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Preface

By2050, it is predicted that 85%of theworld’s populationwouldmake their homes in
cities. In the coming decades, urban centers are likely to face an increasing number of
problems, some of which are linked to issues such as (a) monitoring andmaintenance
of urban heritage, (b) traffic planning in urban environments, (c) efficient use of
energy and the use of renewable resources, (d) earlywarning systems, and (e) optimal
management of resources in emergency situations, among others.

In recent years, different solutions to these problems have been suggested and
raised under the umbrella of what has been called “Smart Cities”. A Smart City
can be described as a city that applies Information and Communication Technolo-
gies (ICTs) to provide it with an infrastructure that guarantees the following among
others: (i) sustainable development, (ii) an increase in the quality of life of citizens,
(iii) greater efficiency of available resources, and (iv) active citizen participation.
Therefore, a Smart City is a socially, economically, and environmentally sustainable
city, maintaining a balance between these aspects and always having the individual
(the citizen) as the main beneficiary.

This book presents different successful case studies of ICTs in the application of
Smart Cities. These prototypes were developed and evaluated in the framework of the
Ibero-American Research Network TICs4CI funded by the CYTED program. This
network started in 2018 and last for 5 years involving more than 50 researchers from
eight research institutions hailing from seven Ibero-American countries.More specif-
ically, the book describes underlying technologies and practical implementations of
several applications developed in the following areas:

• Urban environment monitoring.
• Intelligent mobility.
• Waste recycling processes.
• Computer-aided diagnosis in healthcare systems.
• Computer vision-based approaches for efficiency in production processes.

Guayaquil, Ecuador
March 2022

Angel D. Sappa

v
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Chapter 1
Art Graffiti Detection in Urban Images
Using Deep Learning

Tacio Souza Bomfim, Éldman de Oliveira Nunes, and Ángel Sánchez

Abstract Art graffiti can be considered as a type of urban street art which is actu-
ally present in most cities worldwide. Many artists who began as street artists have
successfully moved to mainstream art, including art galleries. In consequence, the
artistic graffiti produced by these authors became valuableworkswhich are part of the
cultural heritage in cities.When understanding the economic value of these public art
initiatives within the smart cities context, the preservation of artistic graffiti (mainly,
against vandalism) becomes essential. This fact will make it possible for municipal
governments and urban planners to implement such graffiti maintenance initiatives
in the future. In this context, this paper describes a deep learning-based methodology
to accurately detect urban graffiti in complex images. The different graffiti varieties
(i.e., 3D, stencil or wildstyle, among others) and the multiple variabilities present in
these artistic elements on street scenes (such as partial occlusions or their reduced
size) make this object detection problem challenging. Our experimental results using
different datasets endorse the effectiveness of this proposal.

1.1 Introduction

The term graffiti refers to some types of writings or drawings made on a wall or
other surfaces, usually without permission and within public view [5]. Graffiti ranges
from simple written words to elaborate wall paintings. Nowadays, countless acts of
vandalism graffiti are committed daily against public and private properties around
the world. The costs caused by such damage are huge, and correspond to direct costs
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Fig. 1.1 Differences between graffiti types: a vandalism and b artistic

of cleaning surfaces (buildings, public transport vehicles, among others) and loss
of value of properties repeatedly damaged by graffiti. For example, annual costs of
graffiti removal in USA were estimated to be more than USD 12 billion in 2015.

In contrast to those graffiti that is considered as vandalism, other type of graffiti is
becoming more widely recognized as a type of artwork [3]. Art graffiti is a form of
visual communication created in public places that is legally produced and usually
involves making usage of public spaces. Nowadays, graffiti artists such as Banksy
have exhibited their graffiti-style paintings commercially in gallery and museum
spaces. Figure1.1 shows respective sample images of vandalism and art graffiti.

Since art graffiti is considered a form of outdoor cultural heritage to be preserved,
municipal investments need to be dedicated to its conservation since this kind of art
manifestation also produces an economic return [4]. The protection and dissemina-
tion of this kind of heritage in cities through the use of Information and Commu-
nication Technologies (ICTs) is currently an important aspect in the development
of Smart Cities [9]. On the one hand, cultural tourism demands the development of
applications that allow people with mobile phones to receive real-time information
by taking a photograph. On the other hand, it is necessary to detect and guarantee
the degree of conservation of this type of graffiti from captured images in order to
be able to carry out actions for the recovery of these urban elements that could have
suffered some kind of vandalism or deterioration [3, 10].

Art graffiti usually features color and technique variations, and it is aesthetically
elegant, following an idea of the fine arts, different from vandalism graffiti. The
artistic graffiti has a wide variety of categories [4], which use different techniques
such as 3D, corresponding to those drawings made with a perspective and providing
an effect of depth. They present an illusion very close to reality,making this technique
much appreciated; the stencil that has become very popular, mainly by the artist
Bansky. This art mode uses shapes made of cardboard, paper, metal, plastic, or
other materials and sprays to create the design or text; the Piece, which is made by
hand and contains at least three color and wildstyle that is based on letters, but in
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a distorted and interconnected way, which makes it very difficult to understand this
type of graffiti. Usually this technique also presents points, arrows and other types
of elements. Wildstyle also has a strong connection with hip hop.

This paper describes a deep learning-based methodology to accurately detect
urban art graffiti in complex images. As far as we know, the problem of artistic graffiti
detection in images has not been researched previously using deep networks. The
works found in the literature investigate only on vandalism graffiti problems, such
as detection [16], image retrieval [17], quantification [14], and graffiti classification
[11]. Most recent work on vandalism graffiti processing have applied some types of
convolutional neural networks (CNN), such as VGG-16 or ResNet (see, for example,
references [11] or [6]).

Our paper is organized as follows. Section1.2 describes the object detection prob-
lem in general, and art graffiti detection as a particular case. Section1.3 summarizes
the different YOLO detection models considered in this study. Our dataset of images
for the experiments is explained in Sect. 1.4. In Sect. 1.5, we describe the metrics,
the experiments performed and analyze the corresponding results. Finally, Sect. 1.6
concludes this study.

1.2 Detection of Art Graffiti

Object detection is a challenging task in Computer Vision that has received large
attention in last years, especially with the development of Deep Learning [15, 18]. It
presentsmany applications relatedwith video surveillance, automated vehicle system
robot vision or machine inspection, among many others. The problem consists of
recognizing and localizing some classes of objects present in a static image or in a
video. Recognizing (or classifying) means determining the categories (from a given
set of classes) of all object instances present in the scene togetherwith their respective
network confidence values on these detections. Localizing consists of returning the
coordinates of each bounding box containing any considered object instance in the
scene. The detection problem is different from (semantic) instance segmentation
where the goal is identifying for each pixel of the image the object instance (for
every considered type of object) to which the pixel belongs. Some difficulties in the
object detection problem [18] include aspects such as geometrical variations like
scale changes (e.g., small size ratio between the object and the image containing it)
and rotations of the objects (e.g., due to scene perspective the objects may not appear
as frontal); partial occlusion of objects by other elements in the scene; illumination
conditions (i.e., changes due to weather conditions, natural or artificial light); among
others but not limited to these ones. Note that some images may contain several
combined variabilities (e.g., small, rotated and partially occluded objects). In addition
to detection accuracy, another important aspect to consider is how to speed up the
detection task.

Detecting art graffiti in images can be considered as an object detection problem
with the multiple variabilities above indicated. Art graffiti images are, in general,
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much more diverse and elaborated as those including vandalism graffiti (as shown
by Fig. 1.1), and also contain much more colors and textures. Another interesting
aspect that can also difficult the detection of graffiti (both vandalism and art ones) in
images is the varying nature of covered materials, i.e., the surfaces where graffiti are
painted [1], for example stone walls, wooden fences, metal boxes or glass windows,
among others.

1.3 Object Detection Deep Architectures

This section outlines object detection deep architectures, in special the YOLOmodel
and its variants that were applied in this work.

1.3.1 YOLO Models

Redmonand collaborators proposed in 2015 [13] the newobject detectormodel called
YOLO (acronym of “You Only Look Once”), which handles the object detection as a
one-stage regression problem by taking an input image and learning simultaneously
the class probabilities and the bounding box object coordinates. This first version of
YOLOwas also called YOLOv1, and since them the successive improved versions of
this architecture (YOLOv2, YOLOv3, YOLOv4, and YOLOv5, respectively) have
gained much popularity within the Computer Vision community.

Different from previous two-stage detection networks, like R-CNN and faster R-
CNN, the YOLO model used only one-stage detection. That is, it can make predic-
tions with only one “pass” in the network. This feature made the YOLO architecture
extremely fast, at least 1000 times faster than R-CNN and 100 times faster than Fast
R-CNN.

The architecture of all YOLO models have some similar components which are
summarized next:

• Backbone: A convolutional neural network that accumulates and produces visual
features with different shapes and sizes. Classification models like ResNet, VGG,
and EfficientNet are used as feature extractors.

• Neck: This component consists of a set of layers that receive the output features
extracted by the Backbone (at different resolutions), and integrate and blend these
characteristics before passing them on to the prediction layer. For example, models
like Feature Pyramid Networks (FPN) or Path Aggregation networks (PAN) have
been used for such purpose.

• Head: This component takes in features from the Neck along with the bound-
ing box predictions. It performs the classification along with regression on the
features and produces the bounding box coordinates to complete the detection
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process. Generally, it produces four output values per detection: the x and y center
coordinates, and width and height of detected object, respectively.

In the next subsections, we summarize the main specific features of the three
YOLO architectures used in our experiments: YOLOv4, YOLOv5 and YOLOv4-
tiny, respectively.

1.3.2 YOLOv4

YOLOV4 was released by Alexey Bochkovskiy et al. in their 2020 paper “YOLOv4:
Optimal Speed and Accuracy of Object Detection” [2]. This model is ahead in per-
formance on other convolutional detection models like EfficientNet and ResNext50.
Like YOLOv3, it has the Darknet53 model as Backbone component. It has a speed
of 62 frames per second with an mAP (mean Average Precision) of 43.5 percent on
the Microsoft COCO dataset.

As technical improvements with respect to YOLOv3, YOLOv4 introduces as new
elements the bag of freebies and the bag of specials.

Bag of freebies (BOF) are a set of techniques enabling an improvement of the
model in performance without increasing the inference cost. In particular:

• Data augmentation techniques: CutMix, MixUp, CutOut, …
• Bounding box regression loss types: MSE, IoU, CIoU, DIoU, …
• Regularization techniques: Dropout, DropPath, DropBlock, …
• Normalization techniques: Mini-batch, Iteration-batch, GPU normalization, …

Bag of specials (BOS) consist in techniques that increase accuracy while increas-
ing the inference computation cost by only a small amount. In particular:

• Spatial attention modules (SAM): Spatial Attention (SA), Channel-wise Attention
(CA), …

• Non-max suppression modules (NMS)
• Non-linear activation functions: ReLU, SELU, Leaky, Mish, …
• Skip-Connections: Weighted Residual Connections (WRC), Cross-Stage Partial
connections (CSP), …

Figure1.2 illustrates the layer structure of YOLOv4 network used in our experi-
ments.

1.3.3 YOLOv5

Onemonth after the release ofYOLOv4, the version 5 of thismodel, created byGlenn
Jocher, was published. This novelty caused a series of discussions in the scientific
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Fig. 1.2 Schematic representation of YOLOv4 architecture

community, first for not having been developed by the original author of the YOLO
network, then for not having published a release paper [8].

YOLOv5 uses the PyTorch framework. This version now uses CSPDarknet53 as
the Backbone, only the PANet as the Neck and the YOLO layer as the Head, the same
as previous versions. An innovation of the YOLOv5 network is the self-learning of
bounding box anchors. YOLOv5 achieves the same if not better accuracy (mAP of
55.6) than YOLOv4 model while taking less computation power.

Some of the technical improvements of YOLOv5 over the previous version of this
architecture are the following ones: an easier framework to train and test (PyTorch);
a better data augmentation and loss calculations (using PyTorch framework); auto-
learning of anchor boxes (do not need to be added manually now); use of cross-stage
partial connections (CSP) in the backbone; use of path aggregation network (PAN)
in the neck of the model; support of YAML files, which greatly enhances the layout
and readability of model configuration files; among other advantages.

1.3.4 YOLOv4-tiny

YOLOv4-tiny is the compressed version of YOLOv4 designed to train on machines
that have less computing power [7]. The model weights are around 16 megabytes
large, allowing it to train on 350 images in 1h when using a Tesla P100 GPU.
YOLOv4-tiny has an inference speed of 3 ms on the Tesla P100, making it one of
the fastest object detection models to exist.

YOLOv4-tiny utilizes a couple of different changes from the original YOLOv4
network to help it achieve these fast speeds. First and foremost, the number of con-
volutional layers in the CSP backbone are compressed with a total of 29 pretrained
convolutional layers. Additionally, the number of YOLO layers has been reduced to
two instead of three, and there are fewer anchor boxes for prediction.
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YOLOv4-Tiny has comparatively competitive results with YOLOv4 given the
size reduction. It achieves 40% mAP @.5 on the MS COCO dataset.

1.4 Dataset

There is a lack of available public labelled datasets of art graffiti images. Therefore,
to perform the experiments of this study, we created our own dataset of annotated
graffiti images.

The database used in this project was created with images of own authorship and
also from sites with free copyright, such as unsplash (https://unsplash.com/), pixebay
(https://pixabay.com/pt/), pexels (https://www.pexels.com/pt-br/) andGooglemaps.
Table1.1 shows the distribution of the set of images in terms of their source. A total
of 522 images were collected, containing 603 annotations of artistic graffiti.

An analysis carried out in the created image dataset concerns to the size ratios of
the annotated graffiti in relation to the corresponding image sizes. This information is
relevant to be considered in the separation of training, validation and testing bases in
a uniform way. In addition, graffiti with small sizes are, in most cases, more difficult
to detect and, therefore, when evaluating the results, this information is quite useful.
Table1.2 describes the amount of graffiti according to their size ratios in relation to
the image that contains them.

The number of art graffiti with a proportion smaller than 20%, is approximately
a half of the total. These detections tend to be more challenging for neural net-
works, because the localization of small images needs a much higher precision [15].
Figure1.3 shows two images with respective graffiti sizes less than 10% and more
than 80% of the image size.

Table 1.1 Distribution of images in our dataset

Source No. images No. annotations

Own authorship 127 164

Other sources 395 439

Table 1.2 Distribution of graffiti Sizes with respect to image sizes

Ratio size Quantity

Smaller than 10% 177

Between 10% and 20% 127

Between 20% and 30% 91

Between 30% and 40% 68

Between 40% and 50% 48

Larger than 50% 92

https://unsplash.com/
 20953 14031 a 20953
14031 a
 
https://unsplash.com/
https://pixabay.com/pt/
 -1678 15359 a -1678 15359
a
 
https://pixabay.com/pt/
https://www.pexels.com/pt-br/
 12799 15359 a 12799
15359 a
 
https://www.pexels.com/pt-br/
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Fig. 1.3 Two examples of graffiti sizes: a less than 10% and b more than 80% of the image size

Fig. 1.4 Examples of variabilities present in the graffiti dataset: a low-contrast, b partial occlusion,
and c perspective

Additionally, our graffiti dataset present other variabilities as shown in Fig. 1.4.
These include large brightness differences (Fig. 1.4a), since in a real situation, the
system must be able to detect graffiti at night or in low light, cloudy weather, rain,
shadow, among other climatic variations; partial occlusions (Fig. 1.4b); and image
perspectives or inclinations (Fig. 1.4c).

The image dataset was distributed into three groups: training (with 76% of
images), testing (16%) and validation (8%), respectively. Table1.3 shows the distri-
bution of images, according to considered variabilities, in these groups.



1 Art Graffiti Detection in Urban Images Using Deep Learning 9

Table 1.3 Distribution of the image dataset in training, validation and test sets

Dataset Images Skewed Occluded Highly-contrasted

Train 395 88 66 43

Validation 42 9 8 2

Test 85 25 29 6

1.5 Experiments

This section describes the evaluation metrics employed, presents the different tests
performed using different YOLO architectures, and shows the respective quantitative
and qualitative results.

1.5.1 Evaluation Metrics and Computing Resources

To measure and compare the results of each experiment, the following evaluation
metrics were calculated: Precision (P), Recall (R) and F1 score (F1), as follows:

P = T P

T P + FP
R = T P

T P + FN
F1 = 2

P × R

P + R
(1.1)

For all experiments performed, we also computed the Average Precision for the
detected class of “Art Graffiti” objects, using 11-point interpolation [12], and repre-
sented it using Precision-Recall curves. In each of the tests, the performances were
analyzed under different aspects, such as, for example, the size of the graffiti in
relation with the image size, its inclination, variation of luminosity and occlusion,
respectively.

It is important to point out that all the training was carried out using the Google
Colab virtual environment, which provides for free a cloud GPU processing service.
All detections in images were performed on a specific GPU, with lower capacity,
to standardize detection times. The GPU to perform the detection has the following
configuration:

• Manufacturer: Nvidia
• Model: GeForce MX110
• Capacity: 2 GB
• Processor: Intel(R) Core(TM) i5-10210U
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Table 1.4 Confusion matrix corresponding to Test 1

Actual Predicted

Graffiti No Graffiti

Graffiti 79 17

No Graffiti 4 4

1.5.2 Experiments

Network training was carried out using three different input sizes (i.e. image res-
olutions): 416× 416 (which is the standard one for this network), 512× 512 and
608× 608, respectively. Additional tests were also executed by first increasing the
sharpness (i.e., the contrast) of images a 50%previous to training theYOLOv4 detec-
tor. We also have performed some tests with YOLOv5 and with the YOLOv4-tiny
network (suitable for limited computing resources), both with the smaller 416× 416
image resolution. The number of test graffiti objects in images was 96 for all the
experiments.

For the four first experiments (i.e., using the YOLOv4 network), the following
network hyperparameters values were used:

• Batch size: 64
• Subdivision: 64
• Momentum: 0.9
• Decay: 0.0005
• Learning rate: 0.001
• Max Batches: 3000

1.5.2.1 Test 1: Image Resolution 416× 416 (YOLOv4)

This test was performed on the basis of the test images being resized to a spatial
resolution of 416× 416 pixels and keeping their aspect ratios. The main goal of
this test was to train the network with the default settings in order to verify the
detection accuracy for test images and compare the results with those from the
remaining experiments. Table1.4 shows the confusion matrix of the results. The
average detection time per test image was 527 ms.

Respective values of Precision, Recall and F1-Score for this experiment were:
95.18, 82.29 and 88.27%. Finally, the Precision-Recall curve corresponding to this
experiment is shown by Fig. 1.5 where the mAP (mean Average Precision) is calcu-
lated in all experiments using the 11-point interpolation technique.
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Fig. 1.5 Precision-Recall curve of Test1 1

Table 1.5 Confusion matrix corresponding to Test 2

Actual Predicted

Graffiti No Graffiti

Graffiti 66 30

No Graffiti 8 7

1.5.2.2 Test 2: Image Resolution 512× 512 (YOLOv4)

This test was performed on the basis of the test images being resized to a spatial
resolution of 512× 512 pixels and keeping their aspect ratios. The main goal of this
test and Test 3 was to train the network with images of higher spatial resolutions than
in the initial experiment, and to perform comparisons using the considered detection
metrics. Table1.5 shows the confusionmatrixwith the results of this test. The average
detection time per test image was 772 ms.

Respective values of Precision, Recall and F1-Score for this experiment were:
89.18, 68.75 and 77.64%. Finally, the Precision-Recall curve corresponding to this
experiment is shown by Fig. 1.6.

1.5.2.3 Test 3: Image Resolution 608× 608 (YOLOv4)

This test was performed on the basis of the test images being resized to a higher
spatial resolution than in previous test (608× 608 pixels) and keeping their aspect
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Fig. 1.6 Precision-Recall curve of Test 2

Table 1.6 Confusion matrix corresponding to Test 3

Actual Predicted

Graffiti No Graffiti

Graffiti 69 27

No Graffiti 12 8

ratios. Table1.6 shows the confusion matrix with the results of this test. The average
detection time per test image was 1.553 ms.

Respective values of Precision, Recall and F1-Score for this experiment were:
85.18, 71.88 and 77.97%. Finally, the Precision-Recall curve corresponding to this
experiment is shown by Fig. 1.7.

1.5.2.4 Test 4: Image Resolution 416× 416 with Sharpening (YOLOv4)

In this experiment, an enhancement pre-processing was performed to images in
order to increase their image contrast by a factor of 1.5 (i.e, increasing of a 50%).
This sharpening transformation was applied to the training and validation images
after these were resized to 416× 416 by keeping their aspect ratio. The goal of this
test is to verify whether or not increasing image sharpness produces more accurate
detection results, since in some images, the illumination conditions or the graffiti
drawings themselves can worsen the results.
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Fig. 1.7 Precision-Recall curve of Test 3

Table 1.7 Confusion matrix corresponding to Test 4

Actual Predicted

Graffiti No Graffiti

Graffiti 83 13

No Graffiti 5 2

Table1.7 shows the confusion matrix with the results of this test. The average
detection time per test image was 386 ms.

Respective values of Precision, Recall and F1-Score for this experiment were:
94.32, 86.46 and 90.22%. Finally, the Precision-Recall curve corresponding to this
experiment is shown by Fig. 1.8.

1.5.2.5 Test 5: Image Resolution 416× 416 with Sharpening (YOLOv5)

This test was performed using the images properly resized to the original resolution
of 416× 416 pixels but using the YOLOv5 network with the following configuration
hyperparameters:

• Batch size: 64
• Momentum: 0.937
• Decay: 0.0005
• Learning rate: 0.001
• Max Batches: 3000
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Fig. 1.8 Precision-Recall curve of Test 4

Table 1.8 Confusion matrix corresponding to Test 5

Actual Predicted

Graffiti No Graffiti

Graffiti 78 18

No Graffiti 15 39

The purpose of this experiment is compare the results produced by YOLOv4 and
YOLOv5 models on the same test images.

Table1.8 shows the confusion matrix with the results of this test. The average
detection time per test image was 386 ms.

Respective values of Precision, Recall and F1-Score for this experiment were:
83.87, 81.25 and 82.54%. Finally, the Precision-Recall curve corresponding to this
experiment is shown by Fig. 1.9.

1.5.2.6 Test 6: Image Resolution 416× 416 (YOLOv4-tiny)

The purpose of this is to analyze the performance of this model with more lim-
ited resources in comparison with the other considered architectures. The test was
performed on the basis of the test images being resized to a spatial resolution of
416× 416 pixels and keeping their aspect ratios. The values of training hyperparam-
eters for this model were the following ones:
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Fig. 1.9 Precision-Recall curve of Test 5

Table 1.9 Confusion matrix corresponding to Test 6

Actual Predicted

Graffiti No Graffiti

Graffiti 50 46

No Graffiti 10 3

• Batch size: 64
• Subdivision: 64
• Momentum: 0.9
• Decay: 0.0005
• Learning rate: 0.00261
• Max Batches: 3000

Table1.9 shows the confusion matrix of the results. The average detection time
per test image was 51 ms.

Respective values of Precision, Recall and F1-Score for this experiment were:
83.33, 52.08 and 64.10%. Finally, the Precision-Recall curve corresponding to this
experiment is shown by Fig. 1.10 where the mAP (mean Average Precision) is cal-
culated in all experiments using the 11-point interpolation technique.
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Fig. 1.10 Precision-Recall curve of Test 6

1.5.2.7 Analysis of Results

Among all the tests performed, the one that obtained the highest global score (i.e., F1-
Score)was Test 4, that is, input size 416×416 inYOLOv4, applying sharpening to the
training and validation images, according Fig. 1.11 and Table1.10. If the evolution
measures are evaluated separately, Test 1 (input dimension 416) obtained the highest
Precision, while Test 4 (sharpening application) obtained the highest Recall. It was
possible to verify the application of sharpness improved the detectionmainly of cases
in which the artistic graffiti was more faded or with few colors.

Regarding the test using YOLOv5, it is possible to verify that it obtained a worse
result than YOLOv4, when compared to Test 1, which had the same network input
pattern (416× 416). It is important to point out that to have a conclusion about which
networkwould have the best performance, it will be necessary to carry outmore tests.

Test 6, with YOLOv4-tiny for mobile applications, had a low recall when com-
pared to the other tests; however it obtained an accuracy very close to all tests. As
previously mentioned, this model is an option for real-time object detection in videos
on mobile and embedded devices.

Finally, we also present some qualitative results corresponding to a randomly
chosen test image. Figure1.12 shows for this same image the visualisation results
of Intersection over Union (IoU) corresponding to the respective six experiments
carried out. In order to clarify these visual results, we also show in Table1.11 the
respective confidence values returned by the network and also the corresponding IoU
results. It can be noticed that best confidence value corresponds to Test 1 working
with a lower image resolution (416× 416), and best IoU result corresponds to Test
5 using YOLOv5 also with the lower resolution.
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Fig. 1.11 Comparison of metrics values between tests

Table 1.10 Comparative test results

Test Architecture Resolution Test time
(ms)

Recall Precision F1-Score

Test 1 YOLOv4 416 527 82.3 95.2 88.3

Test 2 YOLOv4 512 772 68.8 89.2 77.6

Test 3 YOLOv4 608 1,553 71.9 85.2 78.0

Test 4 YOLOv4 416 386 86.5 94.3 90.2

Test 5 YOLOv5 416 386 81.3 83.9 82.5

Test 6 YOLOv4-
tiny

416 51 52.1 83.3 64.1

The reported poor results for the YOLOv4-tiny model (Test 6) in Table1.11 cor-
respond to its execution with the same computer resources as previous tests. Note
that YOLOv4-tiny can also be executed in a smartphone and also work for videos
at real-time. We achieved much better results for the Confidence and IoU metrics
(respectively, 0.93 and 0.84) using a smartphone Xiaomi 9T model (with camera 48
Mpx, video 4K, 8 core and display 6.39). For a better interpretation of the previous
comparative results between experiments it is important to remark that YOLOv4,
YOLOv5 and YOLOv4-tiny architectures have respectively the following approxi-
mate number of training parameters: 6× 107, 4.6× 107 and 6× 106.
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Fig. 1.12 Qualitative detections for each of the six experiments on the same test image

Table 1.11 Respective network confidence and IoU values for the six experiments computed on
the same test image shown in Fig. 1.11

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Confidence 0.88 0.64 0.49 0.87 0.77 0.70

IoU 0.76 0.85 0.84 0.75 0.92 0.45

1.6 Conclusion

Object detection is a task that has received a lot of attention in recent years, espe-
cially with the development of extremely fast networks, arising from deep learning
and traditional convolutional neural networks. This task consists of locating and clas-
sifying objects in static or dynamic images (videos). The location is done through
the coordinates of a bounding box that contains at least one instance of the object,
and the classification consists of producing a confidence value for a certain category
of objects.

This work dealt with the detection in static images of art graffiti objects, which are
artistic manifestations considered as popular art. These paintings have different tech-
niques and styles, having a great potential to beautify cities, in addition to becoming
local tourist spots. Another interesting point is that this form of expression is legal,
unlike vandalism graffiti. To carry out the detections of art graffiti, three YOLO
network models were used (YOLOv4, YOLOv5 and YOLOv4-tiny, respectively).
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Six tests were performed, the first three using YOLOv4 at image dimensions of
416× 416, 512× 512 and 608× 608, respectively. Test 4 also used YOLOv4 at
resolution 416× 416 but applying a sharpening preprocessing to the training and
validation images. Tests 5 and 6 used YOLOv5 and YOLOv4-tiny, respectively. To
carry out the training, validation and testing, we used a database created with images
of our own authorship and also from sites with free copyright, with a total of 522
images, containing 603 annotations of art graffiti objects.

Among all the tests performed, the one with the highest global score (F1-Score)
wasTest 4, that is 416× 416 image resolutionswithYOLOv4and applying sharpness
to the training and validation images. This test has an accuracy of 94.3% and a recall
of 86.5%.The testwithYOLOv5obtained good evaluationmetrics, but it was inferior
to YOLOv4. YOLOv4-tiny also achieved a close accuracy to all tests, however it had
a low recall.

As future work we consider the application of YOLOv4-tiny to mobile devices,
using also the geolocation of images, in order to generate relevant information (i.e.,
for art graffitimaintenance purposes). For this task, it will be necessary to improve the
accuracy of this reduced detector. Another future work will consist in extending our
detection problem considering together art, vandalism and other variants of graffiti
classes (i.e., a multiclass detection problem).
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Chapter 2
Deep Neural Networks for Passengers’
Density Estimation and Face Mask
Detection for COVID-19 in Public
Transportation Services

Rogelio Hasimoto-Beltran, Odin F. Eufracio-Vazquez,
and Berenice Calderon-Damian

Abstract Public Transportation Networks (PTN) are considered as one of the
essential commuting systems worldwide. Under good planification strategies, PTN
improves population mobility, reduces environmental pollution, traffic congestion,
and commuting time. Optimal management, control, and tracking of public trans-
portation systems are desirable for improving service quality and users’ wellness.
Thiswork proposes amanagement and control system for public transportation based
on passengers’ density estimation. Our final goal is to develop a communication net-
work architecture and a Deep Neural Network for face detection to quantify the
density and number of people being transported as a function of time. This collected
information (density and number of passengers) is sent to public transport adminis-
trators (municipal authorities and bus owners) to take actions for adding/removing
busses to/from specific route circuits and improve the users’ commuting quality
of service (that is, reducing traveling times, waiting time on the bus stop, and not
oversaturated units). Additionally, to control the spread of COVID-19 on PTN, our
algorithm can detect passengers with or without a face mask. We provide an in-depth
description of our proposed Deep Neural Network and its implementation in Python
programming language.
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2.1 Introduction

Public Transportation (PT) service (on-road buses in this work) is transforming the
way people commute within their surroundings (rural or urban) or even across cities.
It represents an essential alternative to a personal automobilewith additional benefits,
safety (10 times safer per mile in the US), affordability, environmentally friendly (it
reduces gasoline consumption and carbon footprint), among others [2]. PT demand
is constantly increasing around the world, with an actual user’s penetration (available
number of users) of 6.6% in 2022 and expected to increase to 6.8%by2026, providing
transport services to 537 million users worldwide [23]. Additionally, the United
Nations estimates a population increase of 20% by 2050 [17], representing almost
10 billion people demanding new mobility solutions, such as infrastructure, quality
of service, facilities for special-need groups (children, persons with disabilities, older
persons, etc.), and affordable rates. Demands for improving PT services are being
supported by The Sustainable Mobility for All (SuM4AllTM) initiative [5], which is
working on an ambitious project for transforming the future of the transport sector
to achieve four main objectives for meritorious mobility: (1) Universal Access, it
should be equitable (no one behind); (2) Efficient, in a subjective user’ perspective;
(3) Safe (avoid transport accidents); and (4) Green Mobility, to reduce both air and
noise pollution.

Among these objectives, Transport Efficiency (TE) seems to be the most crucial
variable to ensure that users’ demands are met effectively. It takes into account
metrics that usually involve transport cost, in-vehicle travel time, waiting time, and
crowding [3]. There is a close and straight relationship between crowding and users’
comfort level. It has been found that, as the number of passengers increases to the
available transport capacity (crowding), so does the users’ level of stress, anxiety,
and feeling of invasion to privacy, affecting self-comfort and personal wellbeing [11,
24]. A recent study [1] shows an average reduction of 56.8% in accessibility to jobs
in a regular workday morning peak due to crowding discomfort. It is concluded that
the level of passengers’ discomfort produced by crowding is, in general, the main
decision-maker for not using PT services. Therefore, crowding should be considered
as a key metric to be taken into account for concessionaires, city-transport planners,
and policymakers to determine the effectiveness of bus scheduling choices (circuit
frequency and the number of busses per city or urban route) to enhance passengers’
travel experience and transport usage.

Transport crowding detection or Passengers’ Density Estimation (PDE) has been
studied from different perspectives, going from laborious and tedious on field inves-
tigations, up to the application of surveillance cameras and automatic techniques for
scenes processing and analysis such as image processing and Deep Neural Networks
(DNNs), respectively. Oberli et al. [18] evaluated RFID technology tags for passen-
ger tracking and counting, concluding that recognition percentages are susceptible
by the antenna position and radiation pattern. Zhang et al. [29] made use of smartcard
fare collection systems and GPS to derive the location where passengers get on and
off the bus to estimate the passenger density in every bus. There are hundreds of cities



2 Deep Neural Networks for Passengers’ Density Estimation … 23

worldwide where smartcards are not used yet. In Handte et al. [8] a WLAN access
point is used to detect the number of onboard passengers. Users can then retrieve
the crowd density estimations for the public transportation system from their mobile
devices. It is reported that the number of passengers can be underestimated because
some users do not connect to the public IP,Wi-Fi, or their cellphones are off. Zhan and
Liu [30] present amore theoretical method based on the quantification of passengers’
probability density function (taken from a subsample of the card payment system)
along with multi-objective optimization (Particle Swarm Optimization) to estimate
passengers’ density. As mentioned by the authors, the results are idealizations.

Passengers’ density estimation can also be viewed as an object detection prob-
lem. Object detection is a widely studied topic in the literature since it represents
an essential component in many computer vision problems such as object tracking,
pedestrian detection, people counting, and autonomous vehicles [12]. The methods
to solve this object detection problem can be divided into two groups: those that use
classical techniques (image processing) and those that applymodern techniques such
as deep learning. Each group has specific techniques to solve the problem. Trans-
port Crowding is an object detection problem that considers a fixed camera taking
images of the bus’s interior, so it is commonly assumed that images will have a static
background. However, images will experience moderate to significant illumination
changes, e.g., the bus may pass through a building or enter a tunnel, causing variable
illumination changes, one of the main challenges of image processing techniques.

Given the above conditions, classical methods such as Background Modeling
(BM) [27] or Background Subtraction (BS) [21] can be applied to PDE. With this
approach, the passengers will be in the foreground, i.e., they represent the difference
concerning the fixed background. The idea is to use this difference to quantify the
density of passengers present in the images. The main advantages of this approach
are relatively simple methods with low computational cost. On the other hand, the
challenges faced by this approach to PDE are rapid and local illumination changes
(shadows, light switching, etc.) and a partially dynamic background (on-road bus
vibration) [21]. Further image processing techniques have been used in [4, 16, 28],
with the inconvenience of being vulnerable to drastic illumination changes.

Recently, DNNs have dominated the object detection task [12]. One of the main
advantages of DNNs is that they can automatically extract nonlinear features from
the data, exhibiting high levels of robustness to illumination changes and transforma-
tions such as translation and rotation. In addition, the networks are complete models,
i.e., the same classification model is responsible for extracting the optimal features
for a specific task. To perform PDE in transport units, the task is to identify pas-
sengers and their location inside the bus (will see later that the user’s location is
important in current pandemic times). Object detection methods using deep learn-
ing can be classified into two-stage and one-stage methods. Two-stage methods first
generate object proposals and then classify these proposals, e.g., the R-CNN fam-
ily of methods [6, 7, 20]. One-stage methods simultaneously extract and classify
object proposals, e.g., the YOLO family of methods [19]. Two-stage methods have
relatively slower detection speed and higher accuracy, while one-stage methods have
much faster detection speed and comparable detection. Liu-Yin et al. [15], proposed
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a Convolutional Neural Network (CNN) to detect passengers, along with a Spatio-
temporal context model (that addresses the problem of low resolution, variation of
illumination, pose and scale) to track the moving head of each passenger. Wang et al.
[26], present a lightweight CNN (reduced number of layers) to be run on an embed-
ded system reporting accuracy of 99%. Hsu et al. [10, 12], present a more complex
scheme, where two deep learning methods were implemented to extract features
from crowds of passengers. The first method determines the number of people in a
crowd, while the second detects the area in which head features are clear on a bus.

Even though the problem of counting people is mature, there still exist new chal-
lenges in the PT arena, particularly under novel COVID-19 pandemic times. It is
important to develop health-safe public transportation by restricting and controlling
packed people on-board and avoiding the spread of the virus through social distance.
It has been found that the spread of infectious diseases grows abruptly with the num-
ber of passengers (without the need of reaching total transport capacity) [13], which
in turnmodifies the concept or perception of crowding before and during COVID-19.
Perception of crowding during the pandemic is based on Public Health Agencies’
recommendation for indoor and outdoor social distances, producing negative side
effects for passengers such as longer traveling times and higher cost (since buses are
not riding at a total capacity). Despite these downside effects, passengers are willing
to assume their responsibility for uncrowded and more spacious transportation in
exchange for health-safer commutes [24].

In this work, we undertake the task of improving public transportation quality-
of-service. We consider two significant user-comfort-related metrics, crowding and
users’ waiting time. For this, we propose a system architecture with two main com-
ponents:

1. PDE based on DNN, to be used by public transport authorities to satisfy users’
demand and reduce bus crowding efficiently. Our PDE development goes one step
further than just detecting faces; we also detect users wearing or not face masks
to avoid spreading COVID-19 and generate alerts.

2. Mobile user app for Android OS provides information on the totality of city bus
routes, real-time view of all busses on a selected route, estimated time of arrival
at a specific stop point, and seating information for each bus selected.

Our final goal is tomotivate the use of PT services (independently of the passenger
economic level), improve user utilization of time (they know the arrival time of the
transport), health-safe commutes, avoid traffic congestion, and decrease pollution.
The rest of this work is organized as follows. In the next section, we describe the
major components of our system architecture. Experimental setup and results are
discussed in Sect. 2.3. The conclusions and future work are presented in Sect. 2.4.
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Fig. 2.1 System architecture for passengers’ Density Estimation (PDE)

2.2 Proposed Architecture

Efficient urban mobility is still a challenge that needs urgent solutions, particularly
in crowded cities. As part of this solution, we proposed a global system architecture
that improves and incentivizes the use of the public transportation network. Our pro-
posal provides, on one side, real-time information to transport planners about on-bus
crowding and users’ waiting-time for controlling andmanaging the number of busses
per route basis (which directly influences the number of people choosing the option
of public transportation). On the other side, it offers a mobile user application with
information about transport routes, bus location (real-time visualization), estimated
arriving times, and passengers’ density per transport unit for a more comfortable
commuting experience. Users can now make better use of their time and get to the
bus stop minutes before the bus’s arrival. Details of our system architecture, mobile
App, and PDE are provided in the following subsections.

Our system architecture follows a distributed model to manage the public trans-
portation network and provide service to thousands or even millions of users. We
will concentrate on the PDE distributed module that efficiently reports, receives,
and relays passengers’ density information from busses in transit to users and trans-
portation planners. Our system architecture consists of 4 main layers (Fig. 2.1): (1)
Cloud Computing Servers; (2) Bus Transmission System; (3) User Mobile App, and
(4) Authorities (Planners) Decision Making.

1. Cloud Computing Servers (CCS): This layer is responsible for receiving infor-
mation from bus units and forwarding it to all users and transport planners
under explicit request. It consists of three main components: DNN Server (DS),
Database Manager (DBM), and Request Server (RS). DS receives image/video
information from the bus’s interior to estimate the total number of persons and
the percentage of those wearing face masks in the specified unit (see Sect. 2.3).
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Fig. 2.2 Usermobile application. aMobileApp cover image,bBusmonitoring on route and official
stops (circles in red and blue), c Bus alarm notification, d Estimated arriving time to selected stop
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Our DNN implementation can process images (or frames) of 640 × 640 pixels
at a speed of 18 images/s; that is, one server can provide service to 1000 busses
transmitting one image every 60 s. DNN estimated output is then transmitted to
the DBM and made available to users and transport planners through the RS. For
every bus and all city routes, the DBM collects and stores the following informa-
tion: passengers’ density estimation, Bus ID, Bus Owner, City ID, Route ID, and
date and time. RS is responsible for serving requests to thousand or even million
users who connect to the system through the Mobile App (MA); see the Mobile
App section layer 3 below.

