tested for speed values below 10m s−1, making a 3 s time horizon a reasonable
maximum value.

The minimum useful number of time horizons depends on the ATLASCAR2’s speed
and physical dimensions. For example, for the speed value of 6m s−1, illustrated in Figure
4.21, the Temporal Occupancy Map results from the sum of the Occupancy Maps for
the following time horizons: 1 s, 2 s and 3 s. There are empty zones (not covered by
the risk analysis procedures) between those time horizons. Depending on the size of the
obstacle’s bounding box, its occupancy prediction could possibly intersect the empty
zones for intermediate time horizons, leading to information loss. Algorithm 8 enables
the calculation of the number of time horizons that should be utilized as well as their
value. For the example given, Algorithm 8 outputs 6 time horizons spaced by 0.5 s.
Therefore, the Temporal Occupancy Maps should incorporate the Occupancy Maps for
0.5 s, 1 s, 1.5 s, 2 s, 2.5 s and 3 s, resulting in complete Risk Maps.

Algorithm 8 Time Horizon Calculation

Require: Speed (ATLASCAR2 speed in x), CellResolution = 0.1,
MaxTimeHorizon = 3, CarLengthInCells = 30

Ensure: number of time horizons tnum, value t
1: distance = Speed×

(
1

CellResolution

)
×MaxTimeHorizon

2: tnum = distance
CarLengthInCells

3: tnum = round(tsub)
4: if tnum ≤ 3 then
5: tnum = 3
6: end if
7: t = MaxTimeHorizon

tnum

8: return tnum, t

Figure 4.22 shows the Temporal Occupancy Maps resulted from the sum of three
Occupancy Maps. Figures 4.23, 4.24 show the comparison between the Temporal Occu-
pancy Maps and the Risk Maps in four subsequent frames (scenario instances).

Finally, the collision risk within the Risk Maps is evaluated using the maximum prob-
ability value within the Risk Map cells. This metric is effective because it addresses the
worst-case scenarios, ensuring that the most significant potential danger is considered
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Figure 4.21: Example of the Temporal Occupancy Map for the ATLASCAR2 with speed
of 6m s−1

and mitigated. However, this approach has a limitation. For example, in a probability
distribution like the Risk Maps, the risk might appear high if one cell has an extremely
high value, while the rest have comparatively lower values. This can lead to an overem-
phasis on a single risk point and the overall risk might be misinterpreted. To tackle this
issue, additional metrics such as the mean value, median value, and standard deviation
are used to analyze the highest values in the probabilistic distribution, avoiding the
overstatement of a single extreme value.

R.F. Oliveira Masters Degree



56 4.Proposed solution

(a) Occupancy Maps for 1 s (b) Occupancy Maps for 2 s

(c) Occupancy Maps for 3 s (d) Temporal Occupancy Map

Figure 4.22: Temporal Occupancy Map resulting from the union of the Occupancy Maps
for 1 s, 2 s and 3 s for the ATLASCAR2 and another car
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(a) Temporal Occupancy Maps frame 1 (b) Risk Maps frame 1

(c) Temporal Occupancy Maps frame 2 (d) Risk Maps frame 2

Figure 4.23: Comparison between the Temporal Occupancy Maps and the Risk Maps in
the first 2 frames
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(a) Temporal Occupancy Maps frame 3 (b) Risk Maps frame 3

(c) Temporal Occupancy Maps frame 4 (d) Risk Maps frame 4

Figure 4.24: Comparison between the Temporal Occupancy Maps and the Risk Maps in
the last 2 frames
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Chapter 5

Tests and Results

This chapter focuses on testing the proposed solution (Chapter 4) in several scenarios,
illustrating the functionality and potential of the Risk Maps. Additionally, an evaluation
of how the risk evolves through subsequent frames is provided. The risk is obtained
from the maximum probability value within the Risk Maps cells. Additionally, the risk
is validated by calculating the mean value, median value and standard deviation value
for the highest twenty values of the distribution. Twenty cells cover an area of 0.2m2,
which provides a reasonable and representative sample of the highest risk area.

The chapter is divided in three parts: tests and results in simulation, ATLASCAR2’s
software configuration for real data collection, and tests and results in real data. The
source code is available at GitHub.1

5.1 Simulation scenarios

This section provides an overview on the Risk Maps tested in several simulated sce-
narios in Gazebo with a graphical representations of the risk (maximum value) evolution
throughout some frames (scene instances), as well as the median, mean and standard
deviation of the highest twenty values.

The speed values of ATLASCAR2 used in the simulated scenarios are low (below
10m s−1) for two reasons. First, lower speeds allow for more time horizons, providing a
more comprehensive view of the scenes and better demonstration of the method. Second,
the method is especially intended for urban scenarios, like the city of Aveiro, an urban
environment where lower speeds are typical.

The stopped obstacles that appear in the scenarios are hard coded, meaning they
are predefined by their role and position. The intention was to set the attribute for the
stopped model to obstacles whose speed is less than 1m s−1, if it is a vehicle, or less than
0.9m s−1 if it is a pedestrian. However, fluctuations in speed cause the obstacle’s model
to switch between the stopped model and the vehicle or pedestrian model, resulting in
an unwanted unstable scenario.

