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Abstract

The fusion of data from different sensors often requires that an accurate geometric transformation between the sen-
sors is known. The procedure by which these transformations is estimated is known as sensor calibration. The vast
majority of state of the art calibration approaches focus on specific pairwise combinations of sensor modalities, un-
suitable to calibrate robotic systems containing multiple sensors of varied modalities. This paper presents a novel
calibration methodology which is applicable to multi-sensor, multi-modal robotic systems. The approach formulates
the calibration as an extended optimization problem, in which the poses of the calibration patterns are also estimated.
It makes use of a topological representation of the coordinates frames in the system, in order to recalculate the poses
of the sensors throughout the optimization. Sensor poses are retrieved from the combination of geometric transforma-
tions which are atomic, in the sense that they are indivisible. As such, we refer to this approach as ATOM - Atomic
Transformations Optimization Method. This makes the approach applicable to different calibration problems, such as
sensor to sensor, sensor in motion, or sensor to coordinate frame. Additionally, the proposed approach provides ad-
vanced functionalities, integrated into ROS, designed to support the several stages of a complete calibration procedure.
Results covering several robotic platforms and a large spectrum of calibration problems show that the methodology
is in fact general, and achieves calibrations which are as accurate as the ones provided by state of the art methods
designed to operate only for specific combinations of pairwise modalities.
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1. Introduction from the simple design of sensors that collect RGB and
depth information [2], to a stereo camera pair designed

Whenever an intelligent or robotic system is com- to carry out underwater 3D reconstruction [3], to more
posed of two or more sensors, a procedure that estimates complex sensor setups such as intelligent vehicles [4, 5],
the geometric transformations between those sensors is . smart camera networks [6], or even multi-sensor image
required. The process is called extrinsic calibration or analysis from datasets captured by diverse airborne or
sensor registration [1]. spaceborne sensors [7]. Thus, one may argue that an ac-
The vast majority of sensor fusion techniques operate curate estimation of those transformations, i.e., a good
under the assumption that accurate geometrical trans- extrinsic calibration, is a critical component of any data

formations between the sensors that collect the data are

20 fusion methodology.
known. This is valid for many different applications,

Although the problem of extrinsic calibration is well
defined, in practice there are several variants of that

*Corresponding author problem. As discussed previously, the classical formu-
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filipe.n.santos@inesctec.pt (Filipe Neves dos Santos), will be referred to as sensor to sensor calibration
paulo.dias@ua.pt (Paulo Dias), vitor@ua.pt (Vitor Santos) problems. One variant is the calibration of a single
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sensor which moves over time. Here, the goal is to
find the geometric transformations between the poses
of the sensor at the time each data was collected. For
example, Boucher et al. [8], Agarwal et al. [9] propose
structure from motion methodologies in which the mo-
tion of a camera, i.e. the set of camera poses, is recov-
ered in order to reconstruct the scene. We will refer to
these as sensor in motion calibration problems. Fi-
nally, there is another variant of the extrinsic calibration
problem: the calibration of a sensor w.r.t. a particu-
lar coordinate frame. In these cases, the sensor must
move in order to collect data from different viewpoints
requiring, therefore, that the motion of the system must
be known. Thus, in these cases, one requires a kine-
matic chain which can be actuated for the purpose of
collecting data from multiple viewpoints. We will refer
to these as sensor to frame calibration problems. One
example of a sensor to frame calibration problem was
presented in [10], where the transformation between a
2D Light Detection And Ranging (LiDAR) and the pan
and tilt unit in which it was mounted was estimated.

Calibration problems can also be defined based on the
number of sensors as well as their modalities. Com-
mon sensor modalities include RGB cameras, depth
cameras, LiDARs, 3D LiDARs, Radio Detection And
Rangings (RaDARs), etc. In addition to this, some
robotic systems sometimes have several sensors, which
results in a large number of possible system config-
urations, containing single-modality pairwise configu-
rations (e.g. camera to camera or 2D LiDAR to 2D
LiDAR as in [5, 11]), single-modality multi-sensor con-
figurations (e.g. cameras networks as in [6]), multi-
modal pairwise configurations (e.g. camera to depth
camera as in [2], or camera to 3D LiDAR as in [12])
and, finally, the general scenario of the calibration of
multi-modal, multi-sensor systems (depth camera and
multiple RGB cameras as in [13], several cameras and
inertial measurement units as in [14], calibration of sen-
sors in the PR2 robot as in [15]). Obviously, it is also
possible to compound this criteria with the former to
get, for example, a single-sensor single modality, sen-
sor to frame calibration problem (e.g. [16]), or a multi-
sensor multi-modality problem (e.g. [17]).

The large amount of variants of the extrinsic calibra-
tion problem, either due to the configuration of the sys-
tem, the number of sensors, or the sensor modalities,
have led to large efforts from the research community in
addressing each and every one of these variants, as will
be detailed in section 2. However, these works have
focused mainly on tackling the many combinations of
pairwise configurations of different modalities. In fact,
there are very few works which consider the general
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case of the calibration of multi-modal, multi-sensor sys-
tems, and even less if one considers systems that may
have sensor to sensor, sensor in motion and sensor to
coordinate frame configurations.

This paper proposes a novel methodology
called  Atomic  Transformations  Optimization
Method (ATOM) which generalizes the extrinsic
calibration procedure in such way that it is able to carry
out the calibration of all the cases discussed above.
Atomic transformations are geometric transformations
which are not aggregated, i.e. they are indivisible.
Optimizing these transformations fully generalizes the
calibration problem, as will be detailed in section 3.

Robot Operating System (ROS) [18] based architec-
tures are now the golden standard in the development of
robotic systems. There are several ROS based calibra-
tion packages in the public domain, from (Open Source
Computer Vision Library (OpenCV) [19] based intrinsic
camera' and stereo camera pair” calibrations, to RGB-D
camera calibration [20]? [21]%, to hand-eye calibration
[22, 23]°. ROS integration ranges from using input data
recorded in rosbag files as in [24], to using ROS stan-
dard messages as in [22]. Despite this, there is no avail-
able ROS package that provides a complete solution for
the calibration of robots in general.

In addition to a general calibration methodology,
ATOM also offers a complete calibration framework
that addresses all the stages of a calibration pipeline:
definition of the initial pose of the sensors, data collec-
tion and labelling and, finally, the actual optimization
procedure. All these tools are seamlessly integrated into
ROS.

This document is organized as follows: section 2 will
detail existing calibration approaches and how they re-
late to our proposal, section 3 describes the proposed
methodology, section 4 offers a complete description
of the framework, available tools and integration with
ROS, and finally section 5 and section 6 provide results
and conclusions respectively.

2. Related Work

In general terms, an extrinsic calibration requires that
two or more sets of data are associated by matching

'http://wiki.ros.org/openni_launch/Tutorials/
IntrinsicCalibration

nttp://wiki.ros.org/camera_calibration/
Tutorials/StereoCalibration

3http://alexteichman.com/octo/clams

“https://github.com/code-iai/iai_kinect2

Shttp://wiki.ros.org/rc_visard/Tutorials/
HandEyeCalibration
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unique key points in those sets. Once these associa-
tions are retrieved, it is possible to formulate a pro-
cedure that estimates the parameters of the geometric
transformations between the sensors using the associa-
tions as input. An extrinsic calibration can be designed
using closed form solutions [25, 26, 27, 28, 29, 30, 31]
or with iterative procedures [32, 16, 33, 34, 17]. In the
later, an optimization problem is formulated with the
goal of finding the poses of the sensors, i.e. the con-
figuration of optimized parameters, which minimize the
distance between the key-point associations. Since the
accuracy of those associations is critical to the estima-

tion procedure, most calibration approaches make use of 1ss

calibration patterns, i.e., objects that are robustly and ac-
curately detected. Moreover, in the case of multi-modal
sensor systems, a calibration pattern adequate to all ex-
isting sensor modalities must be selected. For camera
sensor modalities, the standard calibration patterns are
chessboards [35, 36] and fiducial markers [37, 38, 39].
For range measuring based modalities such as LiDAR
or RaDAR, patterns which contain a distinct physical
shape signatures are used, such as spherical objects
[40, 41, 42, 43], conic objects [44], or planar cardboards
containing circular holes [45, 46]. A minority of works
perform calibration without using a pattern. In these,
the features in the scene are used as input to the cali-
bration. In autonomous driving, for example, lane de-
tection and vanishing point tracking are common ap-
proaches for online calibration [47, 48]. [10] propose
to make use of planes in indoor scenes (e.g. walls, floor,
etc.) for supporting the calibration of a 2D LiDAR on
a pan and tilt unit system. Patternless calibration ap-
proaches have the advantage of operating continuously
if necessary, but loose in accuracy and robustness when
compared to offline, one shot procedures. As such, of-
fline calibrations are still the most commonly used.

2.1. Sensor to Sensor calibration problems

As a critical component of intelligent or robotic sys-
tems, the topic of extrinsic calibration has been exten-
sively addressed in the literature over the past decades.
The large bulk of these works have focused on a par-
ticular case of sensor to sensor calibration prob-
lems, which is the case of systems containing a sin-
gle pair of sensors, i.e. pairwise calibrations. In
this regard, most combinations of modalities have al-
ready been covered: RGB to RGB camera calibration
[49, 50, 51, 52, 53, 41], RGB to depth camera calibra-
tion [43, 54, 55, 56, 57, 58], RGB camera to 2D LiDAR
[59,41, 57,60, 61, 62,63, 46], 2D LiDAR to 3D LiDAR
[44]; RGB camera to 3D LiDAR [64, 46, 65], RGB
camera to radar [45], etc.
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The problem of RGB to RGB camera calibration has
received a great deal of attention from the research com-
munity, in particular in the case of two camera stereo
systems [49, 50, 51, 52, 53]. The classic approach is
to carry out an optimization which estimates the trans-
formation between the cameras using the reprojection
error as guidance. The optimization procedure may also
include the estimation of the intrinsic parameters [50].
RGB to RGB camera calibration methodologies have
also been proposed to address the problem of online cal-
ibration [49, 51] and also markerless calibration [52].

The great majority of the works found in the literature
focused on pairwise calibration between an RGB cam-
era and a 3D LiDAR are based on the work of Huang
and Barth [12], where the calibration is performed in
two stages: first using closed-form equation; and sec-
ond, a maximum likelihood estimation refinement. Sim-
ilarly, Verma et al. [66] use a standard chessboard to
calibrate a perspective/fisheye camera and a 3D LiDAR
using a Genetic Algorithm. Wang et al. [67] propose a
work where the corners of the pattern are automatically
detected for both a panoramic camera and a 3D LiDAR
so that the calibration can be performed. For the Li-
DAR case, authors propose a detection based on the in-
tensity of reflectance of the beams. Fremont and Bonni-
fait [68], Guindel et al. [46] use circle-based patterns to
perform the extrinsic calibration. Mirzaei et al. [69] pro-
pose the estimation of a 3D LiDAR intrinsic parameters,
as well as the extrinsic calibration with a monocular
camera, through the minimization of a non-linear least
squares cost function. The calibration is used to build
photo-realistic 3D reconstruction of indoor and outdoor
scenes. Pandey et al. [70] calibrate a 3D LiDAR with
an omnidirectional camera also using a standard planar
pattern. To calibrate the system, the sensors should ob-
serve the pattern from at least three different points of
view. With this input, the extrinsic coefficients are cal-
culated with a non-linear optimization technique. With
the same purpose, Huang and Grizzle [71] use a pat-
tern of known dimensions and geometry and estimates
the pattern to LiDAR pose automatically using a fitting
algorithm.