2. Bus Transmission System (BTS): This system consists of an on-board Linux-
based IoT device in charge of collecting geographical location (GPS) and
image/video data from all busses in transit. An on-board camera wirelessly com-
municates image/video data to the IoT device every N s., which is the minimum
travel time between two bus stops. N is computed as per-route basis, so in our
particular case 30 ≤ N ≤ 60 (City of Guanajuato, México). The IoT device is
connected to a cellular network to transmit all the information to the DDN server.

3. Users Mobile App (UMA): Developed for Android OS platforms (Smartphones)
(Fig. 2.2a), it offers complete visualization of the PT routes and official stops from
the comfort of the user’s house, office, school, etc. (Fig. 2.2b). It prevents long
waiting times and distress produced by crowded, cold, rainy, or insecure bus stops.
UMA connects to RS to offer several services, among the most important (to this
work) are (a) Real-time bus visualization (Fig. 2.2b); (b) User Notifications, in
which users can activate bus-stop alarms to receive a notification when the bus
arrives in a specified stop, even when the application has been closed (Fig. 2.2c);
(c) Average waiting-time to a selected bus stop (Fig. 2.2b); and (d) PDE, which is
activated by clicking on a specific bus icon, reporting the number of passengers
and density in percentage (Fig. 2.2d).

4. Authorities Decision Making (ADM): This is a database client for retrieving
information from the DBM by selecting date and time. PDE can be retrieved per
bus, route, or at a city level in averaged intervals of 15, 30, and 60min. PDE at
route and city level represents the sum of the number of passengers for all busses
in a specified route and the number of passengers in all routes, respectively. In
this way, transport managers can decide to remove or add bus units to specific
routes.

2.3 Deep Learning for Object Detection

The deep learning approach is a type of machine learning which is characterized by
the use of a large number of layers with nonlinear activations or processing units
[12]. In the context of supervised learning, a traditional machine learning approach
requires two main tasks: first, the manual design of an algorithm for feature extrac-
tion, and second, the application of a classification algorithm. In comparison, modern
machine learning approaches such as deep learning are considered end-to-end learn-
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ing systems because a single model or architecture can perform the tasks of feature
extraction and data classification tasks. It is important to note that machine learning
models can extract or learn nonlinear features suitable for the classification task at
hand.

Deep learningmethods, in particular convolutional neural networks (CNNs), have
become the main focus in tasks related to image processing and computer vision
[12]. CNNs exhibit significant similarity to standard neural networks, except that
the operations performed on their layers exploit the natural structure in images, i.e.,
neighboring pixels are related. In addition, CNNs tend to have a lower computational
cost by imposing sparse and shared weights on their layers. The four types of layers
that are commonly present in CNNs are convolutional layers (Conv2d), subsampling
or scaling layers (Pooling), rectification layers (ReLU), and dense layers (Fully-
Connected).

The general operation of CNNs in image classification can be divided into two
stages. The first stage involves feature extraction and involves a convolutional layer
repetition, scaling, and rectification. The second stage functions as a non-linear clas-
sifier and involves a dense layer repetition. One of the first successful architectures in
CNN where these two stages are visualized is LeNet [14]. This network was used in
banks to identify handwritten numbers on checks. LeNet contains two convolutional
layers, two subsampling layers, and three fully-connected layers.

New architectures take LeNet’s capabilities further but share its general design.
Two modern architectures that are commonly used as a first step in more complex
tasks, such as object detection, are the VGG [22] and ResNet [9] networks. The
VGG network follows the trend of increasing the number of layers and introduces
principles that serve as a guideline for future architectures: it prefers the use of smaller
convolution filters but increases the number of convolutional layers and doubles the
number of convolution filters after each subsampling or scaling layer.

The ResNet network continues and surpasses the trend of building deeper net-
works. A general principle is that more complex features can be extracted or learned
by increasing the number of layers. But not all images or objects in images are com-
plex enough to requiremany layers.WithResNet, the network can choose the number
of layers needed in its processing by including skip connections. These shortcuts can
serve in the outward flow of images to compute activations and the return flow to
propagate the error, which achieves deep adaptive networks with effective training.
It is essential to know these architectures because they are used as a first step in
extracting features in more complex tasks. In addition, pre-trained models with large
databases serve as a starting point for tuning the model to the specific problem to be
solved, i.e., transfer learning.

Object detection performance depends mainly on the quality of the extracted
features and the robustness of the selected classifier. In particular, one of the main
advantages of CNNs is that they can extract nonlinear features from the data, where
such features present a high level of robustness to illumination changes and trans-
formations such as translation.

One of the first successful models to incorporate deep learning techniques in
object detection is the Region-based convolutional neural network (R-CNN) model
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Fig. 2.3 R-CNN architecture, based on [7]

Fig. 2.4 Fast R-CNN architecture, based on [6]

[7]. R-CNN is a two-stage model where a series of proposals are generated and then
processed for their correct classification and localization. TheR-CNNmodel consists
of the following steps:

1. Selection of regions of interest. Regions of interest (patches) are proposed and
extracted. In the original work, these patches are selected using the selective
search algorithm [25].

2. Feature extraction. Each region of interest has a feature vector extracted using
a pre-trained CNN.

3. Region classification. The CNN feature vector is used to train a classifier and a
linear regressor to estimate the class and location of each region.

Figure2.3 shows the series of steps or modules performed by the R-CNN model.
One of the main problems of the R-CNN model is the high computational cost

since each region of interest has features extracted independently. Fast R-CNN [6]
solves this problem by computing the feature map of the input image only once, and
now all regions of interest extract the features from this single field. Similarly, each
region of interest can be of different size, which are standardize by a new Region
of Interest Pooling layer before proceeding with the classifier and regressor steps,
similar to R-CNN. Figure2.4 depicts the Fast R-CNN architecture.

In [19], a selective search algorithm is used to propose regions of interest, but
requieres a large number of proposals to obtain good results. Ren et al. [20] pro-
posed a Faster R-CNN algorithm by introducing a Region Proposal Network (RPN),
that shares image convolutional features with the Fast R-CNN detection network,
enabling nearly cost-free region of interest proposals. The RPN is a network that
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Fig. 2.5 Faster R-CNN architecture, based on [20]

takes as input the feature map of the previous CNN and uses each element of this
map as the center of possible regions with different proportions. The RPN is trained
to classify each element as an object or background and estimate the object’s loca-
tion. The non-maximum suppression (NMS) technique is applied to reduce similar
proposed regions; see Fig. 2.5 for the Faster R-CNN model.

2.4 Experiments and Results

We used the two-stage detector Faster R-CNN model using RestNet50 as the back-
bone in our experimental setup. Pre-trained weights with the COCO 2017 dataset
were used to initialize the model, and subsequently, the full model is fine-tuned
with 1000 images collected from the local transportation system. Image data is col-
lected from a single digital video camera installed up-front the interior of the bus
and includes a great variety of crowdedness levels, going from emptiness to full-bus
capacity (Fig. 2.6). Even though the number of users and active buses decreased by
approximately 60% during pandemic times, we managed to select one of the most
crowded routes crossing the city from side to side for the experiment. We video
recorded a round-trip bus trajectory and split the entire data set in 80%-10%-10%
for training, validation, and test, respectively. One of the most relevant parameters
that affect face detection accuracy is illumination changes. Fortunately, the City of
Guanajuato has a complex orography (hills, mountains, slopes, etc.), underground
roads, and tunnels that produce sudden and drastic illumination changes during the
bus trajectory that the camera was able to capture, providing us with sufficient infor-
mation for the network training process. Different than previous schemes in the
literature [10], our training process concentrates on face detection along with differ-
ent distances in the bus (up to 10–12 Mts); in this way, we are able to consistently
detect both small and large faces in the absence of occlusion. This training process of
detecting faces at long distances helps in reducing the number of monitoring cameras
in a tight-budget community.

Given the current COVID-19 health emergency, it was considered important not
only to count passengers but also to identify whether or not they are wearing face
masks. So, this classification problemwas also included in ourDNN training process.
For passenger detection in the generated database, we obtained a mean Average
Precision (intersection of our result and the ground truth) mAP@0.5 of 97.3% and
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Fig. 2.6 Bus’s interior with variety of crowdedness levels

a mAP@[0.5, 0.95] of 55.2%. Figure2.7 shows the classification results. The left
column represents the original images, and the right column the detected passengers.
Each row includes imageswith different passenger densitieswherewe can see that the
network can locate and classify with high accuracy. The last row shows a substantial
change of illumination (the truck entered a tunnel), and we can see that the network
was able to identify the passengers. The green and red rectangular bounding boxes
indicate if the passenger is wearing or not a mask, respectively. Figure2.8 shows a
subsample of 12 bus stops wherein the total number of passengers and the proportion
of those passengers wearing or not face masks are calculated. Green and red bars
represent those passengers wearing or not a face mask, respectively. In this case, it is
clear that the use ofmasks is not unanimous: it happens in a proportion of almost 50%.
Since bus drivers were not restricting passengers’ access and use of face masks, this
information is made available to city authorities and bus owners through our request
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Fig. 2.7 Left original images, right detected passengers. The green bounding box implies that the
passenger is wearing a mask and the red color means that they are not wearing a mask

server in order to control the number of busses and the number of passengers to
provide an optimal transport service and to avoid the spread of contagious diseases.
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Fig. 2.8 Estimated total number of passengers and proportion of passengers wearing or not face
masks

2.5 Conclusions and Future Work

Mobile technologies and machine learning applications become good allies for
improving users’ satisfaction in public transport services. Using these technologies,
we have designed and implemented a transport system architecture that benefits both
parts of the transport community, service providers (concessionaires and munic-
ipal authorities) and users of the service. This conjunction (providers and users)
improves the population’s mobility and incentivizes the use of public transportation,
which impacts on reducing environmental pollution, traffic congestion, and com-
muting time [5]. Our architecture efficiently detects passengers’ density estimation
through aDNNand communicates thismetric to transport planners through our cloud
service. In this way, the number of transport units in transit can now be handled or
controlled in real-time on a route basis. Additionally, a mobile user application has
also been developed to provide users with the following commodities, bus geoloca-
tion in real-time for a selected route, high precision arriving-time estimates to bus
stops, and information about the number of passengers per selected unit. Users can
now manage their own time appropriately.

One of the main restrictions in our proposal is the use of only one video camera
for estimating passengers density. This, of course, has several restrictions, such as
passengers’ occlusion and hidden faces (showing only the head of the passenger).
To avoid these problems, it is recommendable to have 4 cameras on the buses with
a standard length of 12–15 Mts, two on the front sides (left and right) and another
two between the middle and backside of the bus, having all four cameras looking
backward. In this way, passengers occlusions are decreased considerably since the
DNN can detect partial face views.
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Chapter 3
Epistemic Uncertainty Quantification in
Human Trajectory Prediction

Mario Canche, Ranganath Krishnan, and Jean-Bernard Hayet

Abstract Human Trajectory Prediction (HTP) is a critical technology in several
areas related to the development of smart cities, such as video monitoring or
autonomous driving. In the last years, there has been a leap forward in the state of the
art of HTP, with great improvements observed in most of the classical benchmarks
used in the related literature. This has been possible through the use of powerful data-
driven deep learning techniques, coupled with probabilistic generative models and
methodologies to cope with contextual information and social interactions between
agents. In this chapter, we first show how incorporating Bayesian Deep Learning
(BDL) techniques in Human Trajectory Prediction allows to provide realistic esti-
mates of the epistemic and aleatoric uncertainties on the computed predictions. In
addition, we also present an original methodology to assess the quality of the pro-
duced uncertainties (through BDL or other probabilistic approach).

3.1 Introduction

Video monitoring and autonomous driving are key technologies behind the future of
Intelligent Transportation and, more generally, Smart Cities. For those applications
and for many more, the developed systems critically need to predict the short-term
motion of pedestrians, e.g. to anticipate anomalous crowd motion through a video
monitoring system or to assess the safety of the motion an autonomous vehicle is
about to undertake. In this context, Human Trajectory Prediction (HTP) has had a
very fast development recently, in particular through the use of powerful, data-driven
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deep learning techniques [10, 32]. Coupled with probabilistic generative models and
dedicated methodologies to cope with contextual information or social interactions
between agents, they have allowed a leap forward in the state of the art, with great
improvements on classical HTP benchmarks used in the related literature.

However, a key element is still missing inmost of themethods currently developed
for guaranteeing some level of robustness in the way the forecast data can be used:
A sound estimation of the uncertainties associated to the outputs produced by the
predictors. As stated in several works before [16], this aspect is of paramount impor-
tance to ensure robustness in the use of HTP outputs, so that any decision system
using the predicted trajectories of pedestrian could also be aware of how uncertain
these estimates are. Note that, as highlighted in [16], there are two important kind
of uncertainties to cope with: The aleatoric uncertainties are intrinsic to the data
and reflect the inherent variations of the data, e.g. due to noise or to the inherently
multimodal nature of the data; the epistemic uncertainties reflect the limits of the
model, in particular due to the finiteness of the data we train the model with. If
we had an infinite amount of data, such epistemic uncertainties could be zeroed,
however, this limit case is in general far from being approached. In most systems,
and in particular in the case of HTP systems, the quantity of training data is rather
small. This chapter brings two contributions oriented to this issue: (1) we show how
Bayesian Deep Learning (BDL) techniques allows us to provide realistic estimates
of both epistemic and aleatoric uncertainties on the computed trajectory predictions;
(2) we present an original methodology to calibrate the produced uncertainties. Note
that the proposed methodology does not aim at producing more precise forecast but
at producing more precise uncertainty estimates.

The Chapter is organized as follows: In Sect. 3.2, we describe related work and
formalize the HTP problemwe deal with; in Sect. 3.3, we show how BDL techniques
can allow to estimate the epistemic uncertainties on the outputs on BDL systems;
in Sect. 3.4, we describe a methodology that assess the quality of the estimated
uncertainties; finally, in Sect. 3.5, we report results on standard HTP benchmarks
that validate the whole approach.

3.2 Related Work and Problem Statement

Modeling human motion has a long history, taking its roots, in particular, in the
simulation community, where researchers have proposed hand-tailored models such
as the Social forces model [12], in which the motion of agents is seen has the result
of attractive and repulsive forces acting on these agents. Many other approaches
have been explored, such as cellular automata [3] or statistical models like Gaus-
sian Processes [34, 35]. More recently, following the rise of deep learning tech-
niques, data-driven methods have turned the field upside down and have allowed
huge improvements in HTP benchmarks. Neural networks, and in particular recur-
rent neural networks, have been used intensively since the seminal work of Social
LSTM [1] that uses LSTM (Long-Short TermMemory [13]) sub-networks to simul-
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Fig. 3.1 Some examples of the raw data in ETH-UCY HTP datasets

taneously encode the observed trajectories and the social interactions between agents
in the scene. In parallel, several architectures have also been proposed to handle the
spatial context surrounding the agents [24, 36]. Most of these networks are deter-
ministic, in the sense that, for one input (the history of one agent and some contextual
data), they give as an output one single trajectory.

On the opposite, generativemodels are able to produce samples from the predictive
distribution, at least in theory. They are more efficient in dealing with potentially
multi-modal predictive distributions, e.g., when a person at a crossroad has two
or three plausible plans ahead of him. Generative adversarial networks [8] (GAN)
have been used for this purpose in HTP [10, 18, 31, 42]. Conditional Variational
Autoencoders [33] (CVAE) [17, 22] is another technique used to design generative
models, mapping realizations of a multivariate Gaussian distribution onto trajectory
variations. The Trajectron [15] and Trajectron++ [32] systems, that are some of the
most prominent systems in the last years, use CVAE as their backbones.

Another line of research has been the use of dedicated attention mechanisms [37],
e.g. to identify the most relevant neighbors interacting with a given agent [38] or
fully attention-based methods, i.e. Transformer networks (TF) [6] to replace the
encoding/decoding recurrent networks in more traditional systems.

However, most of the aforementioned methods simply do not handle neither
aleatoric nor epistemic uncertainties. A few techniques such as [1] include mod-
eling choices that allow to represent aleatoric uncertainties, by defining the output of
the model as the parameters of a Gaussian distribution; generative models [10, 32]
implicitly encode the aleatoric uncertainties in a more general way. To the best of
our knowledge, there is no system in the current literature that is able to cope with
epistemic uncertainties, and the consequence is that the overall uncertainties in most
system are probably under-evaluated.

Our forecasting problem is the following: Given an input sequence of Tobs pedes-
trian planar positions pt for t = 1 . . . Tobs in R

2, we want to predict the sequence
pTobs+1:Tpred of its future positions. In Fig. 3.2, a typical input (in blue) and target
(in red) are shown. As it can be seen in Fig. 3.1, where some raw trajectories from
typical datasets are illustrated, in general, more information can be available (maps,
relative positions of other pedestrians…). However, here, we limit the scope of our
approach to using only the past positions, expressed in world relative coordinates to
the position at Tobs . We also focus on the case of parametric, deterministic regression
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models, i.e. models π parameterized by parameters w. Finally, we consider the case
of forecasting systems producing an estimate �̂w

Tobs+1:Tpred
of the associated aleatoric

uncertainty. Hence, our target model has the form

p̂wTobs+1:Tpred
, �̂w

Tobs+1:Tpred
= π(p1:Tobs ;w), (3.1)

where each (p̂wt , �̂w
t ) gives the first two moments of the predictive distribution over

the position at t . To alleviate the notation, when necessary, we will refer to the
input sequence as x � p1:Tobs and to the output as y � pTobs+1:Tpred , � � �Tobs+1:Tpred .
An illustration of typical outputs from such a model is given in Fig. 3.2, left, with
predicted uncertainties at each future timestep depicted in pink.

In typical setups, such a model is trained to determine optimal parameters w∗
given a dataset D of K training examples {(xk, yk)}. The likelihood of the true yk
over the Gaussian predictive distribution defined by ŷwk and �̂w

k is maximized:

w∗ = argmax
w

K∏

k=1

N (yk; ŷwk (xk), �̂w
k (xk)). (3.2)

Here, in addition of the aleatoric uncertainties that the formulation above allows
top cope with, we would also like to quantify the underlying epistemic uncertainties.

3.3 Quantification of Aleatoric and Epistemic Uncertainties

This section gives a short introduction to Bayesian deep learning and shows how it
can be used to produce estimates of both aleatoric and epistemic uncertainties.

3.3.1 Bayesian Deep Learning

Bayesian deep learning provides a probabilistic interpretation of deep neural net-
works by inferring distributions over the model parameters w. The initial idea of
applying Bayesian principles in neural networks was in 1990’s [25, 27]. With the
advancements in deep learning yielding state-of-the-art results in various domains,
there has been a resurgence of Bayesian neural networks with increasing interest
among the AI research community to make use of them as a principled frame-
work to quantify reliable uncertainty estimates in deep learning models. Given data
D = {(xk, yk)}, a model likelihood p(y | x,w) and prior distribution p(w), we would
like to learn the posterior distribution over the weights p(w |D):

p(w |D) = p(y | x,w) p(w)∫
p(y | x,w) p(w) dw

. (3.3)
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Since obtaining the posterior distribution above is analytically intractable, many
approximate Bayesian inference methods have been proposed including stochastic
gradient MCMC [4, 39, 41] and variational inference [2, 5, 9, 26] methods. Once
the posterior distribution is learned, predictions for test data inputs x are obtained
through marginalization of the weight posterior through Monte Carlo sampling:

p(y | x,D) =
∫

p(y | x,w)p(w |D) dw

≈ 1

N

N∑

i=1;wi∼p(w|D)

p (y | x,wi ) , (3.4)

where the N weights wi are sampled from the posterior over the weights p(w |D).
In the trajectory prediction problem we described in the previous section, x is a time
series of observed positions and y is a time series of future positions.

3.3.2 Uncertainty Estimation Through Bayesian Deep
Learning

Suppose that we have designed a (deterministic) neural network π with parameters
w, able to output a prediction ŷw for an input x, as in Eq.3.1, altogether with an
estimate of the variance �̂w over these predictions. We also suppose that with some
Bayesian deep learning method as the ones exposed above, we are able to sample
parameters wi from a posterior distribution over the network parameters, given the
training dataset D:

wi ∼ p(w|D). (3.5)

Note that, as commented in the previous section, performing this sampling on
the posterior distribution of the weights gives a way to estimate epistemic uncertain-
ties, i.e. variations over the model parameters themselves. By using N samples wi

from this posterior p(w|D) over the model parameters, we produce a mixture of N
Gaussian distributions:

p(y | x,D) = 1

N

N∑

i=1;wi∼p(w|D)

N
(
y; ŷwi (x), �̂wi (x)

)
. (3.6)

From this representation estimates for the first two moments of the posterior
distribution over y, given x and D, as
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Fig. 3.2 Uncertainty representation over the predicted position at timestep Tpred = 12. The blue
trajectory corresponds to the Tobs observed positions (used as an input for the prediction system),
the red trajectory corresponds to the Tpred ground truth future positions, the green trajectories are
the predictions and the corresponding covariances (estimated as in Eq.3.1 at Tpred ) are depicted
in pink. Left: Output from a deterministic model. Middle and Right: Outputs from a Bayesian
model (in this case, a variational model described in Sect. 3.5.1.2). The right subfigure depicts the
covariance resulting from the mixture in the middle

ŷ(x) � 1

N

N∑

i=1

ŷwi (x), (3.7)

�̂y(x) � 1

N

N∑

i=1

�̂wi (x) + 1

N

N∑

i=1

(ŷwi (x) − ŷ(x))(ŷwi (x) − ŷ(x))T , (3.8)

where ŷwi (x), �̂wi (x) is the output of the forecasting model to the input x at the
specific operation point wi . The volume of the variance matrix �̂y(x) gives us a first
rough way to quantify the uncertainty over our output.

To get a more fine-grained representation of the uncertainty, we can also simply
keep the mixture of Gaussian of Eq.3.6.

As an illustration, in Fig. 3.2, we depict both uncertainty representations for
Eqs. 3.6 (middle), 3.7 and 3.8 (right) for one single sampled predicted trajectory.

To ease the depiction and the explanations about the uncertainty calibration pro-
cess, we will only consider the uncertainty at the last predicted position Tpred , i.e.
we will consider the 2 × 2 variance matrix

�̂w
Tpred

. (3.9)

3.4 Evaluating and Calibrating Uncertainties

In practice, uncertainty estimates produced by the aforementioned methods may not
always capture the true variability in the output data. They often tend to be miscali-
brated and they end up not representing correctly the model errors. Uncertainty cal-
ibration has been extensively studied in niche areas such as weather forecasting [7].
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However, it is not easy to generalize or extrapolate these methods to other areas.
In [20], a method is proposed to re-calibrate the output of any 1D regression algo-
rithm, including Bayesian neural networks. It is inspired by the Platt scaling [30] and
uses a specific subset of recalibration data with isotonic regression to correct the esti-
mate for uncertainty. However, like other uncertainty calibration methods, only the
case of regressionwith a single independent variable to adjust is presented. Neverthe-
less, our trajectory prediction problem outputs sequences of pairs of variables, which
represent the position of the pedestrian in a 2D plane. In the following Sect. 3.4.1, we
first recall the case of 1D regression as presented in Kuleshov et al. [20]. The general-
ization of the uncertainty calibration method to the case of multi-variate regression,
with several independent variables to adjust, is described in Sect. 3.4.2.

3.4.1 Calibration of Uncertainties in 1D Regression

We first consider the case of the 1D regression problem. Let {xk, yk}Kk=1 a labeled
dataset, where xk ∈ R

n and yk ∈ R are identically distributed independent samples
(i.i.d) from some data distribution. We assume that our regression model gives us an
uncertain output in the form of a function

π : Rn → (R → [0, 1]), (3.10)

which associates to each input data xk a 1D cumulative distribution function Fk(y)
targeting yk , that is π(xk) = Fk . For example, if the output were very precise around
a predicted value ŷk , the corresponding density function would have a lone peak at
that value and Fk would be such that

Fk(y) =
{
1 if y ≥ ŷk
0 otherwise.

(3.11)

We also define F−1
k : [0, 1] → R as the quantile function, in such way that, for a

probability value α ∈ [0, 1],

F−1
k (α) = inf{y : α ≤ Fk(y)}. (3.12)

In this 1D regression case, having amodelwell calibratedmeans that, for example,
ground truth values yk should fall within our 90% confidence intervals (as given by
our uncertainty estimates) approximately 90% of the cases. This can be written as

1

K

K∑

k=1

I{yk ≤ F−1
k (α)} K→inf−−−→ α for any α ∈ [0, 1]. (3.13)
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An out-of-the-box systemwill typically not satisfy the property above and needs to
be calibrated. Calibration methods train an auxiliary regression model γ : [0, 1] →
[0, 1] that modifies the outputs (the probabilities) of the originally trained predictor
π of Eq.3.10. That is, γ is trained so that the model composed of γ ◦ π is well
calibrated. Kuleshov et al. [20] propose to use isotonic regression as the auxiliary
calibration function γ . It is trained by fitting it with pairs of outputs/empirical eval-
uations of cumulated distributive function {Fk(yk), P̂(Fk(yk))}Kk=1 on a calibration
set, where yk is the true output and

P̂(α) = 1

K
|{yk | Fk(yk) ≤ α, k = 1, . . . , K }| (3.14)

is the proportion of the data within the calibration set where yk is less than the α-th
quantile of Fk . The uncertainty calibration pseudocode of this regression is presented
in the Algorithm 3.1, and for more references, we urge the reader to consult [20].

Algorithm 3.1 Calibration for 1D regression
1: Input: Uncalibrated model π : X → (Y → [0, 1]) and independent calibration dataset S =

{(xk , yk)}Kk=1.
2: Construct the dataset:

C = {([π(xk)](yk), P̂([π(xk)](yk)))}Kk=1, (3.15)

where

P̂(α) = 1

K
|{yk | [π(xk)](yk) ≤ α, k = 1, . . . , K }|. (3.16)

3: Train an isotonic regression model γ on C.
4: Output: Auxiliary regression model γ : [0, 1] → [0, 1].

3.4.2 Highest Density Regions

The notion of quantile used in the 1D regression case presented above is specific
to the 1D case, hence we propose here to extend it to higher dimensions. For this
purpose, we make use of the α-highest density regions (HDR) concept [14], defined
for a probability density function f as follows

R( fα) = {y s.t. f (y) ≥ fα}

where 1 − α defines an accumulated density over this region, that defines fα:

P(y ∈ R( fα)) = 1 − α. (3.17)
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The interpretation is quite straightforward: for a value α, the HDR R( fα) is the
region corresponding to all values of y where the density is superior to fα , where
fα is such that the total density summed up in this region is exactly 1 − α. When
α → 0, fα → 0 and the HDR tends to the support of the density function. When
α → 1, then fα → maxy f (y) and the HDR tends to the empty set.

As proposed in [14], we can evaluate themappingα → fα by using aMonte Carlo
approach. Suppose that we get n samples from f , then we can sort these samples
through their density values as

f(1) < f(2) < · · · < f(n), (3.18)

and estimate fα as f(a) where

a = argmax
k

k s.t.
1∑n

l=1 f(l)

n∑

l=k

f(l) ≥ 1 − α. (3.19)

This means that we add the values f(i) (Eq. 3.18) in descending order until the
sum is greater than or equal to 1 − α. The last value f(i) added to the descending
sum, will correspond to the estimation value of fα . This method to estimate fα is the
one used in the experiments of Sect. 3.5.

Suppose that for each example k, our model outputs a probability density function
fk representing the uncertainty on our answer. Then we can generalize the notion of a
well-calibrated output by stating that the model will be well calibrated, when for any
α ∈ [0, 1], the proportion of ground-truth data falling into the 100(1 − α)%-HDR is
roughly 1 − α. Translating this into equations:

∑K
k=1 I{yk ∈ R( fα)}

K
=

∑K
k=1 I{ fk(yk) ≥ fα}

K
K→inf−−−→ 1 − α ∀α ∈ [0, 1]. (3.20)

3.4.3 HDR-Based Calibration

We propose a recalibration scheme for 2D regression similar to 1D regression case.
We will use it for calibrating the uncertainties over the last predicted position in HTP
(hence, to predict a 2D vector). As explained hereafter, we use HDR and probability
density functions instead of quantile functions and cumulative distribution functions.

We are given a calibration dataset {xk, yk}Kk=1 with xk the inputs data and yk
the target data. These pairs are identically distributed independent samples (i.i.d)
from some data distribution (pairs inputs/ground-truth inputs). In our application
in trajectory prediction, we limit ourselves to consider as a target the last predicted
position (t = Tpred ), which means that yk ∈ R

2. However, the extension to the whole
predicted trajectory should be straightforward.
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Fig. 3.3 Two illustrations of the use of HDR regions, delimited by the red curves, with other level
curves for the probability density functions in black. The ground-truth points appear in blue

Algorithm 3.2 Calibration for Multi-dimensional regression
1: Input: Uncalibrated model π : X → (Y → R

+) giving as an output a p.d.f. f (xk) and inde-
pendent calibration dataset S = {(xk , yk)}Kk=1.

2: For all k, find the value of α̂k that satisfies

P( y ∈ R( fk(yk)) ) = 1 − α̂k . (3.21)

3: Construct the dataset:
C = {α̂k , P̂α(α̂k)}Kk=1 (3.22)

where

P̂α(α) = |{yk | fk(yk) ≥ fα, k = 1, . . . , K }|
K

(3.23)

4: Train an isotonic regression model γ on C.
5: Output: Auxiliary regression model γ : [0, 1] → [0, 1].

We have seen in Sect. 3.3 that we can estimate the probability density function fk
with the output of the Bayesian model. The probability density function, in our case,
has the form of a mixture of Gaussians, as explained in Sect. 3.3; more generally, it
can be estimated from a set of samples generated from the Bayesian model by using
Kernel density estimation (KDE). Next, we evaluate the corresponding ground truth
value yk in the probability density function and find the value of α̂k that satisfies

P( y ∈ R( fk(yk)) ) = 1 − α̂k . (3.24)

where

R( fk(yk)) = {y s.t. fk(y) ≥ fk(yk)} (3.25)

thus defining an 100(1 − α̂k)% HDR where fk(yk) occupies the role of fα in the
formal definition of HDR. Therefore, we compute the α̂k for each yk of the calibration
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set and then estimate the empirical probability that each calibrationdatayk fallswithin
the 100(1 − α̂k)% HDR, for each α̂k possible.

In order to calibrate, be the calibration set {α̂k, P̂α(α̂k)}Kk=1, where

P̂α(α) = |{yk | fk(yk) ≥ fα, k = 1, . . . , K }|
K

(3.26)

denotes the fraction of data belonging to the 100(1 − α)%HDR. In Fig. 3.3, we give
a couple of examples of ground truth data yk altogether with the predictive density
fk . As in the case of 1D regression, we use isotonic regression as the regression
model to calibrate on these data. This calibration model corrects the α values that
define the HDR so that the condition of Eq.3.20 is fulfilled. The whole algorithm is
described in Algorithm 3.2.

3.5 Experiments

3.5.1 Trajectory Prediction Base Model and Bayesian
Variants

For all the experiments described in this section, we use, as the base deterministic
model, a simple LSTM-based sequence-to-sequence model that we describe here-
after. Thismodel outputs a single trajectory predictionwith its associated uncertainty.

3.5.1.1 Base Model

Inputs are pedestrian position increments: x � δ1:Tobs � p1:Tobs − p0:Tobs−1 ∈ R
2Tobs ,

each of which being mapped through a linear embedding into a vector et ∈ R
de , for

all the timesteps of the observed sequence t = 1, . . . , Tobs

et = Wembδt , (3.27)

which is fed to a first encoding LSTM layer referred to as Lenc, which encodes the
sequence e1:Tobs . Its hidden state is denoted as he

t ∈ R
dc and is updated recursively

according to the following scheme

he
t = Lenc(he

t−1, et ;Wenc). (3.28)

On the decoding side, another LSTM layer Ldec is used to perform the prediction
of the subsequent steps, for t = Tobs + 1, . . . , Tpred
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hd
Tobs = he

Tobs , (3.29)

hd
t = Ldec(hd

t−1, et ;Wdec) for t = Tobs + 1, . . . Tpred , (3.30)

[δ̂Tt , κ̂T
t ]T = Wouthd

t for t = Tobs + 1, . . . Tpred , (3.31)

et = Wemb δ̂t , (3.32)

where the encodings et for t > Tobs encode the previously predicted δ̂t , in testing,
or the ground truth δt � pt − pt−1 for t > Tobs (principle of teacher forcing), in
training. The outputs κ̂t ∈ R

3 (Eq. 3.31) are used to define a 2 × 2 variance matrix
�̂t over the result, so that the parameter optimization (corresponding to Eq.3.2) is
written as the minimization of the following log-likelihood

w∗ = argmin
w

K∑

k=1

Tpred∑

t=Tobs+1

− logN
(
pk,t ;pk,Tobs +

t∑

τ=1

δ̂wk,τ ,

t∑

τ=1

�̂w
k,τ

)
, (3.33)

where k spans the indices in our training dataset (ormini-batch), that contains K data.
This deterministic model has as its parameters w � (Wemb,Wenc,Wdec,Wout ).

Finally, to reconstruct the trajectory, for t > Tobs we simply apply

p̂t = pTobs +
t∑

τ=1

δ̂τ , (3.34)

and the corresponding predictive model given as the following density

f (pt ) = N
(
pt ;pTobs +

t∑

τ=1

δ̂τ (p1:Tobs ),
t∑

τ=1

�̂τ (p1:Tobs )

)
. (3.35)

3.5.1.2 Bayesian Variants

In addition to this base deterministic model, we consider several Bayesian variants
described hereafter:

• Deep ensembles [21]: Ensembles can be considered as a form of Bayesian Model
Averaging [11, 40]. We train N instances of the base model described above by
using different initialization values for the parameters w. This way, we obtain
a set {wi }1≤i≤N of network parameters that approximate the posterior p(w|D).
Obtaining such an ensemble gives a simple way to explore the landscape of the
objective function of Eq.3.33 but at a rather high cost, since it also implies to
execute N different training processes.

• Variational Bayesian Inference [2]: the posterior p(w|D) is modeled through a
Gaussian distribution with diagonal variance matrix. At training, we learn the
mean and variance of each weight by maximizing the likelihood of the ground
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truth data under the predictive distribution given by Eq.3.35. The evaluation of
this likelihood is done by sampling only one set of weights from the current
posterior.

• Dropout [5]: It extends the use of the classical dropout technique (used typically
as a regularizer) as a very easy way to produce samples from the posterior p(w|D),
i.e. by sampling multiple Bernoulli distributions associated to the weights. During
training, 5 samples are used to evaluate the likelihood.

Note that, in the three cases above, we use the sampled weights (i.e. instances
of our networks) to produce the posterior predictive distribution as the probability
density function required in the developments we proposed in Sect. 3.4. For an input
xk and given a training dataset D, it is defined as

fk(y) ≈ 1

N

N∑

i=1;wi∼p(w|D)

p (y | xk,wi ) , (3.36)

where y � pTpred ∈ R
2 is the last predicted position. This means that, at testing times,

the computational complexity is multiplied by N . In the case of our simple prediction
network, this is not a problem in practice for values of N inferior to 10.

3.5.2 Implementation Details

For our experiments, we have used the five sub-datasets forming the ETH-UCY
dataset [23, 29], which is a standard benchmark in HTP. These sub-datasets are
referred to as ETH-Univ, ETH-Hotel, UCY-Zara01, UCY-Zara02, UCY-Univ. In all
our experiments, we use the Leave-One-Out methodology: Four of the sub-datasets
provide the training/validation data and the remaining one is used for testing.

The base model described above, and its Bayesian variants, is implemented with
Tobs = 8,Tpred = 12, embeddings of dimensionde = 128andhidden size forLSTMs
dc = 256. The mini-batch size was chosen as 64. Early stopping was used on the
validation data to stop training.

Allmodels are implementedwith PyTorch [28]. The implementation of the ensem-
bles does not require additional software layers. This is not the case for the other two
Bayesian techniques (Variational andDropout), that require significantmodifications
to the standard code. Hence, we have make use of the Bayesian-Torch [19] library
that implements Bayesian versions of the neural networks required for our model
(LSTMs and Dense layers). All Bayesian variants have been used with N = 5.

We refer the reader to our code repository1 for more implementation details.

1 https://github.com/cimat-ris/trajpred-bdl.

https://github.com/cimat-ris/trajpred-bdl
 -1461 57867
a -1461 57867 a
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Table 3.1 Negative log-likelihoods (lower is better) over the different sub-datasets for determin-
istic, ensemble, dropout and variational models

Deterministic Ensemble Dropout Variational

Eth-Hotel 14.96 10.92 6.84 6.86

Eth-Univ 9.02 12.16 8.04 8.00

Ucy-Zara01 16.77 12.33 8.99 10.79

Ucy-Zara02 22.06 12.80 9.54 8.65

Ucy-Univ 15.87 10.70 7.30 7.08

Table 3.2 Calibration metrics before applying the calibration process (lower is better). Determin-
istic model vs. Dropout as the Bayesian approach

MACE RMSCE MA

Det. Bayes Det. Bayes Det. Bayes

Eth-Hotel 0.126 0.120 0.144 0.152 0.133 0.126

Eth-Univ 0.069 0.044 0.081 0.059 0.071 0.045

Ucy-Zara01 0.063 0.082 0.075 0.113 0.066 0.086

Ucy-Zara02 0.110 0.079 0.145 0.109 0.114 0.082

Ucy-Univ 0.099 0.104 0.115 0.112 0.104 0.109

3.5.3 Evaluation of the Uncertainties Quality

First, we compare the quality of the uncertainties coming from the deterministic
network and from its Bayesian counterparts. To do so, we evaluate, for each sub-
dataset, the average Negative Log Likelihood (NLL) of the ground truth data over
the output predictive distribution. This likelihood is a Gaussian in the deterministic
case, corresponding to Eq.3.35, and a mixture of Gaussians in the Bayesian variants,
corresponding to Eq.3.36. The results are presented in Table3.1. As it can be seen,
the Bayesian variants tend to give significantly lower values for the NLL, which
indicates that they represent more faithfully the uncertainties over their outputs.

Then, we compare the uncertainty calibration quality between the outputs of the
deterministic model and of a Bayesian model, here the Dropout implementation.

To describe the quality of the calibration quantitatively as a numerical score, we
use the mean absolute calibration error (MACE), root mean squared calibration error
(RMSCE) and miscalibration area (MA). These metrics provide an estimate of the
level of predictive error, and the lower the better. For MA, the integration is taken
by tracing the area between curves and in the limit of number discretizations for the
probability space [0, 1] of 1 − α, MA and MACE will converge to the same value.