1https://github.com/lardemua/atlascar2/tree/risk_maps
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5.1.1 Junction scenario

This scenario demonstrates a potential collision situation where the ATLASCAR2
approaches a junction with constant speed of 2m s−1, while another car approaches from
the left at approximately 3m s−1, as shown in Figure 5.1.

Figure 5.1: Junction scenario

Figure 5.2 shows the risk evolution from the moment that the first probabilities
appear in the Risk Maps until the virtual collision. Additionally, Figure 5.3 illustrates
specific frames of the Risk Maps and in Appendix A, Figure A.1 shows the Temporal
Occupancy Maps of those same frames.
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Figure 5.2: Junction scenario risk evolution. The risk indicator is displayed with 3
different items calculated in the Risk Maps: the maximum value (a single number), the
mean and the median of the 20 largest values. In this case all 3 indicators agree and
show a growing trend along the frames, certifying that the risk is real and will ultimately
end in a collision.

Figure 5.3a shows the first relevant rise of the risk value (0.248) at frame 7 which
ends on the first risk peak (0.58) at frame 9, illustrated in Figure 5.3b. The risk starts
increasing again at frame 16, peaking (0.77) at frame 17 (Figure 5.3c). Figure 5.3d shows
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the highest risk peak, reaching the maximum probability value (1). At frame 24 there is
a slight decrease of the risk (0.901), as shown in Figure 5.3e. In the next frame, it rises
again to the top, maintaining its value for a few frames. Figure 5.3f shows a frame very
close to the potential collision event.

Overall, the risk increases gradually from frame 0 to frame 10; there is some fluctu-
ations between frames 10 and 20, and from frame 20 onwards, the risk stabilizes at very
high level with minor variations. These fluctuations are due to variations in the speed
and acceleration changing directly the probabilistic distributions. Slight variations of
the orientation can also cause the mentioned fluctuations. The median and mean values
slightly drop in relation to the maximum value at frames 19 and 24, indicating some
overstatement of the risk. However, the drop is not large enough and consistent to be
relevant. Therefore, the Risk Map effectively transmits that this is a collision scenario.

(a) frame 7 (b) frame 9 (c) frame 17

(d) frame 21 (e) frame 24 (f) frame 34

Figure 5.3: Representative frames of the junction scenario
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5.1.2 Opposite lane pass scenario

This scenario demonstrates ATLASCAR2 passing a parked car on its right while a
truck approaches from the opposite lane. The truck has a constant speed of 2.5m s−1

while the ATLASCAR2 is moving with speed of 2m s−1. The other car is parked at
approximately 2.5m at the right of the ATLASCAR2, as illustrated in Figure 5.4.

Figure 5.4: Opposite lane pass scenario

Figure 5.5 shows the risk evolution of this scenario where A represents the truck
and B the parked car. Additionally, Figure 5.6 illustrate specific frames of the Risk
Maps and, in Appendix A, Figure A.2 show the Temporal Occupancy Maps of the same
frames.
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Figure 5.5: Opposite lane pass scenario risk evolution

Overall, the risk is minimum, reaching its peak of 0.093 at frame 42. For the truck, the
risk starts to be noticeable at frame 35 where blue color cells appear in the intersection
area, as illustrated in Figure 5.6b. Figure 5.6c shows the risk peak where the blue color
is slightly more intense. As for the parked car, the risk is always 0 through the whole
scenario because the ATLASCAR2 future occupancies never intersect the car’s. The Risk
Maps effectively convey the minimum risk in this scenario which is expected because the
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vehicle are in different lanes meaning that there is space for them to pass each other
safely and generally the movement is very predictable as they follow predictable paths.

(a) frame 23 (b) frame 35 (c) frame 42 (d) frame 78

Figure 5.6: Four representative frames of the opposite lane pass scenario

5.1.3 Lane collision scenario

This scenario demonstrates the ATLASCAR2 moving towards a junction with a
stopped car at the entrance. Additionally, a pedestrian is walking in the opposite di-
rection of the ATLASCAR2 passing approximately 4m to its right. ATLASCAR2 is
moving at 4m s−1 and the pedestrian at 0.9m s−1, as shown in Figure 5.7.