Pairwise calibration approaches consider that the sen-
sors are rigidly attached. As such, these approaches can-
not handle the cases where a sensor moves during the
calibration procedure as in the sensor in motion cali-
bration problem and the sensor to frame calibration
problem.

2.2. Hand-eye calibration problem
Hand-eye calibration is defined as the process of esti-
mating the transformation between the end-effector, i.e.
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the hand of a robotic arm, and a camera, the eye, which
is rigidly attached to that end-effector [25]. The formu-
lation of the problem is expressed as:

AX=7B, (1
where A represents the known geometric transformation
from the hand to the robotic arm base, obtained using
forward kinematics, B denotes the known transforma-
tion from the eye to the world object, X specifies the
unknown transformation from the robotic arm base to
the world object and Z is the unknown transformation
from the hand to the eye [28].

Initial works proposed closed form solutions which
tackled the rotation and translation components of (1)
separately [72, 28]. Later on, Liz et al. [30] propose a
close form method to based on dual quaternions and the
Kronecker product that was able to obtain translations
and rotations simultaneously. Also using the Kronecker
product, Shah [31] introduced a close form method that
combines the Kronecker product and single value de-
composition to find a simultaneous solution.

In recent years, the formulation in (1) has been tack-
led using optimization methods to find the unknown
transformations, i.e. X and Z. Tabb and Yousef [32] in-
troduced an iterative method based on the minimization
of camera reprojection error, which solves the rotation
and translation components simultaneously. The paper
compares the proposed approach with other solutions
in the literature, and shows that the iterative approach
based on the reprojection error offers the best calibra-
tion results, which is later confirmed in [16].

One shortcoming of hand-eye calibration approaches
is that they are not able to tackle the multi-sensor case.
To address this, Tabb and Yousef [32] propose a formu-
lation that bundles all cameras into a single optimization
procedure, in what they refer to as hand-eye(s) calibra-
tion problem. Another common limitation is that they
are not able to handle both the eye-on-hand and eye-to-
base use cases simultaneously.

Because the robotic arm must move in order to col-
lect different views of the calibration pattern and what
is sought is the transformation from the camera to the
end-effector, the hand-eye calibration is both a sensor
in motion calibration problem as well as a sensor to
frame calibration problem. However, the focal aspect of
hand-eye calibration approaches is that all of them are
specialized in this particular problem, which means that
they are not suited to address sensor to sensor calibra-
tion problems, rarely tackle the multi-sensor case, and
only take into account a single sensor modality (RGB
cameras).
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2.3. Extension to the multi-sensor, multi-modal case

The generalization of pairwise calibration approaches
to the multi-sensor case, in which the number of sen-
sors is greater than two, is not straightforward. One
reason for this is that most calibration approaches are
designed to operate by processing the data from a sen-
sor tandem. In this way, the inclusion of a third sen-
sor would require additional pairwise procedures for all
pairwise combinations in the system. In fact, the most
common solution for the calibration of multi-sensor sys-
tems, to which we refer to as sequential pairwise ap-
proaches, is to run several pairwise calibrations and
arrange them in a graph-like sequential procedure, in
which one sensor calibrates with another, that then re-
lates to a third sensor, and so forth. Each pairwise cali-
bration will provide an estimate for the geometric trans-
formation that links two of the sensors in the system.
For example, Zhou et al. [73] present a system with a
3D LiDAR and a stereo camera system. However, to
calibrate the three sensors (LiDAR and two cameras),
two calibrations have to be performed: LiDAR to left
camera, and LiDAR to the right camera. In the same
way, with the purpose of fusing point clouds of multi-
ple stereo cameras, Dhall et al. [74] use a 3D LiDAR
to perform pairwise calibration with all the cameras in
the system. Only after obtaining the transformation be-
tween the range sensor and each camera of the stereo
system, the transformation between the stereo cameras
can be found. Similarly, Kim and Park [75] perform
six pairwise calibrations between a 3D LiDAR and six
monocular cameras mounted in an hexagonal plate that
constitute an omnidirectional camera.

In these sequential pairwise approaches, the complete
system can be described by a topological representa-
tion where nodes are sensor coordinate systems and the
edges are the estimated transformations between those
coordinate systems. Providing that the topological rep-
resentation is not disconnected, it is possible to com-
pute the transformation from any sensor to another by
retrieving the topological path between these sensors,
and combining the corresponding transformations that
have been estimated by pairwise calibrations.

Figure 1 shows an examples of these topological rep-
resentations considering a system with 4 sensors. Natu-
rally, the structure of this topological representation de-
pends on the pairwise calibrations that were selected.
For example, in visual hodometry [76], a sensor in mo-
tion calibration problem, that structure is of a linear
nature, since each image is connected only to images
within its spatio-temporal neighborhood. In the case of
intelligent vehicles or mobile robotic platforms in gen-
eral, one common approach is to establish one sensor
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as the reference sensor and calibrate all sensors w.r.t.
the reference one, which results in a pyramidal topolog-
ical structure (see Figure 1(a)). One example is [41], in
which a methodology for calibrating an intelligent vehi-
cle [77] is proposed, wherein all sensors are paired with
a reference sensor.

Sequential pairwise approaches have several short-
comings, which are detailed in the next lines. As dis-
cussed previously, they imply that one must choose
which pairwise combinations of sensors in the system
are used to run pairwise calibrations. Note that there
are many other alternative topological configurations to
Figure 1(a). Assume, for example, that the RGB to
LiDAR calibration is not very accurate: in that case one
could replace the calibration from Sensor 0 to Sensor 3
by a calibration from Sensor 2 to Sensor 3, which has a
different combination of modalities, depth and LiDAR.
This would result in a different topological configura-
tion for the same set of sensors. To ensure that there is
only one transformation from any sensor to any other,
the topological structure must be non redundant. That
leads to a selection of sensor combinations that is only
a subset of the total pairwise combinations that exist
in the system. Thus, the first shortcoming is that not
all available data is used for the calibration of the sys-
tem: transformations are estimated using only data pro-
vided from the selected sensor tandems, despite the fact
that data from additional sensors could be available and
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their inclusion prove relevant to the overall accuracy of oo

the calibration procedure. Figure 1 shows these unused
connections as dashed lines.

It is also possible to consider all available connec-
tions, but that leads to the additional problem of how to
cope with the redundancy in the topology. Santos et al.
[78] propose a multi-pairwise approach which considers
a set of pairwise calibrations. This results in a redun-
dant topological structure which is then post-processed
by averaging the redundant transformations. Figure 1(b)
shows an example of this configuration.

Because the transformations are computed in se-
quence, it is quite possible that errors may accumulate
over the sequence of connections. Since the accumu-
lation effect should be more noticeable for longer se-
quences, a valid strategy is to reduce the depth of the
topological graph as much as possible (e.g. a one level
pyramidal structure as in [41]). However, this approach
is limited to scenarios where the field of view of all sen-
sors overlap with the field of view of the reference sen-
sor, which is not always the case.

Another disadvantage is that the topology of the
transformations in the system is defined by the conve-
nience of the user, rather than because of the constraints
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or limitations of a calibration procedure. In our view,
the need to design a topology that accomodates the se-
quential arrangement of the calibration procedure is not
ideal. For example, in Figure 1(a) the decision to con-
nect Sensor 0 to Sensor 3 could be based on the need to
avoid the connection between Sensor 2 to Sensor 3, be-
cause the calibration of a depth to LIDAR modality pair
is less accurate or even non-existent. This kind of con-
venience based decision is very common but, instead, it
would be much more interesting to be able to define the
structure of transformations that best suits the system,
according to more relevant criteria, and then having a
calibration procedure that is able to calibrate the system
regardless of its topological configuration.

Another problem is scalability, because when using
pairwise combinations between sensors, the number of
pairwise combinations will grow considerably with the
increase in the number of sensors. This is notoriously
more problematic when attempting to use redundant
topological structures, because the number of paths to
go from one sensor to another explodes very quickly.
As aresult, sequential calibration approaches using sen-
sor pairs do not scale efficiently. Sequential pairwise
calibration approaches also do not scale well for multi-
modal systems. The reason is that, since the approach is
designed to evaluate sensor tandems, a specific method-
ology must be designed for each combination of modal-
ities, e.g. RGB to RGB camera, RGB camera to 3D
LiDAR, 3D LiDAR to 3D LiDAR etc. The inclusion of
a novel modality brings about the need to develop a new
set of methods to evaluate the novel modality against all
those previously known. Figure 1(c) provides an ex-
ample of these implications. The inclusion of a RaDAR
sensor would require three novel calibration methodolo-
gies to be developed.

There are a few works which address the problem of
calibration from a multi-sensor, simultaneous optimiza-
tion, perspective. Noel et al. [79] propose a method to
estimate the extrinsic calibration between multiple sen-
sors such as LIDARS, depth cameras and RGB cameras.
The calibration procedure is separated in two parts: a
motion-based approach that estimates 2D extrinsic pa-
rameters and a method that uses the observation of the
ground plane to estimate the remaining ones. It is worth
noting that this framework requires the robotic platform
to be moving. Liao et al. [13] propose a joint objective
function to simultaneously calibrate three RGB cameras
w.r.t. a depth camera. Authors report a significant im-
provement in the accuracy of the calibration. In Rehder
et al. [14], an approach for joint estimation of both tem-
poral offsets and spatial transformations between sen-
sors is presented. This approach is one of the few that
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Figure 1: Some alternative topological structures for a calibration procedure: (a) flat pyramidal configuration with Sensor O as reference; (b) using
all possible pairwise combinations in the calibration; (c) the inclusion of an additional sensor of a previously unknown RaDAR modality. Red lines
indicate new pairwise calibrations which would have to be implemented. Sensors are represented by ellipses, with the modality of each sensor
indicated below its name; solid lines represent pairwise combinations which are used in the calibration procedure; dashed lines represent additional

connections which are not used.

are not designed for a particular set of sensors, since
its methodology does not rely on unique properties of
specific sensors. It is able to calibrate systems contain-
ing both cameras and LiDARs. Moreover, the approach
does not require the usage of calibration patterns for the
LiDARs, using the planes present in the scene for that
purpose. In [15], a joint calibration of the joint offsets
and the sensors locations for a PR2 robot is proposed.
This method takes sensor uncertainty into account and
is modelled in a similar way to the bundle adjustment
problem.

This paper presents a general calibration formulation
that comprises sensor to sensor, sensor in motion and
sensor to frame calibration problems, as will be de-
tailed next. Our previous works have focused on the cal-
ibration of intelligent vehicles [34], agricultural robots
[80], and hand-eye systems [81]. In all those works,
the same baseline method based on the optimization of
Atomic Transformations is used.

