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Abstract

The fusion of data from different sensors often requires that an accurate geometric transformation between the sen-
sors is known. The procedure by which these transformations is estimated is known as sensor calibration. The vast
majority of state of the art calibration approaches focus on specific pairwise combinations of sensor modalities, un-
suitable to calibrate robotic systems containing multiple sensors of varied modalities. This paper presents a novel
calibration methodology which is applicable to multi-sensor, multi-modal robotic systems. The approach formulates
the calibration as an extended optimization problem, in which the poses of the calibration patterns are also estimated.
It makes use of a topological representation of the coordinates frames in the system, in order to recalculate the poses
of the sensors throughout the optimization. Sensor poses are retrieved from the combination of geometric transforma-
tions which are atomic, in the sense that they are indivisible. As such, we refer to this approach as ATOM - Atomic
Transformations Optimization Method. This makes the approach applicable to different calibration problems, such as
sensor to sensor, sensor in motion, or sensor to coordinate frame. Additionally, the proposed approach provides ad-
vanced functionalities, integrated into ROS, designed to support the several stages of a complete calibration procedure.
Results covering several robotic platforms and a large spectrum of calibration problems show that the methodology
is in fact general, and achieves calibrations which are as accurate as the ones provided by state of the art methods
designed to operate only for specific combinations of pairwise modalities.
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1. Introduction

Whenever an intelligent or robotic system is com-
posed of two or more sensors, a procedure that estimates
the geometric transformations between those sensors is
required. The process is called extrinsic calibration or5

sensor registration [1].
The vast majority of sensor fusion techniques operate

under the assumption that accurate geometrical trans-
formations between the sensors that collect the data are
known. This is valid for many different applications,10
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from the simple design of sensors that collect RGB and
depth information [2], to a stereo camera pair designed
to carry out underwater 3D reconstruction [3], to more
complex sensor setups such as intelligent vehicles [4, 5],
smart camera networks [6], or even multi-sensor image15

analysis from datasets captured by diverse airborne or
spaceborne sensors [7]. Thus, one may argue that an ac-
curate estimation of those transformations, i.e., a good
extrinsic calibration, is a critical component of any data
fusion methodology.20

Although the problem of extrinsic calibration is well
defined, in practice there are several variants of that
problem. As discussed previously, the classical formu-
lation seeks to provide an estimate of the transforma-
tions between the several sensors in a system. These25

will be referred to as sensor to sensor calibration
problems. One variant is the calibration of a single
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sensor which moves over time. Here, the goal is to
find the geometric transformations between the poses
of the sensor at the time each data was collected. For30

example, Boucher et al. [8], Agarwal et al. [9] propose
structure from motion methodologies in which the mo-
tion of a camera, i.e. the set of camera poses, is recov-
ered in order to reconstruct the scene. We will refer to
these as sensor in motion calibration problems. Fi-35

nally, there is another variant of the extrinsic calibration
problem: the calibration of a sensor w.r.t. a particu-
lar coordinate frame. In these cases, the sensor must
move in order to collect data from different viewpoints
requiring, therefore, that the motion of the system must40

be known. Thus, in these cases, one requires a kine-
matic chain which can be actuated for the purpose of
collecting data from multiple viewpoints. We will refer
to these as sensor to frame calibration problems. One
example of a sensor to frame calibration problem was45

presented in [10], where the transformation between a
2D Light Detection And Ranging (LiDAR) and the pan
and tilt unit in which it was mounted was estimated.

Calibration problems can also be defined based on the
number of sensors as well as their modalities. Com-50

mon sensor modalities include RGB cameras, depth
cameras, LiDARs, 3D LiDARs, Radio Detection And
Rangings (RaDARs), etc. In addition to this, some
robotic systems sometimes have several sensors, which
results in a large number of possible system config-55

urations, containing single-modality pairwise configu-
rations (e.g. camera to camera or 2D LiDAR to 2D
LiDAR as in [5, 11]), single-modality multi-sensor con-
figurations (e.g. cameras networks as in [6]), multi-
modal pairwise configurations (e.g. camera to depth60

camera as in [2], or camera to 3D LiDAR as in [12])
and, finally, the general scenario of the calibration of
multi-modal, multi-sensor systems (depth camera and
multiple RGB cameras as in [13], several cameras and
inertial measurement units as in [14], calibration of sen-65

sors in the PR2 robot as in [15]). Obviously, it is also
possible to compound this criteria with the former to
get, for example, a single-sensor single modality, sen-
sor to frame calibration problem (e.g. [16]), or a multi-
sensor multi-modality problem (e.g. [17]).70

The large amount of variants of the extrinsic calibra-
tion problem, either due to the configuration of the sys-
tem, the number of sensors, or the sensor modalities,
have led to large efforts from the research community in
addressing each and every one of these variants, as will75

be detailed in section 2. However, these works have
focused mainly on tackling the many combinations of
pairwise configurations of different modalities. In fact,
there are very few works which consider the general

case of the calibration of multi-modal, multi-sensor sys-80

tems, and even less if one considers systems that may
have sensor to sensor, sensor in motion and sensor to
coordinate frame configurations.

This paper proposes a novel methodology
called Atomic Transformations Optimization85

Method (ATOM) which generalizes the extrinsic
calibration procedure in such way that it is able to carry
out the calibration of all the cases discussed above.
Atomic transformations are geometric transformations
which are not aggregated, i.e. they are indivisible.90

Optimizing these transformations fully generalizes the
calibration problem, as will be detailed in section 3.

Robot Operating System (ROS) [18] based architec-
tures are now the golden standard in the development of
robotic systems. There are several ROS based calibra-95

tion packages in the public domain, from (Open Source
Computer Vision Library (OpenCV) [19] based intrinsic
camera1 and stereo camera pair2 calibrations, to RGB-D
camera calibration [20]3 [21]4, to hand-eye calibration
[22, 23]5. ROS integration ranges from using input data100

recorded in rosbag files as in [24], to using ROS stan-
dard messages as in [22]. Despite this, there is no avail-
able ROS package that provides a complete solution for
the calibration of robots in general.

In addition to a general calibration methodology,105

ATOM also offers a complete calibration framework
that addresses all the stages of a calibration pipeline:
definition of the initial pose of the sensors, data collec-
tion and labelling and, finally, the actual optimization
procedure. All these tools are seamlessly integrated into110

ROS.
This document is organized as follows: section 2 will

detail existing calibration approaches and how they re-
late to our proposal, section 3 describes the proposed
methodology, section 4 offers a complete description115

of the framework, available tools and integration with
ROS, and finally section 5 and section 6 provide results
and conclusions respectively.

2. Related Work

In general terms, an extrinsic calibration requires that120

two or more sets of data are associated by matching

1http://wiki.ros.org/openni_launch/Tutorials/
IntrinsicCalibration

2http://wiki.ros.org/camera_calibration/
Tutorials/StereoCalibration

3http://alexteichman.com/octo/clams
4https://github.com/code-iai/iai_kinect2
5http://wiki.ros.org/rc_visard/Tutorials/

HandEyeCalibration
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unique key points in those sets. Once these associa-
tions are retrieved, it is possible to formulate a pro-
cedure that estimates the parameters of the geometric
transformations between the sensors using the associa-125

tions as input. An extrinsic calibration can be designed
using closed form solutions [25, 26, 27, 28, 29, 30, 31]
or with iterative procedures [32, 16, 33, 34, 17]. In the
later, an optimization problem is formulated with the
goal of finding the poses of the sensors, i.e. the con-130

figuration of optimized parameters, which minimize the
distance between the key-point associations. Since the
accuracy of those associations is critical to the estima-
tion procedure, most calibration approaches make use of
calibration patterns, i.e., objects that are robustly and ac-135

curately detected. Moreover, in the case of multi-modal
sensor systems, a calibration pattern adequate to all ex-
isting sensor modalities must be selected. For camera
sensor modalities, the standard calibration patterns are
chessboards [35, 36] and fiducial markers [37, 38, 39].140

For range measuring based modalities such as LiDAR
or RaDAR, patterns which contain a distinct physical
shape signatures are used, such as spherical objects
[40, 41, 42, 43], conic objects [44], or planar cardboards
containing circular holes [45, 46]. A minority of works145

perform calibration without using a pattern. In these,
the features in the scene are used as input to the cali-
bration. In autonomous driving, for example, lane de-
tection and vanishing point tracking are common ap-
proaches for online calibration [47, 48]. [10] propose150

to make use of planes in indoor scenes (e.g. walls, floor,
etc.) for supporting the calibration of a 2D LiDAR on
a pan and tilt unit system. Patternless calibration ap-
proaches have the advantage of operating continuously
if necessary, but loose in accuracy and robustness when155

compared to offline, one shot procedures. As such, of-
fline calibrations are still the most commonly used.

2.1. Sensor to Sensor calibration problems
As a critical component of intelligent or robotic sys-

tems, the topic of extrinsic calibration has been exten-160

sively addressed in the literature over the past decades.
The large bulk of these works have focused on a par-
ticular case of sensor to sensor calibration prob-
lems, which is the case of systems containing a sin-
gle pair of sensors, i.e. pairwise calibrations. In165

this regard, most combinations of modalities have al-
ready been covered: RGB to RGB camera calibration
[49, 50, 51, 52, 53, 41], RGB to depth camera calibra-
tion [43, 54, 55, 56, 57, 58], RGB camera to 2D LiDAR
[59, 41, 57, 60, 61, 62, 63, 46], 2D LiDAR to 3D LiDAR170

[44]; RGB camera to 3D LiDAR [64, 46, 65], RGB
camera to radar [45], etc.

The problem of RGB to RGB camera calibration has
received a great deal of attention from the research com-
munity, in particular in the case of two camera stereo175

systems [49, 50, 51, 52, 53]. The classic approach is
to carry out an optimization which estimates the trans-
formation between the cameras using the reprojection
error as guidance. The optimization procedure may also
include the estimation of the intrinsic parameters [50].180

RGB to RGB camera calibration methodologies have
also been proposed to address the problem of online cal-
ibration [49, 51] and also markerless calibration [52].

The great majority of the works found in the literature
focused on pairwise calibration between an RGB cam-185

era and a 3D LiDAR are based on the work of Huang
and Barth [12], where the calibration is performed in
two stages: first using closed-form equation; and sec-
ond, a maximum likelihood estimation refinement. Sim-
ilarly, Verma et al. [66] use a standard chessboard to190

calibrate a perspective/fisheye camera and a 3D LiDAR
using a Genetic Algorithm. Wang et al. [67] propose a
work where the corners of the pattern are automatically
detected for both a panoramic camera and a 3D LiDAR
so that the calibration can be performed. For the Li-195

DAR case, authors propose a detection based on the in-
tensity of reflectance of the beams. Fremont and Bonni-
fait [68], Guindel et al. [46] use circle-based patterns to
perform the extrinsic calibration. Mirzaei et al. [69] pro-
pose the estimation of a 3D LiDAR intrinsic parameters,200

as well as the extrinsic calibration with a monocular
camera, through the minimization of a non-linear least
squares cost function. The calibration is used to build
photo-realistic 3D reconstruction of indoor and outdoor
scenes. Pandey et al. [70] calibrate a 3D LiDAR with205

an omnidirectional camera also using a standard planar
pattern. To calibrate the system, the sensors should ob-
serve the pattern from at least three different points of
view. With this input, the extrinsic coefficients are cal-
culated with a non-linear optimization technique. With210

the same purpose, Huang and Grizzle [71] use a pat-
tern of known dimensions and geometry and estimates
the pattern to LiDAR pose automatically using a fitting
algorithm.

Pairwise calibration approaches consider that the sen-215

sors are rigidly attached. As such, these approaches can-
not handle the cases where a sensor moves during the
calibration procedure as in the sensor in motion cali-
bration problem and the sensor to frame calibration
problem.220

2.2. Hand-eye calibration problem
Hand-eye calibration is defined as the process of esti-

mating the transformation between the end-effector, i.e.
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the hand of a robotic arm, and a camera, the eye, which
is rigidly attached to that end-effector [25]. The formu-
lation of the problem is expressed as:

AX = ZB , (1)

where A represents the known geometric transformation
from the hand to the robotic arm base, obtained using
forward kinematics, B denotes the known transforma-
tion from the eye to the world object, X specifies the225

unknown transformation from the robotic arm base to
the world object and Z is the unknown transformation
from the hand to the eye [28].

Initial works proposed closed form solutions which
tackled the rotation and translation components of (1)230

separately [72, 28]. Later on, Liz et al. [30] propose a
close form method to based on dual quaternions and the
Kronecker product that was able to obtain translations
and rotations simultaneously. Also using the Kronecker
product, Shah [31] introduced a close form method that235

combines the Kronecker product and single value de-
composition to find a simultaneous solution.

In recent years, the formulation in (1) has been tack-
led using optimization methods to find the unknown
transformations, i.e. X and Z. Tabb and Yousef [32] in-240

troduced an iterative method based on the minimization
of camera reprojection error, which solves the rotation
and translation components simultaneously. The paper
compares the proposed approach with other solutions
in the literature, and shows that the iterative approach245

based on the reprojection error offers the best calibra-
tion results, which is later confirmed in [16].

One shortcoming of hand-eye calibration approaches
is that they are not able to tackle the multi-sensor case.
To address this, Tabb and Yousef [32] propose a formu-250

lation that bundles all cameras into a single optimization
procedure, in what they refer to as hand-eye(s) calibra-
tion problem. Another common limitation is that they
are not able to handle both the eye-on-hand and eye-to-
base use cases simultaneously.255

Because the robotic arm must move in order to col-
lect different views of the calibration pattern and what
is sought is the transformation from the camera to the
end-effector, the hand-eye calibration is both a sensor
in motion calibration problem as well as a sensor to260

frame calibration problem. However, the focal aspect of
hand-eye calibration approaches is that all of them are
specialized in this particular problem, which means that
they are not suited to address sensor to sensor calibra-
tion problems, rarely tackle the multi-sensor case, and265

only take into account a single sensor modality (RGB
cameras).