Figure 5.7: Lane collision scenario

Figure 5.8 shows the risk evolution of this scenario where A represents the pedestrian
and B the stopped car. Additionally, Figure 5.9 illustrates specific frames of the Risk
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Maps and in Appendix A, Figure A.3 shows the Temporal Occupancy Maps of these
same frames.
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Figure 5.8: Lane collision scenario risk evolution

The risk reaches its first peak (0.482) at frame 10, decreasing abruptly (0) at frame 11.
This fluctuation is due to the variations in the speed and acceleration values which make
the distribution smaller, thereby not intersecting the ATLASCAR2’s future occupancy,
as illustrated in Figures A.3b, A.3c. After that, the risk rises again reaching its second
peak (0.566) at frame 18, decreasing gradually in the following frames. At frame 45 the
risk rises to the maximum value (1), as the ATLASCAR2’s future occupancy begins to
intersect the stopped vehicle occupancy as shown in Figure 5.9c. The risk is maintained
at the maximum value until the end of the scenario (Figure 5.9d). Overall, the mean
and median values are very close to the maximum, validating the latter. Perhaps the
Risk Maps overstate the collision risk when passing by the pedestrian, as he is 4m
away and the risk reaches a value of 0.566. On the other hand, pedestrians are highly
unpredictable, meaning that drivers should be careful when passing by them. Therefore,
the Risk Maps would be more realistic indicating risk with lower probability values in this
specific situation. As for the stopped vehicle, it effectively transmits the risk associated.

5.2 Crosswalk approach scenario

This scenario demonstrates the ATLASCAR2 approaching a crosswalk with a pedes-
trian passing through. ATLASCAR2 is moving at 6m s−1 and the pedestrian is walking
at 1m s−1. It is a close to collision scenario, as the ATLASCAR2 passes very close to
the pedestrian, as illustrated in Figure 5.10.

Figure 5.11 shows the risk evolution of this scenario. Moreover, Figure 5.12 illustrates
specific frames of the Risk Maps and in Appendix A, Figure A.4 shows the Temporal
Occupancy Maps of these same frames.

Until frame 10, the risk is null meaning that car and the pedestrian future occupancies
have not yet intercepted. At frame 11, the risk peaks (1) to the maximum value and
drops slightly in the next frame as the distribution gets bigger (Figure A.4c) due to
variations in speed and acceleration. After that, the risk rises again to the maximum
value at frame 13 and stays there till the end of the scenario. In the last frames there is
a slight drop of the mean and medium values indicating that the highest twenty values
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(a) frame 10 (b) frame 18 (c) frame 45 (d) frame 68

Figure 5.9: Representative frames of the lane collision scenario

Figure 5.10: Crosswalk approach scenario
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Figure 5.11: Crosswalk approach scenario risk evolution

are not exactly the maximum. Nonetheless, the drop is not big enough to be relevant,
meaning that it still transmits an high risk situation. Even though there is no collision,
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ATLASCAR2 passes very close to the pedestrian, indicating a high risk. The Risk Maps
effectively convey this risk in such situations.

(a) frame 7 (b) frame 11 (c) frame 12 (d) frame 28

Figure 5.12: Four representative frames of the crosswalk approach scenario

5.3 Software configuration for real data collection

This section details the configurations utilized for real world data collection in the
perception field (Section 4.2) of the proposed solution. Additionally, it addresses the cru-
cial procedure of calibration, which is paramount in real world scenarios. The following
subsections describe the solutions adopted.

5.3.1 Calibration

The calibration process was divided into two parts: intrinsic calibration of the cam-
eras and extrinsic calibration of the cameras + LiDAR.

Intrinsic calibration was achieved utilizing the ROS camera calibrator package
[62]. It provides a graphical interface where the user get immediate feedback of what
the camera is seeing and if the detection of the chessboard’s corners is being successful
as shown in Figure 5.13. The calibration process involves showing the chessboard in
different positions and orientations until the application gathers enough information
and the calibrate button is highlighted. From here, the user pushes the calibration
button, and the results are displayed in the terminal. There is also an option to save
the calibrated intrinsic parameters in YAML file, along with the image collections taken
and used during the calibration.

This procedure was conducted for both cameras using a 9 × 7 chessboard with
105.4mm square size, available at LAR. Figure 5.14 shows four collections of the In-
trinsic calibration process.

Extrinsic calibration was achieved utilizing ATOM [15] described in Section 2.4.
Following the pipeline presented in Figure 2.8, the first three steps consisted of recording
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Figure 5.13: ROS camera calibration interface showing the chessboard’s corner detection
[62]

a ROS bag, configuring the ATLASCAR2’s XACRO file and the calibration YAML file.
The bag file was recorded using a charuco in various positions and orientations, ensuring
visibility for the three sensors. The charuco pattern properties are present in Table
5.1. As for the XACRO file, it contains the properties of each component in the car,
namely the sensors, the wheels, the joints and links between them. An estimation of
the transformations between frames is also defined in this file. Figure 5.15 shows the
proposed transformation tree for the sensors, where base footprint is the world frame
placed in position (0,0,0), and base link is an intermediate frame positioned slightly
above base footprint at the height of the wheel radius. The calibration optimizes the
transformations between the base link and the subsequent frames in the tree. Lastly,
the configuration YAML file is where the calibration process is set up, specifying which
sensors are to be calibrated, the world frame, and the pattern properties.