In Table3.2, we compare the values of these threemetrics, before applying the cal-
ibration process, between the deterministic algorithm (Sect. 3.5.1.1) and the Dropout
Bayesian variant. In a majority of cases, before the calibration process is applied, the
Bayesian variant brings a better calibrated uncertainty model.
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Fig. 3.4 Illustration of the calibration process under a LOO scheme on the ETH-UCY dataset, with
ETH-Hotel as the testing data: On the left is the dataset {α̂t , P̂α(α̂t )}Tt=1, estimated as described in
Sect. 3.4.3, that we use for calibration. Each blue dot corresponds to one of these t . The α̂t , on the x
axis tells us the level of confidence measured for ground truth data over the predicted distribution,
while the P̂α(α̂t ) on the y axis gives an empirical estimate of the proportion of cases for which this
level α̂t is passed. For the data presented here the system is under-confident for values of α < 0.5
and over-confident for values of α > 0.5

3.5.4 Evaluation of the Re-calibration Process

We follow the calibration process proposed in Sect. 3.4.3 and use the three Bayesian
variants described above to perform the experiments. In Fig. 3.4, we depict an exam-
ple of how the calibration is applied on the ETH-UCY dataset, with ETH-Hotel as
the testing data. The left side shows the raw calibration datasetC (see Algorithm 3.2)
before calibration, and the right side depicts the same data after applying calibration,
i.e. determining the transformation γ .

Then, in Figs. 3.5, 3.6 and 3.7, we show the application of the function γ on
the data that are not part of the calibration dataset. Here the curves are constructed
by sampling regularly α and by evaluating P̂α(α) according to Eq. 3.23. As it can
be seen, the calibration process results in having well-calibrated uncertainties, in
the sense that for any α ∈ [0, 1], the proportion of ground-truth data falling into the
100(1 − α)%-HDR is roughly 1 − α. Note that, before calibration, the purple curves
indicate that in most of the cases (excepting UCY-Zara02), the uncertainties before
calibration were in general under-estimating the true uncertainties. This means that,
for a given value of α, the rate of ground truth points y at which the output p.d.f.
satisfies f (y) > fα is significantly lower than 1 − α (i.e. the purple curve is well
under the diagonal).

Finally, in Tables3.3 and 3.4, we depict the effect of this re-calibration process
on the calibration metrics introduced above, for the case of ensembles and dropout
Bayesian variants. In both cases, the models end up very well calibrated.
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Fig. 3.5 Application of the calibration process with the Ensemble-based Bayesian approach (see
Sect. 3.5.1.2) on the 5 datasets considered in the Leave-One-Out testing process: from left to right
and top to bottom, ETH-Univ, ETH-Hotel, UCY-Zara01, UCY-Zara02, UCY-Univ. On the x axis is
the confidence level 1 − α, sampled regularly on the [0, 1] interval, and on the y axis is the observed
proportion of data that correspond to this confidence region Rα

Fig. 3.6 Application of the calibration process with the Variational Bayesian approach (see
Sect. 3.5.1.2) on the 5 datasets considered in the Leave-One-Out testing process: from left to right
and top to bottom, ETH-Univ, ETH-Hotel, UCY-Zara01, UCY-Zara02, UCY-Univ. On the x axis is
the confidence level 1 − α, sampled regularly on the [0, 1] interval, and on the y axis is the observed
proportion of data that correspond to this confidence region Rα



3 Epistemic Uncertainty Quantification in Human Trajectory Prediction 53

Fig. 3.7 Application of the calibration process with the Dropout Bayesian approach (see
Sect. 3.5.1.2) on the 5 datasets considered in the Leave-One-Out testing process: from left to right
and top to bottom, ETH-Univ, ETH-Hotel, UCY-Zara01, UCY-Zara02, UCY-Univ. On the x axis is
the confidence level 1 − α, sampled regularly on the [0, 1] interval, and on the y axis is the observed
proportion of data that correspond to this confidence region Rα

Table 3.3 Calibration metrics before/after calibration (lower is better), for Deep ensembles

MACE RMSCE MA

Eth-Hotel 0.146/0.017 0.174/0.020 0.152/0.015

Eth-Univ 0.069/0.014 0.081/0.018 0.072/0.012

Ucy-Zara01 0.076/0.019 0.092/0.026 0.080/0.017

Ucy-Zara02 0.122/0.019 0.162/0.024 0.128/0.016

Ucy-Univ 0.140/0.011 0.156/0.013 0.147/0.008

Table 3.4 Calibration metrics before/after calibration (lower is better) for Dropout

MACE RMSCE MA

Eth-Hotel 0.120/0.013 0.152/0.018 0.126/0.011

Eth-Univ 0.044/0.011 0.059/0.014 0.045/0.008

Ucy-Zara01 0.082/0.015 0.113/0.018 0.086/0.013

Ucy-Zara02 0.079/0.020 0.109/0.026 0.082/0.017

Ucy-Univ 0.104/0.015 0.112/0.020 0.109/0.013
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3.6 Conclusions

We have presented in this Chapter what is, to the best of our knowledge, the first
intent to introduce Bayesian Deep Learning in the problem of Human Trajectory
Prediction.We use it in order for the prediction system to cope not only with aleatoric
uncertainties over its prediction, but also with epistemic uncertainties related, among
others, to thefiniteness of the training data.Wehave also proposed a novel approach to
calibrate the resulting uncertainties by using the concept of Highest Density Region;
we have shown that this re-calibration process is simple and produces well calibrated
uncertainties.

Our future work includes the handling of aleatoric and epistemic uncertainties
for more complex networks, i.e. networks using more advanced kinds of architec-
tures (e.g. attention-based networks instead of recurrent networks) and using more
contextual data (e.g., map of the surrounding area).
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Chapter 4
Automatic Detection of Knives in
Complex Scenes

Maira Moran, Aura Conci, and Ángel Sánchez

Abstract Smart Cities use a variety of Information and Communication Technolo-
gies (ICT) and databases to improve the efficiency and efficacy of city services.
Security is one of the main topics of interest in this context. The increase in crime
rates demands the development of new solutions for detecting possible violent situ-
ations. Video surveillance (CCTV) cameras can provide a large amount of valuable
information contained in images which can be difficult to be analyzed by humans in
an efficient form. Identifying and classifyingweapons in such images is a challenging
problem that can be driven by the application of Deep Learning techniques. Object
detection algorithms, especially advanced Machine Learning ones, have demon-
strated impressive results in a wide range of applications. However, they can fail in
certain application scenarios. This work describes a novel proposal for knife detec-
tion in complex images. This is a challenging problemdue to themultiple variabilities
of these objects in scenes (i.e., changing shapes, sizes and illumination conditions,
among others), which can negatively impact the performance of mentioned algo-
rithms. Our approach analyzed the combination two super-resolution techniques (as
a preprocessing stage) with one object detection network to effectively solve the con-
sidered problem. The results of our experiments show that the proposedmethodology
can produce better results when detecting small objects having reflecting surfaces
(i.e., knives) in scenes. Moreover, the approach could be adapted for surveillance
applications that need real-time detection of knives in places monitored by cameras.
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4.1 Introduction

New Smart City (SC) technologies are helping cities to maximize their resources
and increase efficiencies in all facets of urban life. A SC consists of an urban space
where Information and Communication Technologies (ICT) are extensively used
to improve the quality and performance of services such as transportation, energy,
water or infrastructures, in order to reduce resource energy consumption, wastage
and overall costs [11].

One of the relevant areas in the SC is guarantying the security of their citizens.
Video surveillanceCCTVcameras,which are commonlyusedbyurbanpolice depart-
ments, can be part of these “smart” technologies in combination with video analytics
software. Video recordings contain a wealth of valuable information that can be auto-
matically analyzed to detect anomalous (and even dangerous) events from multiple
cameras. Commonly, in security centers work human operators that are in charge of
a large number of CCTV cameras, capturing multiple city views, operating in real-
time. Due to the difficulty of humans for being able to keep their attention during
several hours in front of many cameras (usually, more than 16), it is desirable that the
video surveillance system could be automatically able to recognize potentially crit-
ical security events in specific video frames and cameras. In such cases, the system
can notify an alert to the human operators to focus his/her attention on a concrete
camera. Image-content analytics technology can help solving the event detection
problem by processing video frames and identifying, classifying and indexing some
types of targets objects (e.g., cars, motorcycles, persons or animals) [19]. Driven by
Artificial Intelligence techniques, surveillance software can also make these images
(or frames) in videos as searchable, actionable and quantifiable.

In this context, thiswork presents a studyof applying deepnetworks to the problem
of automatically detectingknives (and relatedobjects) in images.This is a challenging
problem due to the multiple variabilities of these targets when appearing in scenes.
In particular, the changing shapes of knives, their relatively small sizes in images, the
possibility of being partially occluded, being carried by a person (or being free) in
a location, the changing illumination conditions in scenes, among other difficulties.
All these involved variabilities (which can also appear combined), can produce a
negative impact over the performance of the detection algorithms. The extension of
this work to detect firearms like guns would not be difficult, since the used models
are configurable for including additional object classes.

This paper describes a research on the application of combining super-resolution
techniques with deep neural networks to effectively handle the knife detection prob-
lem in complex images. Our results show that the proposed methodology produces
accurate results when detecting this special type of objects.

This paper is organized as follows. Section4.2 summarizes the relatedwork on the
considered knife detection problem. The aspects of small-object detection (and, in
particular, knives), as well as the description of theYOLOv4model used in this work,
are described in Sect. 4.3. In Sects. 4.4 and 4.5, we respectively describe the dataset
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used in the experiment and some related pre-processing on it. The experiments carried
out and their analysis appear in Sect. 4.6. Finally, Sect. 4.7 concludes this work.

4.2 Related Work

The problem of small-sized object detection in labeled datasets is still not solved at all
[16]. In this problem, very few image pixels represent the whole objects of interest,
which make it difficult to detect and classify them. The use of super-resolution to
increase the object size in order to compensate for the loss of object information can
help to the detection task [17].

One specific use case of small-sized object detection consist in the detection of
knives. As for other types of weapons, carrying knives in public is either forbidden
or restricted in many countries. Since knives are both widely available and can be
used as weapons, their detection is of high importance for security personnel [8].

One of the first works on automatic detection of knives was presented by Kmiec
and Glowacz in 2011 [12]. These authors compute a set of image descriptors using
Histograms of Oriented Gradients (HOG). These descriptors, that are invariant to
geometric and photometric transformations, are used with a SVM for the detection
task.

Glowacz and collaborators [8] propose an Active Appearance Model (AAM) to
detect knives in images. As the knife-blade has usually an uniform texture, using an
AAM could contribute to improve detections, since the model would not converge
to other objects having a similar shape.

In 2016 Grega et al. [10] publish a highly-cited work on detection of firearms and
knives from CCTV images. Their goal is to reduce the number of false alarms in
detections. These authors use a modified sliding window technique to determine the
approximate position of the knife in an image. Then, they extract edge histograms
and texture descriptors to create feature vectors for training a SVM able to classify
the detected objects as knives.

Buckchash and Raman [2] have proposed in 2017 amethod to detect visual knives
in images. Their approach has three stages: foreground segmentation, feature extrac-
tion using the FAST (Feature Accelerated Segment Test) corner detector, and Multi-
Resolution Analysis (MRA) for classification and target confirmation.

More recent works make use of deep networks. Castillo et al. [3] presented a
system to locate cold steel weapons in images. (such as knives). These weapons have
a reflecting surface that under different light conditions can distort and/or blur their
shape in the frames. To solve the problem, the authors propose the combination of
a contrast-enhancement brightness-guided preprocessing procedure with the use of
different types of Convolutional Neural Networks (CNN).

Other authors have experimented with infrarred images (IR) to detect not visible
(i.e., hidden) knives [18]. A type of deep neural network (GoogleNet), that was
trained on natural images, was fine-tuned to classify the IR images as people or as
people carrying a hidden knife.
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A very comprehensive survey on the progress ofComputerVision-based concepts,
methodologies, analysis and applications for automatic knife detection has been
published recently showing the state-of-the-art of vision-based detection systems
[4]. The authors define a taxonomy based on the state-of-the-art methods for knife
detection. They analyzed several image features used in the considered works for
this task. The challenges regarding weapon detection and new-frontier in weapon
detection are included, as well. This survey references more then 80 works, and
concludes pointing out some possible research gaps in the problem and related ones.

Another brief review of the state-of-the-art approaches of knife identification
and classification was published very recently [5]. Although, this article is not a
review paper, it presents a broad analysis of recent works using Convolutional Neural
Network (CNN),RecurrentConvolutionalNeuralNetwork (R-CNN), FasterR-CNN,
and Overfeat Network, that is most of deep learning methods used up now for the
considered problem.

4.3 YOLOv4 Architecture for Detection of Knives

This section summarizes the object detection problem particularized for the case of
knives, and the features of YOLOv4 model used in our experiments.

4.3.1 Detection of Knives

Object detection is a challenging task in Computer Vision that has received large
attention in last years, especially with the development of Deep Learning [16, 19]. It
presentsmany applications relatedwith video surveillance, automated vehicle system
robot vision or machine inspection, among many others. The problem consists in
recognizing and localizing some classes of objects present in a static image or in a
video. Recognizing (or classifying) means determining the categories (from a given
set of classes) of all object instances present in the scene togetherwith their respective
network confidence values on these detections. Localizing consists in returning the
coordinates of each bounding box containing any considered object instance in the
scene. The detection problem is different from (semantic) instance segmentation
where the goal is identifying for each pixel of the image the object instance (for
every considered type of object) to which the pixel belongs. Some difficulties in the
object detection problem include aspects such as geometrical variations like scale
changes (e.g., small size ratio between the object and the image containing it) and
rotations of the objects (e.g., due to scene perspective the objects may not appear
as frontal); partial occlusion of objects by other elements in the scene; illumination
conditions (i.e., changes due to weather conditions, natural or artificial light); among
others but not limited to these ones. Note that some images may contain several
combined variabilities (e.g., small, rotated and partially occluded objects). In addition
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to detection accuracy, another important aspect to consider is how to speed up the
detection task.

Detecting knives in images (and also in videos) is a challenging problem. The
images where these objects can present several extrinsic and intrinsic variabilities
due to the size of the target object (in general, its size ratio is very small when
compared to the image size), the possibility of the weapon being carried by a person
or appearing freely placed in a location, the illumination conditions of the scene
(which could produce a very low contrast between the knife and the surrounding
background), among other real difficulties.

4.3.2 YOLOv4

Redmon and collaborators have proposed in 2016 the new object detector model
called YOLO (acronym of “You Only Look Once”) [15], which handles the object
detection as a one-stage regression problem by taking an input image and learning
simultaneously the class probabilities and the bounding box object coordinates. This
first version of YOLO was also called YOLOv1, and since them the successive
improved versions of this architecture (YOLOv2,YOLOv3,YOLOv4, andYOLOv5,
respectively) have gained much popularity within the Computer Vision community.

Different from previous two-stage detection networks, like R-CNN and faster R-
CNN, the YOLO model used only one-stage detection. That is, it can make predic-
tions with only one “pass” in the network. This feature made the YOLO architecture
extremely fast, at least 1000 times faster than R-CNN and 100 times faster than Fast
R-CNN.

The architecture of all YOLO models have some similar components which are
summarized next:

• Backbone: A convolutional neural network that produces and accumulates visual
features with different shapes and sizes. Classification models like ResNet, VGG,
and EfficientNet are used as feature extractors.

• Neck: This component consists in a set of layers that receive the output features
extracted by the Backbone (at different resolutions), and integrate and blend these
characteristics before passing them on to the prediction layer. For example, models
like Feature Pyramid Networks (FPN) or Path Aggregation networks (PAN) have
been used for such purpose.

• Head: This component takes in features from the Neck along with the bound-
ing box predictions. It performs the classification along with regression on the
features and produces the bounding box coordinates to complete the detection
process. Generally, it produces four output values per detection: the x and y center
coordinates, and width and height of detected object, respectively.

Next, we summarize the main specific features of YOLOv4 architecture that were
used in our experiments. YOLOV4 was released by Alexey Bochkovskiy et al. in
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Fig. 4.1 Schematic representation of YOLOv4 architecture

their 2020 paper “YOLOv4: Optimal Speed and Accuracy of Object Detection” [1].
This model is ahead in performance on other convolutional detection models like
EfficientNet andResNext50. LikeYOLOv3, it has theDarknet53model as Backbone
component. It has a speed of 62 frames per second with an mAP of 43.5% on the
MS COCO dataset.

As technical improvements with respect to YOLOv3, YOLOv4 introduces as new
elements the bag of freebies and the bag of specials.

Bag of Freebies (BoF) are a set of techniques enabling an improvement of the
model in performance without increasing the inference cost. In particular:

• Data augmentation techniques: CutMix, MixUp, CutOut, …
• Bounding box regression loss types: MSE, IoU, CIoU, DIoU, …
• Regularization techniques: Dropout, DropPath, DropBlock, …
• Normalization techniques: Mini-batch, Iteration-batch, GPU normalization, …

Bag of Specials (BoS) consist in techniques that increase accuracy while slightly
increasing the computation cost. In particular:

• Spatial AttentionModules (SAM): SpatialAttention (SA), Channel-wiseAttention
(CA), …

• Non-Max Suppression modules (NMS)
• Non-linear activation functions: ReLU, SELU, Leaky, Mish, …
• Skip-Connections: Weighted Residual Connections(WRC), Cross-Stage Partial
connections (CSP), …

Figure4.1 illustrates the layer structure of YOLOv4 network used in our experi-
ments.



4 Automatic Detection of Knives in Complex Scenes 63

4.4 Datasets

The success of the proposed method is highly related to the quality of the data
used to train the supervised algorithm. One of the main applications for the proposed
problem is its inclusion in surveillance system. To our knowledge there are no current
publicly-available CCTV datasets. The datasets used in similar works consist of
images captured by the authors, and many of them are taken from the Internet. In
this section, we present two main datasets in this field, which are also used in our
work for training and testing the models.

4.4.1 DaSCI Dataset

TheDaSCI knives dataset [14] is a subset of amore general weapon detection dataset.
It was created by people from University of Granada as an open data repository, and
designed for the object detection task. The annotation files describe the image region
where each knife is located, by defining a correspondent bounding box. It is composed
of 2,078 images, each one of them containing at least one knife, resulting a total of
2,155 objects. The dataset was created considering the diversity of the objects (i.e.,
the images were selected in order to provide samples with different visual features),
resulting in a robust challenge dataset. Some considered visual features of knives are:
types, shapes, colors, sizes, materials, locations, positions in relation to other scene
objects, indoor/outdoor scenarios, and so on. The images were extractedmostly from
the Internet, and the main sources were free image stocks and YouTube videos, from
which frames were extracted, considering the criteria previously mentioned. The
dataset is divided into 15 subsets (referred as DS1-DS15) according with their image
sources. Each one is composed by: 8, 130, 16, 12, 188, 242, 11, 36, 49, 130, 603, 29,
143, 108, and 83 images, respectively. Table4.1 summarizes the information about
these subsets. Figure4.2 shows some examples of images extracted from some of
these sources.

As previously mentioned, the size, position and location if the objects varies in
the dataset. This way, the area that the each knife covers in the image also differs
(although it is often very small). Figure4.3 shows histograms of these proportions.
Even considering that the dataset was designed to present a high heterogeneity in
this aspect, it can be observed that many of the objects (i.e., around 50%) only
cover between 1 and 20% of the image size. The remaining objects are more equally
distributed, occupying different portions of their respective images.

The fact that knives in this dataset tend to occupy a small area over the images (and
consequently, present a low spatial resolution) is a challenging issue for the detection
task, that can be assessed in the pipeline of possible solutions to be developed.

It is important to mention that the annotations are not completely uniform, in the
sense that for some cases the knife area described in the annotation file covers the
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Table 4.1 Information in DaSCI subsets

Source type Video frames DS1, DS2, DS3, DS4, DS5,
DS6, DS7, DS8, DS9, DS12,
DS13, DS14, DS15

Internet images DS11

Captured by authors DS10

Objects per image One DS1, DS2, DS3, DS4, DS5,
DS6, DS7, DS8

Multiple DS9, DS10, DS11, DS12,
DS13, DS14, DS15

Multiple scenarios Yes DS1, DS2, DS3, DS4, DS5,
DS6, DS7, DS8, DS9

No DS10, DS11, DS12, DS13,
DS14, DS15

Fig. 4.2 Samples of each DaSCI subset

Fig. 4.3 Histogram of object sizes composing the knives samples in DaSCI dataset: a relative
object vs image size proportions and b absolute object size (spatial resolution)
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Fig. 4.4 Example of images that composed the DaSCI dataset and their respective annotations

Fig. 4.5 Example of images that composed the COCO dataset and their respective annotations

whole knife (i.e., both blade and handle), and for other cases the described knife are
cover only the knife blade (Fig. 4.4).

The annotation formats describe each image and the positions of the associated
objects. Firstly, the image information is detailed, including its file name, path and
dimensions (width, height and depth, being this last one related to the number of
channels, mostly 3 since RGB color images are used). Then, the information of
objects is listed (always ‘knife’ in this work), and its respective region, which is
described as a bounding box denoted by coordinates of its top left (xmin , ymin) and
bottom right (xmax , ymax ) corners.

4.4.2 MS COCO Dataset

The MS COCO (Microsoft Common Objects in Context) dataset [6] is widely used
in Computer Vision literature for object detection and segmentation tasks. Since
the appearance of its first version, other upgraded versions from this dataset have
been published. In this work, we consider the MS COCO 2017 dataset. It consists
of a very large and complete dataset, composed of 330,000 images with 1.5 million
objects. This dataset has 80 different classes, and class ‘knife’ is one of them with
7,770 labeled objects from 4,326 images. Since the MS COCO dataset was initially
designed to encompass objects of 80 different classes, the images selected to compose
it mostly portrait scenes crowded with different objects, and knives are not the main
object of interest in the scene. This can also be considered as a challenging issue for
the problem assessed in this study. Figure4.5 shows some samples of the MS COCO
dataset.

Also, as similarly to DaSCI, in this dataset the knives mainly present a very low
spatial resolution, which is another aspect to be handled in this study. Figure4.6
shows an histogram of the object area vs image area ratio for the knives samples.
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Fig. 4.6 Histogram of object sizes for the objects that compose the knives samples in MS COCO
dataset: a relative object vs image size proportions and b absolute object size (spatial resolution)

The object bounding boxes in MS COCO annotations are described by the x and
y coordinates of the top left corner, and the object’s width and height, respectively.

4.4.3 Knife Classification Datasets

The knife detection task have been previously assessed in the literature (see survey
work [4]). However, the number of public datasets available is still very limited.
Regarding datasets that include knives in images, there are some available options
that were initially proposed for classification tasks. Although their annotation should
be expanded in order to be employed in a detection task, it is important to consider
that such datasets are also available.

There is another dataset provided by DaSCI that could be employed for the knife
classification task, composed of 10,039 images, which were extracted from the Inter-
net. The annotations cover 100 object classes, being ‘knife’ the target one, with 635
images. Among the others classes included are: ‘car’, ‘plant’, ‘pen’, ‘smartphone’,
‘cigar’, etc.

Grega et al. [9] also proposed a method for knife classification. Their dataset
consists of 12,899 images at 100× 100 resolution, from which 9,340 are negative
samples, and 3,559 are positive ones. The positive samples consist of a scene with
a knife held in a hand, and the negative samples consists of scenes with no knife.
Concerning the environment, the scenes in the images can be indoor and outdoor.
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4.5 Pre-processings on Dataset

4.5.1 Dataset Preparation

In the YOLOv4 model each annotated file presents the following structure: object
class, object coordinates (x and y), width and height , separated by a simple space:

0 x y width height

In a YOLOv4 annotation file, each line corresponds to an object. An example of
annotation in this format is shown next:

0 25 40 100 120

0 30 15 80 50

Note that each annotation file refers to an image, that contains one ormore objects.
In the example above, the first line describes the first object, that is the object class
‘knife’ (denoted by ‘0’). Also, the upper left corner of this first object’s bounding
box is in the position x = 25 and y = 40. Finally, this first object has a width of 100
and a height of 120. Similarly, for the second object in the example annotation.

As previously mentioned, the object regions in the DaSCI annotations are
described as bounding boxes defined by the coordinates of the top left (xmin, ymin)
and bottom right (xmax , ymax ) corners. In this way, the values to compose these anno-
tations can be easily calculated from the DaSCI annotations:

x = xmin

y = ymin

width = xmax-xmin

height = ymax-ymin

This way, YOLOv4 annotation obtained from the DaSCI XML annotation is
composed of:

0 xmin ymin xmax-xmin ymax-ymin

Asdescribed in Sect. 4.5, the object’s bounding box in theMSCOCOannotation is
also defined by the x and y coordinates of the upper left corner, and the object’s width
and height, so as in the YOLOv4 annotation format. The information to compose
the annotations are directly transcribed from the MS COCO to a JSON annotation
file. Note that, in this structure, each object annotation refers to an object, not to an
image.
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4.5.1.1 Image Pre-processing

The images to be used as input of the YOLOv4 algorithmmust present a spatial reso-
lution of 416× 416. In this sense, the images of bothMS COCO and DaSCI datasets
must be resized to meet this condition. As previously mentioned, both datasets are
composed by imageswith different sizes (i.e., spatial resolutions), so for some images
the re-scale would result in an decrease of the image size, and for others this resizing
would enlarge the original images. Increasing the image size, can be specially critic,
since the methods commonly used for this task consist of interpolations that fre-
quently lead to effects like blur, aliasing, etc., degrading the quality of the resulting
image.

In order to observe the impact of the resizing part of the preprocessing, two
alternative resizing operations were performed. The first one is bilinear interpola-
tion, commonly used as a “black box” operation in most machine learning libraries,
including the PyTorch Python library used in this work. The second one is SRGAN
(Generative Adversarial Network for single image Super-Resolution) [13], which
consists of a machine learning supervised algorithm. The SRGAN, more specifically
one of its variations, is currently state of the art for some widely known challenges.
Considering that the SRGAN uses a generative network G to create high-resolution
images which are so similar to the original ones, that can mislead the differentiable
discriminator D, which is trained to distinguish between the generated and the real
super-resolution image. In this process, the D network demands an evolution of G
during the training process, leading to perceptually superior solutions [13]. In this
work, the SRGAN training was performed using the ImageNet dataset

On the other hand, the bilinear interpolation calculates the values of the new inter-
polated points based on aweightedmean of their surrounding points (four neighbors)
in the original image. The weight assigned to each neighbor point is based on its dis-
tance to the new point. Consequently, the value of the new point is mostly influenced
by the values of closer neighbors.

In this experiment, we analyze the impact of using super-resolution as a pre-
processing step of the object detection algorithm. For such purpose, we have adopted
a cross-dataset evaluation approach. Evaluations configured in an in-domain setting,
which is defined by using the samples from the same dataset for training and testing
the algorithms, tend to bias and affects negatively the generalization of machine
learning algorithms. Moreover, the transfer learning technique was also assessed, as
described in Sect. 4.5.3.

4.5.2 Dataset Variabilities

As previously mentioned, several factors can affect the performance of the proposed
algorithms, as the illumination conditions, object size, perspective, visibility, etc. In
this sense, we created subsets of interest from the original test set. Each of these
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test sets presents an special condition, so one can observe how a particular condition
affects to the results of the models. Next, the subsets are listed next:

1. Outdoor: it covers all the images that denote outdoors scenes, related mostly to
a higher luminosity.

2. Indoor: composed of images that denote indoor scenes,mostly presenting a lower
luminosity.

3. Occluded: composed of images in which the knives are being handled by a
person, remaining partially occluded.

4. Not occluded: the object is lying on a surface and it is not held by anyone.

These subsets are not exclusive (i.e., the same image can belong to more than
one subset), except when the conditions where defined subsets are excluding (e.g.,
subsets 1 and 2).

Also, the ratio between object size and image size is a factor that can affect
the models’ performance, specially considering that the use of super-resolution as
pre-processing step may influence the results for small objects. As presented in the
histogram of Sect. 4.5 (see Fig. 4.2), most of the objects that compose the DaSCI
database, which is used as test set in our experiments, cover less than 20% of the
corresponding images.

4.5.3 Transfer Learning

Along with the previously mentioned super-resolution pre-processing, another tech-
nique employed and analyzed in the performed experiments is transfer learning.

The transfer learning applied in this work consisted basically of using weights
obtained from a task in a different domain to initialize the object detection algorithm
before performing the actual training using the samples of the actual domain (in
order to promote a faster convergence of the model). In this work, the initialization
of weights was carried out by training a YOLOv4 algorithm using the Pascal VOC
dataset. Until the 105th convolutional layer, the weights obtained by the transfer
learning were used, and the remaining layers were re-trained using our final task.

The PASCAL VOC dataset [7] is widely used for supervised tasks such a as
classification, detection and segmentation, being employed in benchmark compar-
isons for such tasks. It is composed of a wide range of images in realistic scenes.
Their annotation associate themwith twenty different classes. The class ‘knife’ is not
present in this dataset. Three subsets compose it: train, validation and test. The first
subset (train) is composed of 1.464 images, the validation set is composed of 1,449
images, and the test set consists of a private set. Figure4.7 shows some examples of
images from the PASCAL VOC dataset. Even considering that there are other image
datasets widely known in literature, such as the ImageNet dataset, we decided to use
the PASCAL VOC dataset since their annotations include bounding boxes designed
for a detection task.

http://host.robots.ox.ac.uk/pascal/VOC/
 1429 44362 a 1429 44362
a
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Fig. 4.7 Example of images that composed the PASCAL VOC dataset

4.6 Experimental Results

In this section, we present the results of performed experiments, which analyze the
impact of using transfer learning and super-resolution techniques in the training
process of the object detection network (YOLOv4). In Sect. 4.6.1, we summarize the
metrics used in this analysis. Then, Sect. 4.6.2 presents the results of experiments,
comparing the results obtained by using each of the mentioned techniques, in general
and associated with different aspects of the test dataset such as object size, visibility
and illumination.

4.6.1 Description of Performance Metrics

The evaluation is based on true positives TP (i.e., regions correctly detected as regions
containing knives); false negatives FN (i.e., non detected regions containing knives);
and false positives FP (i.e., regions incorrectly detected as regions containing knives).
From these results somemetrics can calculated such as Precision (Prec), Recall (Rec),
and F1-Score, using the following equations:

Prec = T P

T P + FP
Rec = T P

T P + FN
F1 = 2

Prec × Rec

Prec + Rec
(4.1)

The Jaccard index or Intersection over Union (IoU) is also used in this analysis.
This metric computes the areas of the bounding boxes denoting the detected knives
and the corresponding ground truths.
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Fig. 4.8 Examples of bounding boxes: ground truth (violet) and algorithm result (blue)

Table 4.2 Training variations

Model Training process

Tranfer learning Pre-processing

M1 No Bilinear interpolation

M2 Yes Bilinear interpolation

M3 No SRGAN

M4 Yes SRGAN

Figure4.8 exemplifies the mentioned IoU areas for several test images. The area
in blue represents the bounding box obtained by one of the proposed algorithms, and
the area in violet shows the bounding box defined by the ground truth.

4.6.2 Experimental Results

Next, we compare the results of different YOLOv4 models trained using the consid-
ered approaches. These training models are characterized as shown in Table4.2.
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Table 4.3 General results of the models

Model TP FP FN IoU
(mean)

Precision Recall F1-Score

M1 2,057 143 98 0.776 0.935 0.955 0.945

M2 1,071 774 1,084 0.269 0.580 0.497 0.535

M3 2,064 32 91 0.756 0.985 0.958 0.971

M4 727 1,211 1,428 0.141 0.375 0.337 0.355

4.6.3 General Results

As described in Sect. 4.5.1.1, we used the cross-dataset approach to train and test
all the models. The test dataset (DaSCI) is composed of 2,078 images, which cover
2,155 objects. Themain hyper-parameters used in the training process are: confidence
prediction threshold = 0.25, IoU threshold = 0.5, and batch size = 1.

Table4.3 shows the values obtained for the selectedmetrics considering the whole
dataset. It is possible that not all models detectedmost of the objects. The best overall
performance was achieved by M3. One can notice that the use of transfer learning
promotes aworse overall performance formodelsM2andM4, comparedwithM1and
M3. Also, the results suggest that using the super-resolution pre-processing affects
the models performance in different ways depending on whether it is combined with
transfer learning or not.

For themodels not trainedwith transfer learning (M1 andM3), the SRGAN subtly
improved the results, increasing the number of TP in 7 cases and reducing the number
of FN in 7 cases. The number of FP was substantially reduced (−111 cases). On the
other hand, for the models trained with transfer learning (M2 and M4), the results
using SRGAN were substantially worse. This difference is of −344 (−32.12%) for
TP, +437 (56.46%) for FP, and +344 (31.73%) for FN.

Concerning the other performance metrics, theM1model presented the best aver-
age IoU values, and the M3 model presented the best Precision, Recall and F1-score
values. In general, the use of the super-resolution pre-processing had a negative
impact in both metrics.

The differences in the IoU values achieved by each model can also be observed
in the histograms presented in Fig. 4.9, where it is possible to observe that models
M1 and M3 achieved IoU values that lay in mostly in the 70–100% interval. On the
other hand, the IoU values that models M2 and M4 achieved lay in mostly in the
1–20% interval.
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Fig. 4.9 Histograms of the IoU distributions achieved by each model

4.6.4 Results Considering Variabilities in Images

4.6.4.1 Results Considering the Sizes of Objects

The plots presented in Fig. 4.10 shows the performance variations associated to the
relative object size in their respective images. As mentioned in Sect. 4.5, most of
objects in test set are very small in relation of their respective images. This way, the
performance of themodels for the relatively small objects represent a large part of the
overall results. Also, it is expected that in real-world detection applications, such as
surveillance videos, the objects would also cover a very small portion of the images.
Therefore, the results for these cases are specially important in our assessment.

In Fig. 4.10, it is possible to observe that the performance of models M1 and M3
remains similar for most relative object sizes. On the other hand, model M2 and M4
present a better performance for objects having a relative size around less than 30%
of the image.

4.6.4.2 Results Considering Partial Occlusions

Another factor that may affect the detection performance is occlusion, which in the
considered context is defined by the object being handled by a person, whose hand
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Fig. 4.10 IoU variations associated to relative object sizes for each model

Table 4.4 Results for partially occluded and visible knives

Model Occlusion TP FP FN IoU Precision Recall F1-Score

M1 No 226 3 41 0.811 0.987 0.846 0.911

M1 Yes 1,830 140 58 0.773 0.929 0.969 0.949

M2 No 40 4 227 0.115 0.909 0.154 0.263

M2 Yes 1,031 770 851 0.287 0.572 0.548 0.560

M3 No 236 9 31 0.805 0.963 0.884 0.922

M3 Yes 1,828 23 60 0.750 0.986 0.968 0.977

M4 No 74 94 193 0.131 0.440 0.277 0.340

M4 Yes 653 1,117 1,235 0.142 0.369 0.346 0.357

consequently occludes the knife blade. Table4.4 compares the results between the
portion of the dataset in which the objects are partially occluded as described, and
the case in which the objects are completely visible (i.e., placed in some flat surface).

Note that results significantly differ, especially for the M2 model, which suggests
that this aspect clearly affects the models performance. Overall, all models presented
better results in cases in which the object was occluded. Similar to the overall trend
pointed out for the general results, models trained without transfer learning achieved
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Table 4.5 Models results for both indoor and outdoor cases

Model Natural
illumina-
tion

TP FP FN IoU Precision Recall F1-Score

M1 Indoor 981 139 55 0.732 0.876 0.947 0.910

M1 Outdoor 1,002 4 40 0.828 0.996 0.962 0.979

M2 Indoor 457 301 579 0.241 0.603 0.441 0.509

M2 Outdoor 576 473 466 0.301 0.550 0.553 0.551

M3 Indoor 992 15 44 0.717 0.985 0.958 0.971

M3 Outdoor 999 17 43 0.780 0.983 0.959 0.971

M4 Indoor 339 598 697 0.125 0.362 0.327 0.344

M4 Outdoor 361 613 681 0.159 0.371 0.346 0.358

better results, being M1 the best model for occluded objects and M3 the best model
for non occluded objects.

4.6.4.3 Results Considering Natural Illumination

Finally, another factor considered in our evaluation is the natural illumination of the
scene for each image. More specifically, we compare the models results for indoor
and outdoor scenes, since this change of natural illumination may present some
impact in the detection performance. Table4.5 summarize these results.

According to the results, the natural illumination seems not to be a particular
challenging factor for the detection models, since the results for all models tend
to be similar for both indoor and outdoors scenes. It is possible to observe that
the models achieved slightly better results with outdoor scenes. In contrast with the
occlusion factor, the natural illumination variations ismore equally represented in the
test dataset (i.e., the number of images with indoor and outdoor scenes are relatively
close).

4.7 Conclusion

In this work, we evaluated the performance of the YOLOv4 deep neural architecture
for detecting knives in natural images. In the performed experiments, two other con-
ditions were assessed: (a) the use of a super-resolution algorithm as pre-processing
step and (b) the application of a transfer learning technique. The evaluation of results
not only considers the whole test dataset, but also specific subsets, in order to eval-
uate if there are specific conditions that can affect the results, such as object sizes,
natural illumination and partial occlusions. The results have shown that using a super-
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resolution pre-processing algorithm only promotes better results if it is not combined
with transfer learning. Moreover, the use of the proposed transfer learning technique
reduced the overall performance of our YOLOv4 models.

In future works, we aim to evaluate other pre-processing techniques to be com-
bined with new deep object detection approaches with the goal to achieve real-time
processing performance, suitable for CCTV monitoring systems. Finally, we will
also explore the classification aspect of object detection algorithms (i.e., including
the detection of different classes of knives by considering their specific features),
and extending this framework to detect also some types of firearms like guns.
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Chapter 5
Human Body Pose Estimation in
Multi-view Environments

Jorge L. Charco, Angel D. Sappa, Boris X. Vintimilla, and Henry O. Velesaca

Abstract This chapter tackles the challenging problem of human pose estimation
in multi-view environments to handle scenes with self-occlusions. The proposed
approach starts by first estimating the camera pose—extrinsic parameters—in multi-
view scenarios; due to few real image datasets, different virtual scenes are generated
byusing a special simulator, for training and testing the proposed convolutional neural
network based approaches. Then, these extrinsic parameters are used to establish the
relation between different cameras into the multi-view scheme, which captures the
pose of the person from different points of view at the same time. The proposed
multi-view scheme allows to robustly estimate human body joints’ position even in
situations where they are occluded. This would help to avoid possible false alarms
in behavioral analysis systems of smart cities, as well as applications for physical
therapy, safe moving assistance for the elderly among other. The chapter concludes
by presenting experimental results in real scenes by using state-of-the-art and the
proposed multi-view approaches.
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5.1 Introduction

During the last decade, several works have focused on the Human Pose Estimation
(HPE) problem, which is usually tackled by detecting human body joints such as
wrist, head, elbow, etc. to build the human body skeleton by the connection of all
detected joints. The solutions proposed in the state-of-art are robust when all body
joints are visible by the detector. However, when joints are occluded, due to moving
objects in the scene (i.e., bicycles, cars) or natural human body pose self-occlusions,
it becomes a challenging problem, particularly, in monocular vision system scenar-
ios. An important aspect to take into account is that other areas of research take
advantage of the accuracy of human pose estimation to develop on top of it different
solutions, for instance: human action recognition, gaming, surveillance, just to men-
tion a few. Nowadays, most of computer vision tasks (e.g., segmentation, camera
pose, object detection), including the human pose estimation problem, are tackled
by convolutional neural networks (CNN), reaching a better performance with respect
to classical approaches (e.g., [2, 6, 10, 22, 26, 29, 30]).