2.3. Extension to the multi-sensor, multi-modal case
The generalization of pairwise calibration approaches

to the multi-sensor case, in which the number of sen-270

sors is greater than two, is not straightforward. One
reason for this is that most calibration approaches are
designed to operate by processing the data from a sen-
sor tandem. In this way, the inclusion of a third sen-
sor would require additional pairwise procedures for all275

pairwise combinations in the system. In fact, the most
common solution for the calibration of multi-sensor sys-
tems, to which we refer to as sequential pairwise ap-
proaches, is to run several pairwise calibrations and
arrange them in a graph-like sequential procedure, in280

which one sensor calibrates with another, that then re-
lates to a third sensor, and so forth. Each pairwise cali-
bration will provide an estimate for the geometric trans-
formation that links two of the sensors in the system.
For example, Zhou et al. [73] present a system with a285

3D LiDAR and a stereo camera system. However, to
calibrate the three sensors (LiDAR and two cameras),
two calibrations have to be performed: LiDAR to left
camera, and LiDAR to the right camera. In the same
way, with the purpose of fusing point clouds of multi-290

ple stereo cameras, Dhall et al. [74] use a 3D LiDAR
to perform pairwise calibration with all the cameras in
the system. Only after obtaining the transformation be-
tween the range sensor and each camera of the stereo
system, the transformation between the stereo cameras295

can be found. Similarly, Kim and Park [75] perform
six pairwise calibrations between a 3D LiDAR and six
monocular cameras mounted in an hexagonal plate that
constitute an omnidirectional camera.

In these sequential pairwise approaches, the complete300

system can be described by a topological representa-
tion where nodes are sensor coordinate systems and the
edges are the estimated transformations between those
coordinate systems. Providing that the topological rep-
resentation is not disconnected, it is possible to com-305

pute the transformation from any sensor to another by
retrieving the topological path between these sensors,
and combining the corresponding transformations that
have been estimated by pairwise calibrations.

Figure 1 shows an examples of these topological rep-310

resentations considering a system with 4 sensors. Natu-
rally, the structure of this topological representation de-
pends on the pairwise calibrations that were selected.
For example, in visual hodometry [76], a sensor in mo-
tion calibration problem, that structure is of a linear315

nature, since each image is connected only to images
within its spatio-temporal neighborhood. In the case of
intelligent vehicles or mobile robotic platforms in gen-
eral, one common approach is to establish one sensor
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as the reference sensor and calibrate all sensors w.r.t.320

the reference one, which results in a pyramidal topolog-
ical structure (see Figure 1(a)). One example is [41], in
which a methodology for calibrating an intelligent vehi-
cle [77] is proposed, wherein all sensors are paired with
a reference sensor.325

Sequential pairwise approaches have several short-
comings, which are detailed in the next lines. As dis-
cussed previously, they imply that one must choose
which pairwise combinations of sensors in the system
are used to run pairwise calibrations. Note that there330

are many other alternative topological configurations to
Figure 1(a). Assume, for example, that the RGB to
LiDAR calibration is not very accurate: in that case one
could replace the calibration from Sensor 0 to Sensor 3
by a calibration from Sensor 2 to Sensor 3, which has a335

different combination of modalities, depth and LiDAR.
This would result in a different topological configura-
tion for the same set of sensors. To ensure that there is
only one transformation from any sensor to any other,
the topological structure must be non redundant. That340

leads to a selection of sensor combinations that is only
a subset of the total pairwise combinations that exist
in the system. Thus, the first shortcoming is that not
all available data is used for the calibration of the sys-
tem: transformations are estimated using only data pro-345

vided from the selected sensor tandems, despite the fact
that data from additional sensors could be available and
their inclusion prove relevant to the overall accuracy of
the calibration procedure. Figure 1 shows these unused
connections as dashed lines.350

It is also possible to consider all available connec-
tions, but that leads to the additional problem of how to
cope with the redundancy in the topology. Santos et al.
[78] propose a multi-pairwise approach which considers
a set of pairwise calibrations. This results in a redun-355

dant topological structure which is then post-processed
by averaging the redundant transformations. Figure 1(b)
shows an example of this configuration.

Because the transformations are computed in se-
quence, it is quite possible that errors may accumulate360

over the sequence of connections. Since the accumu-
lation effect should be more noticeable for longer se-
quences, a valid strategy is to reduce the depth of the
topological graph as much as possible (e.g. a one level
pyramidal structure as in [41]). However, this approach365

is limited to scenarios where the field of view of all sen-
sors overlap with the field of view of the reference sen-
sor, which is not always the case.

Another disadvantage is that the topology of the
transformations in the system is defined by the conve-370

nience of the user, rather than because of the constraints

or limitations of a calibration procedure. In our view,
the need to design a topology that accomodates the se-
quential arrangement of the calibration procedure is not
ideal. For example, in Figure 1(a) the decision to con-375

nect Sensor 0 to Sensor 3 could be based on the need to
avoid the connection between Sensor 2 to Sensor 3, be-
cause the calibration of a depth to LiDAR modality pair
is less accurate or even non-existent. This kind of con-
venience based decision is very common but, instead, it380

would be much more interesting to be able to define the
structure of transformations that best suits the system,
according to more relevant criteria, and then having a
calibration procedure that is able to calibrate the system
regardless of its topological configuration.385

Another problem is scalability, because when using
pairwise combinations between sensors, the number of
pairwise combinations will grow considerably with the
increase in the number of sensors. This is notoriously
more problematic when attempting to use redundant390

topological structures, because the number of paths to
go from one sensor to another explodes very quickly.
As a result, sequential calibration approaches using sen-
sor pairs do not scale efficiently. Sequential pairwise
calibration approaches also do not scale well for multi-395

modal systems. The reason is that, since the approach is
designed to evaluate sensor tandems, a specific method-
ology must be designed for each combination of modal-
ities, e.g. RGB to RGB camera, RGB camera to 3D
LiDAR, 3D LiDAR to 3D LiDAR etc. The inclusion of400

a novel modality brings about the need to develop a new
set of methods to evaluate the novel modality against all
those previously known. Figure 1(c) provides an ex-
ample of these implications. The inclusion of a RaDAR
sensor would require three novel calibration methodolo-405

gies to be developed.
There are a few works which address the problem of

calibration from a multi-sensor, simultaneous optimiza-
tion, perspective. Noel et al. [79] propose a method to
estimate the extrinsic calibration between multiple sen-410

sors such as LiDARS, depth cameras and RGB cameras.
The calibration procedure is separated in two parts: a
motion-based approach that estimates 2D extrinsic pa-
rameters and a method that uses the observation of the
ground plane to estimate the remaining ones. It is worth415

noting that this framework requires the robotic platform
to be moving. Liao et al. [13] propose a joint objective
function to simultaneously calibrate three RGB cameras
w.r.t. a depth camera. Authors report a significant im-
provement in the accuracy of the calibration. In Rehder420

et al. [14], an approach for joint estimation of both tem-
poral offsets and spatial transformations between sen-
sors is presented. This approach is one of the few that
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Figure 1: Some alternative topological structures for a calibration procedure: (a) flat pyramidal configuration with Sensor 0 as reference; (b) using
all possible pairwise combinations in the calibration; (c) the inclusion of an additional sensor of a previously unknown RaDAR modality. Red lines
indicate new pairwise calibrations which would have to be implemented. Sensors are represented by ellipses, with the modality of each sensor
indicated below its name; solid lines represent pairwise combinations which are used in the calibration procedure; dashed lines represent additional
connections which are not used.

are not designed for a particular set of sensors, since
its methodology does not rely on unique properties of425

specific sensors. It is able to calibrate systems contain-
ing both cameras and LiDARs. Moreover, the approach
does not require the usage of calibration patterns for the
LiDARs, using the planes present in the scene for that
purpose. In [15], a joint calibration of the joint offsets430

and the sensors locations for a PR2 robot is proposed.
This method takes sensor uncertainty into account and
is modelled in a similar way to the bundle adjustment
problem.

This paper presents a general calibration formulation435

that comprises sensor to sensor, sensor in motion and
sensor to frame calibration problems, as will be de-
tailed next. Our previous works have focused on the cal-
ibration of intelligent vehicles [34], agricultural robots
[80], and hand-eye systems [81]. In all those works,440

the same baseline method based on the optimization of
Atomic Transformations is used.

3. Proposed Approach

As a case study to better illustrate the concepts that
will be detailed ahead, we will use a robotic system445

called Multi-Modal Test roBot (MMTBot) 6. This is a
simulated, conceptual robot, designed to test the perfor-
mance of advanced calibration methodologies. The sys-
tem contains the following sensors: lidar, a 3D LiDAR
mounted on the left side of a tripod; world camera, an450

RGB camera mounted on the right side of that same tri-
pod; and a hand camera, a second RGB camera assem-
bled on the effector link of a robotic manipulator, which
is mounted on a table. The complete system is displayed
in Figure 2.455

MMTBot is a multi-modal robotic system, which
combines RGB and LiDAR modalities. Moreover,
one of the RGB cameras (hand camera) is assembled
on the end effector of the roboic manipulator, which
brings a hand-eye calibration problem into the system.460

In fact, because MMTBot is simultaneously a multi-
sensor, multi-modal, sensor to sensor, as well as a sensor
to frame calibration problem, there is no solution in the
literature which is able to conduct the complete, simu-
lateneous, calibration of this system.465

3.1. Problem Formulation
From the analysis conducted in section 2, it is clear

that most calibration approaches operate using a pair-

6https://github.com/miguelriemoliveira/mmtbot

6
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Figure 2: The Multi-Modal Test roBot (MMTBot), a simulated
robotic system containing, from left to right in the figure: a RGB cam-
era and a 3D LiDAR mounted on a tripod, and a second RGB camera
assembled on the end effector of a robotic manipulator.

wise or set of pairwise evaluations. Thus, a calibration
of sensor s1 w.r.t. a sensor s2 can be generaly denoted
as the minimization of the following expression:

argmin
s1 T s2

∑
c∈C

∑
d∈D

e
(

s1T s2 ,d[c,s1],d[c,s2],{λs1},{λs2}
)
,

(2)
where s1T s2 is the 4× 4 homogeneous transformation
matrix between sensor s1 and sensor s2; d is the detec-
tion taken from the set of detections D, which are rep-
resentations of the calibration pattern on data from the470

sensors; {λ} denotes the set of additional parameters
of the sensor required by the cost or error function e(·).
The cost function e(·) outputs one or more scalar values
refered to as residuals, which are to be minimized by the
optimization procedure; and finally, c denotes the col-475

lection taken from the set of collections C. To achieve
accurate estimates, calibration procedures minimize a
cost computed over several views of the calibration pat-
tern and / or robot pose. We refer to these time stamps
in which sensor data is acquired as collections. Col-480

lections store not only sensor data but also the state of
the robotic system. As an example, a collection of the
MMTBot includes two images (one from each camera)
plus a point cloud (captured by the 3d lidar), as well as
all the transformations between coordinate frames. All485

this data is collected at the same time. Figure 3 shows a
set of collections C, which have different configurations
of the robotic arm as well as poses of the calibration
pattern.

An example of the instantiation of (2) would be the490

following: assume that both sensors are RGB cameras.
Each of the syncronized pair of images acquired by the
cameras constitutes a collection c, of two images in this
case. Then, the corners of the pattern as detected by a

Figure 3: A dataset with multiple collections, each with a different
configuration of the robotic arm and pose of the calibration pattern.

chessboard detector would constitute the set of detec-495

tions d[c,s] for a given image (collection c) and sensor
s. Thus, in this case the detections would be repre-
sented as pixel coordinates, i.e., points in Z2, and the
cost function would recompute the distance between
the projected pixel coordinates and the detected coor-500

dinates, often known as reprojection error. Since the
computation of the projection would require the intrin-
sic parameters of the cameras (and possibly also the dis-
tortion parameters) these would be included in the set of
additional parameters {λ}.505

A multi-sensor scenario is defined as one in which the
number of sensors is greater than two. Let S : n(S)≥ 3
denote the set of sensors in the system, and S represent
the set of pairwise combinations of the elements of S.
The extension of this pairwise approach to the multi-
sensor case requires that all, or at least a subset, of the
pairwise combinations in S are evaluated, which extends
(2) as follows:

argmin
{si T s j }

∑
{si,s j}∈S

∑
c∈C

∑
d∈D

e
(

siT s j ,d[c,si],d[c,s j ],{λsi},{λs j}
)
,

(3)

where {siT s j} is the set of estimated transformations
that correspond to the set of pairwise combinations S.
The critical issue with the pairwise formulation in (3)
is observed for multi-modal systems, that is, where the
sensors S in the system have diferent modalities. In510

these cases, a variant of the cost function e(·) must be
implemented to cope with each pair of modalities in
the system. If the cost function is symmetric, mean-
ing it will provide the same results regardless of the or-
der by which the modalities are evaluated, the number515

of function variants to be implemented is computed by
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Table 1: Number of cost function variants required as a function of
the type of cost function and the number of sensor modalities in the
system.

# modalities
Type of cost function 2 3 4 5 10 20

Sensor Pairwise Symmetric 1 3 6 10 45 190
Sensor Pairwise Assymmetric 2 6 12 20 90 380

Sensor to Pattern (ATOM) 2 3 4 5 10 20

the number of pairwise combinations of the modalities
in the system. If, on the other hand, the cost function
is assymmetric, e.g. if evaluating a RGB camera w.r.t.
a LiDAR is different from evaluating a LiDAR w.r.t.520

a RGB camera, then the pairwise permutations of the
modalities define the number of cost function variants
to be implemented. Table 1 provides an analysis of the
problem, and clearly shows the scalability issue inher-
ent to pairwise formulations.525

This paper proposes a formulation which is an alter-
native to parwise approaches. Our proposal is to aug-
ment the optimization problem, by extending the set
of parameters to optimize in order to include an esti-
mate, for each collection, of the transformations from
the world coordinate frame w to the calibration pattern
p coordinate frame, denoted as wTp. This enables the
cost function to be considerably simplified, since it now
may use the estimated pose of the pattern to compute the
cost in a sensor to pattern logic. As such, the cost func-
tion does not have to evaluate pairs of sensors, which
avoids all the problems discussed above. The proposed
formulation is the following:

argmin
{sTw},{wTp}

∑
s∈S

∑
c∈C

∑
d∈D

e
(

sTw,wTp
c ,d[c,s],{λs}

)
, (4)

where {sTw} labelsize=lst of transformations from the
world coordinate frame w to each sensor s, which must
be static in order to be calibrated, reason why they do
not contain collection index c. On the other hand, the
transformation wTp

c between the world w and pattern p530

coordinate frames contains an index c because the pat-
tern is placed on different positions for every collection.
Table 1 also shows how the proposed approach scales
well with the inclusion of additional modalities.