Table 5.1: Charuco properties

Properties

Dictionary 5× 5
Border size (40, 30) mm
Dimension (11, 8)
Size 60mm
Inner size 45mm

Moving to the data collection and labeling step, the user saves collections (snapshots
of data) from the bag file when the pattern is detected by the sensors. For this, ATOM
provides graphical feedback in RViz to indicate whether the pattern is being detected or
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(a) Collection 8 (b) Collection 12

(c) Collection 22 (d) Collection 39

Figure 5.14: Four collections illustrative of the Intrinsic calibration process

base footprint

base link

top left camera top laser top right camera

Figure 5.15: Transformation tree of the ATLASCAR2’s sensors

not. The camera labeling (annotations regarding detections) occurs automatically while
the LiDAR needs the user to position an interactive marker close to pattern location in
the point cloud. Figure 5.16 shows the results of the camera and LiDAR labeling of the
same frame. Once the collections are saved, it is time to correct the LiDAR labeling. As
shown in Figure 5.16b, there are some points of the pattern that are not registered (grey
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color). To correct this, ATOM provides an RViz tool that allows the user to manually
register the points that are missing and set the boarder points of the pattern area (black
color). The result is illustrated in Figure 5.17.

(a) RGB camera automatic labeling (b) LiDAR semi-automatic labeling

Figure 5.16: ATOM camera and LiDAR labeling result

Figure 5.17: LiDAR semi-automatic labeling corrected

Once the collections are corrected, the next step is to begin the calibration. During
this process, ATOM conducts an optimization module that changes the position of the
sensors in order to minimize their reprojection error. Figure 5.18 shows the calibration
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results. The average reprojection error is displayed at the bottom in blue, indicating sub-
pixel accuracy for both cameras and around 1 cm for the LiDAR, which is considered
good. Table 5.2 shows the initial estimated and the calibrated position of the sensor
frames with relation to the base link frame (Figure 5.15).

Figure 5.18: ATOM calibration results

Table 5.2: Initial and calibrated positions of the three sensors frames with relation to
the base link frame (Figure 5.15)

Initial estimation

Right cam Left cam LiDAR
x (m) 0.5 0.6 0.5
y (m) −0.27 0.35 0
z (m) 1.345 1.295 1.515

roll (rad) 0 0 0
pitch (rad) 0 0 0
yaw (rad) −0.35 0.45 0

Calibrated

Right cam Left cam LiDAR
0.511 0.647 0.457
−0.041 0.341 −0.041
1.346 1.294 1.474
−0.007 −0.013 −0.011
−0.029 −0.011 −0.013
−0.157 0.451 0.018

5.3.2 Stitch

The stitching method described in Section 4.2.2 had to be adjusted (real-world cam-
era setup differs from the simulation camera setup) to the real world setup. The pro-
cedure to obtain the homography matrix was the same. A colleague from LAR helped
on this assignment, by position himself on the limit zone of the two camera images.
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Figure 5.19 shows the left (Point Grey) and the right (USB) camera images used to
find the homography matrix and Figure 5.20 shows the resulting panorama image. The
homography obtained and used with the real world setup is presented in equation (5.1).

(a) Left camera image (b) Right camera image

Figure 5.19: Panorama stitching setup to find the homography matrix

Figure 5.20: Real panorama image result

Homography matrix =

1.294 0.176 778.058
0.071 1.206 −57.029
0.000 0.000 1.000

 (5.1)

5.3.3 LiDAR object detection and clustering

Similar to the simulation scenarios, the Lidar obstacle detector application [8] was
used to detect and segment obstacles into 3D bounding boxes. Section 4.2.1 details
this application and the parameters (Figure 4.10) used for the simulation scenarios.
While the parameters remained consistent across all simulation scenarios, they had to
be customized for each real-world scenario. This is due to the high level of noise that
varies in each scenario. The main goal was to ensure successful tracking of the obstacle
bounding boxes.
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5.3.4 Sensor synchronization

Similarly to the simulated scenarios, it is necessary to synchronize both camera mes-
sages for the stitching algorithm. Additionally, in the data combiner node (Figure 4.9),
synchronization is required when combining the panorama image and the YOLO de-
tections with the LiDAR data. For this purpose, ROS message filters [58] were used,
specifically the ApproximateTimeSynchronizer() function. This function queues the
messages that are chosen for synchronization for a specified queue time. Unlike the
TimeSynchronizer() function used in simulation, ApproximateTimeSynchronizer()
includes an additional parameter, the slop. This parameter compensates for the time
interval between messages. For example, setting the slop to 0.1 enables two messages
with a 0.1 s or smaller time differential to be considered synchronized. This synchro-
nization method is particularly beneficial for real world data as it provides the necessary
tolerance to handle the time variations.