3. Proposed Approach

As a case study to better illustrate the concepts that
will be detailed ahead, we will use a robotic system
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called Multi-Modal Test roBot (MMTBot) . This is a
simulated, conceptual robot, designed to test the perfor-
mance of advanced calibration methodologies. The sys-
tem contains the following sensors: lidar, a 3D LiDAR
mounted on the left side of a tripod; world camera, an
RGB camera mounted on the right side of that same tri-
pod; and a hand camera, a second RGB camera assem-
bled on the effector link of a robotic manipulator, which
is mounted on a table. The complete system is displayed
in Figure 2.

MMTBot is a multi-modal robotic system, which
combines RGB and LiDAR modalities. Moreover,
one of the RGB cameras (hand camera) is assembled
on the end effector of the roboic manipulator, which
brings a hand-eye calibration problem into the system.
In fact, because MMTBot is simultaneously a multi-
sensor, multi-modal, sensor to sensor, as well as a sensor
to frame calibration problem, there is no solution in the
literature which is able to conduct the complete, simu-
lateneous, calibration of this system.

3.1. Problem Formulation
From the analysis conducted in section 2, it is clear
that most calibration approaches operate using a pair-

Shttps://github.com/miguelriemoliveira/mmtbot
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Figure 2: The Multi-Modal Test roBot (MMTBot), a simulated
robotic system containing, from left to right in the figure: a RGB cam-
era and a 3D LiDAR mounted on a tripod, and a second RGB camera
assembled on the end effector of a robotic manipulator.

wise or set of pairwise evaluations. Thus, a calibration
of sensor s; w.r.t. a sensor s, can be generaly denoted
as the minimization of the following expression:

argmin Z Z e (Sl Tszad[c,sl]vd[qsz] ) {A'Sl }a {)va}) )

IT2 ceC deD
2

where *1'T*2 is the 4 x 4 homogeneous transformation
matrix between sensor s; and sensor s3; d is the detec-
tion taken from the set of detections D, which are rep-
resentations of the calibration pattern on data from the
sensors; {4} denotes the set of additional parameters
of the sensor required by the cost or error function e(-).
The cost function e(+) outputs one or more scalar values
refered to as residuals, which are to be minimized by the
optimization procedure; and finally, ¢ denotes the col-
lection taken from the set of collections C. To achieve
accurate estimates, calibration procedures minimize a
cost computed over several views of the calibration pat-
tern and / or robot pose. We refer to these time stamps
in which sensor data is acquired as collections. Col-
lections store not only sensor data but also the state of
the robotic system. As an example, a collection of the
MMTBot includes two images (one from each camera)
plus a point cloud (captured by the 3d lidar), as well as
all the transformations between coordinate frames. All
this data is collected at the same time. Figure 3 shows a
set of collections C, which have different configurations
of the robotic arm as well as poses of the calibration
pattern.

An example of the instantiation of (2) would be the
following: assume that both sensors are RGB cameras.
Each of the syncronized pair of images acquired by the
cameras constitutes a collection ¢, of two images in this
case. Then, the corners of the pattern as detected by a
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Figure 3: A dataset with multiple collections, each with a different
configuration of the robotic arm and pose of the calibration pattern.

chessboard detector would constitute the set of detec-
tions d|. g for a given image (collection ¢) and sensor
s. Thus, in this case the detections would be repre-
sented as pixel coordinates, i.e., points in 72, and the
cost function would recompute the distance between
the projected pixel coordinates and the detected coor-
dinates, often known as reprojection error. Since the
computation of the projection would require the intrin-
sic parameters of the cameras (and possibly also the dis-
tortion parameters) these would be included in the set of
additional parameters {1 }.

A multi-sensor scenario is defined as one in which the
number of sensors is greater than two. Let S : n(S) >3
denote the set of sensors in the system, and S represent
the set of pairwise combinations of the elements of S.
The extension of this pairwise approach to the multi-
sensor case requires that all, or at least a subset, of the
pairwise combinations in S are evaluated, which extends
(2) as follows:

argmin
{5iT} {s;,5;}€S c€C deD

e (AWTS]. e die,s;] {Asi b A }> 7

where {%'T*} is the set of estimated transformations
that correspond to the set of pairwise combinations S.
The critical issue with the pairwise formulation in (3)
is observed for multi-modal systems, that is, where the
sensors S in the system have diferent modalities. In
these cases, a variant of the cost function e(-) must be
implemented to cope with each pair of modalities in
the system. If the cost function is symmetric, mean-
ing it will provide the same results regardless of the or-
der by which the modalities are evaluated, the number
of function variants to be implemented is computed by

3
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Table 1: Number of cost function variants required as a function of
the type of cost function and the number of sensor modalities in the
system.

# modalities

Type of cost function 2 3 4 5 10 20
Sensor Pairwise Symmetric 1 3 6 10 45 190
Sensor Pairwise Assymmetric 2 6 12 20 90 380
Sensor to Pattern (ATOM) 2 3 4 5 10 20

the number of pairwise combinations of the modalities
in the system. If, on the other hand, the cost function
is assymmetric, e.g. if evaluating a RGB camera w.r.t.
a LiDAR is different from evaluating a LiDAR w.r.t.
a RGB camera, then the pairwise permutations of the
modalities define the number of cost function variants
to be implemented. Table 1 provides an analysis of the
problem, and clearly shows the scalability issue inher-
ent to pairwise formulations.

This paper proposes a formulation which is an alter-
native to parwise approaches. Our proposal is to aug-
ment the optimization problem, by extending the set
of parameters to optimize in order to include an esti-
mate, for each collection, of the transformations from
the world coordinate frame w to the calibration pattern
p coordinate frame, denoted as "'T”. This enables the
cost function to be considerably simplified, since it now
may use the estimated pose of the pattern to compute the
cost in a sensor to pattern logic. As such, the cost func-
tion does not have to evaluate pairs of sensors, which
avoids all the problems discussed above. The proposed
formulation is the following:

argmin Z e (STW, T,y {As}) NG
{TY}{"TP} 5€S ¢eC deD '

where {*T"} labelsize=Ist of transformations from the
world coordinate frame w to each sensor s, which must
be static in order to be calibrated, reason why they do
not contain collection index c¢. On the other hand, the
transformation "' TZ between the world w and pattern p
coordinate frames contains an index ¢ because the pat-
tern is placed on different positions for every collection.
Table 1 also shows how the proposed approach scales
well with the inclusion of additional modalities.

3.2. Atomic Transformations

The proposed calibration framework also requires
the definition of a topological structure which con-
tains information of the relationships between coordi-
nate frames, often referred to as a transformation tree.
The transformation tree for MMTBot is presented in Fi-
gure 4. There, it is possible to observe that the graph
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of transformations is a detailed representation of the
robotic system. As such, this representation often in-
cludes portions of the tree which are not relevant for the
calibration procedure, as is the case of the gripper com-
ponent, which for that reason appears greyed out in Fi-
gure 4. In addition to this, the tree also contains both
static as well as dynamic transformations, marked as
black and blue arrows in Figure 4 respectively. A static
transformation is defined as a transformation that does
not change for all collections of data used in the cali-
bration, i.e. if T¢, = TCJ. ,Vei,c; € C. For example, the
transformation from the fable to the base of the robotic
arm is static, while the transformation between the base
and the shoulder of that robotic arm is dynamic, since it
changes according to the motion of the arm. The trans-
formation tree also displays several branches of variable
depth, as can be observed by comparing the two cam-
eras, for example. Figure 4 also includes a pattern co-
ordinate frame, and a transformation from the world to
the pattern denoted as 'T? in the previous section.

The vast majority of calibration approaches typically
reduce this complexity, with the goal of simplifying
the calibration procedure. This is done by computing
aggregate transformations or eliminating some coordi-
nate frames. For example, most approaches designed to
tackle hand-eye calibration problems make use of (1),
in which the transformations A, X, Z and B are often
aggregated transformations.

We argue that, by preserving the complete topolog-
ical structure of transformations, it is possible to gen-
eralize all calibration problems. The proposal is to in-
clude all coordinate systems in the topological represen-
tation, and to store the values of all these transforma-
tions for all collections, so that the complete transfor-
mation tree can be recomputed during the optimization
procedure when required, and for any collection. We re-
fer to the transformations stored in this topological rep-
resentation as atomic transformations, in the sense that
they are not aggregated, are indivisible. The notation 7
is used to distinguish atomic transformations from the
other transformations. The method that we propose uses
these atomic transformations to formulate the optimiza-
tion procedure carried out for the calibration. As such,
we refer to it as Atomic Transformations Optimization
Method (ATOM).

Having a connected transformation tree, it is possible
to retrieve the unique topological route from one point
in the graph to another, i.e., the path from any coordinate
frame (f,) to any other (f3). With this, the transforma-
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Figure 4: The transformation tree for the Multi-Modal Test roBot
(MMTBot), a simulated robot containing two RGB cameras and a
lidar. The presented topology follows the structure of the sensors and
arm drivers as provided by the manufacturers, although some refer-
ence frames have been renamed or ommited for better readability.

tion between frames can be computed as follows:

faT{b — H fn7;f?l+l ’
fa€fa—Tp

®)

where /77" denotes the atomic transformation from
frame f,, to frame f, 11, and f; — f; is the topological
path that constitutes the sequence of coordinate frames
transversed to go from frame f, to frame f;. Note that
the collection ¢ appears in (5) to account for the fact
that some of the transformations may be dynamic, i.e.,
change from collection to collection.

Since the goal of the cost function is to evaluate
the error using a sensor to pattern approach (see (4)),
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what is sought is the transformation from the coordi-
nate frame of the sensor to the pattern p, denoted as STZ,
which can be retrieved from (5). This expression is de-
rived for all the sensors in the system. Also, to configure
the calibration procedure, it is necessary to select, for
each sensor, which of the atomic transformations will
be estimated during the process. The selection is arbi-
trary, provided that the selected transformation is static
and that it is included in the topological path of the re-
spective sensor. Also, the number of selected transfor-
mations is not limited. Take the example of Figure 4,
which shows the transformations that have been marked
to be calibrated. In the case of the world camera sensor,
the selected transformation was from the tripod right
support to the world camera. 1t is possible to, instead
calibrate the world camera to the world camera optical
transformation. Moreover, both transformations can be
selected simultaneously.

In the example of Figure 4 the selection of transfor-
mations to be calibrated is the simplest solution: just
a single, the most intuitive transformation per sensor
was selected. Sensor world camera has a topological
path weo — p = {wco,wc,trs,tri,w, p}, where wco, we,
trs, tri, w and p, stand for world camera optical, world
camera, tripod right support, tripod, world and pattern,
respectively. Assuming the selections of transforma-
tions to be calibrated shown in Figure 4, (5) becomes
for world camera sensor:

wcoT;; _ Hf,,fnfnﬁ .wcj\-rrs' H f,,7;fn+1 'w/tp , (6)

JnEWCO—WC fnEtrs—w

where the hat notation 7 is used to signal that these
atomic transformations are estimated. Also, note that
we1rs does not have a collection index ¢ because it must
be static by definition. Sensor 3d lidar has a topological
path 3/ — p = {31,31b,tls,tri,w, p}, respectively 3d li-
dar, 3d lidar base, tripod left support, tripod, world and
pattern. In this case, (5) becomes:

3IT'Z _ H fnTCfm '3lb7A—1[s_ H fnTCfm 'wsz‘p (D

fn€31—31b fnEtls—w

and sensor hand camera has a topological path hco —
p ={hco,hc,ee,...,b,tab,w, p}, respectively hand cam-
era optical, hand camera, end effector, base, table,
world and pattern. In this case, (5) becomes:

hcng — H fn7;fn+1 .hc'zf-ee . H f,,7;fn+1 .Wj\zp' (8)
fn€hco—hc fn€ee—w
Note that (6), (7) and (8) derive the particular expres-

sions of the MMTBot sensors. These expressions are
shown for clarity of presentation alone, because it is the
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expression (5) that is actually implemented, which auto-
matically derives into the particular expression of each
sensor. This proves that the proposed formulation suc-
cessfully generalizes any calibration problem, including
sensor to sensor, sensor in motion and sensor to frame
calibration problems.

