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Motivation

e Collaborative robots are moving into dynamic, human-shared
environments.

e Mechanical safety is not enough — perception-driven cobots are
needed.

e Accurate perception requires multiple sensors from different
modalities = robust extrinsic calibration is needed.

e Robust perception requires:
o Accurate extrinsic calibration across heterogeneous sensors;
o Reliable 3D human pose estimation under occlusion and real-
world variability.




Research Objectives

To investigate how the existing calibration framework can be applied and extended for use in robotic
collaborative cell scenarios.

Adapt and enhance Atomics Transformation Optimization Method for robotic cells, including
RGB-D and hand-eye RGB-D calibration.

Ensure modularity and integration into robot operating environments.

To design and implement a 3D human pose estimation framework tailored to collaborative robotics.
Multi-camera RGB approach tailored for collaborative robots.

Optimised for robustness under occlusion and real-world deployment.



Research Questions

How can calibration algorithms be designed to support heterogeneous, multi-modal sensor setups,
including both fixed and mobile configurations, while reducing reliance on manual procedures and

maintaining spatial accuracy?

What optimisation strategy enables consistent and accurate extrinsic calibration in dynamic
environments where sensor positions or orientations may vary over time?

How can 3D human pose estimation systems based solely on RGB imagery be configured to offer
sufficient accuracy, robustness to occlusion, and computational efficiency for integration into
collaborative robotic environments?
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Hypothesis

[ robust calibration J + accurate pose estimation - [ a safer human-robot collaboration




ATOM:
Atomic Transformations

Optimization Method
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ATOM Framework

[ Collect Data }‘—[ Set Initial Estimate }
[ Dataset Playback }4}[ Calibrate }

Calibrated System
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Calibration Formulation

Sensor to Pattern Approach

error = arg min e (5TY,PTY, ds., Xs,)
{5} {PT} zs: z(J:

estimated transformation ‘
between sensor s; and the
world coordinate frame w

* intrinsic parameters of sensor s;

estimated transformation | s detection of the pattern by the
between the pattern p and w Sensor s;

set of sensors set of collections = dataset 9




Depth Modality Extension

Orthogonal Error

e, | = (sTf)_l.X[c’s]

estimated transformation ‘
between the sensor s and the ¢
pattern p for a collection c

| detected pattern points for a
collection ¢ and sensor s




Depth Modality Extension
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Setup - Collaborative Cell

Real World Simulation

Red - RGB-D; Yellow - LIiDAR; Blue - RGB
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Fields-of-view
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Example of labelled data
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Case Study 1
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Case Study 1
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Descriptions of the datasets used in this case study.

Type of data

Dataset

# collections

# partials

# complete

Simulation

train dataset

23

35

5

test dataset

17

26

Real data

train dataset

29

61

test dataset

14

29

4
6
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Case Study 1

Comparative results

Average RGB-RGB root mean square reprojection errors in pixels.

Method Simulation Real
Ours 0.6 1.3
OpenCV 0.6 1.8
Kalibr 1.3 0.8

Average LiDAR-LIDAR root mean square reprojection errors in millimetres.

Method Simulation Real
Ours 33.0 53.6
|CP Initial Avg 2494 173.4
|ICP Initial Best 36.5 162.8
|CP Aligned Avg 33.9 53.3
|CP Aligned Best 91.7 109.9

Average LiDAR-depth root mean square reprojection errors in pixels.

Method Simulation Real
Ours 1.3 1.8
|ICP Initial Avg 21.1 115.1
|CP Initial Best 17.8 77.9
ICP Alignhed Avg 2.8 5.2
|CP Alighed Best 2.5 5.5

Average pairwise root mean square reprojection errors in pixels.

Pair Simulation Real
LIDAR-RGB 2.6 3.1
Depth-RGB 3.4 4.0
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Projection of LIiDAR’s point clouds to an RGB image after calibration.

Projection of LIDAR’s point clouds to an RGB image before calibration.

Qualitative Results

23



Case Study 1

Qualitative Results

Projection of LIDAR’s point clouds to an RGB image before calibration.. Projection of LiDAR’s point clouds to an RGB image after calibration.
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Case Study 2

Experiment definition

Red - Depth; Yellow - LIDAR; Blue - RGB

Descriptions of the datasets used in this experiment.

Type of data Dataset # collections| # partials | # complete
train dataset 22 4 22
Simulation
test dataset 10 2 9
train dataset 29 58 11
Real data
test dataset 13 26 5
y 4
i‘ e
|
Sensors
| 1
| 1 RGB-D (hand-eye)
1 RGB
| 1 Depth




Case Study 2

Quantitative Results

Average pairwise reprojection errors in pixels.