5.3.5 ATLASCAR2 velocity

Initially, the ATLASCAR2’s velocity was meant to be obtained from the encoder
pulses of the odometry solution described in Section 3.1.1.3. However, the resulting
velocity values from this solution were very unstable, probably due to some hardware
issue. For this reason, a new approach was needed. In Pombinho’s work [36], another
approach for the ATLASCAR2 velocity was tested, which involved using the actual car’s
velocity provided by the vehicle’s CAN bus. This is the same velocity value displayed
by the car’s speedometer behind the steering wheel. This velocity value is very stable
and realistic. However, its resolution of 1 kmh−1 (0.278m s−1) was insufficient for Pom-
binho’s work, which required higher resolution for accurate odometry calculations. In
the case of the Risk Maps, stability in velocity values is paramount. The resolution of
0.278m s−1 is considered sufficient, hence this solution was adopted. Figure 5.21 shows
the stability difference between the velocity values of the encoder and the speedometer
for the time duration of 10 s.
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Figure 5.21: Comparison between the odometry encoder and the car speedometer veloc-
ity values for a duration of 10 s.
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5.4 Real world scenarios

This section provides an overview on the Risk Maps tested in real world scenarios.
The data was collected in Aveiro, near the university. Figure 5.22 shows the path
traveled with ATLASCAR2 while collecting data, as well as the locations of the real
world scenarios, numbered from 1 to 5. Similarly to the simulated scenarios, there are
graphical representations of the risk (maximum value) evolution through some frames,
as well as the median, mean and standard deviation of the highest twenty values.

Figure 5.22: Real data collection path in Aveiro and scenario locations numbered from
1 to 5

5.4.1 Roundabout approach scenario

This scenario is indicated by number 1 in Figure 5.22. It demonstrates the ATLAS-
CAR2 approaching a roundabout (Figure 5.24) at approximately 4.7m s−1. The velocity
decreases the closest it gets to the roundabout, as there is another car inside, making
the ATLASCAR2 to stop eventually. Figure 5.23 illustrates the evolution of the risk in
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this scenario. Additionally, Figure 5.24 illustrates specific frames of the Risk Maps and
in Appendix A, Figure A.5 shows the correspondent Temporal Occupancy Maps of these
same frames.
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Figure 5.23: Roundabout approach scenario risk evolution

The scene starts with the ATLASCAR2 approaching the roundabout with the LiDAR
first detecting the other car at frame 6. After that, the risk reaches its peak (0.994) at
frame 12 (Figure 5.24b) indicating the first intersection of both occupancies. Then, the
risk decreases abruptly at frame 14 and being null at frame 15 (Figure 5.24c). Right in
the next frame, the risk increases to the value of 0.542 at frame 16. The same behaviour
appears from frame 16 to frame 21. This is due to fluctuations in the velocity and
acceleration, making the distributions to keep switching their size (Figures A.5b, A.5c,
A.5d).

Overall, the risk starts at the maximum value and decreases, as the car inside the
roundabout moves out and the ATLASCAR2 slows down. Despite the fluctuations, the
Risk Maps effectively transmit that there is a potential collision scenario, if precautions
are not taken, and demonstrates it in several frames.

5.4.2 Opposite lane pass scenario

Two scenarios were obtained for the opposite lane passing: one with wide lanes and
the other with tight lanes.

5.4.2.1 Wide lanes

This scenario is indicated by number 2 in Figure 5.22. It demonstrates the ATLAS-
CAR2 passing by three cars coming in the opposite lane. The ATLASCAR2’s speed
ranges from 6.3 to 8.6m s−1 by the end of the scenario. Figure 5.25 shows that there is
no risk in this scenario, as the maximum value remains 0 till the last frame. Figure 5.26
shows three frames of the Risk Maps and in Appendix A, Figure A.6 shows the corre-
spondent Temporal Occupancy Maps. These frames capture the moment each vehicle is
about to pass by the ATLASCAR2.
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(a) frame 6 (b) frame 12 (c) frame 15

(d) frame 16 (e) frame 23 (f) frame 24

Figure 5.24: Four representative frames of the roundabout approach scenario
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Figure 5.25: Wide opposite lane pass scenario risk evolution
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(a) frame 12 (b) frame 38 (c) frame 50

Figure 5.26: Three representative frames of the wide opposite lane pass scenario

5.4.2.2 Tight lanes

This scenario is indicated by number 3 in Figure 5.22. It involves the ATLASCAR2
passing by a truck coming in the opposite lane. The ATLASCAR2’s speed ranges from
5.5 to 6.6m s−1 by the end of the scenario. Figure 5.27 shows the risk evolution. Figure
5.28 shows three representative frames of the Risk Maps and in Appendix A, Figure A.7
shows the correspondent Temporal Occupancy Maps.
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Figure 5.27: Tight opposite lane pass scenario risk evolution

The risk is practically null throughout the whole scenario, except for the transition
from frame 24 to frame 27 (Figure 5.28c). This is due to a fluctuation in the orientation
as illustrated in Figure A.7b. The maximum value reached was at frame 26 with value
0.082 (Figure 5.28b). Frame 21 represents the moment the truck is detected by the
LiDAR. Despite the orientation fluctuation, the Risk Maps consistently show that there
is no collision in this scenario.
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(a) frame 21 (b) frame 26 (c) frame 27

Figure 5.28: Three representative frames of the tight opposite lane pass scenario