The formulation for extrinsic calibration using a sen-
sor to pattern paradigm, as proposed in (4), can now be
rewritten to accommodate the atomic transformations,
which results in:

argmin ) Y ) e(‘Tf,d[c,s],{ls}),

{T} s€SceCdeD

€))

where {7} denotes the set of atomic transformations
marked to be optimized, and ST? is the transformation
from the sensor to the pattern, which is computed using
the atomic transformations.

3.3. RGB Camera Error Function

The calibration proposed in this paper is formulated
in (9). This is a generic expression, in which the error
function () must be instantiated for each existing sen-
sor modality. For the RGB sensor modality we propose
to use the reprojection error, computed by projecting the
known corners of the calibration pattern (x) to the cam-
era image, and comparing these projected coordinates
with the coordinates of the correponding detections in
the image (x):

lesd] = Hx[c,s,d] -P ([STf 'Xd}xyzvkm“s> Hi , (10)

where X, is the three-dimensional homogeneous coordi-
nates of the pattern corner that corresponds to detection
d, defined in the pattern’s local coordinate frame; the
operator [-] xyz 1S an operator that extracts the X,y and z
coordinates (removes the homogeneous coordinate); k
and u are the vector of camera intrinsics and distortion
parameters, both included in the set of additional param-
eters for the sensor, i.e., ky,u; € {A}; P is the projec-
tion function; x| 4 denotes the two-dimensional pixel
coordinates of detection d, found in the image acquired
by sensor s at collection c¢; and finnaly ||- ||% denotes the
Frobenius norm.

3.4. 3D LiDAR Error Function

The error function e(-) for 3D LiDAR modality is
composed of two distinct evaluations which compute
the orthogonal o(-) and logitudinal I(-) errors for each
detection, i.e. e(-) = {o(-),/(:)}. In the context of this
modality, a detection d is a range measurement per-
formed by the sensor which is labelled to belong to the
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Figure 5: Projection of calibration pattern’s corners (a) to the images
of world camera (b). Color coding distinguishes the detections.

calibration pattern, and the set of detections D is a sub-
set of the point cloud provided by the sensor.

The orthogonal error o(-) is computed by evaluating
the distance between the estimated pattern XoY plane
and the detection coordinates. One simple way to ac-
complish this is to transform the detection coordinates
from the LiDAR’s local coordinate frame to the pat-
tern’s coordinate frame, and evaluate the z coordinate,
as follows:

Ofcsa) = | (T2) " +xa] an
where x,; denotes the three dimensional coordinates of
the detections in the LiDAR’s local coordinate frame,
(*17) ~!is the transformation from the pattern p to the
sensor s, and the operator [-]_ extracts the z coordinate
of the point.

The longitudinal error /(-) makes use of the 3D coor-
dinates of the boundary of the calibration pattern with
measurements labeled as being boundaries in the set of
pattern measurements. Let B € D denote the set of mea-
surements labeled as boundaries, and x;, be the 3D coor-
dinates of the boundary point b. The process by which
these points are identified is called labelling and will
be detailed in subsequent sections. By transforming x;
to the pattern’s coordinate frame, it is then possible to
compare these coordinates with the known geometric
structure of the calibration pattern. Let Q denote the set
of 3D coordinates defined in the pattern’s local coordi-
nate frame that are obtained by the (spatialy periodic)
sampling of the lines that delimit the physical body of
the pattern. Thus, the longitudinal error can be written
as follows:

2
= min

12
mi ()

lewa =i | [a- 127 3

Xy F
where q denotes a 3D point defined in the pattern’s lo-
cal coordinate frame and obtained through sampling as
detailed above, and the operator -] xy extracts the x and
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Figure 6: The physical boundaries of the calibration pattern are rep-
resented by a set of sampled points Q (green cubes in (a)). The lon-
gitudinal evaluation finds the smallest distance between each of the
sensor measurements labeled as boundaries x; (large green spheres
in (b)) and all the points in Q. The orthogonal evaluation measures
the distance between the pattern’s XoY plane and the sensor measure-
ments labeled as belonging to the pattern, i.e., the detections x; (small
green spheres in (b)).

y coordinates of the point, which account for the longi-
tudinal component of the error. Figure 6 shows the pro-
cess of computing the LiDAR modality cost function.
The small green spheres in Figure 6 (b) represent the
range measurements labeled as belonging to the pattern,
i.e., X4 in (11)). For the orthogonal evaluation, these are
compared against the estimated pattern XoY plane. The
large green spheres in Figure 6 (b) represent the range
measurements labeled as boundaries, i.e. X, in (12).
In the case of the longitudinal evaluation these points
are compared against the points sampled from known
model of the calibration pattern, denoted as q in (12)
and represented as the green cubes of Figure 6 (b).

We have presented the cost functions for the RGB
and 3D LiDAR modalities. Natturally, the inclusion
of additional modalities would require the definition of
other cost functions, but their integration in the pro-
posed framework is straightforward.

3.5. Normalization of Residuals

ATOM proposes the usage of distinct error functions
for diferent sensor modalities. The output of these func-
tions is called residuals. Thus, each function contributes
to a global vector of residuals.

Note that, in the case of RGB cameras (see (10))
the error is measured in pixels. On the other hand, er-
rors for LiDAR, defined in (11) and (12) are expressed
in meters. Clearly, 1 pixel is not the same as 1 me-
ter but, to the optimizer, these residuals have the exact
same magnitude. This mismatch in units may lead to
differences in the magnitude of the residuals computed
for distinct modalities, which will result in an unbal-
anced optimization, where larger residuals from specific
modalities may overshadow residuals from other modal-
ities.

11

To address this problem of multi-modal residuals, we
propose to compute normalized residuals € using a nor-
malization mechanism as follows:

13)

where 1,,;) is the normalization factor for a given
modality m(s), and m(-) is a function that retrieves the
modality of sensor s. The normalization factors are
computed before the optimization starts, and are con-
stant throughout the procedure. The normalization fac-
tor for a given modality n, denoted as 1),, is computed
by taking into account all of the residuals of that same
modality:

Clesd) = Mm(s) " €[e.s.d)

L X X 8(nms)

SES cEC deD
~8(n,m(s))

Yy Ye

SES ceC deD less.d]

Ny = (14)

where eg] denotes the error computed using the values
of the parameters as provided at the start of the calibra-
tion procedure, i.e., the initial estimate, and &(-) is the
delta Kronecker function. Note that the normalization
factors are constant values during the optimization, and
are calculated once with the residuals that result from
the initial guess.

The proposed framework is general in the sense that
any parameter that is used to compute the error, i.e. that
has impact on the residuals, can be estimated. This in-
cludes not only the parameters that encode the geomet-
ric transformations, but also other additional parame-
ters. The most straightforward example is that of the
intrinsic parameters of RGB cameras, which are used to
compute the reprojection error (see (10)), and can there-
fore be simultaneously estimated during the calibration
procedure. As such, ATOM is not an exclusively ex-
trinsic calibration methodology. Rather, since intrinsic
parameters (and others) may also be included in the op-
timization, we view it is a general methodology for the
calibration of sensors. This leads to the extension of the
problem formulation, from the one proposed in (9), to
the following:

argmin Z Z Z E(STf,d[m],{is}),

{T}.{A} s€S ceC deD

5)

where {jt} denotes the set of additional parameters that
are also being estimated, along with the atomic transfor-
mations.

3.6. Non-linear Least Squares Optimization

By definition, least squares tries to minimize the
squared residuals (i.e the predicted error) of an objec-
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tive function with respect to its parameters:

arg;ninleF(rl»H2 : (16)

where F is an objective function that returns the resid-
uals vector given the parameters ¢. Considering (15),
we have ¢ = {{7},{A}} and F = &. While the ad-
ditional parameters {i} are direclty used, the atomic
transformations {7} are encoded as f,,ty,1,,71,72,73,
where ¢ are the translation components of the transfor-
mation, and r denote the rotation components of that
atomic transformation 7", represented thought the angle-
axis parameterization, which is used in order to avoid
introducing more sensitivity than the one inherent to the
problem itself [82].

Using a non-linear approach, the parameters ¢ can
be estimated using the following iterative update rule:

ot ="+ A9, (17)

where A¢ is the update step calculated by an non-linear
least squares algorithm. At each step, the model is
linearized by a first-order Taylor expansion about ¢“,
which results in the following normal equations (in ma-
trix notation):

JTDA =JTF(¢%), (18)

where J is the Jacobian matrix of F with respect to ¢.
The normal equations are the base for many existing al-
gorithms that solve a non-linear least squares optimiza-
tion problem.

The calibration is handled as a sparse problem be-
cause the optimization parameters do not have influ-
ence over all of the residuals. For example, the in-
trinsic parameters of a given camera sensor only pro-
duce a non-zero gradient for the residuals related to that
specific camera. Also, the parameters that encode a
given atomic transformation only influence the residu-
als which are computed with a sensor to pattern topo-
logical path (s — p) that includes that transformation.
An example from Figure 4: The residuals computed by
the world camera cost function are not affected by the
value of the end effector to hand camera or the tripod
left support to 3d lidar base atomic transformations,
as these are not included in the path that goes from
frame hand camera optical to frame pattern. The op-
timization is solved with the trust region reflective algo-
rithm [83], which is a suitable method for large bounded
sparse problems. The Jacobian matrix is calculated with
numerical differentiation which, although not the most
precise method, provides the necessary flexibility for a
general approach.

740

760

770

12

4. Calibration Framework

A novel approach for conducting the calibration of
robotic systems based on the optimization of atomic
transformations was proposed in section 3. In that
section, the focus was striclty on the formulation of
the calibration component as an optimization problem,
i.e., the estimation of the geometric transformations be-
tween sensors. The complete procedure of calibrating a
robotic system accommodates additional stages. In fact,
a set of prior steps must be carried out before the actual
optimization starts. The work presented in this paper
covers all the procedures required to perform a com-
plete calibration of a robotic system. As such, we view
ATOM not only as a novel calibration method, but also
as a complete calibration framework 7. With the goal of
providing a set of calibration tools that are easily used
by the community, ATOM is integrated into ROS, which
is the standard library for the development of robotic
systems. [18]. There are several ROS based calibration
packages available, ranging from intrinsic camera cal-
ibration, to stereo extrinsic calibration or even RGB-D
camera calibration 8. There are also some ROS pack-
ages dedicated to the hand-eye calibration problem: the
Open source Visual Servoing Platform [22, 23] provides
a solution here?, and there is also a commercial solu-
tion here'?. The solutions described already have a sig-
nificant integration with ROS: in particular, they make
use of ROS messages to create a calibration eco-system
functioning under the ROS framework. We state an ex-
tensive integration with ROS as a key component of the
proposed approach. To this end, ATOM contains ROS
based tools designed to support not just for the opti-
mization phase, but for all components of the calibration
procedure.