3.2. Atomic Transformations535

The proposed calibration framework also requires
the definition of a topological structure which con-
tains information of the relationships between coordi-
nate frames, often referred to as a transformation tree.
The transformation tree for MMTBot is presented in Fi-540

gure 4. There, it is possible to observe that the graph

of transformations is a detailed representation of the
robotic system. As such, this representation often in-
cludes portions of the tree which are not relevant for the
calibration procedure, as is the case of the gripper com-545

ponent, which for that reason appears greyed out in Fi-
gure 4. In addition to this, the tree also contains both
static as well as dynamic transformations, marked as
black and blue arrows in Figure 4 respectively. A static
transformation is defined as a transformation that does550

not change for all collections of data used in the cali-
bration, i.e. if Tci = Tc j ,∀ci,c j ∈ C. For example, the
transformation from the table to the base of the robotic
arm is static, while the transformation between the base
and the shoulder of that robotic arm is dynamic, since it555

changes according to the motion of the arm. The trans-
formation tree also displays several branches of variable
depth, as can be observed by comparing the two cam-
eras, for example. Figure 4 also includes a pattern co-
ordinate frame, and a transformation from the world to560

the pattern denoted as wTp in the previous section.

The vast majority of calibration approaches typically
reduce this complexity, with the goal of simplifying
the calibration procedure. This is done by computing
aggregate transformations or eliminating some coordi-565

nate frames. For example, most approaches designed to
tackle hand-eye calibration problems make use of (1),
in which the transformations A, X, Z and B are often
aggregated transformations.

We argue that, by preserving the complete topolog-570

ical structure of transformations, it is possible to gen-
eralize all calibration problems. The proposal is to in-
clude all coordinate systems in the topological represen-
tation, and to store the values of all these transforma-
tions for all collections, so that the complete transfor-575

mation tree can be recomputed during the optimization
procedure when required, and for any collection. We re-
fer to the transformations stored in this topological rep-
resentation as atomic transformations, in the sense that
they are not aggregated, are indivisible. The notation T580

is used to distinguish atomic transformations from the
other transformations. The method that we propose uses
these atomic transformations to formulate the optimiza-
tion procedure carried out for the calibration. As such,
we refer to it as Atomic Transformations Optimization585

Method (ATOM).

Having a connected transformation tree, it is possible
to retrieve the unique topological route from one point
in the graph to another, i.e., the path from any coordinate
frame ( fa) to any other ( fb). With this, the transforma-
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Figure 4: The transformation tree for the Multi-Modal Test roBot
(MMTBot), a simulated robot containing two RGB cameras and a
lidar. The presented topology follows the structure of the sensors and
arm drivers as provided by the manufacturers, although some refer-
ence frames have been renamed or ommited for better readability.

tion between frames can be computed as follows:

faT fb
c = ∏

fn∈ fa_ fb

fnT fn+1
c , (5)

where fnT fn+1
c denotes the atomic transformation from

frame fn to frame fn+1, and fa _ fb is the topological
path that constitutes the sequence of coordinate frames
transversed to go from frame fa to frame fb. Note that590

the collection c appears in (5) to account for the fact
that some of the transformations may be dynamic, i.e.,
change from collection to collection.

Since the goal of the cost function is to evaluate
the error using a sensor to pattern approach (see (4)),595

what is sought is the transformation from the coordi-
nate frame of the sensor to the pattern p, denoted as sTp

c ,
which can be retrieved from (5). This expression is de-
rived for all the sensors in the system. Also, to configure
the calibration procedure, it is necessary to select, for600

each sensor, which of the atomic transformations will
be estimated during the process. The selection is arbi-
trary, provided that the selected transformation is static
and that it is included in the topological path of the re-
spective sensor. Also, the number of selected transfor-605

mations is not limited. Take the example of Figure 4,
which shows the transformations that have been marked
to be calibrated. In the case of the world camera sensor,
the selected transformation was from the tripod right
support to the world camera. It is possible to, instead610

calibrate the world camera to the world camera optical
transformation. Moreover, both transformations can be
selected simultaneously.

In the example of Figure 4 the selection of transfor-
mations to be calibrated is the simplest solution: just
a single, the most intuitive transformation per sensor
was selected. Sensor world camera has a topological
path wco _ p = {wco,wc, trs, tri,w, p}, where wco, wc,
trs, tri, w and p, stand for world camera optical, world
camera, tripod right support, tripod, world and pattern,
respectively. Assuming the selections of transforma-
tions to be calibrated shown in Figure 4, (5) becomes
for world camera sensor:

wcoTp
c = ∏

fn∈wco_wc

fnT fn+1
c ·wcT̂ trs · ∏

fn∈trs_w

fnT fn+1
c ·wT̂ p

c , (6)

where the hat notation T̂ is used to signal that these
atomic transformations are estimated. Also, note that
wcT̂ trs does not have a collection index c because it must
be static by definition. Sensor 3d lidar has a topological
path 3l _ p = {3l,3lb, tls, tri,w, p}, respectively 3d li-
dar, 3d lidar base, tripod left support, tripod, world and
pattern. In this case, (5) becomes:

3lTp
c = ∏

fn∈3l_3lb

fnT fn+1
c · 3lbT̂ tls · ∏

fn∈tls_w

fnT fn+1
c ·wT̂ p

c , (7)

and sensor hand camera has a topological path hco _
p= {hco,hc,ee, ...,b, tab,w, p}, respectively hand cam-
era optical, hand camera, end effector, base, table,
world and pattern. In this case, (5) becomes:

hcoTp
c = ∏

fn∈hco_hc

fnT fn+1
c · hcT̂ ee · ∏

fn∈ee_w

fnT fn+1
c ·wT̂ p

c . (8)

Note that (6), (7) and (8) derive the particular expres-
sions of the MMTBot sensors. These expressions are615

shown for clarity of presentation alone, because it is the
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expression (5) that is actually implemented, which auto-
matically derives into the particular expression of each
sensor. This proves that the proposed formulation suc-
cessfully generalizes any calibration problem, including620

sensor to sensor, sensor in motion and sensor to frame
calibration problems.

The formulation for extrinsic calibration using a sen-
sor to pattern paradigm, as proposed in (4), can now be
rewritten to accommodate the atomic transformations,
which results in:

argmin
{T̂ }

∑
s∈S

∑
c∈C

∑
d∈D

e
(

sTp
c ,d[c,s],{λs}

)
, (9)

where {T̂ } denotes the set of atomic transformations
marked to be optimized, and sTp

c is the transformation
from the sensor to the pattern, which is computed using625

the atomic transformations.

3.3. RGB Camera Error Function
The calibration proposed in this paper is formulated

in (9). This is a generic expression, in which the error
function e(·) must be instantiated for each existing sen-
sor modality. For the RGB sensor modality we propose
to use the reprojection error, computed by projecting the
known corners of the calibration pattern (x) to the cam-
era image, and comparing these projected coordinates
with the coordinates of the correponding detections in
the image (x):

e[c,s,d] =
∥∥∥x[c,s,d]−P ([sTp

c ·xd ]xyz , ks,us

)∥∥∥2

F
, (10)

where xd is the three-dimensional homogeneous coordi-
nates of the pattern corner that corresponds to detection
d, defined in the pattern’s local coordinate frame; the630

operator [·]xyz is an operator that extracts the x,y and z
coordinates (removes the homogeneous coordinate); k
and u are the vector of camera intrinsics and distortion
parameters, both included in the set of additional param-
eters for the sensor, i.e., ks,us ∈ {λs}; P is the projec-635

tion function; x[c,s,d] denotes the two-dimensional pixel
coordinates of detection d, found in the image acquired
by sensor s at collection c; and finnaly ‖·‖2

F denotes the
Frobenius norm.

3.4. 3D LiDAR Error Function640

The error function e(·) for 3D LiDAR modality is
composed of two distinct evaluations which compute
the orthogonal o(·) and logitudinal l(·) errors for each
detection, i.e. e(·) = {o(·), l(·)}. In the context of this
modality, a detection d is a range measurement per-645

formed by the sensor which is labelled to belong to the

(a) (b)

Figure 5: Projection of calibration pattern’s corners (a) to the images
of world camera (b). Color coding distinguishes the detections.

calibration pattern, and the set of detections D is a sub-
set of the point cloud provided by the sensor.

The orthogonal error o(·) is computed by evaluating
the distance between the estimated pattern XoY plane
and the detection coordinates. One simple way to ac-
complish this is to transform the detection coordinates
from the LiDAR’s local coordinate frame to the pat-
tern’s coordinate frame, and evaluate the z coordinate,
as follows:

o[c,s,d] =
[
(sTp

c )
−1 ·xd

]
z

(11)

where xd denotes the three dimensional coordinates of
the detections in the LiDAR’s local coordinate frame,650 (

sTp
c
)−1 is the transformation from the pattern p to the

sensor s, and the operator [·]z extracts the z coordinate
of the point.

The longitudinal error l(·) makes use of the 3D coor-
dinates of the boundary of the calibration pattern with
measurements labeled as being boundaries in the set of
pattern measurements. Let B ∈D denote the set of mea-
surements labeled as boundaries, and xb be the 3D coor-
dinates of the boundary point b. The process by which
these points are identified is called labelling and will
be detailed in subsequent sections. By transforming xb
to the pattern’s coordinate frame, it is then possible to
compare these coordinates with the known geometric
structure of the calibration pattern. LetQ denote the set
of 3D coordinates defined in the pattern’s local coordi-
nate frame that are obtained by the (spatialy periodic)
sampling of the lines that delimit the physical body of
the pattern. Thus, the longitudinal error can be written
as follows:

l[c,s,d] = min
q∈Q

(∥∥∥∥[q− (sTp
c )
−1 ·xb

]
xy

∥∥∥∥2

F

)
, (12)

where q denotes a 3D point defined in the pattern’s lo-
cal coordinate frame and obtained through sampling as655

detailed above, and the operator [·]xy extracts the x and
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(a) (b)

Figure 6: The physical boundaries of the calibration pattern are rep-
resented by a set of sampled points Q (green cubes in (a)). The lon-
gitudinal evaluation finds the smallest distance between each of the
sensor measurements labeled as boundaries xb (large green spheres
in (b)) and all the points in Q. The orthogonal evaluation measures
the distance between the pattern’s XoY plane and the sensor measure-
ments labeled as belonging to the pattern, i.e., the detections xd (small
green spheres in (b)).

y coordinates of the point, which account for the longi-
tudinal component of the error. Figure 6 shows the pro-
cess of computing the LiDAR modality cost function.
The small green spheres in Figure 6 (b) represent the660

range measurements labeled as belonging to the pattern,
i.e., xd in (11)). For the orthogonal evaluation, these are
compared against the estimated pattern XoY plane. The
large green spheres in Figure 6 (b) represent the range
measurements labeled as boundaries, i.e. xb in (12).665

In the case of the longitudinal evaluation these points
are compared against the points sampled from known
model of the calibration pattern, denoted as q in (12)
and represented as the green cubes of Figure 6 (b).

We have presented the cost functions for the RGB670

and 3D LiDAR modalities. Natturally, the inclusion
of additional modalities would require the definition of
other cost functions, but their integration in the pro-
posed framework is straightforward.

3.5. Normalization of Residuals675

ATOM proposes the usage of distinct error functions
for diferent sensor modalities. The output of these func-
tions is called residuals. Thus, each function contributes
to a global vector of residuals.

Note that, in the case of RGB cameras (see (10))680

the error is measured in pixels. On the other hand, er-
rors for LiDAR, defined in (11) and (12) are expressed
in meters. Clearly, 1 pixel is not the same as 1 me-
ter but, to the optimizer, these residuals have the exact
same magnitude. This mismatch in units may lead to685

differences in the magnitude of the residuals computed
for distinct modalities, which will result in an unbal-
anced optimization, where larger residuals from specific
modalities may overshadow residuals from other modal-
ities.690

To address this problem of multi-modal residuals, we
propose to compute normalized residuals ẽ using a nor-
malization mechanism as follows:

ẽ[c,s,d] = ηm(s) · e[c,s,d] (13)

where ηm(s) is the normalization factor for a given
modality m(s), and m(·) is a function that retrieves the
modality of sensor s. The normalization factors are
computed before the optimization starts, and are con-
stant throughout the procedure. The normalization fac-
tor for a given modality n, denoted as ηn, is computed
by taking into account all of the residuals of that same
modality:

ηn =

∑
s∈S

∑
c∈C

∑
d∈D

δ (n,m(s))

∑
s∈S

∑
c∈C

∑
d∈D

e0
[c,s,d] ·δ (n,m(s))

(14)

where e0
[·] denotes the error computed using the values

of the parameters as provided at the start of the calibra-
tion procedure, i.e., the initial estimate, and δ (·) is the
delta Kronecker function. Note that the normalization
factors are constant values during the optimization, and695

are calculated once with the residuals that result from
the initial guess.

The proposed framework is general in the sense that
any parameter that is used to compute the error, i.e. that
has impact on the residuals, can be estimated. This in-
cludes not only the parameters that encode the geomet-
ric transformations, but also other additional parame-
ters. The most straightforward example is that of the
intrinsic parameters of RGB cameras, which are used to
compute the reprojection error (see (10)), and can there-
fore be simultaneously estimated during the calibration
procedure. As such, ATOM is not an exclusively ex-
trinsic calibration methodology. Rather, since intrinsic
parameters (and others) may also be included in the op-
timization, we view it is a general methodology for the
calibration of sensors. This leads to the extension of the
problem formulation, from the one proposed in (9), to
the following:

argmin
{T̂ },{λ̂}

∑
s∈S

∑
c∈C

∑
d∈D

ẽ
(

sTp
c ,d[c,s],{λ̂s}

)
, (15)

where {λ̂} denotes the set of additional parameters that
are also being estimated, along with the atomic transfor-
mations.700

3.6. Non-linear Least Squares Optimization
By definition, least squares tries to minimize the

squared residuals (i.e the predicted error) of an objec-
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tive function with respect to its parameters:

argmin
φ

∑‖F(φ)‖2 , (16)

where F is an objective function that returns the resid-
uals vector given the parameters φ . Considering (15),
we have φ = {{T̂ },{λ̂}} and F = ẽ. While the ad-
ditional parameters {λ̂} are direclty used, the atomic705

transformations {T̂ } are encoded as tx, ty, tz,r1,r2,r3,
where t are the translation components of the transfor-
mation, and r denote the rotation components of that
atomic transformation T̂ , represented thought the angle-
axis parameterization, which is used in order to avoid710

introducing more sensitivity than the one inherent to the
problem itself [82].