5.4.3 Junction approach scenario

This scenario is indicated by number 4 in Figure 5.22. It demonstrates the ATLAS-
CAR2 approaching a junction with a car in front and some stopped obstacles detected
on the sidewalk on the left. When close to the junction, another car comes from the left
making the ATLASCAR2 to slow down and wait for him to pass. The ATLASCAR2’s
velocity ranges from 5.8 to 1.3m s−1 by the end of the scenario. Figure 5.29 shows the
risk evolution where A represents the car in the front and B the car coming from the
left. Figure 5.30 shows the representative frames of the Risk Maps and in Appendix
A, Figure A.8 shows the correspondent Temporal Occupancy Maps. In Figure 5.30 the
front car marker text is not well visible but it is the light orange rectangle. This can be
confirmed with the images present in Figure A.8.
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Figure 5.29: Junction approach scenario risk evolution

The car in front does not contribute to the risk which is expected, since it is moving
away from the ATLASCAR2. At frame 40 the risk rises abruptly to the value of 0.796
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reaching its peak in the next frame (0.944). A slight variation in the speed and acceler-
ation made the risk drop at frame 42 (Figure A.8d). After that, the risk raises again to
the value of 0.428 at frame 43, decreasing to 0 in the following frames.

The Risk Maps convey a potential collision with the car approaching from the left,
which would happen in reality if ATLASCAR2 was not slowing down. Additionally,
the risk decreases as the car passes by the ATLASCAR2 which also correspond to the
reality. Therefore, the Risk Maps transmit effectively the risk in this scenario.

(a) frame 11 (b) frame 16 (c) frame 40

(d) frame 42 (e) frame 43 (f) frame 48

Figure 5.30: Representative frames of the junction approach scenario

5.4.4 Crosswalk approach scenario

This scenario is indicated by number 5 in Figure 5.22. It demonstrates the AT-
LASCAR2 approaching a crosswalk where a pedestrian is crossing through. When the
pedestrian is reaching the end of the crosswalk, a motorcyclist passes by the ATLAS-
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CAR2 in the opposite lane. The ATLASCAR2’s velocity ranges from 6 to 2.6m s−1 by
the end of the scenario. Figure 5.31 shows the risk evolution where A is the pedestrian
and B is the motorcyclist. Figure 5.32 shows the representative frames of the Risk Maps
and in Appendix A, Figure A.9 shows the correspondent Temporal Occupancy Maps.
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Figure 5.31: Crosswalk approach scenario risk evolution

The risk with the pedestrian is relatively low throughout the scenario, reaching its
maximum value (0.096) at frame 19. As for the motorcyclist, the risk is overall high,
starting to increase at frame 21 and reaching its peak (0.804) at frame 22. At frame 25
the risk decreases abruptly due to a fluctuation in the orientation, as illustrated in Figure
A.9d. After that, the risk increases again gradually until frame 32, decreasing till 0 in
the following frames. At frame 28, the risk is not supported by the mean and median of
the twenty highest values, indicating that the maximum value is not accurate. Frames
3, 17 represent the moments that the pedestrian and the motorcyclist are detected,
respectively.

The Risk Maps transmit the collision risk between the ATLASCAR2 and the pedes-
trian relatively well, but fails to represent the risk of the motorcyclist. The main problem
lies in the YOLO classification, as it identifies the motorcyclist as a pedestrian, thereby
enabling the pedestrian model of the Risk Maps instead of the vehicle model. Therefore,
the Risk Maps fail to transmit effectively the risk in this scenario.

5.5 Summary

The Risk Maps were tested on both simulated and real world scenarios. In both
cases, common urban situations were analyzed to determine the collision risk between
the ATLASCAR2 and other road agents such as pedestrians and other vehicles. The
evaluation of the risk was achieved by representing the maximum value within the Risk
Maps cells and supporting it with the median and mean values of the twenty highest
values. Additionally, the standard deviation was also utilized to demonstrate how close
the dataset is to the mean value.

The scenarios analyzed in simulation world are as follows:

Junction collision: ATLASCAR2 collides with other car coming from the left at junc-
tion. The risk increases gradually as the car gets closer to the ATLASCAR2,
eventually reaching the maximum probability value (1).
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(a) frame 3 (b) frame 17 (c) frame 21

(d) frame 25 (e) frame 28 (f) frame 36

Figure 5.32: Representative frames of the crosswalk approach scenario

Opposite lane pass: ATLASCAR2 passes by a truck coming in the opposite lane and,
right after, by a car parked at his right. The risk is practically null, reached a peak
value of 0.093 at specific frame when passing by the truck.

Lane collision: ATLASCAR2 approaches a junction with a car stopped at the en-
trance. Additionally, ATLASCAR2 passes by a pedestrian walking in the opposite
direction at its right. The risk between ATLASCAR2 and the pedestrian was
slightly exaggerated as it reached a peak value of 0.566 with the pedestrian being
at 4m distance away from the ATLASCAR2. As for the stopped car, the risk
reached the peak value of 1, as it should.

Crosswalk approach: ATLASCAR2 approaches a crosswalk with a pedestrian cross-
ing through. ATLASCAR2 ends up passing really close to the pedestrian. The
risk increases abruptly to the maximum value (1), remaining there till the end.
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The scenarios analyzed in real world are as follows:
Roundabout approach: ATLASCAR2 approaches a roundabout with another car in-

side it. The risk begins high at the top, decreasing as the car passes by the
ATLASCAR2.

