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Collaborative robots are moving into dynamic, human-shared
environments.

Mechanical safety is not enough → perception-driven cobots are
needed.

Accurate perception requires multiple sensors from different
modalities → robust extrinsic calibration is needed.

Robust perception requires:
Accurate extrinsic calibration across heterogeneous sensors;
Reliable 3D human pose estimation under occlusion and real-
world variability.

Motivation
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To investigate how the existing calibration framework can be applied and extended for use in robotic
collaborative cell scenarios.

To design and implement a 3D human pose estimation framework tailored to collaborative robotics.

Research Objectives
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Ensure modularity and integration into robot operating environments.

Adapt and enhance Atomics Transformation Optimization Method for robotic cells, including
RGB-D and hand-eye RGB-D calibration.

Multi-camera RGB approach tailored for collaborative robots.

Optimised for robustness under occlusion and real-world deployment.



How can calibration algorithms be designed to support heterogeneous, multi-modal sensor setups,
including both fixed and mobile configurations, while reducing reliance on manual procedures and
maintaining spatial accuracy?

What optimisation strategy enables consistent and accurate extrinsic calibration in dynamic
environments where sensor positions or orientations may vary over time?

Research Questions

How can 3D human pose estimation systems based solely on RGB imagery be configured to offer
sufficient accuracy, robustness to occlusion, and computational efficiency for integration into
collaborative robotic environments?
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How can calibration algorithms be designed to support heterogeneous, multi-modal sensor setups,
including both fixed and mobile configurations, while reducing reliance on manual procedures and
maintaining spatial accuracy?

What optimisation strategy enables consistent and accurate extrinsic calibration in dynamic
environments where sensor positions or orientations may vary over time?

robust calibration

Hypothesis

Research Questions

How can 3D human pose estimation systems based solely on RGB imagery be configured to offer
sufficient accuracy, robustness to occlusion, and computational efficiency for integration into
collaborative robotic environments?
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accurate pose estimation a safer human-robot collaboration+ =



ATOM: 
Atomic Transformations

Optimization Method
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Collect Data

Calibrate

ATOM Framework
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Calibrated System

Set Initial Estimate

Dataset Playback
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Calibration Formulation
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Sensor to Pattern Approach

estimated transformation
between sensor s  and the
world coordinate frame w

i

estimated transformation
between the pattern p and w

set of sensors set of collections = dataset

intrinsic parameters of sensor si

detection of the pattern by the
sensor si



Depth Modality Extension
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Orthogonal Error

Longitudinal Error

estimated transformation
between the sensor s and the

pattern p for a collection c

detected pattern points for a
collection c and sensor s



Depth Modality Extension
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Orthogonal Error

Longitudinal Error

sampled pattern border point
detected boundary points for a

collection c and sensor s



Setup - Collaborative Cell

Red - RGB-D; Yellow - LiDAR; Blue - RGB

Real World Simulation
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Fields-of-view
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Example of labelled data
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Case Study 1 
3 LiDARs
1 Depth 
3 RGB
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Case Study 1 

3 LiDARs
1 Depth 
3 RGB
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Type of data Dataset # collections # partials # complete

Simulation
train dataset 23 35 5

test dataset 17 26 4

Real data
train dataset 29 61 6

test dataset 14 29 4

Descriptions of the datasets used in this case study.



Method Simulation Real 
Ours 0.6 1.3

OpenCV 0.6 1.8

Kalibr 1.3 0.8

Case Study 1 
Average RGB-RGB root mean square reprojection errors in pixels.

Method Simulation Real 
Ours 33.0 53.6

ICP Initial Avg 249.4 173.4

ICP Initial Best 36.5 162.8

ICP Aligned Avg 33.9 53.3
ICP Aligned Best 91.7 109.9

Average LiDAR-LiDAR root mean square reprojection errors in millimetres.

Method Simulation Real 
Ours 1.3 1.8

ICP Initial Avg 21.1 115.1

ICP Initial Best 17.8 77.9

ICP Aligned Avg 2.8 5.2

ICP Aligned Best 2.5 5.5

Average LiDAR-depth root mean square reprojection errors in pixels.
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Comparative results

Pair Simulation Real 
LiDAR-RGB 2.6 3.1

Depth-RGB 3.4 4.0

Average pairwise root mean square reprojection errors in pixels.
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Comparative results
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Case Study 1 

Projection of LiDAR’s point clouds to an RGB image after calibration.
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Qualitative Results

Projection of LiDAR’s point clouds to an RGB image before calibration.



Case Study 1 
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Qualitative Results

Projection of LiDAR’s point clouds to an RGB image after calibration.Projection of LiDAR’s point clouds to an RGB image before calibration..



Type of data Dataset # collections # partials # complete

Simulation
train dataset 22 4 22

test dataset 10 2 9

Real data
train dataset 29 58 11

test dataset 13 26 5

Case Study 2

Sensors
1 LiDAR
1 RGB-D (hand-eye)
1 RGB
1 Depth

Red - Depth; Yellow - LiDAR; Blue - RGB 25

Descriptions of the datasets used in this experiment.