Using a non-linear approach, the parameters φ can
be estimated using the following iterative update rule:

φ
u+1 = φ

u +∆φ , (17)

where ∆φ is the update step calculated by an non-linear
least squares algorithm. At each step, the model is
linearized by a first-order Taylor expansion about φ u,
which results in the following normal equations (in ma-
trix notation):

(JᵀJ)∆φ = JᵀF(φ u) , (18)

where J is the Jacobian matrix of F with respect to φ u.
The normal equations are the base for many existing al-
gorithms that solve a non-linear least squares optimiza-715

tion problem.
The calibration is handled as a sparse problem be-

cause the optimization parameters do not have influ-
ence over all of the residuals. For example, the in-
trinsic parameters of a given camera sensor only pro-720

duce a non-zero gradient for the residuals related to that
specific camera. Also, the parameters that encode a
given atomic transformation only influence the residu-
als which are computed with a sensor to pattern topo-
logical path (s _ p) that includes that transformation.725

An example from Figure 4: The residuals computed by
the world camera cost function are not affected by the
value of the end effector to hand camera or the tripod
left support to 3d lidar base atomic transformations,
as these are not included in the path that goes from730

frame hand camera optical to frame pattern. The op-
timization is solved with the trust region reflective algo-
rithm [83], which is a suitable method for large bounded
sparse problems. The Jacobian matrix is calculated with
numerical differentiation which, although not the most735

precise method, provides the necessary flexibility for a
general approach.

4. Calibration Framework

A novel approach for conducting the calibration of
robotic systems based on the optimization of atomic740

transformations was proposed in section 3. In that
section, the focus was striclty on the formulation of
the calibration component as an optimization problem,
i.e., the estimation of the geometric transformations be-
tween sensors. The complete procedure of calibrating a745

robotic system accommodates additional stages. In fact,
a set of prior steps must be carried out before the actual
optimization starts. The work presented in this paper
covers all the procedures required to perform a com-
plete calibration of a robotic system. As such, we view750

ATOM not only as a novel calibration method, but also
as a complete calibration framework 7. With the goal of
providing a set of calibration tools that are easily used
by the community, ATOM is integrated into ROS, which
is the standard library for the development of robotic755

systems. [18]. There are several ROS based calibration
packages available, ranging from intrinsic camera cal-
ibration, to stereo extrinsic calibration or even RGB-D
camera calibration 8. There are also some ROS pack-
ages dedicated to the hand-eye calibration problem: the760

Open source Visual Servoing Platform [22, 23] provides
a solution here9, and there is also a commercial solu-
tion here10. The solutions described already have a sig-
nificant integration with ROS: in particular, they make
use of ROS messages to create a calibration eco-system765

functioning under the ROS framework. We state an ex-
tensive integration with ROS as a key component of the
proposed approach. To this end, ATOM contains ROS
based tools designed to support not just for the opti-
mization phase, but for all components of the calibration770

procedure.
As discussed in the previous section, ATOM required

a graph of transformations in order to compute the
topological path from one coordinate frame to another.
For this purpose, ROS uses a tree graph referred to as775

tf tree [84]. In the case of Marchand et al. [22], the
system is also integrated with the ROS tf library. Many
calibration approaches modify the topology of the tf tree
out of convenience for the calibration procedure. How-
ever, this may be problematic, because the tf tree is used780

to support many other functionalities such as robot vi-
sualization, colision detection, interactive joint control,

7https://github.com/lardemua/atom
8https://github.com/code-iai/iai_kinect2
9http://wiki.ros.org/visp_hand2eye_calibration

10http://wiki.ros.org/rc_visard/Tutorials/
HandEyeCalibration
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motion planning, etc. All these tools are dependant on
the predefined topology of the tf tree. If the calibration
results in modifications to that topology, those function-785

alities have to be reconfigured or redesigned, which is
often a cumbersome task.

Because ATOM is based on the optimization of
atomic transformations, only the values of (some of) the
transformations in the tree are modified, not its topol-790

ogy. To take the topology of the system into account,
the cost functions recompute, for each function call, the
transformation between the sensor to the pattern coordi-
nate frames, i.e., sTp

c in (9) is always recalculated using
(5). Therefore, a change in one atomic transformation795

in the chain affects the global sensor pose, and conse-
quently, the error to minimize. The optimization may
target multiple transformations of each sensor chain,
and is agnostic to whether the remaining links are static
or dynamic, since all existing partial transformations are800

stored for each data collection. This ensures not only
that the reestimated values of selected atomic transfor-
mations are taken into account in the computation of
the error function, but also that (some) transformations
in the tf tree may be dynamic. This is one important805

aspect as to why ATOM successfully generalizes sen-
sor to sensor, sensor in motion and sensor to frame
calibration problems.

To the best of our knowledge, our approach is one of
few which maintains the structure of the transformation810

graph before and after optimization, and we consider
this as a key feature of the proposed framework: from
a practical standpoint, since it facilitates the integration
into ROS, both before and after the optimization; and,
moreover, from a conceptual perspective, since this for-815

mulation is general and adequate to handle most cali-
bration problems.

Figure 7 provides a schematic of the proposed cal-
ibration framework. To perform a system calibration,
ATOM requires data logged from the system’s sensors,820

provided in the format of a ROS bag file, and also a
description of the configuration of the system, as given
in ROS xacro11 or urdf 12 formats. Note that these two
requirements are external to ATOM and are not consid-
ered a heavy burden, since that the typical configuration825

of robotic systems in ROS already includes them. In
ATOM, the calibration procedure is structured in four
phases, which occur in sequence: 1) calibration config-
uration, 2) initial positioning of the sensors, 3) data col-
lection and labelling and 4) calibration. Each of these830

will be described in detail in the next sections.

11http://wiki.ros.org/xacro
12http://wiki.ros.org/urdf

Figure 7: The software architecture for the ATOM calibration frame-
work is composed of 4 key components: configuration of the calibra-
tion, setting of the initial estimate of the sensor poses, collecting and
labelling of data, and the actual calibration procedure.

4.1. Calibration configuration

The configuration defines the parameters which will
be used throughout the calibration procedure, from the
definition of the sensors to be calibrated to a description835

of the calibration pattern. The proposed approach was
detailed in section 3, in particular the usage of atomic
transformations. These transformations are combined
through the use of the topological information contained
in a transformation tree, which is generated in ROS840

from the information from an urdf or xacro file. For the
purpose of calibrating the system, additional informa-
tion must be provided to define which atomic transfor-
mations, will be optimized during the calibration proce-
dure. Also, a description of the calibration pattern must845

be provided to ensure a correct detection and labelling.
All this information is defined in a calibration configu-
ration file. An example of the MMTBot calibration file
is provided here13, and a demonstration video here14

4.2. Initial positioning of sensors850

Since the calibration procedure is formulated as an
optimization problem, the initial values of the param-
eters to be estimated are determinant to the outcome

13https://jsonformatter.org/yaml-viewer/a4d145
14https://youtu.be/2RTCUt2cdJY
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of the optimization. In fact, when the initial parame-
ter values are far from the optimal parameter configu-855

ration (the solution), it is possible that the optimization
converges into a local minima, thus failing to find ade-
quate values for the parameters. This problem is tack-
led by ensuring that the initial values contain a plausible
first guess. As discussed in section 3, there are several860

types of parameters to be estimated (see (15)). Different
types of parameters require distinct initialization strate-
gies, which will be detailed in the following lines.

The goal of a calibration is to find the position of the
sensors, which in our approach is accomplished through865

the estimation of atomic transformations, e.g. wcT̂ trs in
(6), 3lbT̂ tls in (7) or hcT̂ ee in (8) for sensors world cam-
era, 3d lidar and hand camera, respectively. Hence,
the first type of parameters to initialize are these atomic
transformations which account for the position of the870

sensors. To accomplish this, ATOM provides and inter-
active tool which parses the calibration file and creates a
6-DOF interactive marker associated with each sensor,
which overlays on top of the ROS based robot visualiza-
tion in 3D Visualization Tool for ROS (RVIZ). The sen-875

sors are positioned by dragging the interactive markers,
which is a simple method to easily generate plausible
first guesses for the poses of the sensors. The process
is very intuitive because visual feedback is provided to
the user by the observation of the 3D models of the sev-880

eral components of the robot model and how they are
spatially arranged. For example, despite not knowing
the exact metric value of the distance between the world
camera and the 3d lidar, the user will know that both are
more or less at the same height and not more than a me-885

ter away from each other. These non-metric, symbolic
spatial relationships, in which humans are very profi-
cient, are very useful to generate plausible first guesses.
Moreover, the system provides several other visual hints
that make the positioning of the sensors an intuitive pro-890

cess. One of these is the ability to visualize how well
the data from several sensors aligns. Figure 8 shows an
example. On the left side of the figure, an inaccurate po-
sitioning of the LiDAR sensor (a) leads to a misaligned
projection of the blue spheres on the images (c) and (d).895

Conversely, an adequate positioning of that same sen-
sor produces a good alignment between the blue spheres
in (b) and the patterns in the images (see (e) and (f)).
Also, it is possible to see that the alignment between
the LiDAR measurements and the physical objects (e.g.900

table and manipulator) is much better in (b) when com-
pared to (a). The bottom row of Figure 8 shows the
alignment between two point clouds, the first produced
by the lidar and the second by a RGB-D hand camera
(which is used here just for the sake of example). Here,905

it is also very intuitive to realize that the alignment be-
tween point clouds is much better when the camera is
adequately positioned, the alignment in (h) is better than
in (g).

This video15 shows an example of setting the initial910

pose of the sensors using the ATOM functionalities. In
addition to this, we also provide an example of setting
the initial estimate for an intelligent vehicle16.

As discussed in section 3, the proposed approach is
to extend the optimization problem not only to include
those transformations that we seek to estimate through
the calibration (discussed in the previous paragraph),
but also the transformations from the world to the pat-
tern coordinate frames, denoted as wT̂ p

c in (6), (7) and
(8). Note that the pose of the calibration pattern p is dif-
ferent for every collection c. That means that the pattern
moved around in the scenario while the data was being
collected, which makes it difficult for any user to keep
track of the pose of the pattern over time. Since the user
cannot be of assistance in this case, it is not viable to
initialize the poses of the calibration patterns using the
same methodology as before. To initialize these partic-
ular transformations, the following expressions is used:

wT̂ p
c = ∏

fn∈w_s

fnT fn+1
c · g

(
{x[c,s,d]},ks,us

)
, (19)

where g(·) denotes a function that solves the
perspective-N-point problem [85, 86], given a set of de-915

tected pattern corners in the image ({x[c,s,d]}) and the
intrinsic parameters of the camera sensor s, ks, us, and
returns the homogeneous transformation matrix from
sensor s to the pattern p, and w _ s is the topological
path from the world w to the sensor s coordinate frames,920

which of course must have the RGB modality. If there
is more than one RGB sensor in the system, one is arbi-
trarily selected to produce the initial estimate.

The final type of parameters are those referred to as
additional parameters, denoted as {λ̂} in (15). In the925

case of RGB camera modalities, these additional param-
eters are the intrinsic and distortion camera parameters,
ks and us which are initialized by running a prior intrin-
sic camera calibration procedure. Naturally, additional
parameters of different modalities will require specific930

initialization strategies.

4.3. Data collection
The proposed optimization mechanism for achieving

the calibration of robotic systems was described in sec-

15https://youtu.be/oJLKTqUtZvQ
16https://youtu.be/zyQF7Goclro

14

https://youtu.be/oJLKTqUtZvQ
https://youtu.be/zyQF7Goclro


(a) (b)

(c) (d) (e) (f)

(g) (h)

Figure 8: Setting an initial estimate for the sensor poses using RVIZ interactive markers. Top two rows: Inaccurate (left side) vs accurate (right
side) positioning of the 3d lidar sensor. On the left side, the 3D points from the pattern (the blue green spheres in (a)) do not align well with the
pattern the images of the world camera (c) and the hand camera (d) images. The right side shows how an accurate positioning of the sensor aligns
the projection of the 3D LiDAR measurements (blue spheres in (b)) with the pattern in the images of the world camera (e) and the hand camera (f).
Bottom row: inaccurate (left) vs accurate (right) positioning of an RGB-D camera. In (g), the point cloud produced by the RGB-D camera (points
textured with real colors) is misaligned with LiDAR point cloud (red to blue spheres). In (h), a correct positioning of the RGB-D camera produces
a good alignment between point clouds.

tion 3. To ensure that the residuals that are being com-935

puted from the current state of estimated parameters are
representative, and thus that the calibration is accurate,
several views of the calibration pattern should be used.
That is the reason why (15) considers the set of col-
lections C. A collection is a syncronized snapshot of940

the data from all sensors in the system at a given time
defined by the user. The term is used to denote that,
for multi-modal robotic systems, the data collected for
each sensor may be different, e.g., images, point clouds,
etc. This is a distinction from uni-modal systems: for945

example, in intrinsic RGB camera calibration, several
images (instead of collections) of different views of the
calibration pattern are taken to produce the intrinsic and
distortion parameters. Each collection also contains the
values of all atomic transformations recorded at the cor-950

responding time, so that is possible to recompute the
transformations between any two frames (see (5)).