CNN architectures have been used in monocular vision system scenarios to solve
the human pose estimation problem, using as an input a set of images with single or
multiple-persons from one camera to feed the architecture. Regarding this latter point
of multiple-persons input data, the computational cost could be increased due to the
number of body joints of each subject that the architecture has to detect in the image.
Although the obtained results are appealing, the complex poses are a challenging
problem since certain parts of the body joints could be occluded, including when
other moving objects are part of the scene. This problem could be overcome by the
multi-view approaches since the human body can be captured from different points
of view at the same time. This could allow to recover body joints occluded in one
view by using information from other cameras, from another point of view, where
these body joints are not occluded.

Some tasks such as camera pose, 3D-reconstruction, object detection (e.g., [5,
25, 27, 31], just to mention a few), where the principal problem is the occluded
regions, have been tackled by multi-view approaches. However, few works have
been proposed to tackle the human pose estimation problem by using the approach
mentioned above. Some works propose to fuse features from both views (i.e., two
cameras located in different points of view) to predict the human pose (e.g., [13, 23]),
through either the epipolar lines of the images across all different views or using the
intermediate layers in early stages of the architecture to find corresponding points in
other views.

On the contrary to previous works, a compact architecture, which has been pro-
posed for monocular scenarios [16], is adapted in the current chapter to leverage
the relative camera pose in multi-view scenarios, and thus to find the relationship
between the different features of the images, which are acquired at the same time
from different views, to tackle the self-occlusion problems of the body joints.

This chapter is organized as follows. Section5.2 summarizes deep learning based
camera pose estimation methods used to obtain the relative rotation and translation
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between two cameras, which includes experimental results on real-world datasets and
transfer learning from virtual environments to real-world. Then, Sect. 5.3 describes
the architecture proposed to estimate the human body pose in multi-view scenarios,
including experimental results and comparisons with other approaches of the state-
of-art. Finally, conclusions and future works are provided in Sect. 5.4.

5.2 Camera Pose Estimation

Most computer vision tasks require a calibration process to get camera intrinsic and
extrinsic parameters, which are used to have correspondences between the camera
and the world reference system. In general, these calibration processes are performed
by using special calibration patterns. However, during the last decade, different pro-
posals have been developed to estimate these parameters in an automatic way, more
specifically the extrinsic camera parameters (relative translation and rotation), by
using just the context of the images without considering special calibration patterns.

In the process of calibration there are difficulties such as illumination, low reso-
lution, few images features, which turn this a challenging problem to be solved. For
doing it, features detection is a key point to consider since they are used in any camera
calibration process. Different proposals have been used for feature point detection,
for instance SURF [1], ORB [24], SIFT [20] just to mention a few. However, the
accuracy of these algorithms decreases when there are not enough features points
to be matched. In order to overcome this problem, different CNN architectures have
been used in this process due to the power to extract features on images, showing bet-
ter results than classical approaches. Nowadays, methods used for camera calibration
could be divided into two categories: single or multi-view environments.

In the single view approaches (e.g. [17, 18]), a sequence of images are used, which
are captured from the same angle and point of view. The main limitation of these
approaches is that some important features could be occluded due their dependence
of the angle and position of the camera in the world coordinate system.

In the second category, i.e., multi-view approaches, the occluded feature problem
could be solved since the scene is captured from different points of view at the
same time. However, it is necessary to ensure the overlap between the acquired
images. A few works have been proposed considering multi-view scenarios; it could
be mentioned the approaches proposed by [6, 9, 19], where a set of pairs of images
is used to feed a Siamese CNN architecture for relative camera pose estimation.

In this chapter, the multi-view environment problem is considered, where a
Siamese CNN architecture is used to estimate the relative camera pose. This archi-
tecture and its main features are presented in Sect. 5.2.1. Then, experimental results
from this Siamese architecture, on real world scenarios, are presented in Sect. 5.2.2.
Finally, a transfer learning strategy, which takes advantage of virtual scenarios to
initialize the network weights, is introduced in Sect. 5.2.3.
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Fig. 5.1 Siamese CNN architecture fed with pairs of images of the same scene captured from
different points of views at the same time. The extrinsic camera parameter estimation is obtained
by using the regression part, which contains three fully-connected layers

5.2.1 Siamese Network Architecture

This section summarizes the Siamese CNN architecture, referred to as RelPoseTL,
that has already been presented in our previous work [4]. It is used to estimate the
relative pose between two synchronized cameras (Fig. 5.1 shows an illustration of
this architecture). The RelPoseTL is based on a modified Resnet-50, proposed in
[12], which has two identical branches with shared weights up to the fourth resid-
ual block. The output of each branch is concatenated to feed the fifth residual block.
ELUs activation functions are used instead of RELUs in the residual block structures,
since it helps to speed up convergence and to avoid the vanishing gradient, as it was
mentioned in [7]. A pair of images are used to feed the architecture. These images
are acquired at the same time, but from different point of views, i.e., different posi-
tions and orientations with respect to the real-world system. Three fully connected
(fc) layers are added after to the fourth and fifth residual block. The first two fully
connected layers fc1 and fc2 have a dimension of 1024 each one and are added after
the fourth residual block to predict the global camera pose followed by two regres-
sors of (3×1) and (4×1), which correspond to the global translation and rotation
concerning the real-world system respectively. The last fully-connected layer fc3 is
added to the fifth residual block. Similarly to mentioned above, this fully connected
layer has a dimension of 1024, but it is used to predict the relative camera pose,
followed by two regressors of (3×1) and (4×1) to predict the relative translation and
rotation between the given pair of images.

Global camera pose is represented by: �p = [t̂, r̂ ], where t̂ represents the trans-
lation as a 3-dimension vector and r̂ represents the quaternion values of the rotation
as a 4-dimension unitary vector. The Euclidean distance is used to estimate them:

TGlobal(I ) = ∥
∥t − t̂

∥
∥

γ
, (5.1)
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RGlobal(I ) =
∥
∥
∥
∥
∥
r − r̂

∥
∥r̂

∥
∥

∥
∥
∥
∥
∥

γ

, (5.2)

where t and t̂ represent the ground truth and prediction of the translation respectively,
and r is the ground truth rotation represented as quaternion values, and r̂ denotes its
prediction. The predicted rotation is normalized to a unit length as r̂‖r̂‖ . L2 Euclidean
norm is defined as γ . Due to the difference in scale between both terms (translation
and rotation), the authors in [17] propose to use two learnable parameters called ŝx
and ŝy to balance translation and rotation terms. The effect of these parameters are
similar to the one proposed in [18], where a β parameter is used to balance both
terms; for more details see the work proposed by [17, 18]. In RelPoseTL, a modified
loss function that uses ŝy as learnable parameter is used:

LossGlobal(I ) = TGlobal + (exp(ŝy) ∗ RGlobal + ŝy). (5.3)

On the other hand, the relative pose is estimated from the output of the fifth residual
block. The relative translation and rotation are obtained similarly to the global pose
estimation, which is defined as:

TRelative(I ) = ∥
∥trel − t̂rel

∥
∥

γ
, (5.4)

RRelative(I ) =
∥
∥
∥
∥
∥
rrel − r̂rel

∥
∥r̂rel

∥
∥

∥
∥
∥
∥
∥

γ

, (5.5)

where TRelative and RRelative are the differences between the ground truth (trel and
rrel) and the prediction from the trained model (t̂rel and r̂rel). As the rotation (r̂rel)
is predicted directly from the trained model, then it has to be normalized before. In
order to get trel and rrel , the following equations are used:

trel = tC1 − tC2, (5.6)

rrel = r∗
C2 ∗ rC1, (5.7)

whereCi corresponds to the pose parameters of the camera i (i.e., rotation and trans-
lation); these parameters are referred to the real world system; r∗

C2 is the conjugate
quaternion of rC2. Similarly to the Eq. (5.3), the loss function used to obtain the
relative pose is defined as:

LossRelative(I ) = TRel + (exp(ŝy) ∗ RRel + ŝy). (5.8)
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Fig. 5.2 Real world images of Cambridge Landmarks dataset [18] used for training and evaluating
the RelPoseTL architecture

Note that LossGlobal in Eq. (5.3) and LossRelative in Eq. (5.8) are applied for dif-
ferent purposes. The first one is used to predict global pose through each branch of
the trained model, where each branch is fed by images captured at the same scenario
from different points of view. The second one predicts the relative pose between pairs
of images by concatenating the Siamese Network (see Fig. 5.1). The RelPoseTL was
jointly trained with Global and Relative Loss, as shown in Eq. (5.9):

L = LossGlobal + LossRelative. (5.9)

5.2.2 Results from Real World Datasets

The RelPoseTL architecture presented in the previous section has been trained and
evaluated using the Cambridge Landmarks dataset [18]; Fig. 5.2 shows some images
of this dataset, which were captured in outdoor environments. All images are resized
to 224 pixels along the shorter side; then, the mean intensity value is computed
and subtracted from the images. For the training process, the images are randomly
cropped at 224×224 pixels. On the contrary to the training stage, during the evalua-
tion process, a central crop is used instead of a random crop.

For the training process, the weights of Resnet-50 pretrained on ImageNet were
used to initialize layers of RelPoseTL up to the fourth residual block, for the remain-
ing layers samples from the normal distribution were used. The RelPoseTL was
trained on ShopFacade and OldHospital of Cambridge Landmarks dataset. A set of
5900 pairs of images of OldHospital dataset was used for the training process. A
similar process was performed but with 1300 pairs of images of ShopFacade dataset.
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Table 5.1 Comparison of average errors (extrinsic parameters) of relative camera pose between
RelPoseTL and Pose-MV architectures on ShopFacade and OldHospital of Cambridge Landmarks
dataset

Scene/Models Pose-MV [6] RelPoseTL [4]

ShopFacade 1.126 m, 6.021◦ 1,002 m, 3.655◦

OldHospital 5.849 m, 7.546◦ 3.792 m, 2.721◦

Average 3.487 m, 6.783◦ 2.397 m, 3.188◦

The architecture was trained during 500 epoch for both datasets, which approxi-
mately took 7h and 3h respectively. For the evaluation process, a set of 2100 pairs
of images from the OldHospital dataset and a set of 250 pairs of images from Shop-
Facade dataset have been considered.

In order to evaluate the performance of RelPoseTL, angular error and Euclidean
distance error are considered. The first is used to compute the rotation error; it is
computed with a 4-dimensional vector. The second one is used to computed the
distance error between ground truth and the estimated value using a 3-dimensional
vector. Table5.1 depicts average errors on rotation and translation for both datasets,
obtained with the RelPoseTL network and with the Pose-MV network [6]. It can
be appreciated that the translation error obtained by the RelPoseTL improves the
results of Pose-MV in about 32%, and about 53%when the rotation error is compared
between the RelPoseTL and Pose-MV.

5.2.3 From Virtual Environments to Real World

As an extension to the results obtained in the previous section, where the RelPoseTL
architecture has been trained with real data, in this section a novel training strategy is
proposed. It consists onfirst training the networkwith synthetic images obtained from
a virtual environment and then, use this weights as an initialization when training
again the network but with images from real scenarios. This strategy is intended to
improve results from real data since the training of the network does not start from
scratch but from a pre-trained set. An advantage of using virtual environments is
the possibility of generating an almost unlimited set of synthetic images considering
different conditions, actors and scenarios, i.e.,weather, illumination, pedestrian, road,
building, vehicles. Furthermore, an additional advantage lies on the fact that the
ground truth is automatically obtained, reducing human error when the datasets are
manually annotated. Different engines could be used to design virtual environments
and aquire such a kind of synthetic pairs of images (e.g., CARLA Simulator [8],
Virtual KITTI [11], Video Game engines, just to mention a few). In the current work
different synthetic datasets have been generated using the CARLA simulator, an
open-source software tool [8]. Among the tools offered by CARLA simulator, there
is an editor that allows you to modify existing virtual worlds, as well as to create
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new scenarios from scratch; this editor integrates both CARLA simulator and Unreal
Engine, which is a video game engine that CARLA is based on.

It should be mentioned that synthetic images generated from virtual environments
and the real images used for final training could have different features spaces and
distribution, hence a Domain Adaptation (DA) strategy should be used to transfer the
knowledge from one domain to other. Depending on the relationship between both
domains, transferring the knowledge learned from virtual to real environments can be
performed in one-step or multi-step DA. For the first case, both domains are directly
related since the features spaces are similar. In the second case, an intermediate
domain, which should be highly related with both domains, is necessary. In this
section, the strategy proposed in [4] will be followed. It consists on creating 3D
virtual scenarios with a similar structure to the datatsets of real images, in our case
OldHospital and KingsCollege datasets. This similarity should be not only on the
shape and distribution of objects in the scene, but also on theway images are acquired
(i.e., similar relative distance and orientation between the cameras and objects in the
scene for the generation of synthetic images).

In order to generate the two datasets with synthetic images similar to OldHospital
andKingsCollege datasets, two 3D virtual scenarios are considered. These 3D virtual
scenarios have similar structure to the corresponding real scenarios, i.e., they have the
same feature spaces (objects’ geometry and camera point of view); for more details
about the relationship between geometric similarity of real and virtual scenario, as
well as camera pose similarity between synthetic and real sequence, see the work
proposed by [5]. Figure5.3 shows illustrations of the virtual scenarios generated
from the CARLA Simulator tool. The Dataset 1 and Dataset 2 are similar to the Old-
Hospital and KingsColleges datasets respectively. Additionally, two virtual cameras
were also considered. The cameras move in these virtual scenarios and acquire pairs
of images. The cameras start the trajectories with a given initial position and orien-
tation with respect to the world reference system. Then, the pair of cameras moves
together randomly and change their relative orientation also randomly. The images
are simultaneously acquired for each camera when there is enough overlap between
their field of view. This process generates about 3000 synthetic images from both
synchronized cameras, for each scenario; it takes about three hours for each scenario.
The overlap between pairs of synthetic images is computed with OpenMVG [21],
where a minimum of 60% overlap between acquired synthetic images is imposed.

Once datasets with synthetic images have been generated as mentioned above, the
RelPoseTL model is trained by initializing all layers of the architecture as presented
in Sect. 5.2.2. The Adam optimizer is used for the training process with batch size of
32 and learning rate of 10−4. The synthetic images were resized to 224×224 pixels,
including data normalization for training process. A set of 8124 pairs of images
was considered to train the architecture, which took about 30hour per dataset till
convergence was reached. During the evaluation phase, images were pre-processed
as mentioned above. A set of 2048 pairs of images from each of the two datasets was
used.

Finally, in order to transfer the knowledge learned in the synthetic image domain to
the new domain (i.e., real-world), the Domain Adaptation (DA) strategy is applied.
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Fig. 5.3 Synthetic images generated using CARLA Simulator tool. (2nd row) Virtual scenario
similar to OldHospital dataset. (4th row) Virtual scenario similar to KingsCollege dataset

It consists on training again the RelPoseTL architecture but now with just a few
pairs of real-world images; the weights from the synthetic image domain are used
as initialization. It helps to speed up the training process as well as to avoid the
time consuming ground truth generation on real-world images. This strategy is also
referred in the literature to as transfer learning. Figure5.4 shows an illustration of
this DA strategy. In details, each layer of RelPoseTL is initialized with the learned
weights from the training process using synthetic images, which should be similar
to the real-world scenarios. In order to show the advantages of this strategy, in this
section, sets of (256, 512 and 1024) pairs of images from the real-world scenario are
considered. These images are from the OldHospital and KingsCollege of Cambridge
Landmark dataset [18]. They are used to train the model and results are compared
with those obtained by initializing the network with the weights obtained from the
synthetic image domain. In order to compare the results obtainedwhen the network is
initialized with ImageNet weights or with those from the synthetic scenario—the DA
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Fig. 5.4 a RelPoseTL is trained using synthetic images generated from CARLA Simulator. b The
learned knowledge is used to apply DA strategy using real images. c Updated weights after DA
strategy are used to estimate relative camera pose (i.e., relative translation and rotation)

strategy—three sets of 64, 128 and 256 pairs of real-world images are considered.
Quantitative results are presented in Tables5.2 and 5.3. Angular error is used to
evaluate the rotation error from the estimated quaternion.On the other handEuclidean
error is used to measure the error between the estimated translation and ground truth
value. In the case of OldHospital dataset, the DA strategy, which consists on using
initially the Dataset 1 for training the model from scratch and then transferring the
learned knowledge for retraining the model with just few real images, reaches the
best result. This best result has been obtained in all cases, even if they are compared
with the model trained using just the real images dataset. A similar process was
performed with KingsCollege dataset using Dataset 2 where the results are the best
even if the model is just trained using real images dataset, showing that the similarity
of features spaces (i.e., 3D scenario used to represent the real environments) as well
as in the camera pose (i.e., relative distance between the cameras and the objects
in the scene as well as their relative orientation) helps to improve the camera pose
estimation when DA is applied. Note that the accuracy of this estimation is important
to relate the information of human body joints between the different cameras, which
will be shown in the following section.

5.3 Human Pose Estimation

Once the relative pose between the different cameras is estimated as mentioned in
the previous section, it is used as an input to tackle the 2D human pose estimation
in multi-view environments. The 2D human pose is estimated by detecting human
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Table 5.2 Angular and Euclidian distance errors of RelPoseTL [4] trained with real datat (RD) and
with the domain adaptation (DA) strategy on pairs of images (PoI) from OldHospital dataset; on
the first row RelPoseTL is initialized with ImageNet weights, while in the second row the weights
are obtained by pre-training RelPoseTL with synthetic datatset (SD1)

Trained with DA strategy on OldHospital dataset

Train: 256 PoI Train: 512 PoI Train: 1024 PoI

Test: 64 PoI Test: 128 PoI Test: 256 PoI

RD (Init. ImageNet) 4.29 m, 5.72◦ 3.93m, 4.04◦ 3.48 m, 3.95◦

RD (Init. SD1) 3.55 m, 5.59◦ 3.40m, 3.70◦ 3.20 m, 3.54◦

Table 5.3 Angular and Euclidian distance errors of RelPoseTL [4] trained with real datat (RD) and
with the domain adaptation (DA) strategy on pairs of images (PoI) from KingsCollege dataset; on
the first row RelPoseTL is initialized with ImageNet weights, while in the second row the weights
are obtained by pre-training RelPoseTL with synthetic datatset (SD2)

Trained with DA strategy on KingsCollege dataset

Train: 256 PoI Train: 512 PoI Train: 1024 PoI

Test: 64 PoI Test: 128 PoI Test: 256 PoI

RD (Init. ImageNet) 5.28 m, 5.29◦ 3.86 m, 5.08◦ 2.95 m, 4.06◦

RD (Init. SD2) 4.89 m, 4.96◦ 3.13 m, 4.18◦ 2.35 m, 3.32◦

body joints (e.g., elbow, wrist, head, etc.) from images and then connecting them
to build the human body figure. During last years, different approaches have been
proposed for the human pose estimation (HPE), for instanceOpenPose [2], DeepPose
[28], Convolutional pose machine [29], just to mentioned a few; appealing results
have been shown from these approaches, mainly when all body joints are detected.
However, the natural pose of human body generally involves self-occlusions that
make the HPE a challenging problem in monocular vision system scenarios.

An alternative to overcome the problems of monocular vision systems could be
by considering multi-view approaches. In these approaches, since the human body
is captured from different points of view at the same time, occluded joints from
one view can be observed from another view. The multi-view approaches have been
already used to tackle the region occlusion problem in certain tasks such as 3D-
reconstruction, camera pose, autonomous driving, object detection (e.g., [5, 14,
25, 27, 31]). However, few works have leveraged the advantages of multi-view
approaches to overcome the occlusion problem in the human pose estimation. Some
works exploit the epipolar geometry of multi-view approaches to solve the region
occlusion problem as the authors in [23]. In the current work, a CNN architecture is
used to fuse all features on epipolar line of the images of all points of view as previous
step to get the predicted joints.Another approach has been proposed in [13],where the
author leveraged the extracted feature of intermediate layers to find its corresponding
points in a neighboring view to combine and robustly extract features of each view.
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Fig. 5.5 CNN backbone is fed with a set of pairs of images of the same scene simultaneously
acquired from different points of view. The multi-view fusion scheme allows to estimate occluded
joints with information from other views across of the relative camera pose

The performance of these approaches allow that certain applications such as action
recognition, healthcare, or augmented reality, take advantage of the obtained accuracy
to develop different solutions. In this section a novel multi-view scheme is presented
to robustly estimate the human body pose. The architecture to tackle the human
pose estimation problem from a multi-view scheme is presented in Sect. 5.3.1. Then,
experimental results are presented in Sect. 5.3.2.

5.3.1 Multi-view Scheme

Themulti-view scheme presented in [3], which is referred to asMview-Joints, tackles
the self-occlusion problem in the 2D human pose estimation by considering at least
two views. It uses the CNN backbone proposed by [16], which is a variant of Resnet-
152 with learnable weights, and as output, the number of body joints is considered.

The model is fed by a set of images containing just a single-person, which has
been captured from a multi-view system of C calibrated and synchronized cameras
with known parameters. The images captured by themulti-view system are organized
in pairs of images using two different close views, namely, reference view Imre f and
source view Imsrc. Heatmaps obtained from each image, like those resulting from the
usage of the backbone [16], are fused across source view considering the confidence
of each joint and the relative camera pose, improving the accuracy of joints from
each image (see Fig. 5.5).

In order to estimate the 2D position of the joints (p(x,y)) in the image plane, the
center of mass of each heatmap is computed as follow:

p(x,y) =
W

∑

u=1

H
∑

v=1

hi(u,v)
.(ζ�(hi(u,v))), (5.10)

where ζ� represents the function softmax; h represents the ROI of the heatmaps
of i th joint and W and H correspond to the size of the ROI heatmap. For each 2D
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Fig. 5.6 An image point psrc back-projects to a ray in 3D defined by the point psrc and two depth
values pi and p′

i ; it is then projected to the image plane of reference view to generate the epipolar
line (L)

position of each joint obtained using Eq. (5.10), its position in the world coordinate
system P = (X,Y, Z) is obtained, as shown below:

xi = f X
Z yi = f Y

Z , (5.11)

where (x, y) is the 2D position of the i th joint obtained in Eq. (5.10). The focal length
of the camera is defined as f . Since the depth (Z) of the joint is unknown, two values
are empirically defined to solve the Eq. (5.11). The first one corresponds to a depth
value close to zero while the second value corresponds to a depth near to the size of
the scene, in our case it has been set to 10m.

The position in the world coordinate system of each joint is transformed using
the relative camera pose between both points of view (see Fig. 5.6), i.e, source and
reference view, and then, projected to the image plane, as shown below:

Trel = Rotsrc · (Tref − Tsrc), (5.12)

Rotrel = Q(Rotre f .T )−1 ∗ Q(Rotsrc.T ), (5.13)

pre fsrc(x,y)
= �2Dref (Rotrel · (Pi − Trel)), (5.14)

where Q(.) represents the quaternion. The rotation matrix and the translation vector
are defined as Rot ∈ R

3x3 and T ∈ R
3x1 respectively. Pi corresponds at i th joint in
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the world coordinate system obtained in Eq. (5.11). �2Dref (.) represents the back-
projection of 3Dposition of i th joint fromcamera coordinate system to image plane in
the reference view using the intrinsic parameters. The projected line on image plane
of reference view L is obtained using the linear equation and the point computed
in the Eq. (5.14). In order to obtain the depth of i th joint of the source view, which
should be on the projected line on image plane of reference view, the intersection
between the projected line and the 2D-point of the joint computed in the reference
view pre f(x,y) is performed.

The confidence of the two different 2D positions in the plane of the reference
image of the i th joint, where the first corresponds to the reference view pre f(x,y) and

the second, a projected joint from source to reference view pre fsrc(x,y) , is computed as
the distance between the ground truth of 2D position of i th joint and the estimated
2D positions of i th joints. These confidence values are used as shown in Eq. (5.16).

ω = 1 −
∣
∣
∣
∣

D�(γ̂i , γi )
∑

D�(γ̂i , γi )

∣
∣
∣
∣
, (5.15)

δupdi(x,y) = ω ∗ pi(x,y) , (5.16)

where (γ̂ , γ ) represent the ground truth and prediction of 2D position of i th joint
respectively, and ω corresponds to the confidence of the points of i th joints in the
reference view.

The enhanced 2D position of i th joint is denoted as δupdi(x,y) , which considers the
information and confidence of i th joint projected from the source to reference view.
In order to minimize the error between the enhanced 2D position of i th joint and
its ground truth in the learning process of the proposed multi-view scheme, a loss
function is defined as:

Loss =
N

∑

i=1

∥
∥
∥δupdi(x,y) − p̂i(x,y)

∥
∥
∥
2
, (5.17)

where N corresponds to the number of joints, and p̂i(x,y) is the ground-truth of i th
joint in image plane.

5.3.2 Results from Multi-view Approach

The Mview-Joints architecture presented in the previous section has been trained
and evaluated using the Human3.6m dataset [15]. Human3.6m is one of the largest
publicly available benchmark, with a multi-view setup, for human pose estimation.
In details, four synchronized and calibrated cameras are considered to generate a
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Fig. 5.7 Human3.6m dataset used for the training and evaluation processes. The subject is captured
from different point of views considering the four calibrated and synchronized cameras located in
each corner of the room

set of images with a single-person doing different activities (Fig. 5.7 shows three
different captures from the four cameras).

Sets of images ofHuman3.6mdatasetwere cropped according to the bounding box
of the person and resized to 384×384 pixels as a previous step for training the model.
Mview-Joints was firstly initialized with the weight pretrained by [16] and trained
on a set of 60k pre-processed images of Human3.6m dataset, in an end-to-end way,
until 20 epochs. This training process takes about 120h. The same pre-processing
is used during the evaluation phase with a set of 8k images. In order to evaluate the
performance of Mview-Joints architecture for 2D human pose estimation, the Joint
Detection Rate (JDR) is used. This metric measures the percentage of success f ully
detected joints, which uses a threshold to validate if a joint has been success f ully
detected. The threshold is defined as half of the head size. In addition, the Euclidean
distance error is used to compute the accuracy of each human body joint estimated
by the network.

Results and comparisons with state-of-the-art CNN-based approaches are pre-
sented in Tables5.4 and 5.5 using JDRmetric. As it can be appreciated, the improve-
ment is most significant for shoulder, elbow and ankle joints, which increment from
96.44% to 99.65%, from 95.00% to 97.31% and from 96.62% to 97.45%, respec-
tively. In term of average JDR, the results obtained by Mview-Joints improves the
Epipolar transformer model [13] about 1%, and with respect to Cross-View fusion
[23] about 3%.

Table5.5 shows the Euclidean distance errors. In this case the accuracy of esti-
mated body joints using the Mview-Joints architecture is compared with respect to
the CNN backbone proposed by [16]. As it can be appreciated, body joints such
as elbow, wrist, knee, nose, head improve by 15.88%, 4.32%, 8.46%, 18.11% and
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Fig. 5.8 Qualitative results on challenging scenarios—Mview-Joints architecture obtains better
estimations than the backbone proposed by [16]

50.53% respectively, when compared to the results obtained with CNN backbone
proposed by [16]. Since the multi-view scheme leverages the different views of the
scenario, the challenging human body pose are better estimated. Figure5.8 shows
some scenes with self-occlusions where it can be appreciated that Mview-Joints
architecture is able to estimate the human body pose better than single view approach
[16].
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5.4 Conclusions

This chapter focuses on the challenging problem of human body pose estimation
in multi-view scenarios. It is intended to tackle self-occlusion problems by accu-
rately estimating the human body pose. Firstly, in order to put the different views
in a common framework, the relative position and orientation—extrinsic camera
parameters—between the different cameras is estimated by using a deep learning
based strategy, instead of classical calibration-pattern based approaches. In order to
train this extrinsic camera calibration network, synthetic datasets of outdoor scenar-
ios are generated overcoming the limitation of lack of annotated real-world data.
Then, once relative pose between cameras is estimated, human body pose in the
multi-view scenario is obtained by using an adaptation of an architecture initially
intended for single view scenarios. Experimental results of estimated human pose
and comparisons with state-of-the-art approaches are provided showing improve-
ments on challenging scenarios. This chapter shows how information from different
views can be fused in order to reach a more accurate representation than single view
approaches, in particular when self-occlusions are considered. An important aspect
to consider is that the precision of body joint estimations is the base to solve other
related problems such as action recognition, surveillance, 3D human pose estima-
tion among other. Future work will be focused on extending the usage of multi-view
environments to leverage the geometry of the scene, and thus, improve the 3D human
pose. Additionally, the usage of attention modules will also be considered to tackle
the occluded regions into the multi-view scheme.
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Chapter 6
Video Analytics in Urban Environments:
Challenges and Approaches

Henry O. Velesaca, Patricia L. Suárez, Dario Carpio, Rafael E. Rivadeneira,
Ángel Sánchez, and Angel D. Sappa

Abstract This chapter reviews state-of-the-art approaches generally present in the
pipeline of video analytics on urban scenarios. A typical pipeline is used to cluster
approaches in the literature, including image preprocessing, object detection, object
classification, and object tracking modules. Then, a review of recent approaches for
eachmodule is given. Additionally, applications and datasets generally used for train-
ing and evaluating the performance of these approaches are included. This chapter
does not pretend to be an exhaustive review of state-of-the-art video analytics in
urban environments but rather an illustration of some of the different recent contri-
butions. The chapter concludes by presenting current trends in video analytics in the
urban scenario field.
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6.1 Introduction

The reduction in the price of cameras has led to the extension of camera networks
to different applications in urban environments. Nowadays, cameras have become a
ubiquitous technology in our everyday life. Although they are mainly used for video
surveillance applications, growing in popularity opens new possibilities for smart
cities (e.g., from detection of available parking to road maintenance applications). In
terms of economy, the global video surveillancemarket size is expected to grow from
USD 45.5 billion in 2020 to USD 74.6 billion by 2025.1 This growth is attributed to
the increasing concerns about public safety and security, the growing adoption of IP
cameras, and the rising demand for wireless sensors.

This huge amount of data is generally used for real-time monitoring by video-
surveillance operators or for offline review if something needs to be investigated. All
in all, after a user-defined time, which depends on the infrastructure, this informa-
tion is eliminated from storing systems, missing the opportunity to transform video
signals into a powerful source of information. Video analytics engines perform this
transformation of signal into information. Video analytics automatically enhances
video surveillance systems by performing the tasks of real-time event detection, post-
event analysis, and extraction of statistical data while saving human resource costs
and increasing the effectiveness of the surveillance system operation.

Developments related to technological advancements like deep learning have
increased the feasibility of launching new and innovative products for urban video
analytics. Among the extensive and varied computer vision research topics in the
video/scene comprehension domain, essential needs continue to focus on object
detection and tracking, license plate recognition, person re-identification, face and
action recognition, among others. In many cases, the mentioned techniques must be
executed in nature, which means a wide variety of scene conditions since achieving
a suitable and robust solution is not trivial. Although robust object detection and
tracking are crucial for any automated surveillance application, this can be seen as a
preliminary step to unlock various use cases.

Video surveillance with machine learning can be a very cost-effective solution
for different applications building on top of video analytics of urban environments.
Although each one of these applications requires their specific implementations, there
are common processing modules that are generally used, for instance, image prepro-
cessing, including camera calibration and image enhancement, object detection and
recognition, tracking, to mention a few. Hence, in this chapter, to review the state-of-
the-art approaches, a pipeline with different modules is considered, which clusters
the most common approaches in the literature to solve specific tasks (see Fig. 6.1).
This module-based pipeline allows the analysis of state-of-the-art approaches and
reviews them in a common framework. The current chapter is organized as follows.
First, Sect. 6.2 reviews common image preprocessing techniques generally used in
this framework. Section 6.3 summarizes object detection approaches, while Sect.
6.4 focuses on classification techniques from the state-of-the-art. In Sect. 6.5 track-

1 https://www.statista.com/statistics/864838/video-surveillance-market-size-worldwide/.
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Image adquisition

Datasets

Image pre-processing 
Camera calibration
Homography estimation
Background estimation
...

Object detection
Background substraction
Optical flow based
Saliency based approaches
...

Object classification
SVM / ...
Deep learning based
...

Tracking
Kalman filter
Deep learning based
...

Applications
Parking space detection
Vehicle counting
Trajectory detection
...

Statistics:
Vehicle: 2
Motorcycle: 2
Persons: 3
Traffic ligh: 1
Traffic Sign: 1
...

Fig. 6.1 Pipeline with the modules reviewed in the current work

ing approaches are reviewed. Video analytics applications of urban environments
are presented in Sect. 6.6. Although in this chapter there is not a review on image
acquisition hardware, common datasets generally used as benchmarks to evaluate
different approaches are depicted in Sect. 6.7. Finally, discussions on challenges and
opportunities from the reviewed approaches are given in Sect. 6.8

6.2 Image Preprocessing

An important stage to obtain more accurate solutions is the image preprocessing
applied to the given input image before performing any computer vision approach.
This section reviews only the most commonly used image processing techniques in
video analysis of urban environments. It is not meant to be an exhaustive review
but just a list of common approaches proposed to address recurring issues such as
camera calibration, background subtraction, and image enhancement.
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Fig. 6.2 Example of inverse perspective mapping from a oblique view; into b top view

6.2.1 Camera Calibration

The most common image processing approach is the camera calibration, needed to
accurately map 3D points to the image plane and define the region of the image to
be analyzed or the relative distance between objects in the scene. In general, camera
calibration is performed at the initial setup using a calibration pattern. The need for
specific calibration patternswith known sizes to estimate the 2D-3D correspondences
is a disadvantage for real-world applications. In order to overcome this limitation,
there are some approaches that exploit the geometry from the images to perform the
calibration, for instance, using vanishing point and lines (e.g., [16, 23, 68, 72]). Once
extrinsic and intrinsic camera parameters are estimated, homography can be applied
to reproject pixels from a given image region to the 3D real-world scenario. For
instance, Noh et al. [55] propose an inverse perspective mapping to obtain a top view
of crosswalk regions used for potential pedestrian risky event analysis. The system
detects vehicles and pedestrians and estimates their trajectories; then, a decision tree
is used to analyze whether there is or not a risk for the pedestrian at the crosswalk
(Fig. 6.2 shows an illustration of the top view computed after camera calibration at a
crosswalk). Another camera calibration-based approach, but in this case for inverse
perspective mapping from on-board camera systems, is considered by Grassi et al.
[33], where top view images together with GPS location (smartphone information)
are used to identify parking spaces in urban scenarios. A more elaborated approach
has been recently presented by Liu et al. [49], where also an inverse perspective
mapping approach is proposed for vehicle counting, speed estimation, and classifi-
cation. The proposed approach combines a convolutional neural network classifier
with projective geometry information to classify vehicles.

On the contrary to previous approaches where bird’s-eye views, obtained from
inverse perspective mapping, Grents et al. [35] consider that just the oblique view is
used to obtain the polygonal region of interest from the given image.A local reference
frame is placed over this polygonal ROI to estimate the pose of the objects in the
scene. The approach allows to count, classify, and determine the speed of vehicles
in the annotated ROI. Ling et al. [48] use perspective images for identifying free
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parking spaces in a low-cost IoT device. The system can provide real-time traffic
and parking management information for smart cities.

6.2.2 Background Subtraction

Background estimation is another image processing approach generally used with
static cameras. Background models are used to subtract from a given frame and eas-
ily detect the foreground objects (moving objects). The main limitation with these
approaches is the threshold definition; it can be a constant value or dynamically
updated [37]. Different background models have been proposed in the literature,
one of the simplest and easy to compute is the temporal averaging of consecutive
frames [44] or the temporal median [34]. These methods were widely used in the
1990s for traffic surveillance due to their simplicity. However, they are not robust to
challenging scenarios, including fast changes in lighting conditions, camera jitter, or
dynamic backgrounds. More elaborated background models have been proposed by
using statistical models such asMixture of Gaussians (MOG) [62]. In these methods,
each pixel is modeled as a mixture of two or more Gaussians and online updates.
These methods allow modeling scenarios with dynamic backgrounds or with light-
ing changes. Their main limitation is the computational complexity, resulting in a
higher processing time than simpler background subtraction approaches. Recently,
deep learning-based approaches have been proposed for the background subtrac-
tion problem. For instance, Lim et al. [47] present an encoder-decoder structured
CNN to segment moving objects from the background. The network models image
background while extracting foreground information as a high-level feature vector
used to compute a segmentation map. Deep learning-based approaches have shown a
considerable performance improvement compared with conventional unsupervised
approaches; actually, top background subtractionmethods evaluated in public bench-
marks (e.g., CDnet 2012, CDnet 2014) are deep learning-based approaches. An
extensive study on background subtraction methods based on deep neural networks
is presented by Bouwmans et al. [11], where more than four hundred papers are
reviewed.

6.2.3 Image and Content Enhancement

Finally, other image processing approaches generally applied in the video analy-
sis of urban environments are related to the image enhancement processes; these
image processing approaches are intended to improve the quality of the image in
order to reach a better final result. Qu et al. [57] propose an image enhancement
processing stage that is performed to reduce the influence of light changes. The pro-
posed approach enhances the image’s contrast and highlights the object’s color. The
approach is tested on pedestrian detection in different scenarios, improving the accu-
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racy of the results. Another image enhancement approach, also focusing on lighting
problems, more intended explicitly for nighttime low illumination scenarios, has
been proposed by Shi et al. [61]. The authors propose a dual-channel prior-based
method—dark and bright channels—with a single image. The proposed approach
corrects the lack of illumination as well as gets well-exposed images. Mapping the
given image to another color space is a common image processing approach, gener-
ally used to enhance the representation of the image to facilitate further processing.
For instance, Zotin et al. [74] present an image enhancement algorithm based on
multi-scale Retinex in HSV color model. The authors propose a novel approach that
requires a less computational cost to convert from the RGB to HSV and back again
to RGB; this mapping to the HSV space is required to correct the V component. The
proposed approach has been tested in different outdoor scenarios showing appealing
results. Finally, Cucchiara et al. [21] propose an image processing approach to detect
and suppress shadows in a surveillance system. The technique is performed in the
HSV color space, which improves the precision of the location of the shadows, favors
the extraction of the most relevant information, and facilitates further processing.

Although not related to image enhancement but content manipulation, we can
mention some approaches in the literature proposed for privacy protection. The ubiq-
uitous deployment of vision systems in public areas has increasedprivacy and security
concerns. Hence, data protection strategies need to be appropriately designed and
correctly implemented in order to mitigate this problem. An example of a strategy
implemented to preserve identity at a scale is the face and license plate blurring
process in Google Street View [28]. New intelligent surveillance systems are being
designed to face up to this concern; for instance, Tu et al. [63] propose a privacy-
preserving video streaming strategy. It consists of face detection and removal strat-
egy; hence, videos can be later on distributed for further processing.

6.3 Detection

Once the information has been preprocessed, the next step, according to the pipeline
presented in Fig. 6.1, is the detection of objects before their classification. Different
approaches have been proposed in the literature. Fan et al. [27] propose a technique
to detect abandoned objects in public places, for which a temporary static objects
model is taken as a basis to simulate in an urban environment the complete cycle
of people or cars stopped for momentary causes such as traffic lights or signals
using a finite state machine. This approach allows detecting the object over a given
region directly without applying a classification approach. This model mitigates the
problem of detecting false positives in urban environments. Avola et al. [6] present an
approach to detect anomalous security behaviors in public or private environments.
The detection technique uses histogram equalization and RGB local binary pattern
operator based on images’ changes. High-resolution images taken at low altitudes
by unmanned aerial vehicles have been used to demonstrate the approach. Another
approach to detecting objects is presented by Chen et al. [18], where it is proposed
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to use gigapixel video; this type of high-resolution image provides local and global
information simultaneously to obtain in real-time the location of the object globally
by regions and then using descriptors the location of the object is complemented
locally.