As discussed in the previous section, ATOM required
a graph of transformations in order to compute the
topological path from one coordinate frame to another.
For this purpose, ROS uses a tree graph referred to as
tf tree [84]. In the case of Marchand et al. [22], the
system is also integrated with the ROS #f library. Many
calibration approaches modify the topology of the #f tree
out of convenience for the calibration procedure. How-
ever, this may be problematic, because the tf tree is used
to support many other functionalities such as robot vi-
sualization, colision detection, interactive joint control,

"https://github.com/lardemua/atom
$https://github.com/code-iai/iai_kinect2
‘http://wiki.ros.org/visp_hand2eye_calibration
Ohttp://wiki.ros.org/rc_visard/Tutorials/
HandEyeCalibration
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http://wiki.ros.org/rc_visard/Tutorials/HandEyeCalibration

motion planning, etc. All these tools are dependant on
the predefined topology of the #f tree. If the calibration
results in modifications to that topology, those function-
alities have to be reconfigured or redesigned, which is
often a cumbersome task.

Because ATOM is based on the optimization of
atomic transformations, only the values of (some of) the
transformations in the tree are modified, not its topol-
ogy. To take the topology of the system into account,
the cost functions recompute, for each function call, the
transformation between the sensor to the pattern coordi-
nate frames, i.e., *T? in (9) is always recalculated using
(5). Therefore, a change in one atomic transformation
in the chain affects the global sensor pose, and conse-
quently, the error to minimize. The optimization may
target multiple transformations of each sensor chain,
and is agnostic to whether the remaining links are static
or dynamic, since all existing partial transformations are
stored for each data collection. This ensures not only
that the reestimated values of selected atomic transfor-
mations are taken into account in the computation of
the error function, but also that (some) transformations
in the t#f tree may be dynamic. This is one important
aspect as to why ATOM successfully generalizes sen-
sor to sensor, sensor in motion and sensor to frame
calibration problems.

To the best of our knowledge, our approach is one of
few which maintains the structure of the transformation
graph before and after optimization, and we consider
this as a key feature of the proposed framework: from
a practical standpoint, since it facilitates the integration
into ROS, both before and after the optimization; and,
moreover, from a conceptual perspective, since this for-
mulation is general and adequate to handle most cali-
bration problems.

Figure 7 provides a schematic of the proposed cal-
ibration framework. To perform a system calibration,
ATOM requires data logged from the system’s sensors,
provided in the format of a ROS bag file, and also a
description of the configuration of the system, as given
in ROS xacro'!' or urdf'? formats. Note that these two
requirements are external to ATOM and are not consid-
ered a heavy burden, since that the typical configuration
of robotic systems in ROS already includes them. In
ATOM, the calibration procedure is structured in four
phases, which occur in sequence: 1) calibration config-
uration, 2) initial positioning of the sensors, 3) data col-
lection and labelling and 4) calibration. Each of these
will be described in detail in the next sections.

Uhttp://wiki.ros.org/xacro
2http://wiki.ros.org/urdf
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Figure 7: The software architecture for the ATOM calibration frame-
work is composed of 4 key components: configuration of the calibra-
tion, setting of the initial estimate of the sensor poses, collecting and
labelling of data, and the actual calibration procedure.

4.1. Calibration configuration

The configuration defines the parameters which will
be used throughout the calibration procedure, from the
definition of the sensors to be calibrated to a description
of the calibration pattern. The proposed approach was
detailed in section 3, in particular the usage of atomic
transformations. These transformations are combined
through the use of the topological information contained
in a transformation tree, which is generated in ROS
from the information from an urdf or xacro file. For the
purpose of calibrating the system, additional informa-
tion must be provided to define which atomic transfor-
mations, will be optimized during the calibration proce-
dure. Also, a description of the calibration pattern must
be provided to ensure a correct detection and labelling.
All this information is defined in a calibration configu-
ration file. An example of the MMTBot calibration file
is provided here!3, and a demonstration video here'*

4.2. Initial positioning of sensors

Since the calibration procedure is formulated as an
optimization problem, the initial values of the param-
eters to be estimated are determinant to the outcome

Bhttps://jsonformatter.org/yaml-viewer/a4d145
Yhttps://youtu.be/2RTCUt2cdIY


http://wiki.ros.org/xacro
http://wiki.ros.org/urdf
https://jsonformatter.org/yaml-viewer/a4d145
https://youtu.be/2RTCUt2cdJY

855

860

865

870

875

880

885

890

895

200

2905

of the optimization. In fact, when the initial parame-
ter values are far from the optimal parameter configu-
ration (the solution), it is possible that the optimization
converges into a local minima, thus failing to find ade-
quate values for the parameters. This problem is tack-
led by ensuring that the initial values contain a plausible
first guess. As discussed in section 3, there are several
types of parameters to be estimated (see (15)). Different
types of parameters require distinct initialization strate-
gies, which will be detailed in the following lines.

The goal of a calibration is to find the position of the
sensors, which in our approach is accomplished through
the estimation of atomic transformations, e.g. "7 in
(6), 3075 in (7) or "¢ 7T in (8) for sensors world cam-
era, 3d lidar and hand camera, respectively. Hence,
the first type of parameters to initialize are these atomic
transformations which account for the position of the
sensors. To accomplish this, ATOM provides and inter-
active tool which parses the calibration file and creates a
6-DOF interactive marker associated with each sensor,
which overlays on top of the ROS based robot visualiza-
tion in 3D Visualization Tool for ROS (RVIZ). The sen-
sors are positioned by dragging the interactive markers,
which is a simple method to easily generate plausible
first guesses for the poses of the sensors. The process
is very intuitive because visual feedback is provided to
the user by the observation of the 3D models of the sev-
eral components of the robot model and how they are
spatially arranged. For example, despite not knowing
the exact metric value of the distance between the world
camera and the 3d lidar, the user will know that both are
more or less at the same height and not more than a me-
ter away from each other. These non-metric, symbolic
spatial relationships, in which humans are very profi-
cient, are very useful to generate plausible first guesses.
Moreover, the system provides several other visual hints
that make the positioning of the sensors an intuitive pro-
cess. One of these is the ability to visualize how well
the data from several sensors aligns. Figure 8 shows an
example. On the left side of the figure, an inaccurate po-
sitioning of the LiDAR sensor (a) leads to a misaligned
projection of the blue spheres on the images (c) and (d).
Conversely, an adequate positioning of that same sen-
sor produces a good alignment between the blue spheres
in (b) and the patterns in the images (see (e) and (f)).
Also, it is possible to see that the alignment between
the LiDAR measurements and the physical objects (e.g.
table and manipulator) is much better in (b) when com-
pared to (a). The bottom row of Figure 8 shows the
alignment between two point clouds, the first produced
by the lidar and the second by a RGB-D hand camera
(which is used here just for the sake of example). Here,
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it is also very intuitive to realize that the alignment be-
tween point clouds is much better when the camera is
adequately positioned, the alignment in (h) is better than
in (g).

This video!> shows an example of setting the initial
pose of the sensors using the ATOM functionalities. In
addition to this, we also provide an example of setting
the initial estimate for an intelligent vehicle!®.

As discussed in section 3, the proposed approach is
to extend the optimization problem not only to include
those transformations that we seek to estimate through
the calibration (discussed in the previous paragraph),
but also the transformations from the world to the pat-
tern coordinate frames, denoted as W’f;” in (6), (7) and
(8). Note that the pose of the calibration pattern p is dif-
ferent for every collection c. That means that the pattern
moved around in the scenario while the data was being
collected, which makes it difficult for any user to keep
track of the pose of the pattern over time. Since the user
cannot be of assistance in this case, it is not viable to
initialize the poses of the calibration patterns using the
same methodology as before. To initialize these partic-
ular transformations, the following expressions is used:

2= TP 8 (e b Rews) . (19)
fnEW—>s
where g(-) denotes a function that solves the

perspective-N-point problem [85, 86], given a set of de-
tected pattern corners in the image ({x[cq}) and the
intrinsic parameters of the camera sensor s, K, ug, and
returns the homogeneous transformation matrix from
sensor s to the pattern p, and w — s is the topological
path from the world w to the sensor s coordinate frames,
which of course must have the RGB modality. If there
is more than one RGB sensor in the system, one is arbi-
trarily selected to produce the initial estimate.

The final type of parameters are those referred to as
additional parameters, denoted as {1} in (15). In the
case of RGB camera modalities, these additional param-
eters are the intrinsic and distortion camera parameters,
k and ug which are initialized by running a prior intrin-
sic camera calibration procedure. Naturally, additional
parameters of different modalities will require specific
initialization strategies.

4.3. Data collection

The proposed optimization mechanism for achieving
the calibration of robotic systems was described in sec-

Bhttps://youtu.be/oJLKTqUtZvQ
https://youtu.be/zyQF7Goclro
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Figure 8: Setting an initial estimate for the sensor poses using RVIZ interactive markers. Top two rows: Inaccurate (left side) vs accurate (right
side) positioning of the 3d lidar sensor. On the left side, the 3D points from the pattern (the blue green spheres in (a)) do not align well with the
pattern the images of the world camera (c) and the hand camera (d) images. The right side shows how an accurate positioning of the sensor aligns
the projection of the 3D LiDAR measurements (blue spheres in (b)) with the pattern in the images of the world camera (e) and the hand camera (f).
Bottom row: inaccurate (left) vs accurate (right) positioning of an RGB-D camera. In (g), the point cloud produced by the RGB-D camera (points
textured with real colors) is misaligned with LiDAR point cloud (red to blue spheres). In (h), a correct positioning of the RGB-D camera produces

a good alignment between point clouds.

tion 3. To ensure that the residuals that are being com-
puted from the current state of estimated parameters are
representative, and thus that the calibration is accurate,
several views of the calibration pattern should be used.
That is the reason why (15) considers the set of col-
lections C. A collection is a syncronized snapshot of
the data from all sensors in the system at a given time
defined by the user. The term is used to denote that,
for multi-modal robotic systems, the data collected for
each sensor may be different, e.g., images, point clouds,
etc. This is a distinction from uni-modal systems: for
example, in intrinsic RGB camera calibration, several
images (instead of collections) of different views of the
calibration pattern are taken to produce the intrinsic and
distortion parameters. Each collection also contains the
values of all atomic transformations recorded at the cor-
responding time, so that is possible to recompute the
transformations between any two frames (see (5)).
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In the case of systems containing more than one sen-
sor, it is very common that the data coming from the
sensors is streamed at different frequencies. As such, a
syncronization mechanism is required to ensure that the
information contained in the collection consistent. This
is not a trivial problem to address because the data is
not syncronized, i.e., there is never an instant in which
all sensors collect data.