In the case of systems containing more than one sen-
sor, it is very common that the data coming from the
sensors is streamed at different frequencies. As such, a955

syncronization mechanism is required to ensure that the
information contained in the collection consistent. This
is not a trivial problem to address because the data is
not syncronized, i.e., there is never an instant in which
all sensors collect data.960

This problem is solved through the use of a method-
ology that ensures the synchronization, assuming the
scene has remained static for a long enough period
of time. In static scenes, the problem of data de-
synchronization is not observable, which warrants the965

assumption that for each captured collection the sensor
data is adequately synchronized. Assuming it is possi-
ble to establish an upper bound to the maximum time
difference between any data streaming from the robotic
system, it is possible to assume that all data messages970
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are synchronized, if the scene has remained static for a
period longer than that upper bound. Thus, the method-
ology establishes that it is the responsibility of the user
to ensure that the scene has remained static for a given
time period, before triggering the saving of a collection.975

There are other approaches which use a similar
methodology, in particular by holding the pattern with
a tripod (which ensures it does not move) before col-
lecting each image. This approach is used in multi sen-
sor calibration frameworks [14, 24], and also in RGB-D980

camera calibration procedures17.
We refer to the set of collections obtained from a

given robotic system as an ATOM dataset. It contains
a copy of the calibration configuration file, and high
level information about each sensor, such as the sen-985

sor topological transformation chain, extracted from the
transformation tree. In addition, there is also specific
information for each collection, i.e., sensor data and la-
bels, as well as values of atomic transformations. It
is important to note that the set of collections should990

contain a sufficiently varied set of pattern poses. As
such, collections should preferably have different dis-
tances and orientations w.r.t. the calibration pattern, so
that the calibration returns more accurate results. Also,
if the robotic system contains moving components, the995

dataset should include several poses of the system. Em-
pirically we have found that 20 to 30 collections is a
sufficient number to achieve accurate calibrations. One
example of a dataset file for the MMTBot can be found
here18.1000

4.4. Data labelling

The labelling of data refers to the annotation of the
portions of data which view the calibration pattern. The
labelling procedure is executed for the data of each sen-
sor, so that all collections have the labels that corre-1005

spond to the raw sensor data. Labelling can be auto-
matic, semi-automatic or even manual in some cases.
The information that is stored in a given label depends
on the modality of the sensor which is being labelled.

RGB modality labels consist of the pixel coordinates1010

of the pattern corners detected in the image, and are
labelled using one of the many available image-based
chessboard detectors [36]. Our system is also compat-
ible with charuco boards, which have the advantage of
being detected even if they are partially occluded [37].1015

Also in this case we make use of off-the-shelf detectors,
e.g., [38, 39].

17https://github.com/code-iai/iai_kinect2
18https://jsonformatter.org/json-parser/a06452

Figure 9: Semi-automatic LiDAR labelling procedure. In a span of
about 5 seconds, the user drops the interactive marker close to the
pattern, and the system starts tracking it. Yellow spheres indicate lidar
measurements considered as pattern detections.

The structure of the labels is more complex in the
case of the LiDAR modality. As discussed in subsec-
tion 3.4, two different types cost functions are used:1020

orthogonal and longitudinal. The range measurements
that belong to the pattern is refered to as the set of de-
tections D, and the 3D point coordinates of each are
denoted in (11) as xd , ∀d ∈ D. The lidar directly pro-
duces 3D point coordinates, so it is straightforward to1025

obtain the 3D coordinates xd of a given detection d.
The difficulty lies in finding the detections D that be-
long to the pattern, which is a subset of the complete set
of LiDAR measurements. We propose to achieve this
using a semi-automatic approach. The intervention of1030

the user is required to set a 3D point which is used as
the seed of a region-growing algorithm. Then, starting
at the seed point, and assuming that the pattern is phys-
ically separated from the other objects in the scene, the
algorithm searches in the set of lidar measurements for1035

close enough points, and includes these into the set of
pattern detectionsD which are used as seed points in the
next iteration. The process is repeated until no propaga-
tion occurs. The set of points transversed in the search
constitutes the set of detections D. Figure 9 shows a1040

representation of this process.
The second component of the LiDAR cost function

is the longitudinal evaluation. For this, it is necessary
to retrieve the set of measurements labeled as bound-
aries, which we denote as B ∈D, in order to recover the
3D coordinates of these points, i.e., xb in (12). Once
again, the challenge is not to find the 3D coordinates
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(a) (b)

Figure 10: Labelling of 3D LiDAR data: (a) lidar points labelled as
detections; (b) lidar points labelled as boundary points.

but rather which points, from the set D, are boundary
points, meaning they are measuring the physical bound-
aries of the pattern board. The solution for this is to use
a spherical parameterization to represent the point co-
ordinates of xd∀d ∈ D. Let sd = [ρd ,θd ,ϕd ] represent
the spherical coordinates of the detection d. A 3D lidar
generaly contains a much larger horizontal angular res-
olution, i.e., for the θ angle, when compared with the
vertical angular resolution, which corresponds to the ϕ

angle. In fact, 3D lidars are said to have scan layers,
where the vertical angle is the same for a set of mea-
surements spanning all available horizontal angles. The
set of measurements corresponding to a scan layer with
angle ϕl , denoted as {s[d,ϕl ]}, are extracted as follows:

{s[d,ϕl ]}=
{

sd : ϕl−
∆ϕ

2
≤ ϕd < ϕl +

∆ϕ

2

}
, ∀d ∈ D,

(20)
where ∆ϕ is the vertical angular resolution of the lidar.
For each set of detections in a layer, the left and right
boundary points, denoted as {s[b,ϕl ]}, are extracted by
searching for the measurements that have the smallest
and largest value of horizontal angle θ :

{s[b,ϕl ]}= {s[d,ϕl ] : θ[d,ϕl ] = max({θ[d,ϕl ]}) ∨
θ[d,ϕl ] = min({θ[d,ϕl ]})}, ∀d ∈ D, (21)

and finally, the complete list of boundary points B of
the calibration pattern, is given by putting together the
boundary points detected for each individual scan layer.

Figure 10 shows an example of the LiDAR labelling1045

procedure. The labelled boundary points are signaled by
the large green spheres in (b). A video example of the
process of producing an ATOM dataset for MMTBot is
provided here19. This labelling mechanism also works
well for 2D LiDARs, as shown in this example of an1050

autonomous vehicle20.

19www.youtube.com/watch?v=eII_ptyMq5E
20https://youtu.be/9pGXShLIEHw

4.5. Calibration
The vast majority of calibration approaches do little

more than printing some information on screen to dis-
play the results of the calibration. ATOM provides a1055

great deal of visual feedback, not only at the end of the
calibration but also throughout the procedure.

To accomplish this goal, the information stored in
an ATOM dataset is published into the ROS ecosys-
tem. The system’s configurations for all collections are1060

simultaneously conveyed to ROS, as if they had oc-
curred all at the same time which, not being the case,
is the framework under which the calibration proce-
dure operates. Collisions in topic names and reference
frames are avoided by adding a collection related pre-1065

fix to each designation. Also, the original transforma-
tion tree is replicated for each collection and those sub-
trees are connected so that it is possible to display them
toghether.

Figure 11 shows an example of the visualization of a1070

calibration procedure. It is possible to simultaneously
visualize the collections that are being used in the cali-
bration (top row), or to select which collections are dis-
played (bottom row). The ground truth poses of the sen-
sor appear in tranparent mode. These are known only1075

because MMTBot is a simulated robotic system. For
real robotic systems there is no ground truth information
(the transparent mode is used to show the initial pose of
the sensors). It is possible to observe that, as the opti-
mization progresses (from left to right in Figure 11), the1080

sensors move towards the ground truth pose (transparent
mode), which means that the optimization is converging
towards the optimal solution.

The integration with ROS provides straightforward
access to many other interesting functionalities. For ex-1085

ample, it is possible to visualize images with the repro-
jected pattern corners, to display the robot meshes, the
position of the reference frames, etc. A complete cali-
bration procedure for MMTBot is displayed here21.

5. Results1090

In section 1, three distinct calibration problems were
identified: sensor to sensor, sensor in motion and sensor
to frame calibration problems. The analysis done in sec-
tion 2 has shown how the vast majority of the state of the
art is focused on one of those problems. Then, in sec-1095

tion 3, we described how the proposed approach is able
to generalized all calibration problems into a single, uni-
fied famework that optimizes atomic transformations.

21https://www.youtube.com/watch?v=4B3X_NsX89M
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Figure 11: Visualizing the evolution of a calibration procedure from the initial estimate (left) to the solution (right). Top row shows all collections
used in this calibration (different color for each collection). Bottom row shows a single collection and, in transparent mode, ground truth poses of
the sensors (known because this dataset was generated in simulation).

To show how ATOM may be applied to distinct cali-
bration problems, this section presents results spanning1100

the calibration of four distinct robotic systems, as listed
in Table 2. The first is the MMTBot, which was pre-
sented before since it was used as a case study in sec-
tion 3 and section 4. The other three are real robots as
displayed in Figure 12: the AtlasCar2 [34, 41] is an au-1105

tonomous vehicle designed to collect multi-sensor data
from real road scenarios (see Figure 12, top); the AgRob
V16 is a robotic platform designed for agricultural sce-
narios in particular steep slope terraced vineyards (see
Figure 12, middle); and the Iris UR10e is an experi-1110

mental system assembled to test several variants of the
hand-eye calibration problem (see Figure 12, bottom).

These systems cover all of the calibration problems
discussed above. Also, the number of sensors and their
modalities differ from system to system. The AtlasCar21115

platform represents a sensor to sensor calibration. The
AgRob V16 provides additional modalities since it con-
tains a stereo camera and a 3D LiDAR. Finally, the Iris
UR10e represents a hand-eye calibration which is both a
sensor in motion as well as a sensor to coordinate frame1120

calibration problem. We use three hand-eye problem
variants with the Iris UR10e: eye-in-hand, where the
camera is assembled on the end effector; eye-on-base,
where the camera is assembled rigidly to the arm’s base,
and a third variant we refer to as joint-hand-base, where1125

both previous cases are combined simultaneously.
The goal is to compare the performance of ATOM

with other calibration methods. However, as discussed

Figure 12: The three non simulated robotic systems used for evaluat-
ing the proposed approach: (top) an intelligent vehicle, the AtlasCar2;
(middle) an agriculture AGV, the AgRob V16; (bottom) an eye in hand
calibration setup, the Iris UR10e. Real image of the robots (left), and
the corresponding ROS models (right).
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Table 2: Description of the robotic systems used to train and test ATOM as well as the datasets used for train and evaluation.

System Description Sensors Dataset Details

MMTBot(a) Simulation with robotic arm
All calibration problems

RGB cameras (2x)
3D LiDAR

mmtbot-1 29 collections, 9 partial
mmtbot-2 47 collections, 25 incomplete, 16 partial

AtlasCar2(b) Autonomous vehicle
Sensor to sensor

RGB cameras (3x)
2D LiDARs (2x)

atlascar-1 39 collections, 32 incomplete, 0 partial
atlascar-2 21 collections, 18 incomplete, 0 partial

AgRob V16(c) AGV for agriculture
Sensor to Sensor

Stereo camera
3D LiDAR

agrob-1 42 collections, 5 incomplete, 38 partial
agrob-2 56 collections, 24 partial
agrob-3 15 collections, 8 partial

Iris ur10e(d) Hand-eye system
Sensor in motion, sensor to frame RGB cameras (x2) iris-1 34 collections, all partial

iris-2 26 collections, all partial
(a) https://github.com/miguelriemoliveira/mmtbot
(b) https://github.com/lardemua/atlascar2
(c) https://github.com/aaguiar96/agrob
(c) https://github.com/iris-ua/iris_ur10e

in section 3, there are very few works which are able
to calibrate complete robotic systems with multiple1130

sensors and modalities. Rather, the large majority of
the calibration approaches focuses on specific pairwise
combinations of modalities. Because of this, it is not
possible to make a direct comparison between ATOM
and other approaches. To address this we propose to1135

conduct a series of pairwise evaluations, which cover
the sensors used in the presented systems. In this way
we are able to compare against other methodologies,
provided they are able to calibrate the selected sensor
tandem. Note that, while for other approaches we cal-1140

ibrate only the selected pair of sensors, all results re-
ported for ATOM were collected after a complete sys-
tem calibration.

The next subsections will cover first the metrics
used for evaluating the performance of the calibra-1145

tions. Then, performance evaluations for distinct com-
binations of modalities are reported for all robotic sys-
tems. Finally, to assess the robustness of the proposed
methodology, studies on the influence of several param-
eters are presented.1150

5.1. RGB to RGB camera evaluation

To evaluate the RGB-to-RGB camera calibration re-
sults three metrics are used: the mean rotation error (in
radians), the mean translation error (in meters) and the
reprojection error (in pixels).1155

The mean rotation and translation errors, εR and εt re-
spectively, measure the difference in the pattern’s pose
as seen from each RGB camera. These errors are es-
timated through the evaluating how similar two trans-
formations are. These transformations are obtained
through the multiplication of the atomic transformations
from the world to the pattern, i.e. w _ p. In the example

of Figure 4 a direct route exists between these two co-
ordinate frames because this transformation is directly
estimated by the calibration procedure. In order to ob-
tain trustworthy results the calibration should be done
using one dataset, and tested using a different one. As a
consequence, the direct route w _ p does not exist for
evaluation datasets, since these have not been calibrated.
However, it is possible to obtain transformation between
the world and the pattern coordinate frames (wTp

s ), as
follows:

wTp
s =∏

fn∈w_s

fnT fn+1 · sTp , (22)

where the index s in wTp
s denotes that the transforma-

tion is computing using sensor s, and sTp is the transfor-
mation between the sensor an the pattern, as estimated
through the perspective-N-point [85, 86]. Since two
camera sensors, e.g., sa and sb, are used in this evalua-1160

tion, it is possible to obtain the two transformations wTp
sa

and wTp
sb . The εR and εt metrics are based on measuring

the difference between these transformations, since they
should be the same by definition:

wTp
sa ,

wTp
sb
, (23)

which can be rewritten to show the rotation and transla-1165

tion components:

[wRsa wtsa

0 1

][saRp sa tp

0 1

]
=

[wRsb wtsb

0 1

][sbRp sb tp

0 1

]
,

(24)
where R is the rotation matrix and t is the translation
vector. Now, we can define the difference in rotation
∆R:

∆R = (wRsa · saRp)−1 ·wRsb · sbRp (25)

and the difference in translation ∆t:
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∆t = wRsa · sa tp +wtsa −wRsb · sb tp +wtsb , (26)

respectively. Finally, for n states captured, we can now
define the mean rotation error as:

εR =
1
n ∑

i
‖angle(∆Ri)‖ , (27)

where angle(·) is the angle-axis representation of the
rotation. The mean translation error is defined as:

εt =
1
n ∑

i
‖∆ti‖ . (28)

The reprojection error metric is defined by the root-1170

mean-squared error εrms of the difference between two
sets of detected pattern corners. The first set corre-
sponds to the projection of the detected corners in the
image of the camera sa into the image of camera sb, and
the second set corresponds to the detected pattern cor-1175

ners in the image of camera sb. The projection of the
3D coordinates of the corners of the pattern xd onto the
image of sensor s is expressed as:

xd = Ks · sTp ·xd , (29)

where x denotes the projected 2D image coordinates of
the pattern’s corners, and Ks is the intrinsic matrix of1180

camera s. Since the pattern corners are defined in the
local pattern’s reference frame, they all lie in the z = 0
plane. Knowing this, we can simplify (29) by removing
the z related components of (29)

xd = Ks · [sTp]z=0 ·x′d , (30)

where x′d denotes the 3D coordinates without the z com-1185

ponent, i.e. x′d = [x,y,1]ᵀ, and the operator [·]z=0 ex-
tracts the components of the transformation which are
not related to z, i.e.:

sMp = [sTp]z=0 =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1


︸ ︷︷ ︸

sTp

, (31)

which is obtained by removing the z rotation compo-
nent and the homogeneization components, i.e., remov-
ing the highlighted parts of the matrix in (31). Since x′d
are the same for both cameras sa and sb, the following
equality can be written:

x[d,sb] = Ksb ·
sbMp ·

(sa Mp)−1 ·
(
Ksa

)−1 ·x[d,sa] , (32)

Table 3: Performance comparison of methods for RGB to RGB cam-
era evaluation. Best values highlighted in bold.