Junos et al. [40] propose an approach based on convolutional networks, where a
lightweight model has been designed that focuses on increasing the receptive field of
the network through the use of a pyramidal combination of the layers of the model.
The experiments were favorable to be implemented in real-time applications. Chan-
drakar et al. [17] propose a technique for detecting moving objects and subsequent
monitoring. The deep learning model proposed by the authors called RBF-FDLNN
has been used. This model allows it to extract the necessary characteristics to detect
moving objects, allowing their subsequent monitoring efficiently. The datasets used
in the experiments are PASCAL and KITTI, which contain objects in urban settings.
Another approach to object detection is presented by Shi et al. [60]; the authors
propose a convolutional network model using the geometric information of stereo
images. This approach does not require anchor boxes or depth estimation, it adap-
tively performs the detection of objects, achieving speed and precision in the obtained
results. Bochkovskiy et al. [9] propose an object detection model capable of support-
ing real-world environments efficiently, for which they have designed an architecture
that focuses on enhancing the receptive fields of each layer, also using drop blocks
as a regularization method. They have also applied data augmentation through the
mosaic of 4 images. The blocks have been designed for punctual attention. The
COCO and Imagenet datasets have been used for the experiments, obtaining better
statistics than their predecessor, YOLOv3.

Wei et al. [67] propose an approach to detect and classify people. For the detec-
tion step, several operations have been applied to reduce the computational load, for
which each image is reduced four times and the colors are converted to only lumi-
nance. It applies the difference between consecutive images to detect moving areas
and identify people, which are then classified with a convolutional network model.
Another approach is presented by Cao et al. [14], where the authors present a method
to analyze videos of traffic scenarios. It is based on a three-dimensional reconstruc-
tion model to extract geometric features, which is later on used for vehicle detection.
Aslani et al. [4] present another approach that performs the real-time detection of
moving objects from aerial images. It is based on the usage of optical flow and a
filtering step to remove non-relevant information; a morphological filter is applied to
extract the most significant features of the regions of interest and discard occlusions.

Gao et al. [30] present a method to detect and count people; this approach is a
combination of two techniques since it uses a convolutional network for the extraction
of characteristics, in this case, the MASK R-CNN and the linear support vector
machine to perform the detection of people. As input for the deep learning model,
the regions of people’s heads obtained from the images by means of the Adaboost
algorithm are used. The authors generate their data set taken from real classroom
surveillance scenes for the experiments. Another method that uses convolutional
networks is presented by Zhang et al. [71], where a method to detect objects (e.g.,
buses, cars, and motorcycles) in traffic scenarios is presented. The focus is on two
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optimized components that allow real-time object detection. The first component
generates the candidate regions, and the second component detects the objects in the
previously selected regions. To improve the performance of the method, global and
multi-scale information is incorporated from the processed videos. Three datasets
have been used to validate the proposed method: MS COCO, PASCAL VOC07,
KITTI.

Object detection is one of themost widespread techniques in computer vision, and
there is a huge number of applications combining detection with segmentation and/or
classification. Like in most of the topics of computer vision, classical approaches
for object detection have been overcome by CNN-based approaches. These models
facilitate the automatic extraction of features and achieve the best object detection
results. In fact, there are already some CNN-based real-time embedded object detec-
tion solutions on the market, which are useful for building different applications with
them.

6.4 Classification

Once the regions of interest have been detected, they need to be analyzed and clas-
sified according to the categories defined in the given problem. For decades, object
classification has been an active research topic; several approaches have been pro-
posed based on different machine learning techniques. This section covers both clas-
sical and deep-learning-based techniques. Silva et al. [26] propose an approach to
detect and classify motorcycle helmets using a multi-layer perceptron network. Also
focusing on the classification problem, Buch et al. [15] propose a novel approach
to visualize the trajectory of vehicles in an augmented reality framework by recon-
structing objects classified as vehicles in 3D. Another technique for urban traffic
surveillance is presented by Cao et al. [15], where the authors propose a robust
algorithm to detect and classify vehicles in environments of variation of lighting
and complicated scenes, to maintain the most representative global characteristics to
accelerate the detection and classification of the vehicles. Low altitude aerial images
have been processed to carry out the experiments applying the gradient histogram
method. Makhmutova et al. [52] also tackling the traffic management problem, an
optical flow-based approach is proposed by using the cameras of the public traffic
control system. Themain idea is to classify the types of cars to determine the location
and count them later.

Continuing with the classification of objects in videos, a method is proposed
by Bose et al. [10], which allows the use of low-resolution images with projective
distortion to classify objects present in the far-field. This method makes it possible to
classify pedestrians and vehicles invariant to changes in the scenes through contextual
functions based on the position and direction of movements of the objects present
in the videos. Another classification technique is presented by Hamida et al. [38],
where the authors propose an architecture that can scale according to the client’s
requirement. This scheme does not affect the temporal, spatial, or qualitative aspects



6 Video Analytics in Urban Environments: Challenges and Approaches 109

and focuses on extracting the information from the region of interest, which is filtered
to maintain only the most representative characteristics. Canel et al. [13] present a
novel method to perform intelligent filtering. It is referred to as FilterForward, which
using micro-classifiers takes only relevant frames from the urban traffic videos, with
which coinciding events (i.e., objects of specific colors carried by pedestrians) are
detected. Also, an approach to classify vehicles (e.g., buses, cars, motorcycles, vans)
is presented by Buch et al. [12]; this method is based on 3D models of the silhouette
of each of the vehicle models present in the video. To validate the efficacy of the
designed model, the UK reference i-LIDS dataset was used.

On the contrary to previous approaches, Gautamin et al. [31] propose a face
detection method that is invariant to changes in illumination, orientation and sup-
ports partial occlusions. The approach is based on training with authorized faces
calculating their weight; then, in the validation process, the weights are compared
to determine whether or not the faces match. The process of classifying the faces is
carried out by applying the Haar cascade classifier combined with the skin detec-
tor. Additionally, Xu et al. [70] present an approach to classify in real-time objects
present in a surveillance video. Linear support vector machine and the histogram of
oriented gradients have been used for the feature extraction. Li et al. [46] propose a
threshold filtering method adaptable to variations in correlation between the types of
features presented over a period of time; this approach is based on clustering, which
allows to carry out the real-time analysis of classified vehicles.

In addition to the classical approaches mentioned above, many convolutional
neural network-based approaches have been proposed in recent years. Vishnu et al.
[65] present a technique to detect motorcycle offenders for not wearing a helmet.
The model is based on a convolutional network model to perform the classification
and recognition of drivers without a helmet. Kumar et al. [43] present a simplified
approach to process a large amount of traffic data to make the prediction and forecast
of its probable behavior. The authors use a convolutional neural network model to
predict and forecast urban traffic behavior. Li et al. [45] propose a network, which
extends the framework of the Faster R-CNN architecture, to detect and classify any
object presented in each frame of the urban video sequence. Another approach that
presents a method for estimating the volume of urban traffic is described by Zhu
et al. [73]. This technique is based on a deep learning model that works with high-
resolution images taken from an unmanned aerial vehicle, which were manually
tagged. This model recognizes and classifies vehicle types in trucks, cars, or buses.
Similarly, Wang et al. [66] present an approach based on a convolutional network
called NormalNet, which has been designed to extract the characteristics of images
using 3D information combined with normal vectors to achieve an efficient classi-
fication. Another CNN approach is presented by Naik et al. [53], where the authors
implement a customization work of the YOLOv4 model to perform multiple object
detection using a low-resolution real-time video, with which nine different types
of vehicles are classified. Continuing with deep learning, Arinaldi et al. [3] present
a technique to collect information from traffic videos in real-time to estimate the
type of vehicle, its speed, and the respective count. A convolutional network-based
on regions of interest known as Faster RCNN has been designed for this approach.
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More recently, Dey et al. [24] propose a technique based on transfer learning. It
obtains the information from previously trained models to be able to classify the
vehicles present in the urban traffic videos in real-time. Foreground region detection
is applied to group vehicle patterns to achieve vehicle classification. Object detec-
tion is one of the most widespread techniques in the field of computer vision and
has had wide applications combined with segmentation and/or classification. Tradi-
tional detection techniques are mostly based on machine language algorithms and
convolutional networks have already been used to describe their location in images.
These models facilitate the extraction of features automatically.

The object classification problem has been largely studied in the computer vision
domain. Most of the techniques reviewed in this section tackle the object classifi-
cation, combined with the object detection problem, by means of efficient convolu-
tional neural networks; this combination allows to implement solutions that can be
deployed in real-time on embedded platforms. As an additional conclusion, it could
be mentioned that a large number of references made use of transfer learning to train
the proposed architectures. This strategy improves classification results, particularly
in challenging scenarios that may include occlusions, crowdedness, or poor lighting
conditions.

6.5 Tracking

The last stage to obtain an accurate solution is the object tracking task using the
information obtained in the previous stage of the pipeline. Since the objective of
urban video analytics is related to counting, identifying, or re-identifying objects in
urban environments (e.g., cars, trucks, buses, motorcycles, bicycles, pedestrians, and
other moving objects), tracking the object is needed once it appears in the image and
is correctly detected to avoid duplicity. Generally, it is not only necessary to track
a single object in the sequence of frames, so Multiple Object Tracking (MOT) is a
task that currently plays an essential role in computer vision. MOT task is mainly
divided into locating multiple objects, maintaining their identities, and performing
their trajectories given a video input.

Different types of probabilistic inference models are used in different works to
carry out the MOT task. The most widely used technique is the Kalman Filter [41],
which is a recursive predictive filter that is based on the use of state-space techniques
and recursive algorithms. To carry out the tracking, Chen et al. [19] use the centroid
of each detected blob using a constant velocity Kalman Filter model. The state of
the filter is the centroid location and velocity, and the measurement is an estimate of
this entire state. A variation of the original Kalman Filter technique called Extended
Kalman Filter (EFK) is used in other works. In the work of Cho et al. [20] the mea-
surements obtained from the different sensors (e.g., cameras, radars, and lidars) are
merged to track neighboring objects; and the EFK implementation uses the sequen-
tial sensor method that treats the observations of individual sensors independently
and feeds them sequentially to the EKF estimation process. Also, based on EFK,
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Dyckmanns et al. [25] present an approach to object tracking in urban intersections,
demonstrating that maneuvers can be recognized earlier, and incorrect maneuver
detection can be avoided by incorporating prior knowledge into the filtering process.
The active multiple model filter approach helps to compensate for unavoidable mea-
surement errors and thus enables robust and stable estimations of the position and
velocity of tracked objects. On the other hand, the work presented by Nguyen et al.
[54] uses an Interacting Multiple Model (IMM) [8] because objects such as cars,
trucks, bikers, etc., change their behavior so frequently that one motion model alone
is not sufficient to track their movements reliably. Structurally, the IMM tracking
framework consists of several EKF’s with different motion models, and the track
estimates are mixed statistically.

Another strategy used for object tracking is the Particle Filter, a method used
to estimate the state of a system that changes over time. More specifically, it is
a Monte Carlo method commonly used in computer vision for tracking objects in
image sequences. Rehman et al. [5] present an anomaly detection framework based
on particle filtering for online video surveillance, where they use characteristics of
size, location, and movement to develop prediction models and estimate the future
probability of activities in video sequences. On the other hand, Gaddigoudar et al.
[29] use the particle filter algorithm to track fast-moving human targets; mainly, it
performs better with pedestrians with occlusions.

Other works, such as those presented by Jodoin et al. [39] use classical tech-
niques based on binary descriptors and background subtraction, the combination of
both methods allows us to track road users independently of their size and type.
Another recent technique in the object tracking domain is Simple Online and Real-
Time Tracking (SORT) [7]. This algorithm is based on the Kalman Filter [41] and
Hungarian Algorithm [42]. SORT compares the positions of the objects detected
in the current frame with assumptions for the positions of the objects detected in
previous frames. Grents et al. [35] present a study that addresses the problem of esti-
mating traffic flows from data from video surveillance cameras; in this work, the Fast
R-CNN is used to detect objects, and later on, the SORT is considered to estimate the
total number of vehicles in an avenue in real-time. On the other hand, Velesaca et al.
[64] consider the use of SORT to generate general statistics of the different objects
in urban environments. Among the main categories include persons and vehicles.

Contrary to the traditional techniques explained above, in the last decade, tech-
niques based on deep learning have been used to increase the performance of object
tracking in urban environments significantly. Del Pino et al. [22] propose the use
of convolutional neural networks to estimate the actual position and velocities of
the detected vehicles. On the other hand, Liu et al. [50] propose a deep learning-
based progressive vehicle re-identification approach, which uses a convolutional
neural network to extract appearance attributes as the first filter, and a siamese neu-
ral network-based license plate verification as a second filter. The SORT algorithm
presented above was later enhanced to add a deep association metric, and this new
approach was named DeepSORT [69]. This model adds visual information extracted
by a custom residual CNN. CNN provides a normalized vector with 128 features
as output, and the cosine distance between those vectors was added to the affinity
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scores used in SORT. In the work presented by Praveenkumar et al. [56], DeepSORT
is used to track multiple pedestrians in real-time, using motion representation and
data association algorithms. The virtual block counting method is implemented for
efficient tracking and counting of multiple pedestrian objects, in which the occlusion
problem is effectively solved. In other recent works, DeepSORT was used to track
vehicles, thus determining the number and flow of cars that travel on a particular
avenue [59].

All approaches presented above focus their efforts on tracking multiple objects in
2D, that is, in the image plane. Contrary to this approach, 3D tracking could provide
more precise information about the position, size estimation, and effective occlusion
management; this approach is potentially more helpful for high-level machine vision
tasks. An example of this approach is thework presented byNguyen et al. [54], which
uses a stereo camera system to get a cloud of 3D points and map an occupation grid
using an inverse sensor model to track different objects within the range of the
sensors. However, despite all these benefits, 3D tracking is still developing to solve
camera calibration, pose estimation, and scene layout problems.

According to the reviewed literature, among the different types of probabilistic
inference models, it was found that the most used were Kalman Filter, Extended
Kalman Filter, and Particle Filter. On the other hand, other widely used approaches
in recent years are those based on deep learning,where convolutional neural networks
are frequently used to perform multiple object tracking tasks. A widely used deep
learning-based approach is the DeepSORT network, which is an improved version of
the SORT algorithm. In addition to the approaches based on tracking in 2D, in recent
years, there has been a growing interest in the development of 3D object tracking
methods, mainly using point clouds. It was possible to show that recent works are
working on deep learning and 3D tracking approaches.

6.6 Applications

The application of video analytics in urban environments has received increasing
attention in the past few years. This is because video analytics can be used to
improve the understanding of the dynamics of urban scenes. According to the mod-
ules reviewed above, different video content analysis applications can be applied to
process urban environment videos in real-time. A wide range of applications can
benefit from the results of detection, classification, and tracking techniques; just
some examples of these applications are Parking Space Detection, Vehicle or People
Counting, Trajectory Detection, Face recognition, Vehicle License Plate Recogni-
tion, among others. This section provides a brief yet concise survey of state-of-the-art
applications.
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Fig. 6.3 Illustration of
parking space detection in a
parking lot (10 free space
highlighted in red box)

6.6.1 Traffic Scenarios

License plate recognition is largely used worldwide for vehicle identification, access
control, and security, generally in controlled scenarios and stationary vehicles. It is
commonly referred to as automatic number-plate recognition (ANPR) or automatic
license-plate recognition (ALPR). This process, as shown in Fig. 6.4, consists in
detecting the license plate in a video frame and then recognizing the number plate
of vehicles in real-time videos. Finally, the recognized information is used to check
if the vehicle is registered or licensed or even grants access control to private places.
The ANPR/ALPR systems have been used in a wide range of applications, places,
and institutions, such as shoppingmalls, police forces, tolls, private places in general,
car parking management, and other data collection reasons (e.g., [2, 50, 75]). The
main purpose of these systems is to identify vehicles and their registered owners by
reading the license plates. The technology is used by police forces to identify stolen
cars, by customs to detect illegal immigrants, and by parking companies to issue
parking tickets. Another urban environment application based on video analytics is
the identification of free parking space (as shown in Fig. 6.3), in general, using low-
cost IoT devices. These techniques aim to detect free parking slots in real-time, count
the number of places for parking management systems, and provide this information
to the drivers. This task is difficult because of the large number of parking spaces and
the complexity of the parking environments. License plate detection is also required
for privacy protection [28], detecting and blurring the plate number for confidentiality
reasons. Furthermore, in [49], vehicle counting, speed estimation, and classification
is proposed, which combines object detection and multiple object tracking to count
and classify vehicles, pedestrians, and cyclist fromvideo captured by a single camera.
Finally, another application for traffic control is the vehicle classification (e.g., cars,
buses, vans, motorcycles, bikes) detected in a scene [12]; where counting vehicles
by lane and estimating vehicle length and speed in real-world units is possible.
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Fig. 6.4 Illustration of vehicle license plate recognition process for access control

6.6.2 Pedestrian-Oriented Applications

Pedestrian Detection and Tracking are another classical application in urban video
analytics environments that has attracted much attention in recent years due to the
increase in computational power of intelligent systems.On top of pedestrian detection
and tracking, other approaches can be developed, for instance counting people (Fig.
6.5) in specific places or human behavior analysis (e.g., how long they stay in a
particular area,where theygo, etc.) in intelligent video surveillance systems (e.g., [29,
56]). Still, a limitation of these approaches is to deal with challenging crowded places
(occlusions or low-resolution images) or false positives detections; despite these
limitations, some applications can get good performance [51]. More recently, due to
the COVID-19 outbreak, some approaches for pedestrian detection and tracking for
social distance have been proposed; for instance, [1] proposes to use an overhead
perspective. This method can estimate social distance violations between people
using an approximation of physical distance, making use of the fact that, in general,
people walk in a more or less systematic way, and they tend to move in the same
direction as the rest of the people in the scene. Another challenging application is
the estimation of pedestrian actions on streets [58]. It can be applied for safety issues
on smart cars. The estimation of pedestrian actions can provide information such as
the intention of the pedestrian (e.g., to cross the street, to stop at a traffic light, etc.),
which can be used by smart cars to make decisions about how to behave.

Face detection (e.g., [31, 63]) is one of the most common applications of video
analytics in urban environments. It can be used to identify people who are walking
or driving in the area. This information can be used to improve security by track-
ing specific individuals’ movements or improving traffic flow by identifying choke
points. Furthermore, face detection can be used to count the number of people in an
area, which can be used to estimate the number of people who are likely to visit an
area at a given time.

As a conclusion from this section, including traffic scenarios and pedestrian-
oriented applications, it could be mentioned that more and more video analytics
applications will be offered in the context of smart cities in the next few years. This
growth will happen due to the expansion of camera networks, which is a ubiqui-
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Fig. 6.5 Illustration of
detecting and counting
people in the street (5
persons detected)

tous technology in any urban scenario, the increase in computational capabilities,
and the deep-learning strategy generally used to implement the different solutions.
These three elements are inspiring the development of novel applications; some of
them were unthinkable just a few years ago. These applications will address open
problems in urban scenarios, just some of them are: action recognition, early event
detection, path prediction (in both pedestrian and vehicle), crowd behavior analysis,
multimodal architectures (using video analytics together with the social media anal-
ysis), crowdsourcing solutions using cameras from a mobile phone, and many other
applications that could include cameras from remote sensing devices (e.g., drone,
satellite, and so on). This list does not pretend to be an exhaustive list of further novel
applications but just an illustration of open problems that may be tackled and is a
good starting point to think about the possibilities that video analytics can offer to
smart cities in the near future.

6.7 Datasets

This section details some of the different datasets used in the state-of-the-art video
analytics in urban environments to detect, classify, and track different types of objects
(e.g., pedestrians, vehicles, license plates, traffic signs). It does not pretend to be an
exhaustive list of datasets but rather an illustration of the different benchmarks avail-
able for evaluation and comparisons. One of the most used and popular datasets is
the KITTI2 dataset (e.g., [17, 22, 60, 71]) that allows tracking of both people and
vehicles. The dataset has been collected by driving a car around a city. It consists of
21 training videos and 29 test ones, with a total of about 19000 frames. Item includes
detections obtained using the DPM and RegionLets detectors, as well as stereo and
laser information. Another widely used dataset is MS COCO3 (Microsoft Common
Objects in Context) dataset (e.g., [9, 71]), which is a large-scale object detection, seg-
mentation, key-point detection, and captioning dataset. The dataset consists of 328K

2 http://www.cvlibs.net/datasets/kitti/eval_tracking.php.
3 https://cocodataset.org/#home.
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images. PASCAL VOC 20074 dataset (e.g., [17, 71]) is generally used for training
image recognition approaches. This dataset includes twenty object classes to find
persons, animals, vehicles, and others. The dataset can also be used for image classi-
fication and object detection tasks. Another popular dataset is ImageNet,5 which is
an image database (e.g., [9, 24]) organized according to theWordNet hierarchy (cur-
rently only the nouns), in which hundreds and thousands of images depict each node
of the hierarchy. The project has been instrumental in advancing computer vision
and deep learning research. Another dataset used in the literature is UA-DETRAC6

(e.g., [45]), which consists of 100 video sequences captured from real-world traf-
fic scenes (over 140000 frames with rich annotations, including occlusion, weather,
vehicle category, truncation, and vehicle bounding boxes) for object detection, object
tracking, and MOT system.

More specifically for urban environments,VeRi-7767 is a vehicle re-identification
dataset (e.g., [50]) that contains 49357 images of 776 vehicles from 20 cameras.
The dataset is collected in the real traffic scenario, which is close to the setting of
CityFlow. The dataset contains bounding boxes, types, colors, and brands of each
vehicle. Another interesting dataset, which involve vehicle images captured across
day and night, is the Vehicle-1M8 dataset (e.g., [36]). It uses multiple surveillance
cameras installed in cities. There are 936051 images from 55527 vehicles and 400
vehicle models in the dataset. Each image is attachedwith a vehicle ID label denoting
its identity in the real world and a vehicle model label indicating the vehicle’s car
maker, model, and year. On the contrary to previous datasets AVSS-20079 dataset
(e.g., [27]) is focused on subway environments. It includes three video clips corre-
sponding to low, intermediate, and high activity in a subway scenario. Each clip is
about 2 to 3 minutes long, with one staged true drop. Another of the datasets widely
used for evaluations and comparisons is the CDnet10 dataset, which is an expanded
change detection benchmark dataset (e.g., [47]). Identifying changing or moving
areas in the field of view of a camera is a fundamental preprocessing step in com-
puter vision and video processing. Example applications include visual surveillance
(e.g., people counting, action recognition, anomaly detection, post-event forensics),
smart environments (e.g., room occupancy monitoring, fall detection, parking occu-
pancy detection), and video retrieval (e.g., activity localization and tracking). On
the other hand, PANDA11 is the first gigaPixel-level human-centric video dataset
(e.g., [18]), for large-scale, long-term, andmulti-object visual analysis. The videos in
PANDAwere captured by a gigapixel camera and cover real-world large-scale scenes

4 http://host.robots.ox.ac.uk/pascal/VOC/voc2007/.
5 https://www.image-net.org/.
6 https://detrac-db.rit.albany.edu/.
7 https://vehiclereid.github.io/VeRi/.
8 http://www.nlpr.ia.ac.cn/iva/homepage/jqwang/Vehicle1M.htm.
9 http://www.elec.qmul.ac.uk/staffinfo/andrea/avss2007.html.
10 http://www.changedetection.net/.
11 http://www.panda-dataset.com/.
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with both wide field-of-view and high-resolution details (gigapixel-level/frame). The
scenes may contain 4K headcounts with over 100× scale variation.

As mentioned above, this is just an illustration of many benchmarks available for
the research community. Table 6.1 presents a summary of the approaches found in
the literature for each of the modules in Fig. 6.1; furthermore, this table includes
datasets and research papers that use them.

6.8 Conclusions

Novel solutions for smart cities are increasingly required in our everyday life, looking
for efficient management of different services. This manuscript reviews computer
vision-based approaches needed for applications, from counting people in crowded
scenarios to vehicle classification or free parking slot detection. In recent years, due
to the improvements in technology and the increase in computing power, a large
number of these approaches have been implemented in real-time or even embedded
in low-cost hardware. This chapter starts by proposing a pipeline to perform the
review on a common framework. Initially, image processing techniques generally
used on urban video analytics are reviewed. Then, object detection and classification
approaches are summarized, highlighting that in several recent approaches, both
tasks are merged in a single module. Once objects are detected and classified, an
important component to be considered is the tracking, which was initially performed
by Kalman filters, but recently, deep learning-based approaches have given the best
results. Finally, the chapter reviews applications built on top of the modules of the
proposed pipeline, as well as datasets generally used as benchmarks for evaluations
and comparisons. As mentioned in several sections of the chapter, this work does
not pretend to be an exhaustive list of approaches from the state-of-the-art for each
module of the considered pipeline, but rather an illustration of some of the different
recent contributions. As a first general conclusion, it could state that deep learning-
based solutions are the best option for any of the pipeline’s modules. As a second
conclusion, it is clear that there are many opportunities to be explored based on video
analytics of urban environments. Depending on the complexity of the solution, low-
cost hardware can be considered.Most of the applications reviewed in this chapter are
standalone solutions; the challenge for the future is to interconnect these applications
to benefit each other and develop more robust solutions for smart cities.
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Table 6.1 Papers summarized for each stage of the pipeline and technique used

Dataset Preprocessing Object
detection

Object
classification

Tracking Applications

KITTI: [17,
22, 60, 71]

Camera
calibration:
[16, 23, 68,
72]

Faster
R-CNN: [32]

Optical flow:
[52]

Kalman Filter:
[19]

Pedestrian
Detec-
tion/Tracking:
[1, 29, 56, 58]

PASCAL
VOC 2007:
[17, 71]

Inverse
Perspective
Mapping: [33,
49, 55]

Finite State
Machine: [27]

Proyective
Distortion:
[10]

Extended
Kalman Filter:
[8, 20, 25]

License Plate
Recognition:
[2, 28, 50, 75]

MS COCO:
[9, 71]

Perspective
View: [35, 48]

Histogram
equalization
and
RGB-Local
Binary Pattern
(RGB-LBP):
[6]

MLP: [26] Particle Filter:
[5, 29]

Vehicle
Counting: [49]

ImageNet: [9,
24]

Background
Subtraction:
[34, 37, 44,
47]

Optical Flow:
[4]

Custom
Filtering: [13,
46]

SORT: [35,
64]

Vehicle
Classification:
[10, 12]

UA-
DETRAC:
[45]

Mixture of
Gaussians
(MOG): [62]

CenterNet-3D
object
detection: [60]

Haar cascade,
HOG and
SVM: [31, 70]

Custom CNN:
[22, 50]

Vehicle
Trajectory:
[15]

AVSS-2007:
[27]

Privacy-
preserving
strategies: [28,
63]

Custom CNN:
[17, 18, 30,
40, 71]

Faster
R-CNN: [50]

DeepSORT:
[56, 59]

Parking space:
[33, 48]

VeRi-776:
[50]

Image
enhancement:
[21, 57, 61,
74]

YOLOv4: [9] Custom CNN:
[24, 43, 65,
66, 73]

3D Tracking:
[3, 53, 54]

Face
detection: [31,
63]

CDnet: [47]

Vehicle-1M:
[36]

PANDA: [18]
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Chapter 7
Multimodal Sensor Calibration
Approaches in the ATLASCAR Project

Vitor Santos, Paulo Dias, Miguel Oliveira, and Daniela Rato

Abstract An important issue in smart cities is intelligent mobility. In this line, the
ATLASCAR project started in 2009 as a challenge to transpose to a real car many
perception and navigation techniques developed for small scale vehicles in robotic
competitions. Among many others, that challenge brought the need to use multiple
sensors from different modalities for a richer and more robust perception of the road
and its agents. The first issues concerned the proper registration and calibration of
one LiDAR sensor and one visual camera, but rapidly evolved to multiple LiDARs
and cameras of variate natures. In this paper, we present several calibration tech-
niques that were proposed, developed, applied and tested along the several years of
the project providing interesting practical solutions and the means and tools to merge
and combine sensorial data frommultiple sources. Based on themultiple detection of
specific targets, like cones, spheres and traditional checkerboards or charuco boards,
the techniques range from point cloud and data matching, using several techniques,
including deep learning trained classifiers, up to holistic optimization techniques.
The developments have also been applied in other contexts such as 3D scene recon-
struction or in industrial manufacturing work cells.

7.1 Introduction

TheATLASCAR project appeared after several years of research and development in
small scale mobile robots for autonomous driving competitions [30]. The successes
and results obtained lead to a full scale challenge in a real automobile [43, 44]. The
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Fig. 7.1 The vehicles used in the ATLASCAR project. The first on the left (ATLASCAR1) was
used between 2010 and 2014 and vehicle on the right (ATLASCAR2) has been in use since 2015

main purpose of the project is to carry out studies and developments in perception
and navigation in the domain of autonomous driving and driver assistance systems.
Figure 7.1 shows the two cars used in the project since 2010 equipped with several
sensors, namely cameras and (LiDAR) sensors.

Locomotion and control issues are very important for autonomous and semi-
autonomous navigation, but perception has been the greatest concern of the authors
since the beginning of project. Moreover, in that line, sensorial multi-modality was a
strategic decision by integrating from the early beginning of the project monocular,
stereo and thermal cameras and 2Dand 3DLiDARs. Themerging and combination of
such awealth of data sources requires obviously the proper sensor calibration, which,
in this context, refers to the estimation of a geometric registration of all individual
sensor reference frames in the car.

From all the modal combinations possible, the first endeavour was the pair
3D LiDAR—2D LiDAR registration, because of its high novelty at the time since
3D LiDARs were still very rare and absolutely not off-the-shelf components. Indeed,
a 3D LiDAR sensor had been developed within the group since the year 2003 [26]
and later applied and improved in several contexts [12, 31, 32].

Although sensor calibration is traditionally a relevant problem that has been solved
in several ways in the literature for image cameras, it was not so common for LiDARs
at the early stages of the project. Moreover, most solutions require a high degree of
human intervention to assist the calibration process. That may not be an issue if
calibration is to be performed once, but on a mobile platform sensors are subject
to mechanical perturbations and calibration may be required to be performed more
often, and a swift process is welcome for the operators.

This concern was also a drive for this research line, and this paper describes
four main phases of this process throughout the years, both in the usage of specific
detection targets, up to computational and algorithmic approaches to perform the
calibration. In brief, and to be detailed further, the main topics are the following:

• Calibration based on point clouds from direct target detection;
• Calibration based on derived point clouds after the detection of a spherical target;
• Enhanced techniques for the detection of target in cameras using deep learning;
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• Holistic optimization for the registration of sensors.

As a critical component of intelligent or robotic systems, the topic of extrinsic
calibration has been frequently addressed in the literature over the past decades. The
large bulk of these works has been focused on a particular case of sensor to sensor
calibration problems, which is the case of systems containing a single pair of sensors,
i.e. pairwise calibrations. In this regard, the RGB toRGB camera calibration has been
the most covered case: [13, 24, 27, 35, 41, 49], but other combinations of modalities
exist, such as RGB to depth camera calibration [4, 7, 19, 22, 36, 52], RGB camera
to 2D LiDAR [9, 16, 17, 35, 37, 47, 52], 2D LiDAR to 3D LiDAR [2]; RGB camera
to 3D LiDAR [16, 23], RGB camera to radar [11], etc.

The problem of RGB to RGB camera has been thoroughly addressed by the
research community, in particular in stereo systems configurations [13, 24, 27, 41,
49]. Typically, these approaches function by carrying out an iterative procedurewhich
estimates the transformation between the cameras using the reprojection error as
guidance. The optimization proceduremay also include the estimation of the intrinsic
parameters as in [49]. These calibration methodologies have also been proposed to
address the problem of online calibration [27, 41] as well as markerless calibration
[24].

Calibration procedures often require the use of targets such as the well-known
chessboard pattern [37] widely used in several libraries for camera calibration. How-
ever other targets may also be used, in particular when involving the calibration
of depth information that can be significantly simplified with the use of predefined
geometries in the scene, such as spheres [22, 35, 39, 42], or cones [2, 25].

Finding a visible calibration pattern is also a challenge when calibrating thermal
cameras with other modalities. To address this, [48] proposes a custom-built checker-
board with square holes where calibration points in each frame are located with a
pattern-finding algorithm. A near-optimal subset of valid frames is selected using an
implementation of the enhanced Monte Carlo method followed by an optimization
algorithm is used to fit a distortionmodel (for intrinsic calibration) or a six-parameter
pose model (for extrinsic calibration) to the data.

More recent systems that use deep learning are even aiming for a targetless cal-
ibration, from which several examples already started appearing in the community
[3, 18, 46, 53].

The paper follows with four main sections, addressing the four topics presented
before, with a detailed description of the approach alongwith some results: Sects. 7.2,
7.3, 7.4 and 7.5. In the end, a comparative summary of the methods and techniques
is given and some perspectives for the future are drawn.

7.2 Calibration of 3D and 2D LiDARs with Conical Targets

In 2010, the first attempt to improve the multimodal calibration process used in the
ATLASCAR project was performed on an instrumented real automobile. The initial
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Fig. 7.2 ATLASCAR1 and the LiDAR sensors on-board (left). Conic calibration target (right)

vehicle was equipped with a 3D laser scanner based on a rotating 2D LiDAR [26]
and two 2D SICK LMS 151 LiDARs mounted on the front bumpers (Fig. 7.2 left).

A calibration object was used to assist the unambiguous determination of the
position and orientation of the 2D laser footprints regarding the 3D point cloud.
A conic geometry was selected given its ability to remove ambiguity in height.
The combination with a second cone provided enough information to determine the
orientation around the vertical axis. An intermediate plane was added to keep the
cones at a fixed known distancewhile providing a platform to add calibration patterns
if necessary. The final calibration object can be seen in the right part of Fig. 7.2 during
an acquisition. Two conic shapes connected by a planar surface complete the target
to be detected simultaneously by 3D and 2D LiDARs. The process of calibration
involves the steps described in the next sections.

7.2.1 Proposed Calibration Process

The next subsections describe the calibration procedure. First we describe how the
initial estimates are defined by the user, then we discuss the fitting of the 2D ellipses
into the observed data, and finally we present the methodology to estimate the geo-
metric transformation between the sensors.

7.2.1.1 Manual Input of Initial Estimates

The process of calibration is semi-automatic as it requires to specify manually the
position of the calibration object in the 3D point cloud. The user is required to select
a point near the center of the calibration object (Pc in Fig. 7.3) and an additional point
in the plane between the two cones (Pb in Fig. 7.3). Using this initial approximation,
a 3D point cloud of the virtual calibration object is registered using the Iterative
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Fig. 7.3 User initial estimate of the target in the 3D point cloud with the manual selection of 2
points (a point near the center of the calibration object PC and a second point on the plane PB )

Fig. 7.4 User initial estimate and ellipse fitting operations in 2D point cloud: 4 points (Point 1
to Point 4) are selected by the user consisting of the extremes of the ellipses captured in the two
conical surfaces of the pattern. The estimated ellipses are also presented

Closest Point providing an initial estimate of the position of the calibration object in
the dataset.

Given the position of the calibration object in the 3D data, it is necessary to
determine the location of the calibration object in the 2D LiDARs onwhich the cones
in the calibration object produce two ellipse sections. Once again, an initial estimate
is provided by the user who selects four points corresponding to the beginning and
the end of the two ellipses in each 2D data sets (Points 1–4 in Fig. 7.4).

7.2.1.2 Estimation of 2D Ellipses pose Relatively to the Calibration
Object

Based on the initial user selection, an ellipse fitting algorithm estimates the char-
acteristics of the ellipse that best fits the data (center, major and minor axis length,
and the angle of the major axis). Since a specific ellipse has only one way to fit
geometrically into a cone in terms of height and inclination, the only undetermined
variable left would be the rotation angle around the vertical axis of the cone that
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corresponds to the major axis between the ellipse and the plane of the calibration
object. Mathematical details on the computation of the 2D ellipse fitting algorithm
can be found in [2].

7.2.1.3 2D Laser Transform Calculation

From the analytical model of each ellipse, four 2D points (P1 to P4) are computed
for each ellipse at the intersections of the ellipse with the major and minor axes, as
shown in Figs. 7.4 and 7.5. The coordinates are computed according to Eqs. (7.1),
(7.2), (7.3) and (7.4), where Rx and Ry are the major and minor axis of the ellipse,
Cx and Cy are the coordinates of the ellipse center and α the ellipse rotation angle
in the 2D plane.
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Since the process is repeated for the two ellipses, 8 corresponding points are
obtained for each dataset making it possible to estimate the rigid body transformation
that best fits those 8 points from the 2D laser data into the 8 transformed points in the
3D laser data. This transformation corresponds to the 2D laser calibration matrix.

7.2.2 Results

A real scale prototype of the calibration object was built to perform real data acqui-
sition (see Fig. 7.2 right). To avoid the construction of several calibration objects,
we simulate various object locations by capturing several times the same scene with
the calibration object at different positions and merging the acquisitions into a single
point cloud with the required number of calibration objects. Tests were made using
three and four objects.

Results of the calibration using four calibration objects are shown in Fig. 7.6. In
green we present the initial calibration based on manual measurements and in purple
the result using the proposed calibration process. An improvement of the alignment
with the 3D laser data is obvious (see the details of the alignment with the calibration
object in the red spheres in Fig. 7.7). The main limitation of the proposed approach
is visible in the red sphere in Fig. 7.6: the resulting calibration (purple) although
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Fig. 7.5 Ellipse 3D fitting in the pattern cone

Fig. 7.6 Results of the proposed calibration method: overview of the scene

much better close to the calibration objects suffers from a rotation around the X axis
(direction forward of the 3D LiDAR) noticeable in points far from the calibration
objects. This issue is mainly due to the limited resolution of the 2D LiDARs that
provides insufficient data for a precise determination of the ellipse attributes (in some
cases the fitting was computed with only 8 points per ellipse). Errors in the ellipse
parameters results in errors in the fitting on the cone (in particular height position
and rotation) and thus significant rotation errors in the calibration process.
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Fig. 7.7 Details of the scene (left) and of the calibration objects (right)

7.3 Spherical Target to Calibrate LiDARs and Cameras

The calibration of sensors with different principles and data representations requires
a target detectable by all sensors so the registration can be made on each data capture
independently of the point of view or placement of the sensor with respect to that
target. So, this requires the definition of a target with those properties and, if possible,
easy to replicate and manage, and prone for automatic or advanced semi-automatic
calibration techniques.

7.3.1 Principles of the Calibration Approach

The target geometry that best fits the mentioned requirements is a sphere. The pro-
jection of a sphere in a plane on a pinhole camera model will always be a circle or an
ellipse, and any cross section of the sphere with a plane will also always be a circle,
as occurs in the planar LiDAR range measurements.

Detecting a spherewith known dimensions allows to obtain its center in a 3D coor-
dinate frame. If multiple positions of a moving sphere are captured synchronously by
multiple sensors, their corresponding centers will define a set of points following the
motion of the sphere. Each sensor will then have gathered a set of points from its own
point of view. If those sets of points are matched by some mathematical procedure,
it is possible to obtain the relative positions of these sensors among them.