This problem is solved through the use of a method-
ology that ensures the synchronization, assuming the
scene has remained static for a long enough period
of time. In static scenes, the problem of data de-
synchronization is not observable, which warrants the
assumption that for each captured collection the sensor
data is adequately synchronized. Assuming it is possi-
ble to establish an upper bound to the maximum time
difference between any data streaming from the robotic
system, it is possible to assume that all data messages
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are synchronized, if the scene has remained static for a
period longer than that upper bound. Thus, the method-
ology establishes that it is the responsibility of the user
to ensure that the scene has remained static for a given
time period, before triggering the saving of a collection.

There are other approaches which use a similar
methodology, in particular by holding the pattern with
a tripod (which ensures it does not move) before col-
lecting each image. This approach is used in multi sen-
sor calibration frameworks [14, 24], and also in RGB-D
camera calibration procedures'”.

We refer to the set of collections obtained from a
given robotic system as an ATOM dataset. It contains
a copy of the calibration configuration file, and high
level information about each sensor, such as the sen-
sor topological transformation chain, extracted from the
transformation tree. In addition, there is also specific
information for each collection, i.e., sensor data and la-
bels, as well as values of atomic transformations. It
is important to note that the set of collections should
contain a sufficiently varied set of pattern poses. As
such, collections should preferably have different dis-
tances and orientations w.r.t. the calibration pattern, so
that the calibration returns more accurate results. Also,
if the robotic system contains moving components, the 1020
dataset should include several poses of the system. Em-
pirically we have found that 20 to 30 collections is a
sufficient number to achieve accurate calibrations. One
example of a dataset file for the MMTBot can be found
here!8.

1025

4.4. Data labelling

The labelling of data refers to the annotation of the
portions of data which view the calibration pattern. The
labelling procedure is executed for the data of each sen-
sor, so that all collections have the labels that corre-
spond to the raw sensor data. Labelling can be auto-
matic, semi-automatic or even manual in some cases.
The information that is stored in a given label depends
on the modality of the sensor which is being labelled.

RGB modality labels consist of the pixel coordinates
of the pattern corners detected in the image, and are
labelled using one of the many available image-based
chessboard detectors [36]. Our system is also compat-
ible with charuco boards, which have the advantage of ***°
being detected even if they are partially occluded [37].
Also in this case we make use of off-the-shelf detectors,
e.g., [38, 39].
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Figure 9: Semi-automatic LiDAR labelling procedure. In a span of
about 5 seconds, the user drops the interactive marker close to the
pattern, and the system starts tracking it. Yellow spheres indicate lidar
measurements considered as pattern detections.

The structure of the labels is more complex in the
case of the LiDAR modality. As discussed in subsec-
tion 3.4, two different types cost functions are used:
orthogonal and longitudinal. The range measurements
that belong to the pattern is refered to as the set of de-
tections D, and the 3D point coordinates of each are
denoted in (11) as x;, Vd € D. The lidar directly pro-
duces 3D point coordinates, so it is straightforward to
obtain the 3D coordinates x; of a given detection d.
The difficulty lies in finding the detections D that be-
long to the pattern, which is a subset of the complete set
of LiDAR measurements. We propose to achieve this
using a semi-automatic approach. The intervention of
the user is required to set a 3D point which is used as
the seed of a region-growing algorithm. Then, starting
at the seed point, and assuming that the pattern is phys-
ically separated from the other objects in the scene, the
algorithm searches in the set of /idar measurements for
close enough points, and includes these into the set of
pattern detections D which are used as seed points in the
next iteration. The process is repeated until no propaga-
tion occurs. The set of points transversed in the search
constitutes the set of detections D. Figure 9 shows a
representation of this process.

The second component of the LiDAR cost function
is the longitudinal evaluation. For this, it is necessary
to retrieve the set of measurements labeled as bound-
aries, which we denote as B € D, in order to recover the
3D coordinates of these points, i.e., X, in (12). Once
again, the challenge is not to find the 3D coordinates
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Figure 10: Labelling of 3D LiDAR data: (a) lidar points labelled as
detections; (b) lidar points labelled as boundary points.

but rather which points, from the set D, are boundary
points, meaning they are measuring the physical bound- 0es
aries of the pattern board. The solution for this is to use

a spherical parameterization to represent the point co-
ordinates of x,Vd € D. Let s; = [py4, 64, ¢a] represent
the spherical coordinates of the detection d. A 3D lidar
generaly contains a much larger horizontal angular res- 070
olution, i.e., for the 6 angle, when compared with the
vertical angular resolution, which corresponds to the ¢
angle. In fact, 3D lidars are said to have scan layers,
where the vertical angle is the same for a set of mea-
surements spanning all available horizontal angles. The 075
set of measurements corresponding to a scan layer with
angle ¢, denoted as {s|y ¢, }, are extracted as follows:

et = {Sd T — A7¢ <@ < (P1+A2(p}7W €D,

(20)
where A@ is the vertical angular resolution of the lidar.
For each set of detections in a layer, the left and right
boundary points, denoted as {s|, 1}, are extracted by
searching for the measurements that have the smallest g
and largest value of horizontal angle 6:

1080

{5,017 = {S10.0)) * Ola,0) = max({Bla 91}) V
04,0 = min({6 »1})}, Vd €D, (21)

and finally, the complete list of boundary points B of
the calibration pattern, is given by putting together the
boundary points detected for each individual scan layer.

Figure 10 shows an example of the LiDAR labelling
procedure. The labelled boundary points are signaled by
the large green spheres in (b). A video example of the
process of producing an ATOM dataset for MMTBot is
provided here!?. This labelling mechanism also works
well for 2D LiDARs, as shown in this example of an
autonomous vehicle?”.

1090

Oy, youtube.com/watch?v=eII_ptyMq5E

2https://youtu.be/9pGXShLIEHW
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4.5. Calibration

The vast majority of calibration approaches do little
more than printing some information on screen to dis-
play the results of the calibration. ATOM provides a
great deal of visual feedback, not only at the end of the
calibration but also throughout the procedure.

To accomplish this goal, the information stored in
an ATOM dataset is published into the ROS ecosys-
tem. The system’s configurations for all collections are
simultaneously conveyed to ROS, as if they had oc-
curred all at the same time which, not being the case,
is the framework under which the calibration proce-
dure operates. Collisions in topic names and reference
frames are avoided by adding a collection related pre-
fix to each designation. Also, the original transforma-
tion tree is replicated for each collection and those sub-
trees are connected so that it is possible to display them
toghether.

Figure 11 shows an example of the visualization of a
calibration procedure. It is possible to simultaneously
visualize the collections that are being used in the cali-
bration (top row), or to select which collections are dis-
played (bottom row). The ground truth poses of the sen-
sor appear in tranparent mode. These are known only
because MMTBot is a simulated robotic system. For
real robotic systems there is no ground truth information
(the transparent mode is used to show the initial pose of
the sensors). It is possible to observe that, as the opti-
mization progresses (from left to right in Figure 11), the
sensors move towards the ground truth pose (transparent
mode), which means that the optimization is converging
towards the optimal solution.

The integration with ROS provides straightforward
access to many other interesting functionalities. For ex-
ample, it is possible to visualize images with the repro-
jected pattern corners, to display the robot meshes, the
position of the reference frames, etc. A complete cali-
bration procedure for MMTBot is displayed here?!.

5. Results

In section 1, three distinct calibration problems were
identified: sensor to sensor, sensor in motion and sensor
to frame calibration problems. The analysis done in sec-
tion 2 has shown how the vast majority of the state of the
art is focused on one of those problems. Then, in sec-
tion 3, we described how the proposed approach is able
to generalized all calibration problems into a single, uni-
fied famework that optimizes atomic transformations.

2lhttps://www.youtube . com/watch?v=4B3X_NsX89M
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Figure 11: Visualizing the evolution of a calibration procedure from the initial estimate (left) to the solution (right). Top row shows all collections
used in this calibration (different color for each collection). Bottom row shows a single collection and, in transparent mode, ground truth poses of

the sensors (known because this dataset was generated in simulation).

To show how ATOM may be applied to distinct cali-
bration problems, this section presents results spanning
the calibration of four distinct robotic systems, as listed
in Table 2. The first is the MMTBot, which was pre-
sented before since it was used as a case study in sec-
tion 3 and section 4. The other three are real robots as
displayed in Figure 12: the AtlasCar2 [34, 41] is an au-
tonomous vehicle designed to collect multi-sensor data
from real road scenarios (see Figure 12, top); the AgRob
V16 is a robotic platform designed for agricultural sce-
narios in particular steep slope terraced vineyards (see
Figure 12, middle); and the Iris UR10e is an experi-
mental system assembled to test several variants of the
hand-eye calibration problem (see Figure 12, bottom).

These systems cover all of the calibration problems
discussed above. Also, the number of sensors and their
modalities differ from system to system. The AtlasCar2
platform represents a sensor to sensor calibration. The
AgRob V16 provides additional modalities since it con-
tains a stereo camera and a 3D LiDAR. Finally, the Iris
URI10e represents a hand-eye calibration which is both a
sensor in motion as well as a sensor to coordinate frame
calibration problem. We use three hand-eye problem
variants with the Iris UR10e: eye-in-hand, where the
camera is assembled on the end effector; eye-on-base,
where the camera is assembled rigidly to the arm’s base,
and a third variant we refer to as joint-hand-base, where
both previous cases are combined simultaneously.

The goal is to compare the performance of ATOM
with other calibration methods. However, as discussed

18

Figure 12: The three non simulated robotic systems used for evaluat-
ing the proposed approach: (top) an intelligent vehicle, the AtlasCar2;
(middle) an agriculture AGV, the AgRob V16; (bottom) an eye in hand
calibration setup, the Iris UR10e. Real image of the robots (left), and
the corresponding ROS models (right).
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Table 2: Description of the robotic systems used to train and test ATOM as well as the datasets used for train and evaluation.

System Description Sensors Dataset Details
MMTBot® Simulation with robotic arm RGB cameras (2x) mmtbot-1 29 collections, 9 partial
All calibration problems 3D LiDAR mmtbot-2 47 collections, 25 incomplete, 16 partial
AtlasCar2® Autonomous vehicle RGB cameras (3x) atlascar-1 39 collections, 32 incomplete, 0 partial
astar Sensor to sensor 2D LiDARs (2x) atlascar-2 21 collections, 18 incomplete, O partial
© AGV for agriculture Stereo camera agrob-1 42 collections, 5 }ncomplete, ?8 partial
AgRob V16 . agrob-2 56 collections, 24 partial
Sensor to Sensor 3D LiDAR . .
agrob-3 15 collections, 8 partial
Hand-eye system iris-1 34 collections, all partial
; (d) ye sy . > all ps
Iris url0¢ Sensor in motion, sensor to frame RGB cameras (x2) iris-2 26 collections, all partial

@ https://github.com/miguelriemoliveira/mmtbot
() https://github.com/lardemua/atlascar?2

© https://github.com/aaguiar96/agrob

© https://github.com/iris-ua/iris_uriOe

in section 3, there are very few works which are able
to calibrate complete robotic systems with multiple
sensors and modalities. Rather, the large majority of
the calibration approaches focuses on specific pairwise
combinations of modalities. Because of this, it is not
possible to make a direct comparison between ATOM
and other approaches. To address this we propose to
conduct a series of pairwise evaluations, which cover
the sensors used in the presented systems. In this way
we are able to compare against other methodologies,
provided they are able to calibrate the selected sensor
tandem. Note that, while for other approaches we cal-
ibrate only the selected pair of sensors, all results re-
ported for ATOM were collected after a complete sys-
tem calibration.