Dataset Method Sensor pair εR ε t εrms
(rad) (m) (pix)

mmtbot-1 OpenCV world camera to
hand camera

(a) (a) (a)

ATOM 0.001 0.001 0.531

mmtbot-2 OpenCV world camera to
hand camera

(a) (a) (a)

ATOM 0.001 0.001 0.305

atlascar-1

OpenCV left camera to
right camera

0.018 0.013 1.157
ATOM 0.027 0.032 1.198

OpenCV right camera to
center camera

0.244 0.081 3.336
ATOM 0.096 0.074 2.375

OpenCV center camera to
left camera

0.078 0.490 3.000
ATOM 0.090 0.045 3.283

agrob-1 OpenCV world camera to
hand camera

(b) (b) (b)

ATOM 0.008 0.003 0.974

agrob-2 OpenCV world camera to
hand camera

0.010 0.006 0.863
ATOM 0.008 0.005 0.974

ur10e-1 OpenCV world camera to
hand camera

(c) (c) (c)

ATOM 0.015 0.002 1.093

ur10e-2 OpenCV world camera to
hand camera

(c) (c) (c)

ATOM 0.009 0.001 0.843
(a) OpenCV cannot be used because the hand camera is not static.
(b) OpenCV cannot be used because the dataset contains partial detections.
(c) OpenCV cannot be used because of both (a) and (b).

which provides the relationship between the pixel co-1190

ordinates of the pattern corners in both camera images.
The formulation in (32) makes use of the camera to pat-
tern transformation for both cameras, which in turn re-
quires the estimation of the camera to pattern using the
perspective-N-point estimation (see (22)). To minimize1195

the error produced by the pnp estimation, we use the
procedure only once for one camera, for example, sa,
and then compute the sensor to pattern transformation
for the other camera using:

sbTp =
(saTsb

)−1 · saTp , (33)

were saTsb is the transformations between the two cam-
eras. Finally, the root-mean-squared error is given by

εrms =

√
1

n(D) ∑
d∈D

∥∥u[d,sb]−x[d,sb]

∥∥2
F , (34)

where u[d,sb] denotes the detected pixel coordinates of1200

the pattern’s corners in the image of camera sb.
The results are presented in Table 3, where the per-

formance of ATOM is compared against the stereo cal-
ibration algorithm from OpenCV. Not all datasets can
be calibrated using this method, since it mandates that1205

the detections are complete (all corners of the pat-
tern must be detected), and also that the cameras do
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Figure 13: 3D LiDAR to camera reprojection error metric calculation.
In the annotation procedure, the four sides of the pattern limits are
labelled by selecting multiple points in the image for each side. Then,
each side is approximated by a polynomial function as represented by
the red curves. The LiDAR reprojected points (blue dots) are then
used to calculate the reprojection error (the yellow lines represent the
error for each projected point).

not move w.r.t. each other. Results demonstrate that
ATOM achieves similar accuracies when compared to
OpenCV’s method, despite the fact that ATOM is cali-1210

brating the complete systems (all the sensors simulta-
neously). Also, ATOM accurately calibrates datasets
which cannot be tackled by OpenCV’s method.

5.2. 3D LiDAR to RGB camera evaluation

To evaluate the calibration of 3D LiDARs and RGB1215

cameras, we propose to use a reprojection error met-
ric that evaluates the error between the labelled bound-
aries of the pattern and the projection of the LiDAR
boundary points onto the RGB camera image. To per-
form this evaluation, we propose a semi-automatic pro-1220

cedure, where the boundaries of the pattern are manu-
ally labelled in the image. This process is divided in
three main steps: labelling of the pixels belonging to
the pattern limits; reprojection of the pattern’s boundary
points from the LiDAR’s coordinate frame to the image;1225

and calculation of the reprojection error between the la-
belled and projected points.

The annotation of the pattern’s boundaries in the im-
age i.e., the definition of the set of labelled boundary
points V , is performed manually by clicking on the im-1230

age on several boundary points. Then, the four bound-
aries of the rectagular pattern are aproximated to a poly-
nomial function represented by the red curves in Fi-
gure 13, which is later sampled to produce the vb ∈ V
2D image coordinates. The reason why a polynomial1235

function is used is that a linear regression is not suitable
to fit each pattern side since that image has distortion
which transforms straight lines into curves.

Now let xb denote the 3D coordinates of a boundary
point in the pattern’s local coordinate frame (see subsec-
tion 3.4). The reprojection error εrms between a LiDAR

Table 4: Performance comparison of methods for LiDAR to RGB
camera evaluation. Best values highlighted in bold.

Dataset Method Sensor pair εrms
(pix)

mmtbot-1 ATOM 3D lidar to hand camera 4.466
3D lidar to world camera 3.108

mmtbot-2 ATOM 3D lidar to hand camera 4.439
3D lidar to world camera 6.284

agrob-1
ATOM pairwise 3D lidar to right camera 3.869

3D lidar to left camera 4.101

ATOM 3D lidar to right camera 3.811
3D lidar to left camera 3.942

agrob-2
ATOM pairwise 3D lidar to right camera 6.715

3D lidar to left camera 6.432

ATOM 3D lidar to right camera 6.537
3D lidar to left camera 6.765

sa and a RGB camera sb is computed as:

εrms =

√
1

n(B) ∑
b∈B

min
vbinV

(∥∥vb−Ksb · sTp ·xb
∥∥2

F

)
,

(35)
which finds, for each projected point, the smallest dis-
tance to all labelled points. Figure 13 shows the pro-1240

jected points as blue dots, and the yellow lines show the
minimum distance to the labelled boundaries found for
each projected point.

The LiDAR to RGB camera evaluation was per-
formed using the two robotic platforms in Figure 12 that1245

contain LiDARs: MMTBot and AgRob V16. In the case
of MMTBot a complete system calibration was per-
formed, and two evaluations are presented: 3DLiDAR
to hand camera and 3DLiDAR to world camera. In the
case of AgRob V16, and in order to evaluate the im-1250

pact of calibrating the entire system simultaneously, a
the complete system calibration is compared with pair-
wise calibrations, in which only the sensors that are
evaluated were calibrated. We refer to these calibrations
as ATOM pairwise, and use them to calibrate the right1255

camera and left camera with the 3DLiDAR separately.
Two evaluations are presented: 3DLiDAR to left cam-
era and 3dLiDAR to world camera.

Table 4 summarizes the results obtained in these ex-
periments. The first observation is that the overall mag-1260

nitude of the reprojection errors is higher when com-
pared with the reprojection error of RGB to RGB cam-
era evaluations (see Table 3). This is not an inconsi-
tency, since these two reprojections cannot be directly
compared. In fact, LiDARs have a smaller resolution1265

when compared with RGB cameras, which may explain
why the LiDAR to RGB camera reprojection errors are
higher.
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Table 5: Impact of the number of partial detections on the perfor-
mance of ATOM - RGB to RGB camera evaluation. Best values
highlighted in bold.

Dataset Sensor pair # Partial εR εt εrms
(rad) (m) (pix)

mmtbot-1 hand camera to
world camera

0 of 10 0.001 0.002 0.374
1 of 11 0.001 0.002 0.388
3 of 13 0.001 0.002 0.353
6 of 16 0.001 0.002 0.379
9 of 19 0.001 0.002 0.310

Results for AgRob V16 show a very similar accuracy
between ATOM and ATOM pairwise, presenting only1270

marginal reprojection error differences. This proves that
ATOM is adequate to perform full system calibrations
without significant loss in the accuracy of the proce-
dure. As mentioned before, this is a big advantage since,
for high-dimensional robotic platforms with many sen-1275

sors, the number of combinations between sensors can
be very high an the procedure of sequential pairwise cal-
ibration tedious and error prone. Thus, having a frame-
work that is able to calibrate the entire system simulta-
neously with the same accuracy is very useful.1280

5.3. Impact of the number of partial detections
As discussed in section 4, the ATOM calibration

framework is able to use either chessboard [36] or
charuco [37, 38] calibration patterns. In the case of the
later, it is possible to detect the pattern even when it is1285

partially occluded [39], which results in a partial de-
tection of the calibration pattern. Considering this, it is
interesting to assess how the presence of partial detec-
tions may impact the accuracy of the calibration. To this
end, an experiment was conducted in which a baseline1290

dataset containing 10 collections with no partial detec-
tions is augmented with an increasing number of collec-
tions containing partial detections. In this experiment,
only the MMTBot is used.

Table 5 shows the results using the RGB to RGB cam-1295

eras evaluation metrics discussed in subsection 5.1. Re-
sults show that the partial detections have no impact of
the quality of the calibration. Reprojection errors (εrms)
are bellow 0.4 pixels in all cases, which may suggest
that ATOM is robust to the presence of partial detec-1300

tions in the datasets.
Table 6 shows the results using the LiDAR to RGB

camera evaluation metrics. In this case, the accuracy of
the calibration decreases as more partial detections are
included, from 4.4 to 5.2 pixels in mmtbot-1, and from1305

3.4 to 4.4 in the case of mmtbot-2. Thus, it seems that
the LiDAR modality is more sensitive to the presence
of partial detections. This may be related to the design

Table 6: Impact of the number of partial detections on the perfor-
mance of ATOM - LiDAR to RGB camera evaluation. Best values
highlighted in bold.

Dataset Sensor pair # Partial εrms
(pix)

mmtbot-1

3D lidar to hand camera

0 of 10 4.443
1 of 11 4.701
3 of 13 4.735
6 of 14 4.956
9 of 19 5.234

3D lidar to world camera

0 of 10 3.490
1 of 11 3.713
3 of 13 3.866
6 of 16 4.162
9 of 19 4.435

of the cost functions for this modality, or with the lower
resolution of range sensors when compared with image1310

sensors. Nonetheless, note that, in the worst case sce-
nario, 9 of 19 collections are partial, which makes this
a challenging dataset, which is tackled with a small loss
of accuracy (approximately 1 pixel decrease).

5.4. Impact of the number of incomplete collections1315

As discussed in section 3, ATOM makes use of a cal-
ibration pattern to sensor paradigm in order to design
the cost functions. This leads to an optimization frame-
work which is less intricate, where the cost function for
each sensor is independant from the others. As a conse-1320

quence, when the calibration pattern is not detected by a
particular sensor, it is still possible to compute, for that
collection, the errors associated with the other sensors.
We refer these collections where at least one of the sen-
sors did not detect the pattern as incomplete collections.1325

To evaluate how the presence of incomplete collec-
tions may affect the accuracy of the calibration pro-
duced by ATOM, an experiment was conducted where
a baseline dataset containing 10 collections is gradually
augmented with incomplete collections.1330

Table 7 shows the impact on the RGB to RGB cam-
eras evaluation metrics. In the case of the mmtbot-1
datasets, the number of incomplete collections does not
appear to affect the accuracy of the calibration, which is
consistently bellow a very small value of 0.5 pixels. The1335

datasets from agrob-1 have a lower overall accuracy of
approximately 1 or 2 pixels. In this case, we also can-
not observe evidence that incomplete collections signif-
icantly disrupt the calibration, which suggests, as ex-
pected, that ATOM copes well with the presence of in-1340

complete collections.
Table 8 shows the results using the LiDAR to RGB

camera metric. Once again, we cannot observe a clear
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Table 7: Impact of the number of incomplete collections on the per-
formance of ATOM - RGB to RGB camera evaluation. Best values
highlighted in bold.

Dataset Sensor pair # Incomplete εR εt εrms
(rad) (m) (pix)

mmtbot-1 hand camera to
world camera

0 of 10 0.001 0.002 0.439
2 of 12 0.001 0.001 0.429
3 of 13 0.001 0.001 0.400
5 of 15 0.001 0.001 0.390

agrob-1 right camera to
left camera

0 of 10 0.011 0.011 1.457
2 of 12 0.006 0.003 1.031
4 of 13 0.009 0.006 2.017
5 of 15 0.019 0.005 1.076

tendency either way, and the fluctuations are mostly un-
der 1 pixel for all datasets. This reinforces the notion1345

that ATOM is able to tackle the calibrations of datasets
containing incomplete collections. Conversely, pairwise
approaches required that both sensors detect the calibra-
tion pattern or else the collection must be discarded.