The sensors involved in the ATLASCAR are mainly cameras that provide images,
and LiDARs that provide point clouds obtained after range data.

Detection of a sphere in visual data can be more or less challenging depending
on the illumination conditions. A colored target can help the detection procedure.
Also, the circular (or nearly circular) shape can be detected by circle-oriented Hough
transforms in edge images obtained, for example, by Canny edge detectors.
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Fig. 7.8 Ball detected in the image using classical computer vision techniques

Detection of the sphere in point clouds has two main fronts: single plane LiDAR
scan (2D laser range finder) or multiplane LiDAR scan (3D laser range finder).

Next sections explain these approaches in more detail.

7.3.1.1 Detecting a Sphere in an Image

The projection of a sphere in an image is either a circle or an ellipse. If the optical
axis intersects the sphere center, we have a perfect circle, but away from that, ellipses
appear in the projected image. Their shape or eccentricity is affected by the focal
distance of the camera and, in many cases, it is hardly noticeable at naked eye when
the sphere center remains close enough to the optical axis of the camera. Anyway,
the center point of the ellipse (projection of sphere) corresponds to the center of the
actual sphere.

Detecting the sphere in the image is then reduced to the detection of a circular or,
in the limit, elliptical shape in the image. In both cases, the center corresponds to the
projection of the actual ball center.

As described in [35], several techniques were used to detect the ball with a mix
of color segmentation, edge detection and Hough Transform for circles (albeit with
poorer results) and also with an approach based on the Ramer-Douglas–Peucker
algorithm [14, 38], that is available in the OpenCV library as the approxPolyDP
function. Results were reasonable and provided a good estimation of the ball (Fig.
7.8), but the dependency on illumination conditions led later to a more robust tech-
nique as described ahead in Sect. 7.4, which is also applicable to other types of
images.

7.3.1.2 Detecting a Sphere in a Point Cloud

LiDAR sensors generate two possibilities of point clouds: 2D and 3D. In 2D point
clouds, the sphere will appear as the cross section made by a plane, and we have
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points of a circular arc. In 3D, the point cloud is richer, and we have points from a
spherical cap.

Detecting the circular arcs or the spherical caps can be done with appropriate
algorithms. For the spherical cap the best solution was based on RANSAC [15]
techniques to fit the points to a spherical model by using functions available in Point
Cloud Library (PCL).

To detect arcs, the number of points is too small (sometimes less than 10 points) to
use RANSAC techniques. So, for arcs in 2D point clouds, first a cluster segmentation
based on Nearest Neighbour (NN) techniques is used to isolate segments; then these
segments are tested to check whether they define an arc or not. The work of Pereira
et al. [35], inspired on the earlier works of Xavier et al. [51], explains in detail
the technique with the mathematics formulation, using the Internal Angle Variance
(IAV), that was successfully applied with quite acceptable results in detecting the
center and radius of the circle, even with a limited number of points.

7.3.2 Geometric Transformations from Sets of Ball Centers

The center of the ball is discovered on the data from the several sensors (visual
cameras and 2D and 3D range sensors) for a set of different positions. This generates
as many sets of points as the sensors in the setup. Each set of points (ball centers)
can be seen as a “temporal point cloud” (TPC) and then a pairwise match of these
temporal point clouds is made to extract the mutual geometric transformations. The
mathematical procedure can use Iterative Closest Point (ICP) [5, 8] or, if the points
of the cloud are named and clouds are of the same size (which is mostly the case in
this problem), SVD techniques are suited and effective. The technique is explained
ahead in Sect. 7.4.3 along with the main equations used.

Figure 7.9 shows the temporal point clouds from four sensors in ATLASCAR1
[45]. The points in each temporal point cloud represent the successive positions of
the ball (its center) during a motion operated by a user that tried to collect data
sufficiently representative for the expectation of good geometric transformations
between the reference sensor and all the remainders. The point clouds shown in
Fig. 7.9 are represented from the respective sensor point of view. As we know that all
point clouds originated at the same points (the ball centers), this allows the calculation
of the mutual geometric transformations, hence the extrinsic calibration of all the
sensors.

7.3.3 Results

The technique of using a sphere as target was successful because it is relatively easy
and practical to use. The more ball positions, the more accurate can the calibration
be. One traditional issue in assessing the quantitative results of calibration techniques
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Fig. 7.9 Example of temporal point clouds from 4 different sensors in ATLASCAR1. Although
not apparent in the illustration, the temporal point clouds PA, PB , PC , PD are actually sets of points
in 3D and not points laying necessarily in a plane

in experimental setups is the absence of a Ground Truth. Therefore, studies are made
by varying some parameters as well as performing reprojection of points with the
calibrated frames and assess some error or variation in the expected results.

In this approach, those issues also occur. So, two types of results were used to
assess the performance of the entire workflow with a real setup: consistency of ball
detection and consistency of the calculated geometric transformations.

7.3.3.1 Consistency of Ball Detection

In this test, the ball was placed steady at different distances from the range sensors
and, for each position, a few hundred samples of coordinates of the ball center were
acquired from which a mean and a standard deviation were calculated. A standard
deviation of less than 20 mm was observed for 2D Sick LMS151 sensors up to 6
meters, and also for a 3D SwissRanger sensor up to 3 meters, as shown in Fig. 7.10.

7.3.3.2 Consistency of the Geometric Transformation

A second experiment was made to test the consistency of the geometric transforma-
tion obtained, which is the actual purpose of the calibration process. Keeping the
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Fig. 7.10 Standard deviation of the detection of the ball center for several ranges for one 2DLiDAR
and for a 3D range finder (SwissRanger)

Fig. 7.11 Standard deviation of the translation between the three sensor pairs for 20 experiments
of the calibration process

Fig. 7.12 Standard deviation of the Euler angles between two pairs of the sensors used

sensors in the same place, 20 experiments of calibration were executed. Figure 7.11
shows the standard deviation of the translation absolute errors when comparing three
range sensors. Different sizes of temporal point clouds (number of ball positions)
were used. As expected, the error decreases for larger numbers of ball positions.
Also, the results with the 3D sensor (SwissRange) are less accurate than with the
other LIDAR sensors.

The Euler angles variation was also tested and the effect of the number of points
is even more pertinent. A minimum of 15 or 20 points ensures a smaller error in the
Euler angles as can be seen in Fig. 7.12.
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7.4 Deep Learning to Detect a Sphere in Multimodal
Images

One limitation found in the detection of the ball occurs in visual images where
the illumination conditions can seriously influence the quality and precision of the
detection. Despite some techniques based on colour and shape, and some other based
on ground subtraction, the results of ball segmentation in images were far from
perfect because of the dependence with environment illumination. A solution had to
be devised to make the calibration process more straightforward for visual images.
The calibration philosophy is the same as earlier, but the detection methodology is
completely new and takes advantage of a learning based approach to detect the ball
in images.

The approach begins with the intrinsic calibration of each sensor using the ROS
camera calibration tools. After retrieving the sensor data for the chosen system, the
RGB information is converted tomonochromatic images, and the depthmap is used as
an input for depth cameras. The pre-trained RCNN network with the Open Images
Dataset [20, 21] operates on each captured image and detects the ball’s position.
Images with partial or no detection are not considered for calibration.

The coordinates of the ball in the image in pixels,(xpix , ypix ), are obtained by
applying the equations of the pinhole model. The distance from the ball centre to the
camera, Zc, is also retrieved from the pinhole model equations, and consequently,
we can calculate the remainder Xc and Yc coordinates in meters. At this point, the
correction of the ball apparent diameter is necessary to compensate for the illusion
that the camera is seeing the entire ball when it only sees a fraction of it. Finally, a
SVD algorithm calculates the transformations between coordinate frame systems.

Figure 7.13 shows a diagram of the main steps of the methodology developed
for the extrinsic calibration with a spherical target detected with a neural network
trained using deep learning.

7.4.1 Detection of the Calibration Target using the Same
Neural Network

To train the neural network, we converted the class “Ball” images of the Open Images
Dataset [20, 21] to monochromatic encoding. This presents a significant advantage
because it allows using the same trained network to access images from different
modalities with the same accuracy. In addition, color images can be easily converted
tomonochrome,making themethodology independent of colors. It also helps to lower
the effects of illumination factors. This has been tested in RGB, monochromatic,
depth and IR modalities.

This was tested using Detectron2 framework [50] with a Faster R-CNN archi-
tecture [40]. The selected network is a R50-C4 1x with a training time of 0.551
s/iteration, an inference time of 0.102 s/image and a training memory of 4.8GB. The
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networkwas configured to trainwith the grayscale converted “Ball” class, using 7000
iterations with a learning rate of 0.00025 and a batch size of 512 per image. A total
of 6845 images were used to train. Figure 7.14 shows an example of the spherical
target being detected with the trained network in the visual and depth images.

7.4.2 Conversion of the Coordinates of the Center of the Ball
to Meters

This method is developed under the assumption that the centre of the bounding box is
coincidentwith the centre of the ball. If the bounding box is not approximately square,
that frame is discarded because either it corresponds to a bad or partial detection of
the ball.

Fig. 7.13 Main steps of the methodology to detect a ball in multimodal image sources: visual (top)
and thermal (bottom) images are shown

Fig. 7.14 Example of the spherical target being detected in the visual (right) and depth (left) images
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Equation (7.5) represents the well-known pinhole model equation that relates
the pixel coordinates in an image and the corresponding coordinates in the world
coordinate system in meters. In this particular case, (xpix , ypix ) represents the centre
of the ball in the image in pixels, and the point (Xc,Yc, Zc) represents the centre of
the ball in meters. fx and fy are the camera’s focal lengths in both directions, and
(Cx ,Cy) is the camera principal point, both obtained in the initial intrinsic calibration.

Zc

⎡
⎣xpix
ypix
1

⎤
⎦ =

⎡
⎣ fx 0 Cx

0 fy Cy

0 0 1

⎤
⎦

⎡
⎣Xc

Yc
Zc

⎤
⎦ (7.5)

By applying Eq. (7.5) to two diagonal points in opposite sides of a bounding box and
knowing that Zc is the same for both points, Eqs. (7.6) can be applied:

Zc

⎡
⎣xpixi
ypixi
1

⎤
⎦ =

⎡
⎣ fx 0 Cx

0 fy Cy

0 0 1

⎤
⎦

⎡
⎣Xci
Yci
Zc

⎤
⎦ =

⎧⎪⎨
⎪⎩
Zcxpixi = fx Xci + Cx Zc

Zc ypixi = fyYci + Cy Zc

Zc = Zc

(7.6)

Subtracting the equations for both points results in Eq. (7.7). xpix2 − xpix1 corre-
sponds to the bounding box width (W) and ypix2 − ypix1 to the bounding box height
(H). In a similar way, Xc2 − Xc1 and Yc2 − Yc1 are the bounding box rectangle’s width
and height in the camera’s frame, which is equal to the ball diameter, �real .

{
Zc(xpix2 − xpix1) = fx (Xc2 − Xc1)

Zc(ypix2 − ypix1) = fx (Yc2 − Yc1)
⇔

{
ZcW = fx�real

ZcH = fy�real
(7.7)

By replacing the known Eq. (7.8) in Eq. (7.7), Eq. (7.9) is obtained. By replacing
the second equation from Eq. (7.7) in Eq. (7.9), the final expression presented in
equation (7.10) is obtained.

rpix = �pix

2
= W + H

4
⇔ W = 2�pix − H (7.8)

Zc(2φpix − H) = fx�real (7.9)

Zc = fx + fy
2

�real

�pix
(7.10)

The diameter of the ball in pixels, �pix , is obtained by calculating the mean of
the height and width of the bounding box of the detected ball (assuming that the
bounding box is approximately square). Once the value of Zc is known, it can be
replaced in Eq. (7.5) and get the remainder coordinates.



138 V. Santos et al.

Fig. 7.15 Apparent
diameter h of a ball with
radius R at distance d

7.4.2.1 Apparent Diameter Correction

The apparent diameter of a spherical object is the diameter measured by an observer
at a specific distance from the object. As illustrated in Fig 7.15, the fraction of
diameter seen by the camera depends on its distance to the object and the object’s
radius. Equation (7.11) describes the relation between these two variables and the
fraction.

F = h

�real
= h

2R
(7.11)

To correct this phenomenon, Zc has to be recalculated using Eq. (7.12), which
compensates the fraction of the diameter that can be seen by the camera, correcting
it by the actual diameter of the spherical target.

Zcorr = ZC + � = fx + fy
2

�real

�pix
+ R

√
1 − F2 (7.12)

7.4.3 Transformation Matrix Calculation

The sets of points are sorted with a one-to-one correspondence and relocated around
the origin by subtracting their respective centroids from them (7.13). A Singular
Value Decomposition (SVD) (7.15) method is applied to the 3 × 3 covariance matrix
(7.14) of the coordinates of points.

{
Ac = A − centroidA

Bc = B − centroidB
(7.13)

H = Aᵀ
c · Bc (7.14)

[
U, S, V ᵀ] = SVD(H) (7.15)



7 Multimodal Sensor Calibration Approaches in the ATLASCAR Project 139

Table 7.1 Pair-wise percentage error for calibration of 3 sensors

Source Destination

RGB1 (%) RGB2 (%) Depth2 (%)

RGB1 – 1.07 2.06

RGB2 1.24 – 1.98

Depth2 2.38 1.97 –

ft/ft

The rotation matrix, R, and the translation vector, t , between the point clouds are
consequently calculated using the expressions in (7.16).

{
R = V ᵀ ·Uᵀ

t = centroidB
ᵀ − R · centroidA

ᵀ (7.16)

7.4.4 Results

We performed some tests with three sensors to prove this methodology: two RGB
cameras and one depth sensor. Table 7.1 shows the percentage error for that exper-
iment. As can be concluded, the experiment presented low errors (less than 2%
between two RGB cameras and less that 3% between depth and RGB).

7.5 Optimization Approach for Calibration

In order to calibrate the RGB cameras and the 3D LiDAR sensors, we propose an
optimization based approach. The geometric transformations that encode the poses
of the sensors, w.r.t. each other or w.r.t. a global coordinate system, are iteratively
estimated in order to minimize the error produced by an objective function.

7.5.1 The Methodology

Classical approaches define the objective function f (·) in such a way that, for each
data point associated detected in both sensors, an error e is computed, using as input
a tandem of sensors si and s j :

e = f
(
T[si→s j ], x[si ], x[s j ], {λ[si ]}, {λ[s j ]}

)
, (7.17)
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whereT[si→s j ] is the geometric transformation from the coordinate frame of sensor si
to the coordinate frame of sensor s j , x[s] are the coordinates of the detection as viewed
in the data of sensor s, which may be 2D pixel coordinates or 3D point coordinates
depending on the sensor’smodality. Finally, {λ[s]} are the set of additional parameters
that are required by the objective function to compute the error. There are several
problems with these approaches. First, they require that the key point detected in
both sensors in order to operate, i.e. x[si ], x[s j ] must exist. Secondly, the design of the
function is dependent on the combination of modalities of the sensor tandem. For
example, of both si and s j are RGB cameras, f (·) would be defined very differently
when compared to a case where si is an RGB camera and s j is a 3DLiDAR. The fact
that the objective function depends on the pairwise combination of sensor modalities
makes this approach difficult to scale to multiple modalities. Thirdly, the design of
objective function based on sensor tandems is a cumbersome procedure.

Because of the shortcomings stated above, we propose to design the objective
function in such a way that it considers only a single sensor and not a pair of sensors.
Additionally, the pose of the calibration pattern is given to the objective function and
the residual is computed from the association of the key point as viewed in the sensor
(the detection) and as defined in the pattern (which we know because the pattern has
know dimensions). The sensor to pattern paradigm based objective function can be
defined as the sum of independent contributions for all sensors in the sensors set S:

e =
∑
s∈S

f
(
T[s→p], x[s], {λ[s]}, {λ[p]}

)
, (7.18)

where T[s→p] is the geometric transformation from the coordinate frame of sensor
s to the coordinate frame of the pattern p, and {λ[p]} are the parameters of the
pattern from which it is possible to compute the properties of the key point. This
includes the number of corners in the pattern, the 3D position of those corners w.r.t.
the coordinate frame of the pattern, and the physical dimensions of the pattern, to
be used by LiDAR data. The design of the objective function f (·) will depend on
the modality of a single sensor, instead of depending on the pairwise combination
of sensor modalities. This considerably facilitates the designing of the objective
function as well as its scalability. To denote that the modality of the sensor must be
taken into account, we propose to extend (7.18) to:

e =
∑
s∈S

f
(
T[s→p], x[s], {λ[s]}, {λ[p]},m(s)

)
, (7.19)

where m(·) is a function that retrieves the modality of a sensor. Having established
the basic structure of the objective function, which is defined in (7.19) for a single
key point association between the detection in the sensor data and know key point
the pattern, it is now possible to extend the formulation to accommodate several key
points for each image or point cloud:
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e =
∑
s∈S

∑
d∈D[s]

f
(
T[s→p], x[s,d], {λ[s]}, {λ[p]},m(s)

)
, (7.20)

where D[s] denotes the set detections produced by sensor s. Also, in order to be
accurate, the approach must consider several images and point clouds for each RGB
or 3D LiDAR sensor, respectively. We define a collection c as an instant in time
where the system acquired data from all sensors in the system, in order to write the
contribution of all collections c, in the set of collections C:

e =
∑
c∈C

∑
s∈S

∑
d∈D[c,s]

f
(
T[c,s→p], x[c,s,d], {λ[s]}, {λ[p]},m(s)

)
, (7.21)

where the detections D[c,s] now depend not only on the sensor s, but also on the
collection c. The transformation from the sensor to the pattern coordinate frames can
be represented in a more advantageous form. Since that:

T[c,s→p] = T[s→w] · T[c,w→p] (7.22)

whereT[s→w] denotes the transformation from the sensor coordinate frame to a com-
mon global reference frame, which we callworld, andT[c,w→p] is the transformation
from the world to the pattern coordinate frame. Note that the transformation that
encodes the pose of the pattern, T[c,w→p] is dependent on the collection, because
the pattern is repositioned before each collection, i.e., it is important that the several
images and point clouds have variability, which is achieved by moving the pattern to
different positions for each collection. Conversely, the transformation that encodes
the pose of the sensor, T[s→w], does not depend on the collection. This is mandatory,
since the sensor is rigidly attached to the vehicle’s chassis.

The optimization framework makes use of the errors produced by the objective
function expressed in (7.21). In order to estimate the poses of the several sensors, as
well as the several poses of the calibration pattern for each collection, the procedure
minimizes the error computed by the objective function. This can be written as:

argmin
{T[s→w]},{T[c,w→p]}

∑
c∈C

∑
s∈S

∑
d∈D[c,s]

f
(
T[s→w],T[c,w→p], x[c,s,d], {λ[s]}, {λ[p]},m(s)

)
, (7.23)

where {T[s→w]} denotes the set of transformations from each sensor to the world
frame, and {T[c,w→p]} is the set of poses of the pattern for each collection c.

This is the expression that represents the calibration procedure, formulated as an
optimization problem. We use a least squares methodology, that tries to minimize
the squared residuals (i.e. the predicted error) of the objective function in (7.23) with
respect to its parameters. The optimization is solved with the trust region reflective
algorithm [6, 10], which is a suitable method for large bounded sparse problems.
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For the RGB sensor modality, i.e., when m(s) is an rgb camera modality, we
propose to use the reprojection error, computed by projecting the known corners of
the calibration pattern x to the rgb camera image, and evaluating the distance between
these projected coordinates with the corresponding detections in image x:

fm(s)=rgb = ∥∥x[c,s,d] − K[s] · T[s→w] · T[c,w→p] · x[p,d]
∥∥ , (7.24)

where x[p,d] are the 3D coordinates defined in the pattern coordinate frame of the
key point which corresponds to detection d, which are retrieved from the additional
parameters of the pattern {λ[p]}, K[s] is the intrinsic matrix of the rgb camera sensor
s, extracted from the additional parameters of the sensor {λ[s]}, and x[c,s,d] denotes
the pixel coordinates of the corner of detection d, in the image of collection c and
for the rgb camera sensor s, and finally ‖·‖ denotes the norm.

The inclusion of additional modalities would require the definition of other cost
functions, but their integration in the proposed framework is straightforward. Besides
the RGB camera modality, we have already conducted successful experiments with
3D-LiDARS, which are not presented here because the AtlasCar2 does not have
this types of sensors. Currently we are working on the inclusion of both depth and
2D-LiDAR modalities.

7.5.2 Results

In this section, results are presented that show that the proposed method is able to
calibrate the three RGB cameras onboard the AtlasCar2 (Fig. 7.16).

The experiments were carried out using a training dataset containing 39 sets
of images. For testing, we use a different dataset containing 21 sets of images.
Each set contains one image from each camera, and the goal of the calibration is to
estimate geometric transformations between the cameras. We compare our approach
with Open Source Computer Vision Library (OpenCV) stereo camera calibration
algorithm. However, since that method cannot tackle more than two camera at once,
we carried out the calibration of the three pairwise combinations of cameras.

Notice that we used our approach to calibrate the complete system (all three
cameras in a single optimization). Then, results are provided in pairs of sensors so
that we may compare against other methods and use well established evaluation
metrics.

Three evaluation metrics are used in the evaluation: the mean rotation error (εR ,
in radians), the mean translation error (εt , in meters) and the reprojection error (εrms ,
in pixels). See [33] for further details. Results in Table 7.2 demonstrate that our
approach achieves similar accuracies when compared to OpenCV’s method, despite
the fact that it is calibrating the complete system (all the sensors simultaneously).
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Fig. 7.16 Visualizing the data produced by the AtlasCar2 vehicle. Green and Red dots are the point
clouds produced by the left and right 2D-LiDARs, respectivelly. On the right, the images produced
by the three onboard cameras are displayed

Table 7.2 Performance comparison of methods. Best values highlighted in bold

Method Sensor pair εR (rad) εt (m) εrms (pix)

OpenCV left camera to 0.018 0.013 1.157

Our approach right camera 0.027 0.032 1.198

OpenCV right camera to 0.244 0.081 3.336

Our approach center camera 0.096 0.074 2.375

OpenCV center camera to 0.078 0.490 3.000

Our approach left camera 0.090 0.045 3.283

ft/ft

7.6 Comparative Analysis of the Techniques

The techniques and approaches described in the paper do not have exactly the same
scope and framework, but are rather complementary and not necessarily mutually
exclusive. Therefore, it is not possible to conduct a fair comparison between these
approaches. The shared functionalities include: the usage of specific calibration tar-
gets (cones, spheres or checkerboards or charuco boards); the techniques to detect the
targets in data (geometricmatching of points, classic computer vision, learning-based
detection of a target’s area); or the algorithmic technique to perform the calibration
(matching point sets with SVD, minimization of error function by iterative compu-
tation using optimization techniques).

For a clearer overview of the differences and similarities among the techniques,
Table 7.3 summarises their relevant properties and distinguishable features.
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Table 7.3 Main distinguishing properties of the approaches/techniques described in the paper

Prop./Techn. Conic target Spherical target Deep learning Optimization
based

Application
domain

Calibration of
LiDAR 2D and
3D

Calibration
LiDAR 2D, 3D,
visual, thermal
and depth

Detector of
spheres in visual,
thermal and
depth∗ images

Universal
optimization of
geometric
transformations

Data to process Point clouds of
measurements

Sets of points
which are the
centers of
multiple ball
positions

Gray level images
with balls on
them

Annotated
information of
specific targets in
captured images
or segmented
from point clouds

Outputs Geometric
transformation
between a pair of
sensors

Geometric
transformations
between pairs of
sensors

Set of points of
ball centers in the
images

Optimal
geometric
transformations
for a group of
coordinate frames

Algorithmic basis Iterative Closest
Point and ellipse
fitting

Matching of 3D
points sets by
Least Square Fit
(SVD)

R-CNN detection
after a specific
training set

Definition of
error functions
and their
minimization by
optimization

Level of human
intervention

Indicate 2 points
in the 3D point
cloud and 4
points in the 2D
point cloud

Move the ball
around to create
sets of centers

Virtually none.
Relies on
acquired images

Move the chess
board around to
create collections.
Give first guesses
or auxiliary
points

Year and
reference of
publication

2012 [2] 2015, 2016
[34, 35]

2020 [39] ∗ 2019–2021 [1,
28, 29, 33]

ft* Calibration with depth images is in a pending publication for 2022/ft

An analysis of Table 7.3 shows that we have worked on a large range of cali-
bration problems. Overall, the RGB, 2D-LiDAR, 3D-LiDAR, Depth and Thermal
sensor modalities have been addressed, which is a considerable portion of the sen-
sor modalities typically used in autonomous vehicles. Concerning the methods used
for carrying out the estimation of the transformation between sensors, we have also
explored several possibilities, from closed form solutions such as SVD or to iterative
ones such as ICP. Most of the approaches require human intervention to produce or
review annotations in the data, but we have also worked on completely automatic
calibration methodologies. Finally, the table also highlights that the authors have
been actively working on the extrinsic calibration of multimodality sensors onboard
autonomous vehicles since 2012.
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7.7 Conclusion and Future Perspectives

This paper describes several techniques used in the ATLASCAR project for the cali-
bration ofmultimodal sensors present on the car.Although the techniques appeared in
sequence in the history of the project, none of them is expected to completely replace
the others, but rather offer the possibility to complement each other with their own
advantages and applications. For example, the optimization technique described in
Sect. 7.5 faces some challenges when performing the detection and labeling of target
patterns present in data (visual, point clouds, depth images) but offers an excellent
context for calibration by optimization of a virtually unlimited set of sensors. Alterna-
tive targets, such as spheres, possibly detected by other approaches such as semantic
classifiers may provide a very advantageous combination for future developments.

Besides these potential developments on the integration of several techniques,
these approachesmay also continue to evolve individually. Examples are generalizing
the Deep Learning based classification to LiDAR data, which is now trending in the
state of the art, allowing alternative ways of faster detection of the calibration targets
in the raw data for further calibration procedures.

Apart from all the integrated and individual developments, it is alsoworthmention
thatmultimodal calibration is not a problem exclusive to autonomous vehicles. There
are several other scenarios where the calibration of intelligent systems with multiple
sensors of various modalities is also of paramount importance. One such examples
is the collaborative industrial manufacturing cells that are expected to monitor the
workspace with high detail and robustness, which will also require large sets of
sensors and modalities.
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Chapter 8
Early Computer-Aided Diagnose
in Medical Environments: A Deep
Learning Based Lightweight Solution

Miguel Nehmad Alche, Daniel Acevedo, and Marta Mejail

Abstract The use of artificial intelligence in healthcare systems has helped doc-
tors to automate many tasks and has avoided unnecessary patient hospitalizations.
Mobile devices have grown in computing capacity and enhanced image acquisition
capabilities, which enable the implementation of more powerful outpatient services.
In this chapter we propose a lightweight solution to the diagnose of skin lesions.
Specifically, we focus on the melanoma classification whose early diagnosis is cru-
cial to increase the chances of its cure. Computer vision algorithms can be used to
analyze dermoscopic images of skin lesions and decide if these correspond to benign
or malignant tumors.We propose a deep learning solution bymeans of the adaptation
of the attention residual learning designed for ResNets to the EfficientNet networks
which are suitable for mobile devices. A comparison is made of this mechanism
with other attention mechanisms that these networks already have incorporated. We
maintain the efficiency of these networks since only one extra parameter per stage
needs to be trained. We also test several pre-processing methods that perform color
corrections of skin images and sharpens its details improving the final performance.
The proposed methodology can be extended to the early detection and recognition
of other forms of skin lesions.
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8.1 Introduction

In order to promote healthcare systematization, researchers and practitioners are
challenged to find efficient technological solutions to meet the needs of citizens. In
particular, remote care technology might promote healthcare personalization and the
self-management of patients with specific chronic conditions. The recent COVID-19
pandemic has accelerated advances in telemedicine and particularly teledermatology,
which has allowed dermatologists to provide dermatological care remotely [14]. For
this, faster solutions are desirable for the early diagnosis of skin diseases in the
transition to health systems in smart cities.

Melanoma is one of the forms of skin cancer with the highest mortality rates and
have been increasing for the past decades, as can be seen in countries such as UK,
where the rate of melanoma has increased 119% since the 1990s, or USA (from
27,600 cases in 1990 to 91,270 in 2018) [34]. That is why it is vitally important that
proper treatment is carried out as soon as possible. Fortunately, dermatologist are
able to utilize non-invasive techniques to obtain color images of skin lesions. These
images can either be macroscopic or dermoscopic depending on the acquisition
setup. Macroscopic images are acquired using standard cameras or mobile phones,
while dermoscopy images are obtained with specific magnification devices and an
oil interface (immersion contact dermoscopy) or using cross-polarizing light filters
(non-contact dermoscopy) [16]. Nowadays, most research use of dermoscopy images
since large datasets are available and provide for a better visualization of color and
pattern properties that improve diagnostic accuracy.

Some computer vision techniques have emerged in order to detect this type of
skin lesions in an early stage. The purpose of these algorithms is to be able to bring
as many people as possible a reliable way to carry out periodic checks: either by
distributing them in mobile applications for end users, as well as the creation of
specific tools for health professionals specialized in skin treatment.

The development of computer-aided diagnosis (CAD) systems that can be used by
dermatologists generally follow a pipeline. Each stage of this pipeline encompasses
research topics of great importance: image pre-proccesing, lesion segmentation, fea-
ture extraction, feature selection (optional), and classification. These stages may be
merged with each other and some systems may not have all of them present.

Image pre-processing is a required step for images that come from different
sources, acquired under irregular conditions, and need for certain enhancement. Con-
trast enhancement, for example, is a popular technique to improve the performance
of lesion segmentation methods, increasing the contrast between the lesion border
and its surroundings [31]. Another task associated with pre-processing is artifact
removal. They may be present in different forms and are related to image acquisition
(air bubbles, ruler and ink markings, etc.) or cutaneous properties (skin lines, blood
vessels and hair). One of the most frequently addressed problems is hair removal by
means of the Dullrazor method [22], which is based on morphological operations,
bilinear interpolation and adaptive median filtering (see [1] for a comparative study).
The variety of types of digital cameras and illumination conditions introduces signif-
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icant variability in the color properties of the images. For that, color normalization
and calibration are another important operation that must be performed during image
pre-processing so as to make diagnoses more reliable. Quintana et al. [26] addresses
this problem taking into account the spectral distribution of the dermoscope lighting
system, while Iyatomi et al. [21] develop color calibration filters based on the HSV
color system. Color constancy algorithms are investigated by Barata et al. [7] for
color normalization.

Although this work does not include image segmentation formelanoma diagnosis,
lesion segmentation has an important role in the process of automating skin lesion
diagnosis and analysis. As in any image segmentation process, a region of interest
is obtained by separating diseased area from the healthy region. These techniques
include handcrafted features such as threshold-based [13], edge and region-based
methods [44] and themost widely usedmethods based on deep learning architectures
such as U-Net [39], Fully Convolutional [9], Deep Fully Convolutional Residual
Network [41] and Convolutional De-Convolutional Neural Networks [42]. For a
thorough review of recent segmentation methodologies see [36].

Early approaches for the diagnosis of dermoscopy images were mostly based
on scoring rules which rely on dermoscopic criteria. Some of these methods aim
at recognizing only criteria that is associated with melanoma such as the 7-point
checklist [6] and theMenziesmethod [23].Othermethods focus on a broader analysis
of the lesion taking into account the degree of asymmetry, border sharpness, lesion
architecture and color distribution (ABCD [24, 33] and CASH [19] rules). All this
knowledge that comes from themethodologies designed by dermatologists, led to the
formulation of hand-crafted features. For instance, the ABCD rule of dermoscopy
assigns the highest weight to the asymmetry criterion, making it a relevant cue for
melanoma diagnosis. Experts consider that asymmetry of lesions should be evaluated
with respect to its shapes, colors and patterns. Several papers have designed features
based on this criteria [10, 25, 28]. TheD in theABCDrule stands for the identification
of dermoscopic structures that exhibit specific visual patterns (e.g., pigment network
is a network like structurewith dark lines over a lighter background, and dots/globules
are round or oval structures of dark coloration and variable size). This has motivated
the design of descriptors that characterize the texture of a lesion with techniques
based Wavelet and Fourier transforms [29] among others. A complete analysis of
feature extraction can be found on the survey by Barata et al. [8].

The last stage of a CAD system deals with its outcome: a diagnose. Most of the
CADsystems focus on the distinction betweenmelanoma andbenign or atypical nevi,
due to high degree of malignancy associated with the former type of cancer. Sev-
eral classifiers have been used for the diagnosis task: instance-based, decision trees,
Bayesian classifiers, artificial neural networks (ANNs), support vector machines
(SVMs), and ensemble methods.

The increase in computing resources has lead to the rapid development of deep
learning models. Most of the image-based problems are solved with convolutional
networks, and achieve state-of-the-arts performances in processing and classifying
images. Also, it has benefited from international competitions [11] which make der-
moscopic imagedatasetswith associated classification labels available to researchers.
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In the following we enumerate several works based on CNN architectures aim-
ing at classifying skin lesion images. GoogleNet and AlexNet architectures were
employed for classification of skin lesions by Alqudah et al. [5]. ISIC dataset was
used to classify images into three classes of benign,melanoma, and seborrheic kerato-
sis and classification was carried out on both segmented and non-segmented images.
Ratul and Mozaffari [27] developed an automated CAD system for early diagnosis
of malignant skin lesions by means of dilated convolution with four different archi-
tectures such as VGG16, VGG19, MobileNet, and InceptionV3. Gessert et al. [15]
also performed skin lesion classification with an ensemble of deep learning models
including EfficientNets, SENet, and ResNeXt WSL by utilizing a search strategy.

A deep learning framework that integrates deep features information to generate
most discriminant feature vector was developed by Akram et al. [3]; they employed
Entropy-Controlled Neighborhood Component Analysis (ECNCA) for discriminant
feature selection and dimensionality reduction, and selected layers of deep archi-
tectures (DenseNet 201, Inception-ResNet-v2, and Inception-V3) were employed
as classifiers in the system. El-Khatib et al. [12] also developed a system that is
able to diagnose skin lesions using deep learning-based methods, aiming to dif-
ferentiate melanoma from benign nevus based on both deep neural networks and
feature-based methods. They employed architectures such as GoogleNet, ResNet-
101, andNasNet-Large already pretrained on large ImageNet and Places365 datasets.
Almaraz-Damian et al. [4] utilized a fusion ofABCD rule into deep learning architec-
ture for efficient preprocessing, feature extraction, feature fusion, and classification
for detection of melanoma skin cancer. The ABCD rule was employed for hand-
crafted feature extraction and deep learning features were extracted by the CNN
architecture. The proposed framework was evaluated on ISIC 2018 and the perfor-
mance was compared with other techniques such as Linear Regression (LR), SVMs,
and Relevant Vector Machines (RVMs). For further references of state-of-the-art
deep learning techniques see the survey by Adegun and Viriri [2].

Regarding image classification algorithms, after the success of ResNet networks
[18], several improvements and variations have been tested. Among them, the Effi-
cientNet [38] points to a good trade-off between precision and computational cost.

The attention mechanism has been applied so as to strengthen the discriminative
ability of a convolutional network. Zhang et al. [43] proposed the addition of a small
number of parameters to the ResNet that allows a simple but powerful attention
mechanism with low computational cost. Another form of attention in the channel
dimension has also been introduced by Hu et al. [20] to improve performance of
convolutional networks.

Techniques that combine several models (ensemble models) were studied by Xie
et al. [40], however this type of models usually require high computational costs that
are to be avoided if a lightweight implementation is desired such as mobile apps.

In this paper we improve state of the art results on melanoma image classifica-
tion. Inspired by the work of Zhang et al. [43], where an attention residual learning
mechanism is added to the Resnet, we incorporate a similar mechanism into the
EfficientNet. In line with the economy of resources posed by the EfficientNet, this
mechanism uses very few parameters. Also, it has been shown that skin lesion images
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benefit from color preprocessing [7]. For that, we apply preprocessing algorithms that
normalize the colors of the images by applying color constancy algorithms, as well
as removing variations in hue from images by applying Ben Graham preprocessing
[17].

Our results show that significant improvements are achieved when both the Ben
Graham preprocessing method as well as the addition of the attention residual learn-
ing mechanism to the EfficientNet networks are used.

The paper is organized as follows. In Sect. 8.2 the proposed methodology is pre-
sented.Next on Sect. 8.3we present and analyze the results that verify our hypothesis.
Concluding remarks are presented in Sect. 8.4.

8.2 Methodology

The improvements that we obtain on skin lesion classification are mainly achieved
by the introduction of the attention residual mechanism on the EfficientNet along
with image preprocessing. For that, in this section we describe the base methods of
our proposal. First, preprocessing techniques are introduced, and then describe the
attention residual mechanism on ResNets followed by the EfficientNets and how we
insert this attention mechanism on them.

8.2.1 Preprocessing

We have previously reviewed in our introduction the importance of pre-processing
which are the steps taken to correct, enhance and format images before they are
used by model training and inference. This step should be differentiated from image
augmentation which is a process applied to training data only so as to create different
versions of images in order to expose the model to a wider array of training examples
(e.g., randomly altering rotation, brightness, or scale). Still, image augmentation
manipulations are sometimes forms of image preprocessing. In this work we utilize
two main techniques that deal with color correction and with an enhancement that
reveals details of the skin lesion image.

8.2.1.1 Color Correction and Color Constancy

Color preprocessingmethods aim to achieve greater uniformity in the imageswithout
discarding valuable and particular information about each one which facilitates the
task of classification for neural networks. Color constancy methods [7] transform
the colors of an image that have been captured under an unknown light source, so
that the image appears to have been obtained under a canonical light source. The
implementation of this transformation consists of two steps.
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First, it is necessary to estimate the light source under which the image was
taken, called estimated illuminant and represented by a vector e = [eR eG eB]T . Two
algorithms are implemented:

Max-RGB: This algorithm forms the estimated illuminant by selecting for
each channel of an image the maximum value that appears in it by the equation
maxx Ic(x) = kec.

Shades of Gray: This method computes the estimated illuminant from the equa-

tion
(∫

(Ic(x))pdx∫
dx

)1/p = kec, where Ic represents the channel c of the image; x = (x, y)

is the spatial position of the pixel and k is a normalization constant.
As a second step, the image colors have to be recalibrated bymeans of the equation

I tc = Ic ∗ 1/(
√
3ec) for each channel c, once the estimated illuminant vector e =

[eR eG eB]t is computed.
In this work, the color constancy transformation is performed prior to any other

data augmentation transformation.

8.2.1.2 Ben Graham Preprocessing

This preprocessing comes from the winner of the diabetic retinopathy competition
on the Kaggle platform [17]. It resembles the unsharp masking method for image
sharpening, since it is based on obtaining the unsharp mask from an image. It can be
summarized on Eq. (8.1) where the input image Iin is subtracted from its convolved
version with the Gaussian kernel G (whose variance is determined automatically
from the image size); then it is scaled and shifted.

Iout = 4(Iin − G ∗ Iin) + 128 (8.1)

8.2.2 Attention Residual Learning

In the paper by Zhang et al. [43] authors are able to simulate the effect of an attention
layer without the extra computational cost that comes from the addition of signif-
icant number of new parameters. This technique is based on adding a second skip
connection to the ResNet blocks, where the original input is multiplied point-wise
by a Softmax version of the block’s output.