The next subsections will cover first the metrics
used for evaluating the performance of the calibra-
tions. Then, performance evaluations for distinct com-
binations of modalities are reported for all robotic sys-
tems. Finally, to assess the robustness of the proposed
methodology, studies on the influence of several param-
eters are presented.

5.1. RGB to RGB camera evaluation

To evaluate the RGB-to-RGB camera calibration re-
sults three metrics are used: the mean rotation error (in
radians), the mean translation error (in meters) and the
reprojection error (in pixels).

The mean rotation and translation errors, € and & re-
spectively, measure the difference in the pattern’s pose
as seen from each RGB camera. These errors are es-
timated through the evaluating how similar two trans-
formations are. These transformations are obtained
through the multiplication of the atomic transformations
from the world to the pattern, i.e. w — p. In the example
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of Figure 4 a direct route exists between these two co-
ordinate frames because this transformation is directly
estimated by the calibration procedure. In order to ob-
tain trustworthy results the calibration should be done
using one dataset, and tested using a different one. As a
consequence, the direct route w — p does not exist for
evaluation datasets, since these have not been calibrated.
However, it is possible to obtain transformation between
the world and the pattern coordinate frames (*T%), as
follows:

s V4 =Hf"7'f"“ STP

fnEW—>s

(22)

where the index s in ¥ T% denotes that the transforma-
tion is computing using sensor s, and *T? is the transfor-
mation between the sensor an the pattern, as estimated
through the perspective-N-point [85, 86]. Since two
camera sensors, e.g., s, and s, are used in this evalua-
tion, it is possible to obtain the two transformations " T%,
and WTﬁ«’b. The &g and & metrics are based on measuring
the difference between these transformations, since they
should be the same by definition:

A
WT{;a £ WTfh,

(23)

which can be rewritten to show the rotation and transla-
tion components:

0 1 0 1 0 1 0 1
(24)
where R is the rotation matrix and t is the translation
vector. Now, we can define the difference in rotation
AR:

|:sza WtSa:| |:SaRP SatP:| |:sz;, Wtsb:| |:SbRI7 sbtp:|

AR = ("R¥ . «RP)~ 1. VR . RP (25)

and the difference in translation At:
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At — WRSa . Xut]) _|_ Wtsa _ WRSb . Shtp + thb , (26)

respectively. Finally, for n states captured, we can now
define the mean rotation error as:

1
&R = ;ZHangle(ARi)H , 27
i

where angle(-) is the angle-axis representation of the
rotation. The mean translation error is defined as:

1
=) [At] . (28)
i

The reprojection error metric is defined by the root-
mean-squared error &g of the difference between two
sets of detected pattern corners. The first set corre-
sponds to the projection of the detected corners in the
image of the camera s, into the image of camera s, and
the second set corresponds to the detected pattern cor-
ners in the image of camera s,. The projection of the
3D coordinates of the corners of the pattern x; onto the
image of sensor s is expressed as:

xg =K TP - x4, (29)

where x denotes the projected 2D image coordinates of 1190

the pattern’s corners, and Kj is the intrinsic matrix of
camera s. Since the pattern corners are defined in the
local pattern’s reference frame, they all lie in the z =0
plane. Knowing this, we can simplify (29) by removing
the z related components of (29)

xqg = K- [STp]zzo : Xih (30)

where x/; denotes the 3D coordinates without the z com-
ponent, i.e. X, = [x,y,1]T, and the operator [-].—o ex-
tracts the components of the transformation which are
not related to z, i.e.:

i Tz i) Iy

SMP = PTP]_, — |20 722 1723 Oy ’ 31
[T ]emo 3L _ Iy iyt Gh
10 __9__|_0 ! _1_:
STP

which is obtained by removing the z rotation compo-
nent and the homogeneization components, i.e., remov-
ing the highlighted parts of the matrix in (31). Since X/,
are the same for both cameras s, and sj, the following
equality can be written:

X, = Ko, - "M (oMP) 71 (Ky,) T x, s (32)

Table 3: Performance comparison of methods for RGB to RGB cam-
era evaluation. Best values highlighted in bold.

B ER €t Erms

Dataset Method S .
atase etho ensor pair (rad) (m) (pix)
mmitbot-1 OpenCV world camera to @ @ @
ATOM hand camera 0.001  0.001 0.531
mmtbot2  OPECY world camera to @ @ @
ATOM hand camera 0.001  0.001  0.305
OpenCV left camera to 0.018 0.013 1.157
ATOM right camera 0.027 0.032 1.198
atlascar-1 OpenCV right camera to 0.244 0.081 3.336
ATOM center camera 0.096 0.074 2.375
OpenCV center camera to 0.078  0.490  3.000
ATOM left camera 0.090 0.045 3.283
agrob-1 OpenCV world camera to ®) ®) ®
& ATOM hand camera 0.008 0.003 0974
agrob-2 OpenCV world camera to 0.010 0.006 0.863
& ATOM hand camera 0.008 0.005 0.974
url0ey  OpenCV world camera to © © ©
ATOM hand camera 0.015 0.002 1.093
url0en  OpenCV world camera to © © ©
ATOM hand camera 0.009 0.001 0.843

® OpenCV cannot be used because the hand camera is not static.
® OpenCV cannot be used because the dataset contains partial detections.
© OpenCV cannot be used because of both () and ().

which provides the relationship between the pixel co-
ordinates of the pattern corners in both camera images.
The formulation in (32) makes use of the camera to pat-
tern transformation for both cameras, which in turn re-
quires the estimation of the camera to pattern using the
perspective-N-point estimation (see (22)). To minimize
the error produced by the pnp estimation, we use the
procedure only once for one camera, for example, s,,
and then compute the sensor to pattern transformation
for the other camera using:

ShTP = (SaTSb)_l .SaP , (33)

were *T* is the transformations between the two cam-
eras. Finally, the root-mean-squared error is given by

_ 1 2
Erms = @dénulm] 7X[dush]HF’ (34)

where ujy,,; denotes the detected pixel coordinates of
the pattern’s corners in the image of camera sp.

The results are presented in Table 3, where the per-
formance of ATOM is compared against the stereo cal-
ibration algorithm from OpenCV. Not all datasets can
be calibrated using this method, since it mandates that
the detections are complete (all corners of the pat-
tern must be detected), and also that the cameras do
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Figure 13: 3D LiDAR to camera reprojection error metric calculation.
In the annotation procedure, the four sides of the pattern limits are
labelled by selecting multiple points in the image for each side. Then,
each side is approximated by a polynomial function as represented by
the red curves. The LiDAR reprojected points (blue dots) are then
used to calculate the reprojection error (the yellow lines represent the
error for each projected point).

not move w.r.t. each other. Results demonstrate that
ATOM achieves similar accuracies when compared to
OpenCV’s method, despite the fact that ATOM is cali-
brating the complete systems (all the sensors simulta-
neously). Also, ATOM accurately calibrates datasets
which cannot be tackled by OpenCV’s method.

5.2. 3D LiDAR to RGB camera evaluation

1240

To evaluate the calibration of 3D LiDARs and RGB
cameras, we propose to use a reprojection error met-
ric that evaluates the error between the labelled bound-
aries of the pattern and the projection of the LiDAR ,,,;
boundary points onto the RGB camera image. To per-
form this evaluation, we propose a semi-automatic pro-
cedure, where the boundaries of the pattern are manu-
ally labelled in the image. This process is divided in
three main steps: labelling of the pixels belonging to .5,
the pattern limits; reprojection of the pattern’s boundary
points from the LiDAR’s coordinate frame to the image;
and calculation of the reprojection error between the la-
belled and projected points.

The annotation of the pattern’s boundaries in the im- ;2ss
age i.e., the definition of the set of labelled boundary
points V), is performed manually by clicking on the im-
age on several boundary points. Then, the four bound-
aries of the rectagular pattern are aproximated to a poly-
nomial function represented by the red curves in Fi- 1260
gure 13, which is later sampled to produce the v, € V
2D image coordinates. The reason why a polynomial
function is used is that a linear regression is not suitable
to fit each pattern side since that image has distortion
which transforms straight lines into curves.

Now let x;, denote the 3D coordinates of a boundary
point in the pattern’s local coordinate frame (see subsec-
tion 3.4). The reprojection error &.,s; between a LIDAR
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Table 4: Performance comparison of methods for LiDAR to RGB
camera evaluation. Best values highlighted in bold.

Dataset Method Sensor pair Erms

(pix)
3D lidar to hand camera ~ 4.466
mmtbot-1 ATOM 3D lidar to world camera  3.108
3D lidar to hand camera ~ 4.439
mmtbot-2 ATOM 3D lidar to world camera  6.284
- 3D lidar to right camera ~ 3.869
ATOM pairwise 3D lidar to left camera 4.101

agrob-1
3D lidar to right camera  3.811
ATOM 3D lidar to left camera 3.942
- 3D lidar to right camera  6.715
ATOM pairwise 3D lidar to left camera 6.432

agrob-2
3D lidar to right camera  6.537
ATOM 3D lidar to left camera 6.765

s, and a RGB camera s;, is computed as:

1

. 2
w5 &, i (v~ Ko 1755 ])

(35)
which finds, for each projected point, the smallest dis-
tance to all labelled points. Figure 13 shows the pro-
jected points as blue dots, and the yellow lines show the
minimum distance to the labelled boundaries found for
each projected point.

The LiDAR to RGB camera evaluation was per-
formed using the two robotic platforms in Figure 12 that
contain LiDARs: MMTBot and AgRob V16. In the case
of MMTBot a complete system calibration was per-
formed, and two evaluations are presented: 3DLiDAR
to hand camera and 3DLiDAR to world camera. In the
case of AgRob V16, and in order to evaluate the im-
pact of calibrating the entire system simultaneously, a
the complete system calibration is compared with pair-
wise calibrations, in which only the sensors that are
evaluated were calibrated. We refer to these calibrations
as ATOM pairwise, and use them to calibrate the right
camera and left camera with the 3DLiDAR separately.
Two evaluations are presented: 3DLiDAR to left cam-
era and 3dLiDAR to world camera.

Table 4 summarizes the results obtained in these ex-
periments. The first observation is that the overall mag-
nitude of the reprojection errors is higher when com-
pared with the reprojection error of RGB to RGB cam-
era evaluations (see Table 3). This is not an inconsi-
tency, since these two reprojections cannot be directly
compared. In fact, LiDARs have a smaller resolution
when compared with RGB cameras, which may explain
why the LiDAR to RGB camera reprojection errors are
higher.

Erms =
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Table 5: Impact of the number of partial detections on the perfor-

mance of ATOM - RGB to RGB camera evaluation. Best values
highlighted in bold.