5.5. Impact of the quality of the initial estimate1350

As discussed in section 4, the proposed framework
uses an interactive approach that enables the user to
set the pose of the sensor. This is used as the initial
estimate of the sensor poses, i.e., as the initial values
of the parameters to be optimized. Since ATOM uses1355

an optimization mechanism to carry out the calibration,
the question of how sensitive the methodology is to the
quality of the initial estimates is relevant. Taking into
account that the initial parameter estimates are provided
by hand, the methodology should be robust enough to1360

handle less accurate estimates.
To address this, we carried out a study of the impact

of the quality of the initial estimate on the accuracy of
the calibration (Figure 14 (a), (b) and (c)). Quality of
the initial estimate is measured using translation (∆d)1365

and rotation (∆α) deviations from the correct sensor
pose, which we know in the case of the MMTBot sys-
tem since it is simulated. Figure 14 (a) and (b) show the
errors of the hand camera and world camera sensors,
respectively. From these, its possible to observe that the1370

sensitivity to rotation is higher when compared with the
translation. This is expected, since rotation errors are
know to be more critical than translation errors. Also, it
is important to note that the final optimization error (e)
is very small for a large range of deviations from the cor-1375

rect initial estimate. In fact, both figures show a flat re-
gion of very small error within the ranges 0≤ ∆d ≤ 0.7
and 0 ≤ ∆α ≤ 20. In other words, ATOM converges
to an optimal solution even with deviations of 0.7 me-
ters and 20 degrees. Figure 14 (c) shows the impact of1380

Table 8: Impact of the number of incomplete collections on the perfor-
mance of ATOM - LiDAR to RGB camera evaluation. Best values
highlighted in bold.

Dataset Sensor pair # Incomplete εrms
(pix)

mmtbot-1

3D lidar to hand camera

0 of 10 4.057
2 of 12 4.067
3 of 13 4.021
5 of 15 4.010

3D lidar to world camera

0 of 10 3.289
2 of 12 3.282
3 of 13 3.200
5 of 15 3.218

agrob-1

3D lidar to right camera

0 of 10 5.496
2 of 12 3.920
4 of 13 3.964
5 of 15 4.069

3D lidar to left camera

0 of 10 5.576
2 of 12 3.930
4 of 13 3.849
5 of 15 4.169

the quality of the initial estimate on the accuracy of the
calibration using the LiDAR to RGB camera evaluation
metric. When compared with the RGB to RGB cam-
era evaluations we can observe that the LiDAR modal-
ity has a larger baseline error, which is consistent with1385

the observations of Table 3 and Table 4. Despite this,
we can also see that whithin the ranges of 0≤ ∆d ≤ 0.7
and 0 ≤ ∆α ≤ 15 ATOM converges to a minimal er-
ror solution. These results show a high degree of ro-
bustness to deviations in the initial estimate. Also, we1390

may reasonably expect a human initial estimate to con-
sistently fall bellow 0.7 meters and 15 degrees, which
validates the proposal of using an interactive approach
to produce the initial estimates. Thus, the conclusion is
that ATOM, despite using an optimization mechanism,1395

is sufficiently robust to the quality of the initial estimate
for sensor poses.

Figure 14 (d) shows the impact of the quality of the
initial estimate to the time it takes to complete the op-
timization procedure. As expected, deviations from the1400

correct initial estimate will require more effort from the
optimized and thus more time to complete the proce-
dure. This is once again notoriously more sensitive to
rotation deviations. Nonetheless, in all cases, the max-
imum time to complete the calibration of the MMTBot1405

robotic system is under 200 seconds. Considering that
the calibration is a one shot procedure, this is not rele-
vant.
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(a) (b)

(c) (d)

Figure 14: Impact of the quality of the initial sensor pose estimate to the performance of the calibration. Quality of estimate is measured by the
deviation from the correct value of translation (∆d) and rotation (∆α). Errors (e) provived by the cost functions of the sensors: (a) hand camera,
(b) world camera, and (c) 3d lidar; (d) shows the total optimization time as a function of the initial estimate.

6. Conclusions

This paper proposed a novel general calibration1410

methodology based on the optimization of atomic trans-
formations. Atomic transformations are geometric
transformations that are indivisible, i.e., not aggregated,
and the advantage of using them is that the problem for-
mulation is suited to cope with the three distinct cal-1415

ibration problems: sensor to sensor, sensor in motion
and sensor to frame.

The calibration is formulated as an extended opti-
mization problem, in which the pose of the calibra-
tion patterns is also included. Although this formula-1420

tion augments the problem, since additional parameters
are included, it simplifies the definition of cost functions
since these are written using the poses of a single sen-
sor and the pattern as input. This is a large advantage
over traditional sequential pairwise approaches, since1425

the method is easily scalable to complex robotic sys-
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tems.
The methodology is general, which makes it very

flexible: it can handle any number of sensors of mul-
tiple modalities; it handles non static sensors, as in the1430

case of the hand-eye calibration; it does not require that
all sensors view the calibration pattern simultaneously,
which opens the door to the calibration of systems in
which the field of view of the sensors does not entirely
overlap. Moreover, all these cases may occur simulta-1435

neously.
ATOM is also a calibration framework22, in the sense

that software tools are offered for all the different stages
of the calibration procedure. The system is well inte-
grated with ROS, and supports advanced visualization1440

functionalities which are uncommon in most calibration
systems.

Results covered four robotic systems with several
combinations in the number of sensors and their modal-
ities. These show that the proposed approach is able to1445

calibrate several robotic systems, and that it achieves
similar levels of accuracy when compared to other
methods, designed to operate only for the sensor tandem
that is being evaluated. The robustness of the method
is also analysed through several studies that assess the1450

impact of the number of partial detections, incomplete
collections, and the initial estimate for the sensor poses.

Future work should address the inclusion of addi-
tional sensor modalities, which should be straightfor-
ward, since the overall structure of the problem is well1455

defined. We are currently working on the integration of
range cameras and 2D LiDARs. In addition to this, we
aim to test the methodology and the framework in other
robotic systems.

Acknowledgements1460

This work was supported by the Foundation for
Science and Technology, in the context of project
UIDB/00127/2020. It was also partially funded by the
Project Augmented Humanity [POCI-01-0247-FEDER-
046103], P2020, Competitiveness and Internationaliza-1465

tion Operational Program, the Lisbon Regional Opera-
tional Program, and by the European Regional Devel-
opment Fund.

References

[1] K. Kodagoda, A. Alempijevic, J. Underwood, S. Kumar, and1470

G. Dissanayake. Sensor registration and calibration using mov-
ing targets. In 2006 9th Int. Conf. on Control, Automation,

22https://github.com/lardemua/atom

Robotics and Vision, pages 1–6, 2006. doi: 10.1109/ICARCV.
2006.345361.

[2] T. Hanning, A. Lasaruk, and T. Tatschke. Calibration and1475

low-level data fusion algorithms for a parallel 2d/3d-camera.
Information Fusion, 12(1):37 – 47, 2011. ISSN 1566-2535.
doi: 10.1016/j.inffus.2010.01.006. Special Issue on Intelligent
Transportation Systems.

[3] A. Pinto and A. Matos. Maresye: A hybrid imaging system for1480

underwater robotic applications. Information Fusion, 55:16 –
29, 2020. ISSN 1566-2535. doi: 10.1016/j.inffus.2019.07.014.

[4] M. Tsogas, N. Floudas, P. Lytrivis, A. Amditis, and A. Poly-
chronopoulos. Combined lane and road attributes extraction
by fusing data from digital map, laser scanner and camera.1485

Information Fusion, 12(1):28 – 36, 2011. ISSN 1566-2535.
doi: 10.1016/j.inffus.2010.01.005. Special Issue on Intelligent
Transportation Systems.

[5] M. Oliveira, V. Santos, and A. Sappa. Multimodal inverse per-
spective mapping. Information Fusion, 24:108 – 121, 2015.1490

ISSN 1566-2535. doi: 10.1016/j.inffus.2014.09.003.
[6] W. Jiuqing, C. Xu, B. Shaocong, and L. Li. Distributed data

association in smart camera network via dual decomposition.
Information Fusion, 39:120 – 138, 2018. ISSN 1566-2535. doi:
10.1016/j.inffus.2017.04.007.1495

[7] B. Rasti and P. Ghamisi. Remote sensing image classification
using subspace sensor fusion. Information Fusion, 64:121 –
130, 2020. ISSN 1566-2535. doi: 10.1016/j.inffus.2020.07.002.

[8] C. Boucher, J. Noyer, and M. Benjelloun. 3d structure and
motion recovery in a multisensor framework. Information Fu-1500

sion, 2(4):271 – 285, 2001. ISSN 1566-2535. doi: 10.1016/
S1566-2535(01)00045-8.

[9] S. Agarwal, N. Snavely, S. Seitz, , and R. Szeliski. Bundle ad-
justment in the large. In Computer Vision - ECCV 2010, pages
29–42, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.1505

ISBN 978-3-642-15552-9.
[10] B. Lourenço, T. Madeira, P. Dias, V. Santos, and M. Oliveira.

2d lidar to kinematic chain calibration using planar features of
indoor scenes. Industrial Robot: the Int. journal of robotics
research and application, 47(5):647–655, Jan 2020. ISSN 0143-1510

991X. doi: 10.1108/IR-09-2019-0201.
[11] A. Huang, M. Antone, E. Olson, L. Fletcher, D. Moore, S. Teller,

and J. Leonard. A high-rate, heterogeneous data set from the
darpa urban challenge. The Int. Journal of Robotics Research,
29(13):1595–1601, 2010. doi: 10.1177/0278364910384295.1515

[12] L. Huang and M. Barth. A novel multi-planar LIDAR and com-
puter vision calibration procedure using 2d patterns for auto-
mated navigation. In 2009 IEEE Intelligent Vehicles Symposium.
IEEE, June 2009. doi: 10.1109/ivs.2009.5164263.

[13] Y. Liao, G. Li, Z. Ju, H. Liu, and D. Jiang. Joint kinect and mul-1520

tiple external cameras simultaneous calibration. In 2017 2nd Int.
Conf. on Advanced Robotics and Mechatronics (ICARM), pages
305–310, Aug 2017. doi: 10.1109/ICARM.2017.8273179.

[14] J. Rehder, R. Siegwart, and P. Furgale. A general approach to
spatiotemporal calibration in multisensor systems. IEEE Trans.1525

on Robotics, 32(2):383–398, April 2016. ISSN 1552-3098. doi:
10.1109/TRO.2016.2529645.

[15] V. Pradeep, K. Konolige, and E. Berger. Calibrating a Multi-
arm Multi-sensor Robot: A Bundle Adjustment Approach, pages
211–225. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.1530

ISBN 978-3-642-28572-1. doi: 10.1007/978-3-642-28572-1_
15.

[16] I. Ali, O. Suominen, A. Gotchev, and E. Morales. Methods for
Simultaneous Robot-World-Hand–Eye Calibration: A Compar-
ative Study. Sensors, 19(12), 2019. ISSN 1424-8220. doi:1535

10.3390/s19122837.
[17] M. Oliveira, A. Castro, T. Madeira, E. Pedrosa, P. Dias, and

25

https://github.com/lardemua/atom


V. Santos. A ROS framework for the extrinsic calibration
of intelligent vehicles: A multi-sensor, multi-modal approach.
Robotics and Autonomous Systems, page 103558, 2020. ISSN1540

0921-8890. doi: 10.1016/j.robot.2020.103558.
[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J Leibs,

R. Wheeler, and A. Ng. ROS: an open-source Robot Operating
System. In ICRA Workshop on Open Source Software, 2009.

[19] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Soft-1545

ware Tools, 2000.
[20] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d

cameras. In Proc. of the Int. Conf. on Intelligent Robot Systems
(IROS), 2013.

[21] P. Fankhauser, M. Bloesch, D. Rodriguez, R. Kaestner, M. Hut-1550

ter, and R. Siegwart. Kinect v2 for mobile robot navigation:
Evaluation and modeling. In IEEE Int. Conf. on Advanced
Robotics (ICAR), 2015.

[22] E. Marchand, F. Spindler, and F. Chaumette. Visp for visual
servoing: a generic software platform with a wide class of robot1555

control skills. IEEE Robotics and Automation Magazine, 12(4):
40–52, December 2005.

[23] S. Trinh, F. Spindler, E. Marchand, and F. Chaumette. A modu-
lar framework for model-based visual tracking using edge, tex-
ture and depth features. In IEEE/RSJ Int. Conf. on Intelligent1560

Robots and Systems, IROS’18, Madrid, Spain, October 2018.
[24] P. Furgale, J. Rehder, and R. Siegwart. Unified temporal and

spatial calibration for multi-sensor systems. In 2013 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pages 1280–1286,
2013.1565

[25] R. Tsai and R. Lenz. A New Technique for Fully Autonomous
and Efficient 3D Robotics Hand/Eye Calibration. IEEE Trans.
on Robotics and Automation, 5(3):345–358, jun 1989. ISSN
1042296X. doi: 10.1109/70.34770.

[26] R. Horaud and F. Dornaika. Hand-eye calibration. The Int. Jour-1570

nal of Robotics Research, 14(3):195–210, Jun 1995.
[27] R. Horaud and F. Dornaika. Hand-eye calibration. The Int. Jour-

nal of Robotics Research, 14(3):195–210, 1995. doi: 10.1177/
027836499501400301.

[28] F. Dornaika and R. Horaud. Simultaneous robot-world and1575

hand-eye calibration. IEEE Trans. on Robotics and Automation,
14(4):617–622, Aug 1998. ISSN 2374-958X. doi: 10.1109/70.
704233.

[29] F. Park and B. Martin. Robot sensor calibration: solving
AX=XB on the Euclidean group. IEEE Trans. on Robotics and1580

Automation, 10(5):717–721, 1994. doi: 10.1109/70.326576.
[30] A. Liz, L. Wang, and D. Wu. Simultaneous robot-world

and hand-eye calibration using dual-quaternions and Kronecker
product. Int. Journal of the Physical Sciences, 5(10):1530–
1536, 2010.1585

[31] M. Shah. Solving the Robot-World/Hand-Eye Calibration Prob-
lem Using the Kronecker Product. Journal of Mechanisms and
Robotics, 5(3), 06 2013. ISSN 1942-4302. doi: 10.1115/1.
4024473.

[32] A. Tabb and K. Yousef. Solving the robot-world hand-eye(s)1590

calibration problem with iterative methods. Machine Vision and
Applications, 28(5-6):569–590, aug 2017. ISSN 0932-8092.
doi: 10.1007/s00138-017-0841-7.

[33] A. Malti. Hand–eye calibration with epipolar constraints: Ap-
plication to endoscopy. Robotics and Autonomous Systems, 611595

(2):161–169, February 2013. ISSN 0921-8890. doi: 10.1016/j.
robot.2012.09.029.