The final output of the block is then formed by the typical output of a ResNet block
(with its regular skip-connection) added to this new Attention Residual Learning
(ARL) aggregate which is controlled by a scalar α that regulates its effect. This can
be seen formally in Eq. (8.2) where x is the input, F is the convolutional block, α is
the scalar that regulates the intensity of the effect, ‘·’ is the point wise multiplication
and finally R is the spatially applied softmax function.
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Fig. 8.1 Comparison among different blocks used in deep neural networks: a classical convolu-
tional block; b a block with the skip-connection as used by ResNets; c the block with the skip-
connection and the added attention residual learning [43]

y = x + F(x) + α · R[F(x)] · x (8.2)

The softmax function RS is defined in Eq. (8.3) where O is the input, mc
i, j refers to

the value at position (i, j) from channel c of output m.

RS(O) =
{
m | mc

i, j = eo
c
i, j

∑
i ′, j ′ e

oc
i ′ , j ′

}
(8.3)

The classical residual block and the ARL is shown in Fig. 8.1. It is worth men-
tioning that only one parameter α is added to the training process for each ResNet
block.

8.2.3 EfficientNets

EfficientNet architectures give a defined way of how to scale the architecture models
whenmore computing power is available. These networks are comparable toResNets
and outperform them in several tasks [38].

The decision of either choosing to add channels to the layers (width scaling), or
to add layers to the model (depth scaling), or choosing to add resolution to the layers
(resolution scaling) is specified by a constraint that involves taking full advantage
of the computational power available. This restriction is defined by the following
inequalities:
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depth: d = αφ

width: w = βφ

resolution: r = γφ

s.t. α · β2 · γ2 ≈ 2

α ≥ 1,β ≥ 1, γ ≥ 1

where φ is a user-adjustable parameter that regulates available resources and α,β, γ
are parameters determined by a small grid search. According to the convention used
by the authors, a value of d = 1 implies 18 convolutional layers and a value of r = 1
implies a size of 224 × 224 for the images. This restriction leads to a family of
networks called EfficientNet-b1 to EfficientNet-b7, depending on their capacity and
complexity. In this work we use the EfficientNet-b0 model. The choice of scaling
that defines this model is done using Neural Architecture Search similar to [37]
optimizing an objective function that is defined by ACC(m) · (FLOPS(m)/T )w

where ACC(m) and FLOPS(m) refer to the accuracy and the number of FLOPS of
the m model respectively, T is the target of FLOPS to achieve and w is a parameter
that controls the importance of the FLOPS in the optimization.

The base element of the EfficientNet-b0 is the MBConv block [30]. The first
appearance of these blocks in neural networks occurs with the MobileNet architec-
ture [30]. By means of Depth-wise Separable Convolutions they reduce the amount
of FLOPS required, without significantly impairing model accuracy. It is based on
splitting the standard convolution layer in two: the first layer, called a depth-wise
convolution, performs a lightweight filtering by applying a single convolutional fil-
ter per input channel; the second layer is a 1 × 1 convolution, called a point-wise
convolution, which is responsible for building new features through computing lin-
ear combinations of the input channels. Another significant change that MobileNet
brings is the use of inverted residuals. In the bottleneck blocks of the ResNet, a
channel reduction is made prior to applying the convolution operation. However, in
MobileNet this dynamic is reversed: the channels are expanded prior to perform the
convolution operation and then reduced again, instead of reducing the channels and
then expanding them. See [30] for details.

The EfficientNet-b0 baseline network is mainly built from inverted bottlenecks
MBConv. As in ResNets, these blocks have skip connections. In line with the com-
putational savings that these networks put forward, we propose the addition of a light
attention mechanism as in attention residual learning, i.e., we add the last term of
Eq. (8.2) to each MBConv. It should be noticed that, as with ResNets, each MBconv
block now only has a single extra parameter α to be trained.

TheARL attentionmechanism implemented onEfficientNet-b0 can be introduced
where skip-connections exist. The skip-connection only appears in the MBConv
blocks which make up 16 of the 18 layers. However, the skip-connection cannot be
applied in the 16 existing layers since 7 of them double the number of channels of
the output with respect to the input (making it impossible to match input and output
dimensions). That is why we will apply the ARL mechanism in only 16 − 7 = 9
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Table 8.1 EfficientNet-B0Arquitecture. Each row describes a layer of type F̂i , with 〈Ĥi , Ŵi 〉 input
resolution, and Ĉi output channels. The last column indicates with symbol ‘�’ the layers where the
insertion of the ARL mechanism is possible

i Operator Resolution #Channels ARL

F̂i Ĥi × Ŵi Ĉi

1 Conv3× 3 224 × 224 32

2 MBConv1, k3× 3 112 × 112 16

3 MBConv6, k3× 3 112 × 112 24

MBConv6, k3× 3 112 × 112 24 �

4 MBConv6, k5× 5 56 × 56 40

MBConv6, k5× 5 56 × 56 40 �

5 MBConv6, k3× 3 28 × 28 80

MBConv6, k3× 3 28 × 28 80 �

MBConv6, k3× 3 28 × 28 80 �

6 MBConv6, k5× 5 14 × 14 112

MBConv6, k5× 5 14 × 14 112 �

MBConv6, k5× 5 14 × 14 112 �

7 MBConv6, k5× 5 14 × 14 192

MBConv6, k5× 5 14 × 14 192 �

MBConv6, k5× 5 14 × 14 192 �

MBConv6, k5× 5 14 × 14 192 �

8 MBConv6, k3× 3 7 × 7 320

9 Conv1× 1 & Pooling & FC 7 × 7 1280

layers and we will then have 9 new α parameters to train. This can be clearly seen in
Table 8.1 where the ARL column marks with the symbol ‘�’ the specific layers that
have the ARL mechanism incorporated.

The EfficientNet-b0 baseline network also has an attention mechanism added to it
called Squeeze & Excitation [20], which can be combined with our proposed mech-
anism. In the experiments we test the inclusion and removal of both mechanisms.

8.3 Experiments and Results

Wework with ISIC’s 2017 dataset [11] which consists of 2000 dermoscopic images.
The images have been resized to a size of 224 × 224 pixels. The following data
augmentation techniques are applied as a basis: rotation of 180 degrees for both
sides, zoom of up to 30% in different regions of the image and changes in the
luminosity. A batch size of 16 is used and Oversampling is used as a mechanism to
solve the class imbalance.
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The trainings are carried out in 2 stages. In the first stage, only the head of the
model (the fully connected layers) is trained. The head has an output size of length 2
corresponding to the 2 classes that we are trying to predict: melanoma or others. This
training is carried out for 4 epochs, applying a learning rate with a One Cycle [35]
policy of using a maximum value of 3 · 10−3. In the second stage, the entire model
is trained for 20 epochs, applying the One Cycle policy with a maximum value of
3 · 10−4. This process is repeated 10 times, each time with a different seed, in order
to have robust data.

8.3.1 Impact of the Preprocessing Methods
in the Classification

In this experiment we hypothesize that the differences in luminosity on which the
pictures were taken introduces noise into the classification process which hardens
the task for the neural network. Therefore, we try to verify if the application of color
constancy algorithms -MaxRGBandShades ofGray- in the process of homogenizing
the dataset images, also facilitates the task of classification.

In turn, in addition to the color constancy algorithms, a third method is tried: Ben
Graham preprocessing. This preprocessing is rather something close to a high pass
filter. However, in the process of suppressing the low frequencies, it is believed that
the differences introduced by the different illuminations when the images have been
taken will also be attenuated.

We train 4 ResNet-50 networks which were pretrained in ImageNet. The first
will serve as a baseline for comparison, while the second one will be trained on the
dataset corrected with Max-RGB, the third one on the dataset corrected with Shades
of Gray and the fourth on the dataset preprocessed with the Ben Graham method.

8.3.1.1 Results and Interpretation

Both Tables 8.2 and 8.3 are formed by taking the maximum accuracy and AUROC
respectively reached by each run and then calculating themean, variance andquartiles
of them. As can be seen, the training using Ben Graham’s method surpasses all the
other methods, by giving a maximum average accuracy between all runs of 0.887,
while the training without any processing obtains 0.874.

Likewise, theMaxRGBmethod also seems to have a positive impact on the results
with average maximum accuracy between runs of 0.877, albeit to a lesser extent than
the Ben Graham method. However, the Shades of Gray method seems in this case to
harm performance.

It is understood that this may be due to the way each preprocessing method
corrects images. In Fig. 8.2 it can be seen how the images processed by Shades
of Gray are inclined -in some cases- towards a blue tint, while those processed by
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Table 8.2 Mean, standard deviation and quartiles accuracies for 10 runs on the dataset without any
color correction, and with the 3 preprocessing described algorithms

Dataset Mean Std 25% 50% 75% Max

Baseline 0.874000 0.006630 0.868333 0.873333 0.878333 0.886667

Max RGB 0.876667 0.009558 0.868333 0.880000 0.885000 0.886667

Shades of
Gray

0.858667 0.011244 0.853333 0.860000 0.865000 0.880000

Ben
Graham

0.887333 0.012746 0.881667 0.886667 0.893333 0.906667

Table 8.3 Mean, standard deviation and quartiles AUROC values for 10 runs on the dataset without
any color correction, and with the 3 preprocessing algorithms

Dataset Mean Std 25% 50% 75% Max

Baseline 0.885389 0.014831 0.880555 0.889861 0.894861 0.905000

Max RGB 0.891306 0.011410 0.882153 0.891528 0.900695 0.908333

Shades of
Gray

0.861222 0.018135 0.849931 0.859028 0.866111 0.903056

Ben
Graham

0.898667 0.016924 0.883681 0.900833 0.907153 0.928333

Max-RGB maintain the reddish tone that characterizes them at the same time as
they amalgamate. Regarding the reason of why the Ben Graham method gives such
good results, it can be hypothesized that it is because its action of filtering the low
frequencies of the image allows the network to focus on the finer details of the lesions.

As a second reason, it can be seen from the comparison images that the result
of applying the Ben Graham method also achieves a certain color correction effect:
all images (not just some as in the Shades of Gray method) are now found leaning
towards blue and brown tints. In other words, the global information on the tone of
the image is homogenized together with the reduction of low frequencies.

8.3.2 Attention Residual Learning on EfficientNet

In this experimentwe try to study the effect of adding theAttentionResidual Learning
(ARL) mechanism on the Efficient-Net models. Specifically, it is not only interesting
the addition of the mechanism to the base model, but we also study the way it
relates to the attention mechanism already present: Squeeze & Excitation (SE). For
this, we study how four EfficientNet variants behave (corresponding to the possible
combinations of having these two attention mechanisms activated or not).

We employ theEfficientNet-b0 variant. Each one of the four networks is pretrained
on ImageNet. The first one will serve as a baseline for comparison, on the second
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Original Max-RGB Shades of Gray Ben Graham

Fig. 8.2 Comparison between different image preprocessing methods

one we will suppress the SE mechanism, on the third one not only we will suppress
the SE but will also add the ARL mechanism and finally the fourth and last network
will have both attention mechanisms activated. EfficientNet-b0 has only 9 blocks on
which a skip connections is used, therefore when adding ARL we will have only 9
new α parameters to train.

8.3.2.1 Results and Interpretation

As can be seen on Tables 8.4 and 8.5, after 10 runs with different initial seeds, the
maximum average accuracy reached by the model using ARL and SE outperforms
the base model. It can be seen a considerable difference between models that have
SE enabled from the models that don’t. This gives us the insight that a big part of
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Table 8.4 Accuracy results on the baseline EfficientNet-b0 and their combinations of attention
mechanisms

Dataset Mean Std 25% 50% 75% Max

Baseline(SE) 0.857333 0.007166 0.853333 0.860000 0.860000 0.866667

No attention 0.834667 0.007569 0.833333 0.833333 0.840000 0.846667

ARL 0.829333 0.012649 0.821667 0.833333 0.838333 0.846667

SE and ARL 0.862000 0.007730 0.860000 0.863333 0.866667 0.873333

Table 8.5 AUC-ROC results on the baseline and their combinations of att. mechanisms

Dataset Mean Std 25% 50% 75% Max

Baseline(SE) 0.852667 0.009516 0.848472 0.850972 0.861042 0.865278

No attention 0.788500 0.016842 0.780347 0.794306 0.797639 0.813056

ARL 0.786250 0.012818 0.769722 0.785555 0.796875 0.804445

SE and ARL 0.853611 0.009903 0.848958 0.855694 0.861250 0.866667

EfficientNet’s great performance comes from the attention mechanism rather than
from the new architecture.

8.3.2.2 Qualitative Analysis with GradCAM

In addition to the metrics that allow a quantitative analysis, it is possible to perform
a qualitative analysis of the models by observing the result of GradCAM [32]. The
GradCAM technique allows viewing heatmaps on images to understand which sec-
tions of the images have the greatest influence on the classification. Fig. 8.3 shows
a comparison between the heatmaps generated by the original model and those gen-
erated by the model with ARL.

Looking at Fig. 8.3 the third row is the one that seems to expose the differences
most clearly. The introduction of ARL appears to significantly reduce the area of the
image that the network considers relevant for classification. That is, one can visually
see that the attention mechanism is working properly. This is especially noticeable
in the model that has ARL as the only attention method (EfficientNet model from
which the SE mechanism is removed), although it is also observed in a more subtle
way in the model that it has both ARL and SE mechanisms.

A second striking aspect to notice appears in the example in the second rowwhere
one can see how all themodels seem to focus on the area surrounding the injury rather
than the injury itself. Thiswould be an indication that the tissue surrounding the lesion
also provides valuable information. Particularly in the original image corresponding
to the example of the second row, the surrounding tissue is covered with red marks,
which does not appear to be information that can be ruled out.
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Original No attention ARL SE and ARL

Fig. 8.3 GradCAM heatmap comparison for models with or without ARL. In the first and second
row examples, only the model with SE and ARL correctly predict the presence of melanoma. In the
example in the third row, all models correctly predict the absence of melanoma

8.4 Conclusions

In the present work, various mechanisms have been studied to improve the perfor-
mance of the classification of skin lesions using convolutional neural networks.

Regarding the experiments on dataset preprocessing in Sect. 8.3.1 it has been
found that Ben Graham’s preprocessing notably improves the accuracy of the classi-
fication. This is not the case with the Max RGB and Shades of Gray color correction
algorithms, which give no considerable increases or even inferior results respectively
to the original control dataset.

Regarding the experiment in Sect. 8.3.2 which studies the impact of introducing
attention mechanisms in networks -particularly the ARL mechanism- it has been
found that the introduction of ARL improves the accuracy in the models of the
EfficientNet family.
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Chapter 9
Melamine Faced Panel Inspection,
Towards an Efficient Use of Natural
Resources

Fernando P. G. de Sá, Cristhian Aguilera, Cristhian A. Aguilera,
and Aura Conci

Abstract Today an adequate use of natural resources respecting the extraction,
transformation, and consumption limits considering that we live in an already lacking
in natural reserves planet is paramount. The growing environmental consciousness
inserted in the new economy encourages the industry to adopt new technologies in
order to optimize production processes. The timber industry deals with a feed-stock
sensitive to environmental appeals, which demand tight control over the origin of the
processed wood. The adoption of automatic and non-destructive techniques to find
defects in wood products improve the use of several natural resources such as soil,
water, and others environmental provisions. In this work, we present a new image
processing technique for quality control tasks of melamine boards. This only uses
information from one channel acquired in the near-infrared spectrum. We carry out
a classification study of defects present in the manufacture of melamine boards. We
consider the most important type of defects: stains, paper (displacement or) detach-
ment, (paper wrapped or) attached material, wrinkled paper, and folded paper. Each
type of defects presents different cardinalities, demanding a number of considera-
tions for set normalization and definition of proper techniques for adjustments in
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the data mining process of unbalanced sets. The results outperform the literature’s
previous work on the classification of defects of the same type of boards.

Keywords Surface fault detection · Near-infrared images ·Melamine faced panels

9.1 Introduction

The best use of wood and the fabrication of defect-free boards for the construction
and furniture industry are key elements for the construction of houses and furni-
ture industry in an environment friendly cities. In recent years, the manufacture of
boards for use in the creation of modern spaces in cities has undergone a signifi-
cant change from the point of view of new designs and materials. These bring new
challenges in terms of final quality. In the case of melamine boards, quality con-
trol is a critical task that requires an increasingly intelligent inspection system to
identify defects. Advances in technology (particularly in the field of Industry 4.0)
enable the generation and integration of intelligent systems that are consistent with
production processes. Final products without defects, compliance with regulations,
and quality standards do not only affect the productivity rates of companies but also
play a notable role in positioning of companies in the market, due to the consequent
rejection reductions and especially in customer loyalty.

The wood industry has significant global growth and a high projection. The wood-
based panel market was estimated at over 1000 million cubic meters in 2021, and the
market is projected to register a CAGR (CompoundAnnual Growth Rate) of over 6%
during the forecast period (2021–2026), according to Mordor Intelligence (https://
www.mordorintelligence.com/industry-reports/wood-based-panel-market).

This growth also includes different types of products such as: boards for the
construction industry; medium density fiberboard (MDF); high-density fiberboards
(HDF); oriented strand board (OSB) and melamine boards. These new products are
also characterized by new designs, beyond whiteboards or solid colors, generating
boards with complex multicolor designs that make the fault detection difficult. The
detection and classification of superficial defects, particularly in melamine boards,
is one of the most important tasks in the quality control phase of manufacturing
companies. Since it allows generating and evaluating statistics that help to correct
possible errors in themanufacturing process and also allows the panels to be classified
into various classes according to the destination market.

Different defects may appear in the board manufacturing process. Some of those
defects, such as stains, for example, are very common in wood products, but others,
such as glued paper, are more rare [1]. Defects result in products with different
qualities and consequently marked valor (and prices). In the commerce of objects
made of them, it is necessary to identify what type the fault could be present in it,
to guarantee: (1) better use of natural resources in the wood industry, (2) the correct
pricing and (3) adequate quality information to the customers. Moreover, identifying
a type of defect sometimes can be very difficult, because some of them need very

https://www.mordorintelligence.com/industry-reports/wood-based-panel-market
 31684 32628 a 31684 32628
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knowledgeable experts. Due to this a number of imaging have been used to help with
defect identification by using computer vision and pattern recognition techniques.
Techniques like x-ray scanning, visible light optical acquisitions (by RGB cameras),
ultrasound, microwave sensors, terahertz scanners, and even moisture of separated
parts of the electromagnetic spectrum have been investigated in terms of possibilities
to provide complementary information for quality control because each one presents
advantages and difficulties on these tasks.

In this work, an exploratory study is presented for the classification of defects
in melamine boards using the Near-Infrared Images (NIR) wavelength. The used
data-set was obtained in an industrial production line of melamine boards, by means
of an array of multiple cameras, capable of taking information in real-time from
boards. In this development, a total of 2,778 different samples of infrared images,
each one stored in Portable Network Graphics (PNG) format are used. The complete
labeled data available consists of 1,919 samples for training, 572 for validation, and
287 for test, all from 5 types of surface defects and a group of perfect boards. The
data set was obtained under normal operating conditions of the plant, generating an
unbalanced data set naturally related to the frequency of occurrence of defects in the
industry on observation [1].

Melamine is a boardmadeof chipboardparticles, coveredwith a sheet ofmelamine
resin named paper in industrial plant. The board is composed of small fragments of
pinewood, pressed and selected to later be mixed with special adhesives; generally
based on water, resin, and chemical hardeners. After the particleboard and the sheet
are fused together using a heating and pressing system, completing the manufacture
of the board.

In the board manufacturing process, faults can occur in each of the production
stages and they can be reflected in the final quality of the board. A critical aspect in
the quality of the boards is the appearance of stains or foreign objects on the board
that alterates its visual and aesthetic condition, a factor that is very sensitive for end
customers. Another common problem is the sliding of the melamine thin plate on the
board. Although this mistake may not be critical (depending on the displacement),
it is difficult to detect by manual and automatic inspection systems.

For this work, five common surface defects in the fusion of the sheet and the board
are considered. In Fig. 9.1 we can see the appearance as NIR images of defects in
melamine boards: (a) Normal is a board without defect; (b) Detachment of material,
occurs when the board is damaged and has some exposed parts without melamine
laminate; (c) Stained or smudged paper, appears when stains appear on the final
product, due to poor handling of the sheet or the presence of dust and suspended
particles; (d) Displaced or wrinkled paper, appears when an unwanted displacement
or wrinkle of the sheet occurs, preventing the board from being completely flat; (e)
Paper broken (or folded), appears when the sheet breaks (or folds) and part of the
board are exposed; and (f) Attached or pasted paper appears when an unwanted piece
of sheet appears below the melamine thin plate to be glued. Such a description of the
defect is very important because their names could vary among the different plants,
inspection organizations, or institutions. The defects described above represent more
than 97% of defective boards in production. This is why the timely detection and
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Fig. 9.1 NIR appearance of the types of defect on melamine board surfaces considered in this work

classification of those defects is crucial for the commercialization of boards in the
international market.

9.2 Related Works

The rapid development of artificial intelligence technology has lead to its increasing
application in different fields. The use of computer-aided diagnosis employing data
driven techniques was the object of recent works for wood defect detection. In these
works one remarkable element is the adoption of nondestructive testing to reach eco-
nomic and sustainability requirements. A wide variety of inspection techniques meet
these requirements, including laser testing, acoustic-emission technology, computer
tomography, high-speed camera, among others. In general, the application of these
techniques generates an amount of data which are later processed to find worthy
insights.

For example, in computer vision-related works using data from images taken by
visible-light (RGB) cameras, we found in the literature the use of the gray-level co-
occurrence matrix (GLCM) method for segmentation and classification of knots on
wooden surfaces [25]. Tamura et al. [20] presented a system based on texture param-
eters. In another work presented by Yuce et al. [26], the aforementioned approach
is adopted to classify different types of defects in wood plates using artificial neural
networks (ANN).

Others authors used the support vector machine (SVM) classification algorithm
in their works [6] combined with different feature extraction methods. Mahram et
al. [13] focused on the intensity and the size of different types of knots on wooden
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surfaces. Cover et al. [7] developed an approach merging texture descriptors and
K-nearest neighbor (KNN) in addition to SVM [19].

Brahnam et al. [3] proposed a method of detection and classification of knots and
cracks using local binary patterns (LBP) as feature descriptors [3]. Prasitmeeboon et
al. [16] analyze bivariate histograms and Nurthohari et al. [14] use the histogram of
oriented gradients (HOG) as feature vectors in their analysis. These and other works
present different methods to detect common defects on the surface of wood such as
knots, cracks, stains or holes [2, 18].

On the other hand, many applications based on image processing have explored
the use of information in the near-infrared (NIR) spectrum. This allows obtaining
important results because it opens the possibility of processing information that is not
available when working only in the visible spectrum (VIS). Semantic segmentation
projects, for example, have been presented by Salamati et al. [18] and Bigdeli et al.
[2] using information from the usual R, G, B channels plus the near infrared channel.
Works such as those developed by Sharma et al. [19], Lee et al. [11] and Zhang
[27] using different algorithms enhance images in terms of reducing light influence,
perception of details, and texture evaluations.

The detection of defects in production lines has also been favored by contributions
that make use of images in the infrared spectrum. For instance, Yean et al. [24]
perform an analysis of the NIR spectrum to detect micro defects in silicon wafers on
solar cells (that by the particular nature of the material are very difficult to detect).
Hamdi et al. [8] propose a system for detecting defects in a production line of textile
products by overcoming the lighting disturbances typical of the industrial process. In
wood knot detection works, such as the one presented by Hamdi et al. [8], the aim is
to improve performance indices as inAguilera et al. [1], where a classification system
is evaluated through the use of visible and near-infrared images, applying LBP, and
using a bag-of-words (BOW) representation and the speed-up robust features (SURF)
method for grouping the feature with similar representation.

9.3 Theoretical Background

From the point of view of algorithms, as seen above, the development of newmethods
in the area of machine learning has opened the door to new approaches to address the
superficial defect detection problem. In this work, we adopt two common approaches
of image analysis andmulticlass classification processing. The following subsections
are dedicated to the theoretical foundation of the used local binary pattern (LBP) and
support vector machine (SVM) methods.
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9.3.1 Local Binary Pattern (LBP)

The local binary pattern (LBP)was proposed as a technique for texture representation
by [15]. It has a number of variations on the distance from the evaluated pixel
neighborhood and directions of computation [21].

The LBP general feature computation generates a code of each pixel considering
its values and those of its surroundings using a 2 step algorithm. In the first step the
pixel in analysis for generation the binary code is compared with the neighbor pixels.
In case of its value being smaller than those of any neighborhood position, then such
a position is set as 1, otherwise as 0. The third image of Fig. 9.2 (top-right) shows
an illustration of a Local Binary Pattern.

In the second step, a binary code is formed considering the set of zeros and ones
formed in the fist step of the LBP feature computation. This code gives the name
to the technique and it is attributed to the central pixel, the named g0 in Fig. 9.3.
However, for each position where the binary number formation begins a different
value can be formed. This image shows the binary code and its value (as a decimal
number) when the initial position is the top left of the comparison neighborhood
achieving: (10000111)B = (135)D .

Of course even using this clockwise orientation and formation sequence this
is only one of 7 other possibilities: (00001111)B = (15)D; (00011110)B = (30)D;
(00111100)B = (60)D; (01111000)B = (120)D; (11110000)B = (240)D; (11100001)B
= (225)D; and (11000011)B = (195)D . In other words the 8 bits number formation
can begins in any of the g1.... g8 position showed in Fig. 9.3.

Moreover, an anticlockwise orientation (as for instance g8, g7, g6, g5, g4, g3,
g2, g1) can be used and other number formation sequence as well (as for instance
g7, g6, g5, g4, g8, g1, g2, g3). Some of such order present special meaning as a

Fig. 9.2 A neighborhood of an image for distance 1, its gray scale pixel intensities and binary
result after comparison between central point and each neighbor (when codification begins in the
top left point). Configurations for distance 1 from central pixel and for distance 2 (considering 16
consecutive or 8 alternated values)
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Fig. 9.3 Reference for the
positions at neighborhood 1
to aid on explain the
calculation of Eqs. (9.1, 9.2)

representation invariant to reflection or rotations and can be used in order to improve
the identification of elements like a constant strap or edge defined by the level or
tones.

After the definition of this order, a new position for the set of zeros and ones (of
the first step) appears and the named g’ representation of Fig. 9.3 is obtained. This
new order can be considered in the LBP Eq. (9.1):

lbp(g0) =
N−1∑

n=1

g′
n2

n−1 (9.1)

where g′
n={0,1}, g

′
n=1 if the pixel value in position n is greater then the pixel value

in g0 and g′
n=0 otherwise.

There are a number of possible variations related to what can be understood as
neighborhood, that is the open or close ball for each point of the image or pixel [10]
(p. 102). The Euclidean distance or d2 is the usual one. This distance in�2 is defined
by Eq. (9.2) considering p = 2. However, for the same pixels organization, other
distances can be obtained depending on what is the value of p fixed in the general
expression used to compute the distance. p defines in this way d1, d2 and d∞, based
on Eq. (9.2) [10] (p. 88):

dp(g
′
0, g

′
n) = (|g′

0x − g′
nx |p + |g′

0y − g′
ny|p

)1/p
(9.2)

where p = {1, 2, . . . ,∞}, x , y are the pixel axial orientation for �2 (that is : g′
n =

(g′
nx , g

′
ny) and g

′
0 = (g′

0x , g
′
0y)). These x, y coordinates are related to the central point

depicted in Fig. 9.4. When p = 2 it is named Euclidean distance of R2, the distance
from each position g′

n to the central g′
0 are presented in Fig. 9.5. The borders of the

neighborhood up to a defined distance have the appearance of circle (Fig. 9.2).
There are other appearances for such balls or neighborhoods depending on the

distance function. Figure 9.6 shows 3 neighborhood appearance for ρ = {1, 2,∞}.
The numbers present in each position by different colors are the distance computed
using Eq. (9.2): from each pixel to the central one. The central image on Fig. 9.6
represents the results using the same distance function of Fig. 9.5 but now with an
approximation of 2 decimals only.

Finally, it is important to realize that not all the pixels compounding the ball border
up to a given distance need to be used to represent the LBP of an image on analysis.
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Fig. 9.4 Coordinates of horizontal and vertical directions 1 and 2 for pixels x, y distance compu-
tation

Fig. 9.5 Equation (9.2)
related to p = 2 (or Euclidean
distance d2) up 3 neighbors
for LBP computation
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Fig. 9.6 Open ball appearance related to p = {1, 2,∞} on Eq. (9.2) computations, considering
neighbourhood of 7 for d1 and d∞

For instance for Euclidean distance 2 where a neighborhood of more than 8 pixels
around a central one is the usual result (see Fig. 9.2 bottom row) the LBP can be
computed using only 8 values, when a number up to 1 byte is enough to store these
LBP possible values. However, when greater numbers of 0 and 1 are employed for
the formation of the LBP more bits must be necessary to store this binary number
(that will be greater than a value stored in 8 bits, resulting in a need of 2 bytes or
more than 3 bytes). That is: in some cases, the maximum number generated for the
LBP code can be up to 255 = 28 − 1, or 65, 535 = 216 − 1 or 232 − 1, and so on.
Consequently, depending on the LBP implementation this 1 or 0 can be used up to
any number for the composition of a binary number and this can be a parameter to be
decided considering the problem under study. The central image in Fig. 9.2 bottom
row illustrates the case where 16 is used and, the right image shows the option for
the case when only 8 is used, both when Euclidean distance is 2.

9.3.2 Support Vector Machine (SVM)

Support vector machines are a class of statistical models with extensive use in pattern
recognition problems. It attempts to find a suitable hypothesis to the complexity of
the training data while minimizing the upper bound of the generalization error [22].
In classification problems, a SVM aims to create a maximum-margin hyperplane
to separate the data in distinct classes by choosing a function that transforms the
original feature space ensuring the structural risk minimization principle [22].

Let S, the training set of features of N classes, be represented by a D dimensional
feature vector, that is S = {(xn, yn) | xn ∈ �D, yn ∈ Z, n = 1, . . . , N }. By a kernel
function φ, the input data is projected into a high dimensional feature space to
maximize the power of the separating hyperplane. This optimization problem is
solved using quadratic programming, whose model is defined below:
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Fig. 9.7 Geometric representation of SVM: a red hyperplane discriminates blue and green classes

minw,b
1
2‖w‖2 + C

N∑
n=1

ξn

s.t. yn(wTφ(xn) + b) ≥ 1 − ξn,

ξn ≥ 0, n = 1, . . . N .

(9.3)

where w and b are the model parameters, φ is kernel function, and C is a hyper-
parameter that controls the trade-off between the model complexity and the margin
width.

For binary SVM classification, the ground truth labeling is done using yn = ±1,
with the sign determining if a training instance n is from the positive or the negative
class. Once training is complete, the result of Eq. (9.3) induces a straight line sepa-
rating both classes. Figure 9.7 shows the maximum hyperplane where wx + b = 0
discriminates the classes as follows: wx + b ≥ 1 when yn = +1, and wx + b ≤ 1
when yn = −1. Data points over the dotted lines are known as the support vector
for satisfying the equality in the equations. As can be seen in the figure, the slack
variables ξ are highlighted to show their values when violated.

Although SVM is inherently a binary classifier, it fashions two possible arrange-
ments in order to support multiclass classification: one-against-one method and one-
against-the-rest method [23]. The one-against-one approach is adopted to handle
the multiclass classification in our results. The main characteristic of this method is
to break down the multiclass problem into multiple binary classification problems.
Thus, let m be the number of classes, the one-against-one approach can construct
m(m−1)

2 hyperplanes respecting the optimized separation between each one of the m
classes.
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Fig. 9.8 General approach

9.4 Used Methodology for Surface Classification

Before discussing independently each part of the proposed methodology, let us
present the general used approach, which consists in feature extraction and clas-
sification learning, as presented in Fig. 9.8. It is important to note that in this type of
application, i.e. a continuous inspection [4], differently of the usual image processing
for object classification there is not the phase of segmentation [17], because there is
not objects to be separate of the background in the acquired scene to be analysed.

As can be seen in the Fig. 9.8, from the available data set we extract the features
of the gray level counting directly the number of each level present in the images or
organizing the level according to their position by using local binary patterns (LBPs).
After, these features feed the classification algorithm of support vector machine
(SVM) aiming to identify each sample as with or without defects. Finally, numerical
indexes are responsible to analyse the quality of the obtained results.

9.4.1 Used Dataset

Here, the near-infrared spectrum is used because this type of imaging presents advan-
tages on the identification of superficial irregularities [1]. For the image acquisition,
a system ofmultiple cameras and industrial controllers was designed and constructed
allowing the simultaneous shooting of each of the cameras to cover a complete board.
Such boards have real dimensions of 1.83 × 2.50 m. A total of 3 infrared spectrum
cameras were used in a melamine panel manufacturing line operating at a speed of
1m/s. All cameras are connected via a Giga Ethernet network. Basler Aca 1300-60
gm NIR cameras of 1,280× 1,024 pixels were used, generating images of complete
boards with a resolution of 3,570× 5,770 pixels [1].
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Table 9.1 Original data set composition for all phases

Classes Training Validation Test Total

Without faults 685 249 240 1,174

Detached 122 33 2 158

Stained 246 66 14 326

Wrinkled 587 149 19 755

Attached 157 41 3 201

Folded 124 34 8 164

Total 1,919 572 287 2,778

The NIR information of each board is stored as a single-channel. This channel can
be considered as a grey scale image. Some of these are depicted in Fig. 9.1. They are
used to compose the classes of the data set, each image having different numbers of
pixels. However, their pixels are always described in 256 levels of the channel range.
The data set is organized in a way that an image belongs only to one group. That is,
the data set presents previous separation for training and validation of the learning
phase and then final tests: this structure ensures that there is no sample present at the
same time in more than one of these sets. The data set composition can be seen in
Table 9.1.

9.4.2 Dealing with Imbalanced Data

Correct identification of the types of melamine board superficial issue can be very
difficult, because most of the faults present very similar regions over some part of
the sample (Fig. 9.1). This is specially complex for the groups of without faults,
detached, stained, and folded types of defects. A total of 2,778 NIR spectrum images
of melamine panels with defects and without defects were captured, generating a
data set with the showed distribution (Table 9.1).

Once the occurrence of some types of defects is low, the acquired images during the
inspection tasks compose a dataset naturally imbalanced, with the predominance of
samples from the class ‘without faults’.We adopt a simple under-sampling technique
that selects random samples from them classes to build a new training dataset whose
size is limited by the size of minority class [9].
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Fig. 9.9 Histograms compounding the feature vector

9.4.3 Used Programming Tools

We use the Python 3.8 computer language and its common libraries are adopted for
data manipulation andmachine learning development in this work. More specifically
the following programming tools are used:

• Image processing: Scikit-image version 0.19.1, OpenCV version 4.5.5
• Machine learning: Scikit-learn version 1.0.2
• Array manipulation: NumPy version 1.22.1

9.4.4 Features Computation

The general techniques of image analysis can be helpful for the task of features
extraction. The proposed approach has two groups of features. The first group rep-
resents features related to the pixel intensity and the second group is texture related,
that is it considers the pattern distribution of the intensity in a considerable position
of a given area (or texel) of each samples.

The Local Binary Pattern (LBP) approach is used for textural evaluation (that
is the second group of features). This computation result can be changed by the
selection of the parameters: method, number of points and radius of the
used library.1

The parameter radius define the distance of the considered neighborhood, as
represented in Fig. 9.2, top row. The parameter method has the options: ‘default’;
‘ror’; ‘uniform’ and ‘var’. They mean the use of a different organization of the
binary number to be created by implementation, they modify the order of the basic
algorithm (or ‘default’). This is employed in the second step of the LBP computation
as explained in Sect. 9.3.1 and in the used library documentation. The number of
points corresponds to the maximum possible code to be generated and attributed
to the pixel as the LBP code.

After the computation of these features, the number of pixels in each possibility
is used to form a histogram of the LBP group that represents the image as a feature
vector in the next steps of learning.

1 https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.
local_binary_pattern.

https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.local_binary_pattern
 -1461 56760 a -1461 56760 a
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Both LBP and intensity level histograms can present some variations in their
computations. The parameters radius, points and methods allow some adjustment in
the LBP computations, related to the size of the neighborhood considered and the
way the binary number representing the texture is formed, as already mentioned. In
this work 8, 13, and 18 are the numbers of bits allowed for the final LBP binary code
formation. The used distance was fixed as 3 and 8 (see Fig. 9.2). And the possible
methods for organizing the code are considered.

For the intensity level histogram, the number of bins used is a possible variation.
The variation of parameters from both histograms as grouped in 8 or 32 bins of divi-
sion of the maximum values are considered in the classification results to be adjusted
by the grid search approach for improving the next classification phase. Figure 9.9
exemplifies the used vector of features obtained by the histogram combinations.
Table 9.2 shows these possible parameters to be investigates.

9.4.5 Classification Training and Testing

The next step is learning how to do the classification for each class. An important
aspect in this is to choose a classifier that matches better the faults in order it will be
used in a future implementation. In this article, the feature vectors are used as input
for the Support Vector Machine (SVM) classification algorithm. There are elements
for variation in the cost functions C , γ and the used kernel, these hyper-parameter
possibilities are evaluated using Accuracy and F-score.

The fine tuning of SVM and feature parameters is necessary in order to better
explore the search space. To accomplish this effort, the Grid Search was employed
for an iterative evaluation of the parameters related to the ways the feature vector
is built (that is the elements of possible variation in the histograms). The evaluation
goes up to the end using the validation to identify the best possible features after
training them with some infrared images labeled as with a specific fault type. It is
employed in order to evaluate the SVM hyper-parameters to better predict the type
of defect from new images in an industrial plant in the future. Figure 9.10 presents

Table 9.2 Parameter and hyper parameter search space

Parameters/Hyperparameters Used values

Feature extraction LBP method ‘default’ ‘ror’ ‘uniform’ ‘var’

Radius 3 8

Number of points 8 13 18

Interval of bins 8 32

Classification C 1 10 100 120 150

γ 0.001 0.0001

SVM kernel (φ) rbf Linear Polynomial
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details of in this work adopted strategy to find the best characteristics of the training
set.

In the classification step, the validation set has the features used to evaluate the
hyper-parameters (cost C , γ and kernel φ) according the performed classification.
Finally, the test set, which also had its characteristics extracted, is used to evaluate
the built model. Processing continues until the entire space of the grid search has
been explored.

Table 9.2 presents the search space for grid search parameters and hyper-
parameters during the validation processing. Note that the range of the histogram is
evaluated only under two settings, 8 to 8 or 32 to 32 levels. Meanwhile, the search
space for LBP (radius and number of points and the binary formation) are more
extensive.