Experiment definition



Case Study 2 

Pair Simulation Real 
RGB-RGB 0.7 3.7

LiDAR-RGB 1.9 5.5

LiDAR-Depth 1.9 4.7

Depth-RGB 1.9 4.6

Depth-Depth 1.5 3.6
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Quantitative Results

Average pairwise reprojection errors in pixels.



Human Pose Estimation
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3D Human Pose Estimation Pipeline

2D keypoints

optimisation

reprojection

link length

frame to frame

3D joint skeleton2D keypoints2D keypoints2D keypoints



3D Human Pose Estimation
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3D Human Pose Estimation
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3D Human Pose Estimation
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Left side camera Frontal camera Back camera3D pose estimation
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Right side camera

link length
link length i = link length i+1



3D Human Pose Estimation
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fr
am

e 
i

Left side camera Frontal camera Back camera3D pose estimation

fr
am

e 
i +

1

Right side camera

(X,Y,Z)     ≈(X,Y,Z) i+1

frame to frame



3D Human Pose Estimation
Objective Function
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joint coordinates for each frame
f and each image i

confidence value for each joint j
in each frame f and each image i

Reprojection Error

2D detection coordinatesintrinsic parameters

3D Human Pose Estimation
Objective Function
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3D Human Pose Estimation
Objective Function
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total number of frameslink length for joint j and frame f

3D Human Pose Estimation
Objective Function

Link length Error

average link length for joint j
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3D Human Pose Estimation
Objective Function

37



otherwise

joint coordinates for frame f
and each image i

joint coordinates for frame f-1
and each image i

3D Human Pose Estimation

if j occluded

Objective Function

Frame-to-frame Error
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Quantitative Results
Methodology MPJPE (mm) ↓

Kocabas et al. (CVPR 2019) 109.0

Bouazizi et al. (AVSS 2021) 93.0

Pavvlo et al. (CVPR 2019) 86.6

Bouazizi et al. (FG 2021) 65.9

Jiang et al. (WACV 2024) 55.2

Zhao et al. (CVPR 2023) 27.8

Yu et al. (CVPR 2023) 27.8

Ours (20px error) 36.4

Ours (10px error) 18.1
Mean Per Joint Position Error (MPJPE) in millimeters.
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Experiment Details
Dataset: MPI-INF-3DHP
Skeleton: 23 joints
Cameras: 4

Results reported by other state-of-the-art 2D to 3D lifting approaches.



Quantitative Results
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Impact of 2D joint detection error in detection of human 3D poses

MJPJE (mm) ↓ 3DPCK (%) ↑

Induced 2D joint detection error (pix)
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Quantitative Results
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Impact of occluded 2D joints in the detection of human 3D poses

MJPJE (mm) ↓ 3DPCK (%) ↑ MJPJE_reproj (mm) ↓ 3DPCK_reproj (%) ↑

Number of occluded joints per frame
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# cameras MPJPE 3DPCK
2 47.4 96.2

3 13.8 100

4 11.6 100

Quantitative Results
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Impact of the number of cameras in the MPJPE (mm)
and 3DPCK (%).

1

2

34



Qualitative Results
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ROS Integration
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Conclusions and 
Future Work
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Contributions and Implications
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Extended ATOM framework to support RGB-D cameras, including hand–eye calibration.

Rigorous testing in simulated and real robotic setups, achieving accuracy and robustness under motion.

Multi-camera RGB pipeline for 3D human pose estimation in collaborative workspaces.

Open-source implementation and integration in ROS, adaptable to industrial collaborative cells.

Contributions



Contributions and Implications
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Extended ATOM framework to support RGB-D cameras, including hand–eye calibration.

Rigorous testing in simulated and real robotic setups, achieving accuracy and robustness under motion.

Multi-camera RGB pipeline for 3D human pose estimation in collaborative workspaces.

Open-source implementation and integration in ROS, adaptable to industrial collaborative cells.

Scientific: Bridges two core perception challenges (calibration and pose estimation) in one framework.

Practical: Supports safer, more flexible, and human-aware robot collaboration.

Contributions

Implications
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Conclusions and Future Work
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Robust calibration in complex robotic systems is feasible with the extended ATOM framework.

Multi-camera RGB pose estimation significantly improves accuracy and robustness under occlusion.

Both are essential building blocks for perception-driven human–robot collaboration.

Conclusions
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Robust calibration in complex robotic systems is feasible with the extended ATOM framework.

Multi-camera RGB pose estimation significantly improves accuracy and robustness under occlusion.

Both are essential building blocks for perception-driven human–robot collaboration.

Online / adaptive calibration for dynamic setups.

Multi-person pose estimation with temporal consistency.

Integration with robot control for predictive and safety-aware behaviour.

Industrial benchmarking under diverse, real-world conditions.

Conclusions

Future Work
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