. . ER & Erms

Dataset Sensor pair # Partial (rad) (m) (pix)

0of 10 0.001 0.002 0.374

hand ¢ ; lof 11 0.001 0.002 0.388

mmtbot-1 jzr[;“C’;’;:Zrao 30f13 0001 0002 0353

v 60f 16 0.001  0.002 0.379

9of 19 0.001  0.002 0.310

Results for AgRob V16 show a very similar accuracy
between ATOM and ATOM pairwise, presenting only
marginal reprojection error differences. This proves that
ATOM is adequate to perform full system calibrations
without significant loss in the accuracy of the proce-
dure. As mentioned before, this is a big advantage since, 1310
for high-dimensional robotic platforms with many sen-
sors, the number of combinations between sensors can
be very high an the procedure of sequential pairwise cal-
ibration tedious and error prone. Thus, having a frame-
work that is able to calibrate the entire system simulta-
neously with the same accuracy is very useful.
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5.3. Impact of the number of partial detections

As discussed in section 4, the ATOM calibration
framework is able to use either chessboard [36] or
charuco [37, 38] calibration patterns. In the case of the
later, it is possible to detect the pattern even when it is 1320
partially occluded [39], which results in a partial de-
tection of the calibration pattern. Considering this, it is
interesting to assess how the presence of partial detec-
tions may impact the accuracy of the calibration. To this
end, an experiment was conducted in which a baseline 1325
dataset containing 10 collections with no partial detec-
tions is augmented with an increasing number of collec-
tions containing partial detections. In this experiment,
only the MMTBot is used.

Table 5 shows the results using the RGB to RGB cam- 1330
eras evaluation metrics discussed in subsection 5.1. Re-
sults show that the partial detections have no impact of
the quality of the calibration. Reprojection errors (&)
are bellow 0.4 pixels in all cases, which may suggest
that ATOM is robust to the presence of partial detec-133s
tions in the datasets.

Table 6 shows the results using the LiDAR to RGB
camera evaluation metrics. In this case, the accuracy of
the calibration decreases as more partial detections are
included, from 4.4 to 5.2 pixels in mmtbot-1, and from 1340
3.4 to 4.4 in the case of mmtbot-2. Thus, it seems that
the LIDAR modality is more sensitive to the presence
of partial detections. This may be related to the design
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Table 6: Impact of the number of partial detections on the perfor-
mance of ATOM - LiDAR to RGB camera evaluation. Best values
highlighted in bold.

Erms

Dataset Sensor pair # Partial .
(pix)
0of 10 4.443
1of 11 4.701
3D lidar to hand camera 30f 13 4.735
6 of 14 4.956
9of 19 5.234

mmtbot-1

0of 10 3.490
Lof 11 3.713
3D lidar to world camera 30f 13 3.866
6 of 16 4.162
90of19 4.435

of the cost functions for this modality, or with the lower
resolution of range sensors when compared with image
sensors. Nonetheless, note that, in the worst case sce-
nario, 9 of 19 collections are partial, which makes this
a challenging dataset, which is tackled with a small loss
of accuracy (approximately 1 pixel decrease).

5.4. Impact of the number of incomplete collections

As discussed in section 3, ATOM makes use of a cal-
ibration pattern to sensor paradigm in order to design
the cost functions. This leads to an optimization frame-
work which is less intricate, where the cost function for
each sensor is independant from the others. As a conse-
quence, when the calibration pattern is not detected by a
particular sensor, it is still possible to compute, for that
collection, the errors associated with the other sensors.
We refer these collections where at least one of the sen-
sors did not detect the pattern as incomplete collections.

To evaluate how the presence of incomplete collec-
tions may affect the accuracy of the calibration pro-
duced by ATOM, an experiment was conducted where
a baseline dataset containing 10 collections is gradually
augmented with incomplete collections.

Table 7 shows the impact on the RGB to RGB cam-
eras evaluation metrics. In the case of the mmtbot-1
datasets, the number of incomplete collections does not
appear to affect the accuracy of the calibration, which is
consistently bellow a very small value of 0.5 pixels. The
datasets from agrob-1 have a lower overall accuracy of
approximately 1 or 2 pixels. In this case, we also can-
not observe evidence that incomplete collections signif-
icantly disrupt the calibration, which suggests, as ex-
pected, that ATOM copes well with the presence of in-
complete collections.

Table 8 shows the results using the LiDAR to RGB
camera metric. Once again, we cannot observe a clear
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Table 7: Impact of the number of incomplete collections on the per-
formance of ATOM - RGB to RGB camera evaluation. Best values
highlighted in bold.

. ER & Erms

Dataset Sensor pair # Incomplete .
P P ) ) (pix)
0of 10 0.001 0.002 0.439
tbot-1 hand camera to 20f 12 0.001 0.001 0.429
mmebo world camera 30f13  0.001 0001 0.400
5of 15 0.001 0.001 0.390
0of 10 0.011 0.011 1.457
right camera to 20of 12 0.006 0.003 1.031

agrob-1

40f 13 0.009 0.006 2.017
Sof 15 0.019 0.005 1.076

left camera

tendency either way, and the fluctuations are mostly un-
der 1 pixel for all datasets. This reinforces the notion
that ATOM is able to tackle the calibrations of datasets
containing incomplete collections. Conversely, pairwise
approaches required that both sensors detect the calibra-
tion pattern or else the collection must be discarded.

5.5. Impact of the quality of the initial estimate

As discussed in section 4, the proposed framework
uses an interactive approach that enables the user to
set the pose of the sensor. This is used as the initial
estimate of the sensor poses, i.e., as the initial values
of the parameters to be optimized. Since ATOM uses
an optimization mechanism to carry out the calibration,
the question of how sensitive the methodology is to the
quality of the initial estimates is relevant. Taking into
account that the initial parameter estimates are provided
by hand, the methodology should be robust enough to
handle less accurate estimates.

To address this, we carried out a study of the impact
of the quality of the initial estimate on the accuracy of
the calibration (Figure 14 (a), (b) and (c)). Quality of

the initial estimate is measured using translation (Ad)
. . . 1395
and rotation (Aca) deviations from the correct sensor

pose, which we know in the case of the MMTBot sys-
tem since it is simulated. Figure 14 (a) and (b) show the
errors of the hand camera and world camera sensors,
respectively. From these, its possible to observe that the
sensitivity to rotation is higher when compared with the

translation. This is expected, since rotation errors are iaco

know to be more critical than translation errors. Also, it
is important to note that the final optimization error (e)
is very small for a large range of deviations from the cor-
rect initial estimate. In fact, both figures show a flat re-

gion of very small error within the ranges 0 < Ad < 0.7 1405

and 0 < Aa < 20. In other words, ATOM converges
to an optimal solution even with deviations of 0.7 me-
ters and 20 degrees. Figure 14 (c) shows the impact of

Table 8: Impact of the number of incomplete collections on the perfor-
mance of ATOM - LiDAR to RGB camera evaluation. Best values
highlighted in bold.

Erms

Dataset Sensor pair # Incomplete .
P P (pix)
0of 10 4.057
. 20f12 4.067
3D lidar to hand camera 30f 13 4.021
Sof 15 4.010
mmtbot-1
0of 10 3.289
. 20f 12 3.282
3D lidar to world camera 30f 13 3.200
Sof 15 3.218
0of 10 5.496
. . 20f 12 3.920
3D lidar to right camera 4of 13 3064
Sof 15 4.069
agrob-1
0of 10 5.576
. 20f 12 3.930
3D lidar to left camera 4of 13 3.849
Sof15 4.169

the quality of the initial estimate on the accuracy of the
calibration using the LiDAR to RGB camera evaluation
metric. When compared with the RGB to RGB cam-
era evaluations we can observe that the LIDAR modal-
ity has a larger baseline error, which is consistent with
the observations of Table 3 and Table 4. Despite this,
we can also see that whithin the ranges of 0 < Ad < 0.7
and 0 < Aa < 15 ATOM converges to a minimal er-
ror solution. These results show a high degree of ro-
bustness to deviations in the initial estimate. Also, we
may reasonably expect a human initial estimate to con-
sistently fall bellow 0.7 meters and 15 degrees, which
validates the proposal of using an interactive approach
to produce the initial estimates. Thus, the conclusion is
that ATOM, despite using an optimization mechanism,
is sufficiently robust to the quality of the initial estimate
for sensor poses.

Figure 14 (d) shows the impact of the quality of the
initial estimate to the time it takes to complete the op-
timization procedure. As expected, deviations from the
correct initial estimate will require more effort from the
optimized and thus more time to complete the proce-
dure. This is once again notoriously more sensitive to
rotation deviations. Nonetheless, in all cases, the max-
imum time to complete the calibration of the MMTBot
robotic system is under 200 seconds. Considering that
the calibration is a one shot procedure, this is not rele-
vant.
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Figure 14: Impact of the quality of the initial sensor pose estimate to the performance of the calibration. Quality of estimate is measured by the
deviation from the correct value of translation (Ad) and rotation (Ac). Errors (e) provived by the cost functions of the sensors: (a) hand camera,
(b) world camera, and (c) 3d lidar; (d) shows the total optimization time as a function of the initial estimate.

6. Conclusions

This paper proposed a novel general calibration jsze
methodology based on the optimization of atomic trans-
formations.  Atomic transformations are geometric
transformations that are indivisible, i.e., not aggregated,
and the advantage of using them is that the problem for-
mulation is suited to cope with the three distinct cal- 425
ibration problems: sensor to sensor, sensor in motion
and sensor to frame.
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The calibration is formulated as an extended opti-
mization problem, in which the pose of the calibra-
tion patterns is also included. Although this formula-
tion augments the problem, since additional parameters
are included, it simplifies the definition of cost functions
since these are written using the poses of a single sen-
sor and the pattern as input. This is a large advantage
over traditional sequential pairwise approaches, since
the method is easily scalable to complex robotic sys-
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tems.

The methodology is general, which makes it very
flexible: it can handle any number of sensors of mul-
tiple modalities; it handles non static sensors, as in the
case of the hand-eye calibration; it does not require that
all sensors view the calibration pattern simultaneously,
which opens the door to the calibration of systems in*
which the field of view of the sensors does not entirely
overlap. Moreover, all these cases may occur simulta-
neously.

ATOM is also a calibration framework?2, in the sense
that software tools are offered for all the different stages
of the calibration procedure. The system is well inte-
grated with ROS, and supports advanced visualization
functionalities which are uncommon in most calibration***’
systems.

Results covered four robotic systems with several
combinations in the number of sensors and their modal- »
ities. These show that the proposed approach is able to
calibrate several robotic systems, and that it achieves
similar levels of accuracy when compared to other
methods, designed to operate only for the sensor tandem
that is being evaluated. The robustness of the method
is also analysed through several studies that assess the
impact of the number of partial detections, incomplete
collections, and the initial estimate for the sensor poses.

Future work should address the inclusion of addi-
tional sensor modalities, which should be straightfor-
ward, since the overall structure of the problem is well
defined. We are currently working on the integration of
range cameras and 2D LiDARs. In addition to this, we
aim to test the methodology and the framework in other
robotic systems.
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