Wide lanes opposite pass: ATLASCAR2 passes by three vehicles coming in the op-
posite lane. The risk is null throughout the whole scenario.

Tight lanes opposite pass: ATLASCAR2 passes by a truck coming in the opposite
lane. The risk is practically null except for two frames where the orientation of
truck fluctuated.

Junction approach: ATLASCAR2 approaches a junction with a car on his front.
When close to the junction, another car appears from the left. There is no risk
associated with the vehicle in front as it moves away from the ATLASCAR2. As
for the car coming from the left, the risk starts very high reaching the value of
0.944 and then decreases as it passes by the ATLASCAR2.

Crosswalk approach: ATLASCAR2 approaches a crosswalk with a pedestrian cross-
ing through. When the pedestrian is reaching the end of the crosswalk, a motor-
cyclist appears in the opposite lane. The risk related to the pedestrian is very low
throughout the scenario reaching a peak value of 0.096. As for the motorcyclist,
the risk is very high which does not relate with the reality. Risk Maps failed to
represent this scenario.

Another aspect covered in this chapter is the software adaptations made for real world
data collection. This includes calibration, panorama stitching, LiDAR object detection
and segmentation, sensor synchronization and the achievement of the ATLASCAR2’s
speed.
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Chapter 6

Conclusions and future work

This chapter summarizes the work developed within this dissertation and presents
the conclusions taken from it. Additionally, it addresses future work ideas that can be
implemented using this work as a starting point.

6.1 Conclusions

This dissertation started with the aim of developing Risk Maps utilizing artificial
vision (cameras) and LiDAR. The purpose of these maps is to assist drivers, human or
machine, in detecting road obstacles and provide information about the potential risk
of colliding into them.

To achieve this goal, the dissertation starts by exploring the state of the art of
relevant concepts and methodologies. This involves the following fields: object detection
and classification, panorama stitching, LiDAR segmentation or clustering, LiDAR and
camera data combination, and collision risk assessment.

The development of the proposed solution began with exploring the Occupancy Maps
collision risk assessment method, identifying the necessary inputs and the outputs it pro-
vides. It proved to be a promising solution, as it provides a map with future occupancy
predictions of road agents over a given time horizon based on their instantaneous prop-
erties namely, speed, acceleration, size, orientation and nature. From there, the idea
was to use the available hardware on the ATLASCAR2, along with the newly installed
3D LiDAR (other goal of this dissertation), to obtain these properties in a simulation
environment. This approach ensures proximity to real world conditions which is the
destination.

During this phase, perception solutions were found for the cameras and the LiDAR.
As there were two cameras present on the ATLASCAR2, it made sense to fully utilize
them maximizing the global field of view by stitching each camera image together into a
panorama. The stitching process involves finding the homography matrix that ensures a
smooth transition from the left camera image to the right camera image. The homogra-
phy was calculated once and then used for the entire recording. This approach ensured
speed and stability; however, it only works well for the specific distance at which the
homography was calculated. For perfect panoramas, the homography would need to be
calculated for every frame using a more sophisticated algorithm.

Moreover, to detect and classify obstacles in the panorama image, YOLOv7 was
utilized within Ribeiro’s application [11]. This approach ensures good detections, but
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requires time for inference and incurs significant computational cost; therefore, there is
room for optimization, perhaps utilizing a lighter model. For the LiDAR segmentation,
the LiDAR obstacle detector was utilized [8]. This application has great capabilities
namely, 3D bounding box formation, real time parameter definition and bounding box
tracking. The only downside is that it could take some time to find the best parameters.
An optimization procedure could enhance the application experience by choosing the
best parameters for every LiDAR scan.

Associating the LiDAR boxes with the YOLO detections was another challenge. The
method utilized relies on the IoU between the projected LiDAR boxes and the YOLO
bounding boxes. The only downside of this method is that the distance of an object
from the LiDAR sensor affects the size of its LiDAR box, making IoU matching more
difficult.

To better suit the dissertation goals, the Occupancy Maps method was modified by
incorporating a model for stopped obstacles and by redefining the ego vehicle’s trajectory
to represent its predicted future occupancy. The intersection between the ATLASCAR2’s
future occupancy with other agent’s future occupancy over a given time horizon creates
the Intersection Maps. By summing the Occupancy and Intersection Maps across an
ideal number of time horizons, Temporal Occupancy and Risk Maps are generated. The
Risk Maps, which are the proposed solution, also provide the collision risk corresponding
to the maximum probability value of its cells. Moreover, to validate the maximum value
metric, the mean, the standard deviation and the median values are calculated for the
highest twenty values.