Pair Simulation Real
RGB-RGB 0.7 3.7
LiIDAR-RGB 1.9 5.5
LiDAR-Depth 1.9 4.7
Depth-RGB 1.9 4.6
Depth-Depth 1.5 3.6
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Human Pose Estimation




3D Human Pose Estimation Pipeline

link length

frame to frame

4’[ 3D joint skeleton }
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3D Human Pose Estimation

frame i

frame i +1

Left side camera Frontal camera 3D pose estimation Back camera

Right side camera
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3D Human Pose Estimation

frame i

frame i +1

Left side camera Frontal camera 3D pose estimation Back camera

Right side camera
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3D Human Pose Estimation
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3D Human Pose Estimation

-

frame to frame
z | ‘
GE) T (X,Y,Z) i+1 z()<7Y’Z)
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3D Human Pose Estimation

Objective Function

fobj = anYan n Z en + >Z: >f ef)




3D Human Pose Estimation

Objective Function

fobj = égcgy IZI;IH Z ey + >Z: >f eff)

Reprojection Error
Erp = Hp’l‘Oj ((X, Y, Z)i,f7 )\z) — dj,f,z’

- Cj, 1

joint coordinates for each frame | | | confidence value for each joint j
f and each image i | in each frame f and each image i

2D detection coordinates

intrinsic parameters




3D Human Pose Estimation

Objective Function

fobj = arg mﬂ‘> D (e +egy)
(X,Y,Z




3D Human Pose Estimation

Objective Function

fobj = arg min ’@ >: >: (erp + €ff)
i f

(X,Y,2),;

Link length Error

» average link length for joint j

link length for joint j and frame f |+

total number of frames
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3D Human Pose Estimation

Objective Function

fobj = anylenﬂzell+> >1




3D Human Pose Estimation

Objective Function

fob]—?igyznlﬂzezz+> >1 e'rp

Frame-to-frame Error

. (X,Y,2), ; — (X,Y,Z), ;4 ||,ifj occluded

| 0, | otherwise
_

joint coordinates for frame f | s joint coordinates for frame f-1
and each image i and each image i




Quantitative Results

Experiment Details

Dataset: MPI-INF-3DHP
Skeleton: 23 joints
Cameras: 4

Results reported by other state-of-the-art 2D to 3D lifting approaches.

Methodology MPJPE (mm) |
Kocabas et al. (CVPR 2019) 109.0
Bouazizi et al. (AVSS 2021) 93.0

Pavvlo et al. (CVPR 2019) 86.6
Bouazizi et al. (FG 2021) 65.9
Jiang et al. (WACV 2024) 55.2
Zhao et al. (CVPR 2023) 27.8
Yu et al. (CVPR 2023) 27.8
Ours (20px error) 36.4
Ours (10px error) 18.1

Mean Per Joint Position Error (MPJPE) in millimeters.
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Quantitative Results

Impact of 2D joint detection error in detection of human 3D poses

MJPJE (mm) | 3DPCK (%) T
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Induced 2D joint detection error (pix)
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Quantitative Results

Impact of occluded 2D joints in the detection of human 3D poses
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Quantitative Results

Impact of the number of cameras in the MPJPE (mm)
and 3DPCK (%).

# cameras MPJPE 3DPCK
2 47 4 96.2
3 13.8 100 4

4 11.6 100




Qualitative Results
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ROS Integration
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Conclusions and
Future Work




Contributions and Implications

Contributions

Extended ATOM framework to support RGB-D cameras, including hand-eye calibration.

Rigorous testing in simulated and real robotic setups, achieving accuracy and robustness under motion.

Multi-camera RGB pipeline for 3D human pose estimation in collaborative workspaces.

Open-source implementation and integration in ROS, adaptable to industrial collaborative cells.
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Contributions and Implications

Contributions

o Extended ATOM framework to support RGB-D cameras, including hand-eye calibration.

e Rigorous testing in simulated and real robotic setups, achieving accuracy and robustness under motion.

e Multi-camera RGB pipeline for 3D human pose estimation in collaborative workspaces.

e Open-source implementation and integration in ROS, adaptable to industrial collaborative cells.

Implications

Scientific: Bridges two core perception challenges (calibration and pose estimation) in one framework.

Practical: Supports safer, more flexible, and human-aware robot collaboration.
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Conclusions and Future Work

Conclusions

e Robust calibration in complex robotic systems is feasible with the extended ATOM framework.
e Multi-camera RGB pose estimation significantly improves accuracy and robustness under occlusion.

e Both are essential building blocks for perception-driven human-robot collaboration.
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Conclusions and Future Work

e Robust calibration in complex robotic systems is feasible with the extended ATOM framework.
e Multi-camera RGB pose estimation significantly improves accuracy and robustness under occlusion.

e Both are essential building blocks for perception-driven human-robot collaboration.

Future Work

e Online / adaptive calibration for dynamic setups.
e Multi-person pose estimation with temporal consistency.
e |Integration with robot control for predictive and safety-aware behaviour.

e Industrial benchmarking under diverse, real-world conditions.
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