[34] M. Oliveira, A. Castro, T. Madeira, P. Dias, and V. Santos. A
General Approach to the Extrinsic Calibration of Intelligent Ve-
hicles Using ROS. In Robot 2019: Fourth Iberian Robotics1600

Conf., pages 203–215, Cham, 2020. Springer Int. Publishing.
ISBN 978-3-030-35990-4.

[35] Q. Zhang and R. Pless. Extrinsic calibration of a cam-
era and laser range finder (improves camera calibration). In
2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems1605

(IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2301–
2306. IEEE, 2004.

[36] Y. Zhang, G. Li, X. Xie, and Z. Wang. A new algorithm for
accurate and automatic chessboard corner detection. In 2017
IEEE Int. Symposium on Circuits and Systems (ISCAS), pages1610

1–4, 2017. doi: 10.1109/ISCAS.2017.8050637.
[37] S. Jurado, R. Salinas, F. Cuevas, and R. Carnicer. Generation

of fiducial marker dictionaries using mixed integer linear pro-
gramming. Pattern Recognition, 51:481 – 491, 2016. ISSN
0031-3203. doi: 10.1016/j.patcog.2015.09.023.1615

[38] F. Ramirez, F. Salinas, and R. Carnicer. Speeded up detection of
squared fiducial markers. Image and Vision Computing, 76:38 –
47, 2018. ISSN 0262-8856. doi: 10.1016/j.imavis.2018.05.004.

[39] D. Hu, D. DeTone, and T. Malisiewicz. Deep charuco: Dark
charuco marker pose estimation. In 2019 IEEE/CVF Conf. on1620

Computer Vision and Pattern Recognition (CVPR), pages 8428–
8436, 2019.

[40] M. Ruan and D. Huber. Calibration of 3d sensors using a spher-
ical target. In 2014 2nd Int. Conf. on 3D Vision, volume 1, pages
187–193, 2014. doi: 10.1109/3DV.2014.100.1625

[41] M. Pereira, D. Silva, V. Santos, and P. Dias. Self calibration of
multiple lidars and cameras on autonomous vehicles. Robotics
and Autonomous Systems, 83:326 – 337, Sep 2016.

[42] D. Rato and V. Santos. Automatic registration of ir and rgb
cameras using a target detected with deep learning. In 20201630

IEEE Int. Conf. on Autonomous Robot Systems and Competi-
tions (ICARSC), pages 287–293, 2020.

[43] Y. Kwon, J. Jang, and O. Choi. Automatic sphere detection
for extrinsic calibration of multiple rgbd cameras. In 2018 18th
Int. Conf. on Control, Automation and Systems (ICCAS), pages1635

1451–1454, Oct 2018.
[44] M. Almeida, P. Dias, M. Oliveira, and V. Santos. 3d-2d laser

range finder calibration using a conic based geometry shape. In
Image Analysis and Recognition, pages 312–319, Jun 2012.

[45] D. Gao, J. Duan, X. Yang, and B. Zheng. A method of spatial1640

calibration for camera and radar. In 2010 8th World Congress
on Intelligent Control and Automation, pages 6211–6215, July
2010. doi: 10.1109/WCICA.2010.5554411.

[46] C. Guindel, J Beltrán, D. Martín, and F. García. Automatic ex-
trinsic calibration for lidar-stereo vehicle sensor setups. 20171645

IEEE 20th Int. Conf. on Intelligent Transportation Systems
(ITSC), pages 1–6, 2017.

[47] M. de Paula, C. Jung, and L. Silveira. Automatic on-the-fly ex-
trinsic camera calibration of onboard vehicular cameras. Expert
Systems with Applications, 41(4):1997–2007, March 2014. doi:1650

10.1016/j.eswa.2013.08.096.
[48] S. Álvarez, D. Llorca, and M. Sotelo. Hierarchical camera auto-

calibration for traffic surveillance systems. Expert Systems with
Applications, 41(4):1532–1542, March 2014. doi: 10.1016/j.
eswa.2013.08.050.1655

[49] G. Mueller and H. Wuensche. Continuous stereo camera cali-
bration in urban scenarios. In 2017 IEEE 20th Int. Conf. on In-
telligent Transportation Systems (ITSC), pages 1–6, Oct 2017.
doi: 10.1109/ITSC.2017.8317675.

[50] L. Wu and B. Zhu. Binocular stereovision camera calibra-1660

tion. In 2015 IEEE Int. Conf. on Mechatronics and Automa-
tion (ICMA), pages 2638–2642, Aug 2015. doi: 10.1109/ICMA.
2015.7237903.

[51] R. Su, J. Zhong, Q. Li, S. Qi, H. Zhang, and T. Wang.
An automatic calibration system for binocular stereo imaging.1665

In 2016 IEEE Advanced Information Management, Commu-
nicates, Electronic and Automation Control Conf. (IMCEC),

26



pages 896–900, Oct 2016. doi: 10.1109/IMCEC.2016.7867340.
[52] Y. Ling and S. Shen. High-precision online markerless stereo

extrinsic calibration. In 2016 IEEE/RSJ Int. Conf. on Intelligent1670

Robots and Systems (IROS), pages 1771–1778, Oct 2016. doi:
10.1109/IROS.2016.7759283.

[53] V. Dinh, T. Nguyen, and J. Jeon. Rectification using different
types of cameras attached to a vehicle. IEEE Trans. on Image
Processing, 28(2):815–826, Feb 2019. ISSN 1057-7149. doi:1675

10.1109/TIP.2018.2870930.
[54] A. Khan, G. Camarasa, L. Sun, and J. P. Siebert. On the cali-

bration of active binocular and rgbd vision systems for dual-arm
robots. In 2016 IEEE Int. Conf. on Robotics and Biomimetics
(ROBIO), pages 1960–1965, Dec 2016. doi: 10.1109/ROBIO.1680

2016.7866616.
[55] F. Basso, E. Menegatti, and A. Pretto. Robust intrinsic and ex-

trinsic calibration of rgb-d cameras. IEEE Trans. on Robotics,
34(5):1315–1332, Oct 2018. ISSN 1552-3098. doi: 10.1109/
TRO.2018.2853742.1685

[56] Y. Qiao, B. Tang, Y. Wang, and L. Peng. A new approach to self-
calibration of hand-eye vision systems. In 2013 Int. Conf. on
Computational Problem-Solving (ICCP), pages 253–256, Oct
2013. doi: 10.1109/ICCPS.2013.6893596.

[57] C. Zhang and Z. Zhang. Calibration between depth and color1690

sensors for commodity depth cameras. In 2011 IEEE Int. Conf.
on Multimedia and Expo, pages 1–6, July 2011. doi: 10.1109/
ICME.2011.6012191.

[58] G. Chen, G. Cui, Z. Jin, F. Wu, and X. Chen. Accurate intrinsic
and extrinsic calibration of rgb-d cameras with gp-based depth1695

correction. IEEE Sensors Journal, 19(7):2685–2694, April
2019. ISSN 1530-437X. doi: 10.1109/JSEN.2018.2889805.

[59] F. Vasconcelos, J. Barreto, and U. Nunes. A minimal solution
for the extrinsic calibration of a camera and a laser-rangefinder.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 341700

(11):2097–2107, Nov 2012.
[60] Q. Zhang and R. Pless. Extrinsic calibration of a camera

and laser range finder (improves camera calibration). In 2004
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)
(IEEE Cat. No.04CH37566), volume 3, pages 2301–2306 vol.3,1705

Sep. 2004. doi: 10.1109/IROS.2004.1389752.
[61] M. Häselich, R. Bing, and D. Paulus. Calibration of multiple

cameras to a 3d laser range finder. In 2012 IEEE Int. Conf.
on Emerging Signal Processing Applications, pages 25–28, Jan
2012.1710

[62] Z. Chen, X. Yang, C. Zhang, and S. Jiang. Extrinsic calibra-
tion of a laser range finder and a camera based on the automatic
detection of line feature. In 2016 9th Int. Congress on Image
and Signal Processing, BioMedical Engineering and Informat-
ics (CISP-BMEI), pages 448–453, Oct 2016.1715

[63] M. Velas, M. Spanel, Z. Materna, and A. Herout. Calibration of
rgb camera with velodyne lidar. 2014.

[64] G. Lee, J. Lee, and S. Park. Calibration of vlp-16 lidar and multi-
view cameras using a ball for 360 degree 3d color map acquisi-
tion. In 2017 IEEE Int. Conf. on Multisensor Fusion and Inte-1720

gration for Intelligent Systems (MFI), pages 64–69, Nov 2017.
doi: 10.1109/MFI.2017.8170408.

[65] J. Levinson and S. Thrun. Automatic online calibration of cam-
eras and lasers. In Robotics: Science and Systems, 2013.

[66] S. Verma, J. Berrio, S. Worrall, and E. Nebot. Automatic ex-1725

trinsic calibration between a camera and a 3D lidar using 3D
point and plane correspondences. In 2019 IEEE Intelligent
Transportation Systems Conf. (ITSC), pages 3906–3912, Auck-
land, New Zealand, oct 2019. IEEE. doi: 10.1109/ITSC.2019.
8917108.1730

[67] W. Wang, K. Sakurada, and N. Kawaguchi. Reflectance inten-
sity assisted automatic and accurate extrinsic calibration of 3d

LiDAR and panoramic camera using a printed chessboard. Re-
mote Sensing, 9(8):851, August 2017. doi: 10.3390/rs9080851.

[68] V. Fremont and P. Bonnifait. Extrinsic calibration between a1735

multi-layer lidar and a camera. In 2008 IEEE Int. Conf. on Mul-
tisensor Fusion and Integration for Intelligent Systems. IEEE,
August 2008. doi: 10.1109/mfi.2008.4648067.

[69] F. M. Mirzaei, D. G. Kottas, and S. I. Roumeliotis. 3d LI-
DAR–camera intrinsic and extrinsic calibration: Identifiability1740

and analytical least-squares-based initialization. The Int. Jour-
nal of Robotics Research, 31(4):452–467, April 2012. doi:
10.1177/0278364911435689.

[70] G. Pandey, J. McBride, S. Savarese, and R. Eustice. Extrinsic
calibration of a 3d laser scanner and an omnidirectional camera.1745

IFAC Proceedings Volumes, 43(16):336–341, 2010. doi: 10.
3182/20100906-3-it-2019.00059.

[71] J. Huang and J. Grizzle. Improvements to target-based 3d Li-
DAR to camera calibration. IEEE Access, 8:134101–134110,
2020. doi: 10.1109/access.2020.3010734.1750

[72] H. Zhuang, Z. Roth, and R. Sudhakar. Simultaneous robot/world
and tool/flange calibration by solving homogeneous transforma-
tion equations of the form AX=YB. IEEE Trans. on Robotics
and Automation, 10(4):549–554, Aug 1994. ISSN 2374-958X.
doi: 10.1109/70.313105.1755

[73] L. Zhou, Z. Li, and M. Kaess. Automatic extrinsic calibration of
a camera and a 3d LiDAR using line and plane correspondences.
In 2018 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS). IEEE, October 2018. doi: 10.1109/iros.2018.8593660.

[74] A. Dhall, K. Chelani, V. Radhakrishnan, and K. M. Krishna.1760

Lidar-camera calibration using 3d-3d point correspondences,
2017.

[75] E. Kim and S. Park. Extrinsic calibration between camera and
LiDAR sensors by matching multiple 3d planes. Sensors, 20(1):
52, December 2019. doi: 10.3390/s20010052.1765

[76] H. Whyte and T. Bailey. Simultaneous localization and map-
ping: part i. IEEE Robotics & Automation Magazine, 13(2):
99–110, June 2006. doi: 10.1109/mra.2006.1638022.

[77] V. Santos, J. Almeida, E. Ávila, D. Gameiro, M. Oliveira,
R. Pascoal, R. Sabino, and P. Stein. Atlascar - technologies for a1770

computer assisted driving system, on board a common automo-
bile. In 13th Int. IEEE Conf. on Intelligent Transpor tation Sys-
tems, pages 1421–1427, Sep. 2010. doi: 10.1109/ITSC.2010.
5625031.

[78] V. Santos, D. Rato, P. Dias, and M. Oliveira. Multi-sensor ex-1775

trinsic calibration using an extended set of pairwise geometric
transformations. Sensors, 20(23), 2020. ISSN 1424-8220. doi:
10.3390/s20236717.

[79] D. Noel, J. Sarmiento, R. Ojeda, and J. Jimenez. Automatic
multi-sensor extrinsic calibration for mobile robots. IEEE1780

Robotics and Automation Letters, 4(3):2862–2869, July 2019.
doi: 10.1109/lra.2019.2922618.

[80] A. Aguiar, M. Oliveira, E. Pedrosa, and F. Santos. A cam-
era to lidar calibration approach through the optimization of
atomic transformations. Expert Systems with Applications, page1785

114894, 2021. ISSN 0957-4174. doi: 10.1016/j.eswa.2021.
114894. IF 5.423 (2020).

[81] E. Pedrosa, M. Oliveira, N. Lau, and V. Santos. A general
approach to hand–eye calibration through the optimization of
atomic transformations. IEEE Trans. on Robotics, pages 1–15,1790

2021. doi: 10.1109/TRO.2021.3062306. IF 6.123 (2020).
[82] J. Hornegger and C. Tomasi. Representation issues in the ml

estimation of camera motion. In Proc. of the IEEE Int. Conf.
on Computer Vision, volume 1, pages 640 – 647 vol.1, 02 1999.
ISBN 0-7695-0164-8. doi: 10.1109/ICCV.1999.791285.1795

[83] M. Branch, T. Coleman, and Y. Li. A subspace, inte-
rior, and conjugate gradient method for Large-Scale Bound-

27



Constrained minimization problems. SIAM J. Sci. Comput.,
21(1):1–23, January 1999. ISSN 1064-8275. doi: 10.1137/
S1064827595289108.1800

[84] T. Foote. tf: The transform library. In 2013 IEEE Conf. on
Technologies for Practical Robot Applications (TePRA), pages
1–6, April 2013. doi: 10.1109/TePRA.2013.6556373.

[85] X. Gao, X. Hou, J. Tang, and H. Cheng. Complete solution clas-
sification for the perspective-three-point problem. IEEE Trans.1805

Pattern Anal. Mach. Intell., 25:930–943, 2003.
[86] A. Sanchez, J. Cetto, and F. Noguer. Exhaustive linearization for

robust camera pose and focal length estimation. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 35(10):2387–2400,
2013.1810

28