During Tests and results chapter (Chapter 5), the Risk Maps were analyzed in various
scenarios within simulated and real world environments. Overall, the Risk Maps provided
an accurate representation of the collision risk, with exceptions in two scenarios: the
lane collision scenario in simulation and the crosswalk approach in the real world. In
the former, the Risk Maps overstate the risk of a pedestrian passing by ATLASCAR2,
and in the latter, they overstate the risk of a motorcyclist passing by ATLASCAR2.
The pedestrian model is slightly over conservative and can be refined. The metrics
utilized to support the maximum value allowed for a better understanding of the high
risk probabilities and avoid overemphasizing a single extreme value. Additionally, the
fluctuations caused by the variations in the speed, acceleration and orientation derive
mainly from the fact that the LiDAR bounding box size changes as there are more or
less detected points. This leads to the change of position of the centroid. Furthermore,
the Risk Maps are short for the real world scenarios because the obstacles are detected
by the LiDAR when they are relatively close to the ATLASCAR2 not giving enough
time for a more detailed Risk Maps.

Overall, the stitching method is not perfect but succeeded in providing a richer, wider
image. The YOLOv7 model is somewhat slow during inference, which was not an issue
given the camera’s low frame rate (10 fps). Additionally, YOLOv7 accurately detected
all obstacles in the scenarios except for the crosswalk approach, where it misclassified
the motorcyclist as a pedestrian. The LiDAR segmentation could be optimized but still
succeeded in segmenting the LiDAR’s point cloud with scenario specific parameters. The
LiDAR-camera data combination also successfully associated the obstacle’s position and
size with its nature. Moreover, the collision risk successfully transmitted probability of
collision scenarios. Focusing on the maximum probability value, allow decision-makers
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to prioritize actions that prevent or mitigate the highest risk identified, which is crucial
in road environments.

To conclude, the goals of this thesis were fulfilled, leading to the enhancement of the
ATLASCAR2’s perception by integrating 3D LiDAR to its infrastructure and developing
a new concept, the Risk Maps. The Risk Maps are an upgrade of the existing Occupancy
Maps [21], with the main differences as follows:

� Pedestrian model minimum speed was set to 0.9m s−1

� Ego vehicle’s predicted trajectory was changed to ego vehicle’s predicted occu-
pancy.

� Introduction of the stopped model.

� Creation of Intersection Maps that represent the intersecting area between ego
vehicle and obstacles for a specified time horizon.

� Creation of Temporal Occupancy Maps that represent the predicted distributions
for several time horizons simultaneously.

� Creation of Risk Maps that represent the intersecting area between ego vehicle and
obstacles for several time horizons simultaneously.

� The collision risk is the maximum probability value within the Risk Maps, sup-
ported by the mean, median and standard deviation of the twenty highest values.

6.2 Future work

This dissertation leaves multiple paths open to improve the perception and the col-
lision risk assessment of the ATLASCAR2. These are listed in the following topics
regarding the improvement of the Risk Maps approach and the overall perception of the
ATLASCAR2:

� Improve ATLASCAR2 vision system by installing more cameras or a 360◦ camera
ensuring surround view of the environment.

� Implement more sophisticated sensor fusion techniques to enhance the 3D detection
of the obstacles.

� Implement obstacle orientation estimation within the point cloud or the image.

� Refine the Risk Maps pedestrian model to accurately transmit the collision risk.

� Improve the Risk Maps into a 360◦ surrounding grid.

� Include the potential damage of the collision in the risk evaluation.
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Appendix A

Temporal Occupancy Maps

This appendix contains figures of the Temporal Occupancy Maps, which correspond
to the Risk Maps figures in Chapter 5.

(a) frame 7 (b) frame 9 (c) frame 17

(d) frame 21 (e) frame 24 (f) frame 34

Figure A.1: Correspondent Temporal Occupancy Maps frames of the junction scenario
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(a) frame 23 (b) frame 35 (c) frame 42 (d) frame 781

Figure A.2: Correspondent Temporal Occupancy Maps frames of the opposite lane pass
scenario
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(a) frame 6 (b) frame 10 (c) frame 11

(d) frame 18 (e) frame 45 (f) frame 68

Figure A.3: Correspondent Temporal Occupancy Maps frames of the lane collision sce-
nario
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(a) frame 7 (b) frame 11 (c) frame 12 (d) frame 28

Figure A.4: Correspondent Temporal Occupancy Maps frames of the crosswalk approach
scenario
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(a) frame 6 (b) frame 12 (c) frame 15

(d) frame 16 (e) frame 23 (f) frame 24

Figure A.5: Correspondent Temporal Occupancy Maps frames of the roundabout ap-
proach scenario
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(a) frame 12 (b) frame 38 (c) frame 50

Figure A.6: Correspondent Temporal Occupancy Maps of the wide opposite lane pass
scenario

(a) frame 21 (b) frame 26 (c) frame 27

Figure A.7: Correspondent Temporal Occupancy Maps frames of the tight opposite lane
pass scenario
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(a) frame 11 (b) frame 16 (c) frame 40

(d) frame 42 (e) frame 43 (f) frame 48

Figure A.8: Correspondent Temporal Occupancy Maps frames of the junction approach
scenario
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(a) frame 3 (b) frame 17 (c) frame 21

(d) frame 25 (e) frame 28 (f) frame 36

Figure A.9: Correspondent Temporal Occupancy Maps frames of the crosswalk approach
scenario
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