9.5 Results

The multi class classification (one vs all) performed by SVM was implemented
using the workflow described in Sect. 9.4. The purpose of this classification is to
distinguish normal samples from those identified as different types of failures, as

Fig. 9.10 Adopted processing strategy

Table 9.3 Optimal parameters from feature extraction phase

Parameters Value

Radius 28

Number of points 8

Method Default

Bins of histogram 8
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Table 9.4 Optimal hyperparameters from the SVM classifier

Hyperparameters Value

C 150

kernel (φ) linear

Table 9.5 Resulting multi class confusion matrix

Without
faults

Detached Stained Wrinkled Attached Folded

Without faults 242 0 1 0 6 0

Detached 0 24 2 2 0 5

Stained 7 0 58 0 1 0

Wrinkled 0 3 12 129 0 5

Attached 2 0 1 0 38 0

Folded 0 3 1 1 0 29

described in Table 9.1. The complete exploration of the parameters in the search
space was made by grid search and it identified the optimal parameters involved in
the feature extraction presented in Table 9.3. The model validation (after training)
determined the optimal SVM hyper parameters described in Table 9.4.

Table 9.5 presents the fine-tuned set of parameters and hyper parameters results fit-
ted for each class. The respective averages of Precision, Recall and F-scores obtained
in the classification process are presented in Table 9.6. As you can see, the order from
best to worst (or vice versa) varies according to the “metric” used for comparison.
For example, for the F-score: normal samples were identified more correctly than
any type of defect, reaching a value of 97%, and wrinkled paper is the best identified
type of defect (92%). On the opposite side, Detached and Folded faults are the ones
with the least satisfactory F-score results. This presents higher values for the class
of wrinkled defects and worse for folded papers.

Although, we are collectively calling Accuracy, Precision, Recall and F-scores
“metric”, note that we are not in fact actually processing them as metric in the metric
space sense. Moreover, we are not even concerned that any of them are in fact a
metric, or even a semi-metric in a topological space [10]. They are in fact only being
here used as a comparative index of performance of the final process, in absence of
a more proper option [5].

9.6 Comparisons with Previous Work

It is important to evaluate our work in the light of other solutions for the same
problem. The work developed by [1] treats similar problem of detection of defects
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Table 9.6 Results for each class considering various “metrics”

Class Precision Recall F-score Overall
accuracy

Macro F-score

Without faults 0.96 0.97 0.97 0.91 0.86
Detached 0.80 0.73 0.76

Stained 0.77 0.88 0.82

Wrinkled 0.98 0.87 0.92

Attached 0.84 0.93 0.88

Folded 0.74 0.85 0.79

on melamine-faced board. There are three classes of faults equivalent there with the
present work. The Table 9.7 presents those that enable comparison between the two
works based on results of classification accuracy of the classes ‘Stained’, ‘Wrinkled’
and ‘Without Faults’.

As seen in Table 9.7, both solutions present equivalent results for ‘Wrinkled’ and
‘Without Faults’. The class ‘Stained’ presents the higher gain of classification per-
formance using the methodology discussed in this work. Future works can improve
the actual results using the approach of feature construction discussed by [28].

9.7 Conclusion

This work investigates the possibilities of using a single infrared images on the
classification of melamine surfaces as with or without defect, considering data set
with six (6) possible groups and evaluating 2778 samples of surface, from five (5)
types of faults (Table 9.1). The used data set present originally unbalanced numbers
of samples in each type of class. Two types of features are considered in the SVM
using grid search and hyper-parameters fine tuning evaluation. In order to train the
classifier, the original data set was separated for learning, validation, and test. To
promote better balance among classes, each of the classes is adjusted to present the
same number of elements where each element has been selected at random.

Comparisons with previous work were investigated. Aguilera et al. [1] obtained
theirs results after a standardization of the sizes of the analyzed samples and adopting

Table 9.7 Comparing average classification considering equivalent classes with previous work

Classes Aguilera et al. [1] Our work

Stained 0.84 0.96

Wrinkled 0.97 0.96

Without faults 0.95 0.97
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Extended Local Binary Pattern (E-LBP) [12] to extract the features from images.
Other details as the SVM model (to perform multi-class classification) used are just
like our methodology [1].

Observing Table 9.7, we can state that the achieved results have been very good,
obtaining acceptable degrees of certainty, specially because this is an initial step
where there are a lot of possible improvements. These come from reorganizations of
the number of samples used in each set of faults and standardization of the sizes of
their samples, passing trough the inclusions of other types of feature to be computed
and included in the feature vector, other presentation of it to the classifiers (not
only histograms) up to more classifiers then only SVM to be included, and even
other “metrics” to be tested. All these facts allow the say that NIR presents great
possibilities for inspections in this type of continuous classification problem.

Acknowledgements We acknowledge to the CYTED Network “Ibero-American Thematic Net-
work on ICT Applications for Smart Cities” (REF-518RT0559) C.A. and C.A.A. acknowledge
projects 194810GI/VC and project Fondef ID21I10256. A.C. express their gratitude to the Brazil-
ian Agencies FAPERJ, CAPES and CNPq.

References

1. Aguilera, C.A., Aguilera, C., Sappa, A.D.: Melamine faced panels defect classification beyond
the visible spectrum. Sensors 18(11), 3644 (2018)

2. Bigdeli, S., Süsstrunk, S.:Deep semantic segmentation usingNIRas extra physical information.
In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 2439–2443. IEEE
(2019)

3. Brahnam, S., Jain, L.C., Nanni, L., Lumini, A., et al.: Local Binary Patterns: New Variants and
Applications, vol. 506. Springer (2014)

4. Conci, A., Proença, C.B.: A comparison between image-processing approaches to textile
inspection. J. Text. Inst. 91(2), 317–323 (2000)

5. Conci, A., Stephenson, S.L., Galvão, S.S., Sequeiros, G.O., Saade, D.C., MacHenry, T.: A
new measure for comparing biomedical regions of interest in segmentation of digital images.
Discret. Appl. Math. 197, 103–113 (2015). Distance Geometry and Applications

6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
7. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1),

21–27 (1967)
8. Hamdi, A.A., Fouad, M.M., Sayed, M.S., Hadhoud, M.M.: Patterned fabric defect detection

system using near infrared imaging. In: 2017 Eighth International Conference on Intelligent
Computing and Information Systems (ICICIS), pp. 111–117. IEEE (2017)

9. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9),
1263–1284 (2009)

10. Kubrusly, C.S.: The Elements of Operator Theory. Birkhauser, 2nd edn (2010)
11. Lee, J., Park,Y., Jeon,B.: Low intensityRGB texture enhancement based on near infrared image

using perceptual information. In: 2018 10th International Conference on Communications,
Circuits and Systems (ICCCAS), pp. 422–425. IEEE (2018)

12. Liu, Li., Zhao, Lingjun, Long, Yunli, Kuang, Gangyao, Fieguth, Paul: Extended local binary
patterns for texture classification. Image Vis. Comput. 30(2), 86–99 (2012)



9 Melamine Faced Panel Inspection, Towards an Efficient Use of Natural Resources 183

13. Mahram, A., Shayesteh,M.G., Jafarpour, S.: Classification of wood surface defects with hybrid
usage of statistical and textural features. In: 2012 35th International Conference on Telecom-
munications and Signal Processing (TSP), pp. 749–752. IEEE (2012)

14. Nurthohari, Z., Murti, M.A., Setianingsih, C.: Wood quality classification based on texture and
fiber pattern recognition using hog feature and SVM classifier. In: 2019 IEEE International
Conference on Internet of Things and Intelligence System (IoTaIS), pp. 123–128. IEEE (2019)

15. Ojala, T., Pietikainen,M.,Maenpaa, T.:Multiresolution grayscale and rotation invariant texture
classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971987
(2002)

16. Nurthohari, Z., Murti, M.A., Setianingsih, C.: Defect detection of particleboards by visual
analysis and machine learning. In: 2019 5th International Conference on Engineering, Applied
Sciences and Technology (ICEAST), pp. 1–4. IEEE (2019)

17. Rodrigues, E.O., Conci, A., Liatsis, P.: Element: multi-modal retinal vessel segmentation based
on a coupled region growing and machine learning approach. IEEE J. Biomed. Health Inform.
24(12), 3519–3597 (2020)

18. Salamati, N., Larlus, D., Csurka, G., Süsstrunk, S.:. Semantic image segmentation using vis-
ible and near-infrared channels. In: European Conference on Computer Vision, pp. 461–471.
Springer (2012)

19. Vivek Sharma, Jon Yngve Hardeberg, and Sony George. Rgb-nir image enhancement by fus-
ing bilateral and weighted least squares filters. Journal of Imaging Science and Technology,
61(4):40409–1, 2017

20. Tamura, Hideyuki, Mori, Shunji, Yamawaki, Takashi: Textural features corresponding to visual
perception. IEEE Trans. Syst. Man Cybern. 8(6), 460–473 (1978)

21. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult
lighting conditions. IEEE Trans. Image Process. 19, 16351650 (2010)

22. Vapnik, V.N.: The nature of statistical learning. Theory (1995)
23. Weston, J., Watkins, C.: Multi-class support vector machines. Technical report, Citeseer (1998)
24. Yean, Jeong-Seung., Kim, Gyung-Bum.: Investigation of laser scattering pattern and defect

detection based on Rayleigh criterion for crystalline silicon wafer used in solar cell. J. Korean
Soc. Precis. Eng. 28(5), 606–613 (2011)

25. YongHua, Xie, Jin-Cong, Wang: Study on the identification of the wood surface defects based
on texture features. Opt.-Int. J. Light. Electron Opt. 126(19), 2231–2235 (2015)

26. Yuce, B., Mastrocinque, E., Packianather, M.S., Pham, D., Lambiase, A., Fruggiero, F.: Neural
network design and feature selection using principal component analysis and Taguchi method
for identifying wood veneer defects. Prod. Manuf. Res. 2(1), 291–308 (2014)

27. Zhang, X., Sim, T., Miao, X.: Enhancing photographs with near infra-red images. In: 2008
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

28. Zhang, Z., Luo, C., Wu, H., Chen, Y., Wang, N., Song, C.: From individual to whole: reducing
intra-class variance by feature aggregation. Int. J. Comput. Vis. (2022)



Chapter 10
Waste Classification with Small Datasets
and Limited Resources

Victoria Ruiz, Ángel Sánchez, José F. Vélez, and Bogdan Raducanu

Abstract Automatic waste recycling has become a very important societal chal-
lenge nowadays, raising people’s awareness for a cleaner environment and a more
sustainable lifestyle. With the transition to Smart Cities, and thanks to advanced ICT
solutions, this problem has received a new impulse. The waste recycling focus has
shifted from general waste treating facilities to an individual responsibility, where
each person should become aware of selective waste separation. The surge of the
mobile devices, accompanied by a significant increase in computation power, has
potentiated and facilitated this individual role. An automated image-based waste
classification mechanism can help with a more efficient recycling and a reduction of
contamination from residuals. Despite the good results achieved with the deep learn-
ingmethodologies for this task, the Achille’s heel is that they require large neural net-
works which need significant computational resources for training and therefore are
not suitable for mobile devices. To circumvent this apparently intractable problem,
we will rely on knowledge distillation in order to transfer the network’s knowledge
from a larger network (called ‘teacher’) to a smaller, more compact one, (referred
as ‘student’) and thus making it possible the task of image classification on a device
with limited resources. For evaluation, we considered as ‘teachers’ large architec-
tures such as InceptionResNet or DenseNet and as ‘students’, several configurations
of the MobileNets. We used the publicly available TrashNet dataset to demonstrate
that the distillation process does not significantly affect system’s performance (e.g.
classification accuracy) of the student network.
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10.1 Introduction

The recently coined concept of Smart Cities refers to the use of ICT-based solutions
to improve life quality in urban areas in several domains: waste management, safety,
transportation, mobility, etc. Nowadays, selective waste classification for recycling
(paper, glass, metal, plastic, etc.) has become a very important aspect of our everyday
life. With the significant increase in large-scale production and consumption, waste
recycling has become a huge societal challenge and therefore it is imperative to
come up with new solutions to guarantee a sustainable economy and improve the
quality of the living environment. According to a recent report released by theWorld
Bank [16], in 2016, 242 million tons of plastic waste was generated worldwide,
representing 12% of the total solid waste. The same report forecasts that the waste
generation will drastically outpace population growth by more than double by 2050.
Without any measures, this will affect not only living conditions, but also will have
a negative impact on the people’s health being the main cause for skin, respiratory
and cardio-vascular system diseases.

Previous waste selection systems took place in recycling plants and were mainly
based on manual operations which were not only expensive and inefficient, but also
dangerous for human operators [29]. Therefore, the automatization of this process,
which could guarantee a safe, clean and efficient waste classification process was an
urgent necessity for local communities and citymanagers. In the recent years,with the
development of robotics and artificial intelligence, computer-vision based automatic
waste classification has become fundamental in waste recycling. In this direction,
solutions proposed by companies such as Picvisa1 or Sadako Technologies2 are only
a few examples.

Successful computer vision-based approaches (ranging from image segmenta-
tion, object detection, visual servoing) are largely possible due to recent progress in
deep learning techniques and powerful computational resources (GPUs). In particu-
lar, methods based on convolutional neural networks (CNN) are responsible for the
high accuracy on image classification task, achieving 95% in the case of ImageNet
(while the human visual system reaches 99% [30]). However, in the case of waste
classification, this value is lower. The limitation in exploiting the full power of deep
learning architectures is mainly due to lack of large trash datasets. A variety of CNNs
models have been proposed to tackle the problem of waste classification, including
ResNext [35], Xception [3], Faster R-CNN [17], EfficientNet [21], YOLO [9, 20],
etc. More recently, the focus have been shifted towards Transformers [34], an archi-
tecture employing a self-attention model which helps building distant dependencies
in the pattern, a mechanism which CNNs is lacking. For this reason, Transformers
are capable of extracting more powerful features than CNNs, with stronger discrim-
inative properties. Recently, an approach for selective waste classification based on
Transformers has been proposed in [13].

A drawback of the previousmentioned systems is that they are based on large deep
network architectures which require significant computational resources, which are
costly to deploy to recycling facilities. With the rise of mobile computing, the focus
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has been shifted towards more compact solutions that require less computational
resources and could be used on portable devices. The ubiquity of mobile phones
and tablets determined a migration of waste classification applications from clusters
with powerful GPUs to mobile devices. However, deploying deep learning models
to mobile devices with limited computational capabilities is accompanied by some
challenges, as identified by [5]. First challenge is represented by memory limitation.
It is known that large networks (with a large number of parameters) usually guarantee
a low generalization error. However, on a device with limited memory, the challenge
is to fit a model with much less parameters (one or two orders of magnitude) with-
out any significant loss in accuracy. The second challenge is represented by energy
consumption. Backpropagation is one of the most used operations in the network
training. Due to its iterative character it is very time-consuming. On the other hand,
continuous weights update is a computationally intensive operation. Thus, by com-
bining time and computation complexity we come upwith a serious energy challenge
that we need to overcome. So far, researchers have paid more attention to optimizing
the training and inference errors, rather than addressing the computational cost.

In this paper, in order to address the aforementioned challenges, we propose a
computational efficient method to deploy deep learning models to mobile devices.
We use network distillation as a strategy for knowledge transfer between a large
deep learningmodel and a compactmodel, suitable formobile devices. Thus, network
distillation could take place on a standardPCwith sufficientmemory and computation
resources, and at the end of the process, the resulted compact model could be easily
deployed to a mobile device. As a case study, we will refer to the aforementioned
problem of automatic waste classification. This way, we achieve a trade-off between
computational complexity and accuracy.

The paper is structured as follows. In the next section, we present the related work
in automatic waste classification as well as in network distillation. In section 3 we
review the network distillation fundamentals. In section 4 we present our validation
protocol and experimental results. Finally, in section 5 we draw our conclusions and
present the guidelines for future work.

10.2 Related Work

The first part of this section reviews recent work on trash classification based on deep
learning models in general, and lightweight architectures in particular. The second
part reviews recent works on the network distillation process, as a methodology for
knowledge transfer from large deep models to more compact ones.
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10.2.1 Waste Recycling

Nowadays, many waste classification systems have been proposed. Most of them
are focused on both detection and classification of garbage. Moreover, some recent
works are also focused on the usage of lightweight architectures for mobile devices
with limited resources. Next, we summarize the most related works with ours.

Concerning large deep architectures, De Cariolis et al. [8] trained an improved
YOLOv3 neural network for waste detection and recognition. The authors cre-
ated their own dataset by downloading Google images. Vo et al. [30] proposed a
model called Deep Neural Networks for Trash Classification (DNN-TC), which is
an improvement of ResNext model [26]. The authors achieved a 94% of accuracy
on TrashNet dataset. Kulkarni and Sundara [15] proposed a hybrid transfer learn-
ing and faster R-CNN for region proposal for object location and classification.
To train the model, the authors trained GANs models to create collages of images
from TrashNet dataset. Zhang et al. [40] developed an attention-based branch expan-
sion network whose objective was to distinguish confounding features. The authors
achieved 94.53% on TrashNet dataset. Shi et al. [27] proposed a neural network
architecture based on channel expansions rather than short-circuit connections.

Liu et al. [18] used YOLOv2 networks with box dimension clustering and pre-
trained weights in order to improve system’s performance for trash detection and
recognition. Moreover, the feature extractor part was replaced by the lightweight
network MobileNet, and therefore, the final network can be used on low resources
devices. Aral et al. [3] trained several deep learning models for classification. Some
of them, such as MobileNet and Xception, have a lower number of parameters
and can be considered lightweight models. Yang and Li [36] designed WasNet, a
lightweight neural network, based on convolutional layers and attention mechanism
achieving a 96.10% of accuracy on TrashNet dataset. Bircanoglu et al. [4] devel-
oped the lightweight CNN RecycleNet. This network, which achieves a 81% of
accuracy on TrashNet, alternates the skip connections in dense layers in order to
optimized prediction times. Therefore they reduce the number of network’s param-
eters from 7 millions to 3 millions. White et al. [33] also worked on convolutional
neural networks for trash classification that can be deployed on low power devices.
Specifically, the authors designed WasteNet using a pretrained DesNet architec-
ture combined with hybrid transfer learning and data augmentation. Huang et al.
[12] trained a CNN-based network with the self-attention mechanism called Vision
Transformer. They achieved 96.98% of accuracy on TrashNet. The model can be
used on portable devices. Huynh et al. [13] combined three CNN (Efficient-B0,
Efficient-B1, ResNet101), and added images from an external dataset to include the
organic category. They achieved 94.11% of accuracy. Wang et al. [32] tested several
state-of-the-arts convolutional neural networks, and concluded that MobileNetv3,
with an accuracy of 94.36% was one of the architectures with better performance.
In addition, this neural network had the advantage of having a small memory over-
head (49.5 MB) and fast computing speed (261.7 ms). Finally, Masand et al. [19]
designed ScrapNet, an EfficientNet based architecture. To train Scrapnet, the authors
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developed a new dataset, as the result of combining four different datasets. To test
the results over the TrashNet dataset, a transfer learning process was performed. As
a result, the authors achieved 98% of accuracy on the TrashNet dataset.

10.2.2 Network Distillation

Deploying directly large models to mobile devices do not meet the energy efficiency
and computational complexity requirements. To cope with this limitation, network
distillation has been proposed as an alternative to perform knowledge transfer from a
large network, referred as ‘teacher’, to a more compact network, referred as ‘student’
[10, 23]. From this point of view, network distillation could also be seen as a form
of model compression. The concept behind network distillation is that the student
model replicates teacher model in order to obtain similar performance. A network
distillation system consists of three elements: knowledge, distillation algorithm and
teacher-student architecture.

When we talk about network distillation, we could consider three categories of
knowledge transfer: logits [20], activations or features of intermediate layers [1,
37] and relationships between them [29]. In the first category, the ‘student’ model
should replicate the output of the last layer from the ‘teacher’ model. This is a
simple, yet effective, knowledge distillation strategy and it has been used in several
applications such as object detection [6] and semantic landmark detection for human
pose estimation [39]. One drawback of this strategy is represented by the fact that is
limited to supervised learning, since logits represent class probability distribution. In
the second category, the output of the intermediate layers is considered to supervise
the training of the ‘student’ model. This strategy is especially useful in the case of
thinner and deeper networks. It was first proposed in [23], whose idea was to match
the feature activations of the ‘teacher’ and the ‘student’. However, choosing which
layers from the ‘teacher’ model could be used as ‘hints’ and which layers from the
‘student’ model to be guided is still an open question. There were some attempts to
address this problem by considering an attention mechanism in order to match the
features indirectly [5, 37]. Finally, the last category exploits the relationship between
different layers or samples. In [17], they proposed to use single value decomposition
in order to extract relevant information from the correlations between feature maps.
Another approach considers knowledge distillation from two ‘teachers’ [38]. They
formed two graphs whose nodes represent the logits and the feature maps of each
‘teacher’ model. On a different direction, which takes into account the relationship
between samples, [22] proposes to transfer themutual relations of the data, expressed
in terms of distance-wise and angle-wise information. A similar approach has been
pursued in [5], where the ‘student’ network is learned by feature embedding, trying
to preserve the feature similarities of the samples from the ‘teacher’ network.

Some work has also been devoted to better understand the underlying mechanism
behind knowledge distillation by quantifying the extracted visual concepts from the
intermediate layers [7]. On the other hand, [14] explained knowledge distillation
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from the perspective of risk bound, data efficiency and imperfect teacher. Recently,
besides image classification, knowledge distillation methods have been applied to
a wide variety of applications, such as: adversarial attacks [21], data augmentation
[16], data privacy and security [31] and person re-identification [24].

10.3 Reviewing Network Distillation

In Sect. 10.2 it is shown that, to develop a deep learningmodel for trash classification,
most related works train large neural network architectures. Other related works
have also dealt with the limited resource problem and trained lightweight neural
network architectures. In this context, the architectures trained upon could be both,
standard architectures as MobileNet, Xception, or ShuffleNet, or custom designed
lightweights architectures. In both cases, the pre-trained weights from ImageNet
were used.

However, other methods to transfer knowledge have been developed. One of
the most efficient ones is the distillation method. The distillation method transfers
the knowledge of a complex pre-trained network (called teacher) to a lightweight
network (called student). Specifically, this process adds to the targets provided from
the ground truth (called hard targets) the outputs of the teacher network (called soft
targets) [10]. Therefore, the information provided by the teacher network will be
better as more entropy would have the model. For example, if the teacher network
has low entropy, its outputs will follow a Dirac distribution. That is, the correct
class will have a probability near 1, and the rest of the classes, a probability near 0.
However, if the teacher network has high entropy, the probabilities of the network
will be more similar and less information will be provided. Therefore, the higher
entropy would have the teacher model, the higher information will be provided.

To increase a model entropy Hinton et al. [10] propose divide the output logits
(zi ) by a constant called temperature (T ). Then, these soft logits are transformed
in a probability distribution through a softmax transformation as usual. Note that in
the case of hard outputs, the temperature is T = 1, and as a result, the probability
is not altered. Formally, let be zi the logit of the model i , and T constant which
represent the temperature, then we define the soft probabilities from the model i
with a temperature T , pi (T ) as:

pi (T ) = e
zi
T

∑
i e

zi
T

(10.1)

Next, to transfer the knowledge the loss function is redefined as the sum of a soft
term and a hard term. The soft term will add the knowledge of the teacher network,
while the hard term will add the knowledge of the student network that has learned
so far. Specifically, the soft term will compare the outputs of the teacher network
with the output of the student network. As it is mentioned before, the entropy of the
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Fig. 10.1 Destillation process flow

teacher architecture will be increased by recalculating the probability of the output
with the constant of temperature. To achieve comparable results, the output of the
student network will be also recalculated by the same temperature. On the other
hand, the hard term will compare the ground truth with the outputs of the student
network as a classic classification model. As a result, no temperature correction will
be made in this term.

Formally, let be H(x, y) the categorical cross entropy function between the prob-
abilities distributions x and y. We denote Lstudent the loss function, Lsof t the loss
associated to the soft term, Lhard the loss associated to the hard term, and y the
ground truth. Then, these functions are define as:

Lsof t = H(pteacher (T = T0), pstudent (T = T0)) (10.2)

Lhard = H(y, pstudent (T = 1)) (10.3)

Lstudent = Lsof t + λLhard (10.4)

where λ ∈ (0, 1) is a regularization parameter. Figure 10.1 shows this methodology.

10.4 Proposed Validation Protocol and Experimental
Results

This section details our evaluation protocol and experimental results. Specifically, the
dataset used and the preprocessing process are presented in the first place. Then, the
evaluation and the implementation details are fixed. Finally, the results are presented
and discussed.
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10.4.1 The TrashNet Dataset

TheTrashNet dataset [35] consists of a collection of 2,527RGB images divided in six
classes of waste: ‘glass’, ‘paper’, ‘cardboard’, ‘plastic’, ‘metal’, and ‘general trash’,
respectively. The image distribution per class is the following: 501 for the ‘glass’
category, 594 for ‘paper’, 403 for ‘cardboard’, 482 for ‘plastic’, 410 of ‘metal’, and
137 for ‘general trash’, respectively. The images were collected by placing the object
in front of a white background and using sunlight and/or ambient lighting. Figure
10.2 illustrates the six classes that constitute the TrashNet dataset.

10.4.2 Data Preprocessing

To develop a deep learning model which classifies the waste images, all the images
have been resized down to a spatial resolution of 197×283 pixels, in order to over-
come the computational resources of our GPU. Moreover, for training the neural
networks models, the pixel values of the images have been normalized into the range
between 0 and 1.

Since the TrashNet dataset consists of a small number of images to train our mod-
els, and deep learning neural networks require large datasets, the common practice
of data augmentation has been applied in order to increase the number of images. In
consequence, since the newdata is generated during the training process, an unlimited
number of augmented samples is possible to obtain.

Specifically, the new images were generated through a random subset of the
following transformations:

• Rotation between 0 and 40◦ (see Fig. 10.3a).
• Width changes between 0 and 20% (see Fig. 10.3b).
• Height changes between 0 and 20% (see Fig. 10.3b).
• Shear between 0 and 20% (see Fig. 10.3c).
• Horizontal flip (see Fig. 10.3d).
• Translation between 0 and 12.5% over horizontal axis (see Fig. 10.3e).
• Cutout: masking with a random square of half image size (see Fig. 10.3f).
• Brightness changes between –0.5 and 0.5 (see Fig. 10.3g).
• Contrast changes between 0.5 and 1.5 (see Fig. 10.3h).
• Saturation changes between 0 and 2 (see Fig. 10.3i).

10.4.3 Evaluation

To evaluate the models, some of the classic metrics in classification problems have
been used: accuracy and confusion matrix.
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Fig. 10.2 a Plastic; bMetal; c Cardboard; d Paper; e Glass; f Trash

On one hand, the accuracy measures the global goodness of the model. This
metric is defined as the percentage of images correctly classified vs the total number
of images.

On the other hand, it is also important to know when the classification model is
performing well and what types of errors is doing. The confusion matrix gives us
all this information. Formally, it is a matrix where each row represents the actual
classes and each column the predicted classes. Therefore, each cell represents the
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Fig. 10.3 Examples of transformations for data augmentation

percentage of instances of a specific class predicted as another specific class. The
diagonal of the matrix represents, as a result, the accuracy of each class.

10.4.4 Implementation Details

This work is the continuation of our paper presented at IWINAC 2019 [25]. In that
work, several large neural networks architectures were trained to classify the six
classes of TrashNet. Now, the objective of the current work is to transfer the knowl-
edge from large models to lightweight ones which are more suitable to be deployed
to mobile devices. One of the models with the best results was an InceptionResNet



10 Waste Classification with Small Datasets and Limited Resources 195

architecture. Therefore, two teacher models have been considered for the distillation
process: InceptionResNetV2 [28], and DenseNet201 [11].

InceptionResnetV2 is a neural network architecture based on inception mod-
ules and residual connections. On one hand, inception modules concatenate several
branches of stacked convolutional layers in order to achieve a multiresolution anal-
ysis. On the other hand, residual connections connect a layer with the previous one
in order to achieve a denser architecture. The other teacher model considered is
DenseNet201, a CNN-based architecture where each layer obtains additional inputs
from all preceding layers and passes on its own feature-maps to all subsequent lay-
ers. As a result, a more ‘knowledgeable’ neural network with better performance is
achieved.

As studentmodels, two lightweight architectures havebeen considered:MobileNet
[2], and ShuffleNet [34]. MobileNets architectures consists of depth-wise separable
convolutions. Depth-wise convolutions stack a K1 × K2 convolution layer with a
1 × 1 convolution layer (called pointwise convolution). These types of layers reduce
significantly the complexity of the neural networkwithout degrading its performance.
InMobileNet, the width of the architecture (i.e., the number of input channels in each
layer) can be controlled by the α multiplier. As a result, applying this coefficient, the
number of input channels N becomes α · N . In order to distinguish the width of the
network, this architecture is calledMobileNet-α. In this work, we consider the archi-
tectures MobileNet-1 and MobileNet-0.25. ShuffleNet architecture is based on two
newoperations, pointwise group convolutions and channel shuffle operations. Specif-
ically, pointwise group convolutions are proposed to reduce computation complexity
of 1 × 1 convolutions. To overcome the side effects brought by group convolutions,
the channel shuffle operation helps the information flow across feature channels.

Table 10.1 compiles the number of parameters of each architecture. Focusing
on teacher architectures, it can be appreciated that InceptionResNetV2 have more
than double of parameters than DenseNet201. Concerning the student architectures,
the three considered models have a wide range of parameters between 470,000 and
4,000,000 of parameters. Therefore, in any combination, the number of parameters of
the student architectures are at least five times lower than the teachers’. In the extreme
case, where the InceptionResNetV2 model acts as a teacher, and the MobileNet-0.25
acts as a student, the number of parameters is reduced by more than 100 hundred
times.

The two teacher models and the twoMobileNet architectures have been initialized
using pre-trained weights from ImageNet [9], while ShuffleNet was initialized from
scratch, as we could not find any pretrained ShuffleNet model in our framework1.
For training all these models we fixed a learning rate of 0.0002 and a batchsize of
16 samples. Also, the model is trained with the stochastic gradient descent (SGD)
as an optimizer during 1000 epoch. To avoid overfitting, an early stopping technique
was applied. As a result, the training process is stopped if the validation loss does
not improve during 50 epochs. The GPU used was a GPU 2 RTX 5000 with 16 GB
of memory.

1 A pre-trained ShuffleNet model would have led to improved results.
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Table 10.1 Neural networks architectures complexity

Model Num. trainable
parameters

DenseNet201 [11] 20,013,928

InceptionResNetV2 [28] 55,813,192

MobileNet-1 [2] 4,231,976

MobileNet-0.25 [2] 470,072

ShuffleNet [34] 1,531,888

Table 10.2 Experiments description

Experiment
name

Teacher model Student model Num. train
parameters

D-M-1 DenseNet201 MobileNet-1 3,213,126

D-M-0.25 MobileNet-0.25 214,614

IR-M-1 InceptionResNetV2 MobileNet-1 3,213,126

IR-M-0.25 InceptionResNetV2 MobileNet-0.25 214,614

D-S DenseNet201 ShuffleNet 958,350

To analyze the knowledge distillation process, the specific teacher and student
combinations are detailed in Table 10.2. It can be appreciated that there is a small
difference between the number of trainable parameters of the student architectures
shown in Table 10.1, and those parameters shown in Table 10.2, although the archi-
tectures are the same. This difference is due to neurons of the last dense layer, which
originally were 1000, and now they are substituted by 6 neurons, in order to adapt
the network to the TrashNet dataset.

In order to study the effect of the temperature T and λ parameters, on one hand,
the temperature range was fixed between 1 and 30. Specifically, we considered the
following values for T : 1, 2, 5, 10, 20, and 30. On the other hand, the following λ

values were considered: 1, 0.1, 0.01, and 0.001. These coefficients have been chosen
during the training process, analyzing the contribution of the soft and the hard losses.

10.4.5 Results

Finally, the achieved results are presented. Firstly, the performance of the teacher
models is detailed. Next, the performance of the students’ models is discussed, and
the influence of the temperature (T ) and the regularization term (λ) is analyzed.
Finally, a brief comparison with the state of the art is made.
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Table 10.3 Performance of teacher models

Model Accuracy (%)

DenseNet201 96.75

InceptionResNetV2 95.90

Table 10.4 Performance of distilled models

Experiment name T λ Accuracy (%)

D-M-1 5 1 93.67

D-M-0.25 2 1 91.69

IR-M-1 2 1 92.88

IR-M-0.25 1 1 90.11

D-S 2 1 83.00

Teacher models performance analysis
Prior the knowledge distillation process, the teacher models were trained first. Table
10.3 shows the performance of these models. It could be appreciated that with the
DenseNet201 architecture, the best result was achieved with a 96.75% of accuracy.
On the other hand, InceptionResNetV2 performance is close to the previous one, as
this model achieves 95.90% of accuracy.

Student models performance analysis
Once the teachers’ models have been learnt, the students models were trained with
the knowledge distillation process. Table 10.4 shows the best performance for each
experiment mentioned previously. First of all, in all the models, the best results
were achieved for λ = 1. As a result, the hard and soft losses have the same weight
during training. Secondly, the best results have been achieved for the combination
of architectures DenseNet201 and MobileNet-1, with a 93.97% of accuracy. We
have noticed that by, reducing the number of parameters 5 times approximately,
the accuracy has decreased by 3.18% only. In the extreme case of the experiment,
IR-M-0.25, corresponding to a reduction of more than 100 times of the number of
parameters of the student model compared with the teacher model, a 6.86% decrease
in accuracy is obtained.

Moreover, it could be appreciated from the experiments that for those cases where
a better teacher model has been used tend to obtain better performance. Indeed,
D-M-1 has better accuracy than IR-M-1, and D-M-0.25 has better accuracy than
IR-M-0.25. Furthermore, focusing on the number of parameters, Table 10.4 shows
that the more parameters the student architecture has, a higher accuracy is achieved.
Indeed, MobileNet-1 gets higher accuracy than MobileNet-0.25. Concerning the
D-S experiment, which corresponds to the combination between DenseNet201 and
ShuffleNet architectures, Table 10.4 shows that this experiment gets a significant
lower accuracy. However, we would like to recall that the ShuffleNet model was
trained from scratch.
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Table 10.5 Temperatures analysis for D-M-1 experiment with λ = 1

Experiment T = 1 T = 2 T = 5 T = 10 T = 20 T = 30

D-M-1 91.69% 92.88% 93.67% 89.32% 92.88% 92.09

Analyzing the confusion matrix, Fig. 10.4 shows which classes are mistakenly
classified by other classes. For all the trained models, the class with less accuracy is
‘trash’. As this category corresponds to all the waste which is not ‘glass’, ‘paper’,
‘cardboard’, ‘plastic’ or ‘metal’, it is themost challenging one and it explains its lower
performance. Focusing on D-M-1 and IR-M-1 experiments, ‘plastic’ is the second
category with lower results. This class is also the second one with more confusion
for D-M-0.25, IR-M-0.25 and D-S experiments. Indeed, in these confusion matrix,
‘plastic’ is often confused by ‘metal’ and ‘paper’.

Performance analysis of T and λ parameters
As it was mentioned in Sect. 10.4.4, the 5 experiments were performed with different
values for the temperature T and the regularization parameter λ, in order to assess
their influence in the distillation process.

Concerning the performance of the T parameter, Table 10.5 shows that best per-
formance is achieved for low temperature values (between 1 and 30). However, the
difference between these temperatures, and the higher ones, are not very significant,
as is shown in Table 10.5. Indeed, for temperatures of T = 2 and T = 20we obtained
the same performance. As a result, we conclude that for the range of temperatures
analyzed, this parameter does not affect the performance.

Also, for the selected range of temperatures used in the distillation process, we
analyzed the difference between the probabilities assigned to the correct class and
the probabilities of the incorrect classes for all the images in the test dataset. Fig.
10.5 shows an example of the evolution of the soft probability distribution over a
test image when the temperature is increased. In particular, these probabilities are
achieved when an image belonging to the ‘glass’ category is predicted. As it is
shown in the Fig. 10.5, in the first plot (upper left), which corresponds to T = 1,
the ‘glass’ class (which is the correct one) has a probability near to 1, and the other
classes (the incorrect ones) have probabilities near to 0. In the other extreme, the
plot at bottom right, which corresponds to T = 30, shows that the correct class glass
has a probability near to 0.275, while the incorrect classes have probabilities values
between 0,125 and 0.175. Therefore, applying a high temperature coefficient has
as result a reduction in the difference between the probability of the correct class,
and the probabilities of the wrong classes. In between plots depict the results for the
remaining values of the T parameter (from left to right and top to bottom).

Regarding the regularization parameter λ, Table 10.6 shows the performance on
the D-M-1 experiment with T = 5 when the regularization parameter is modified. It
is shown that for higher λ, higher accuracy is achieved.
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Fig. 10.4 Confusion matrix comparative
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Fig. 10.5 Original and softened probability distributions generated by the teacher network for
temperature values of (from left to right and top to bottom) T = 1, 2, 5, 10, 20, 30

Table 10.6 λ analysis for D-M-1 experiment with T = 5

Experiment T λ = 1 λ = 0.1 λ = 0.01 λ = 0.001 λ = 0.0001

D-M-1 5 93.67% 90.90% 87.35% 68.37% 39.13%

Comparison with state of the art methods
Finally, a brief comparison with the state of the art methods is provided. Table 10.7
shows recent works related to lightweight architectures for trash waste classification.
All the presented results are reported on the TrashNet datasets except for two which
also include a custom dataset. Although the comparison is not easy in many cases as
they use other datasets, it is shown that our results are better than some works as [4,
18], and they are close to [13, 32]. Moreover, the performance is significantly better
than [3], where the same MobileNet architecture has been used.
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Table 10.7 Different state of the art systems for waste classification formobile devices with limited
resources. *Result obtained using a large network (teacher). This is shown for comparison purposes
only

Author (Year) Dataset Architecture Accuracy (%)

Liu et al. (2018) [18] Own dataset (1 cat.) YOLOv2+ MobileNet 89.1

Bircanoglu et al.
(2018) [4]

TrashNet RecycleNet 81

Aral et al. (2019) [3] TrashNet (6 cat.) MobileNet 84

Yang and Li (2020)
[36]

TrashNet WasNet 96.10

White et al. (2020)
[33]

TrashNet WasteNet 97

Huynh et al. (2020)
[13]

TrashNet + own
dataset (7 cat)

Efficient-B0+
Efficient-
B1+ResNet101

94.11

Huang et al. (2021)
[12]

TrashNet CNN+Vision
Trasnformer

96.98

Wang et al. (2021) [32] TrashNet + others (9
cat)

MobileNetV3 94.26

Masand et al. (2021)
[19]

TrashNet +
Openrecycle + TACO
+ Waste Classification

ScrapNet 98

*Our solution TrashNet DenseNet201 96.75

Our solution TrashNet D-M-1 93.67

10.5 Conclusions and Future Work

Selective waste classification for recycling has become a very important aspect of
our everyday life. In this paper, we addressed this problem by proposing a computer
vision-based solution suitable for mobile devices. For this purpose, we used network
distillation as a strategy for knowledge transfer from a large deep learning model to
a more compact one, suitable for mobile devices. Thus, network distillation could
take place on a standard PC with sufficient memory and computation resources, and
at the end of the process, the resulting lightweight model could be easily deployed to
a mobile device. Extensive experiments run on the TrashNet dataset, with a variety
of ‘teacher’ and ‘student’ models, demonstrated that the results obtained with the
lightweight models through the distillation process are computationally efficient,
while maintaining a competitive accuracy level compared to large models and the
current state-of-the art.

Future work will be devoted to studying new data augmentation strategies in
order to enhance the TrashNet dataset. Additionally, we will also consider to study
the problem of domain adaptation, as an alternative knowledge transfer strategy,
when new datasets become publicly available.
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