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Performance10. Performance Evaluation and Design Criteria

Jorge Angeles, Frank C. Park

This chapter is devoted to the design of robots,
with a focus on serial architectures. In this re-
gard, we start by proposing a stepwise design
procedure; then, we recall the main issues in
robot design. These issues pertain to workspace
geometry, the kinetostatic, the dynamic, the elas-
tostatic, and elastodynamic performance. In doing
this, the mathematics behind the concepts ad-
dressed is briefly outlined to make the chapter
self-contained.

We survey some of the tools and criteria used
in the mechanical design and performance evalu-
ation of robots. Our focus is limited to robots that
are (a) primarily intended for manipulation tasks
and (b) supplied with serial kinematic chains. The
kinematics of parallel robots is addressed in de-
tail in Chap. 12. Wheeled robots, walking robots,
multifingered hands, and other similar specialized
structures are studied in their own chapters.
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The most obvious application of the criteria and tools
described in this chapter is in the mechanical design
of a robot. Robot design differs from the design of
single-degree-of-freedom machinery in that the latter
is intended for one specific task, e.g., picking up a work-
piece from a belt conveyor and placing it on a magazine.
Moreover, the conveyor is synchronized with the ma-
nipulating machine and the magazine is stationary, with
well-defined locations where each workpiece is to be
placed. Manipulation robots, in contrast, are not in-

tended for one specific task, but rather for a family of
tasks falling within one class of workpiece motions, e.g.,
planar, spherical, translational, or motions produced by
systems of the Selective Compliance Assembly Robot
Arm (SCARA) type, also known as Schönflies displace-
ments [10.1]. The challenge that robot designers face is
therefore one of uncertainty in the specific task that the
robot will be required to execute. Design criteria have
been devised to help the designer cope with uncertainty,
as discussed herein.

10.1 The Robot Design Process
Given a family of tasks that constitute the functional re-
quirements in the design process, besides more-detailed
design specifications, the role of the designer consists in

producing a robot that will meet all the requirements and
specifications. The various stages in the robot design job
at hand are intended to:

Part
B

10



Springer Handbook of Robotics

Siciliano, Khatib (Eds.) · ©Springer 20081

230 Part B Robot Structures

1. determine the topology of the kinematic chain under-
lying the mechanical structure. Under this item we
consider first the robot type: serial, parallel or hy-
brid. Then, a decision is to be made on the layout
of the various subchains in terms of the type of
joints, most commonly, revolute and prismatic. Re-
cently, one additional type has been recognized to
be equally useful, the Π-joint, coupling two links
under relative translation by means of two other
links undergoing identical angular displacements, al-
though about different parallel axes. The four links
form a parallelogram four-bar linkage [10.2];

2. determine the geometric dimensions of the various
links defining the robotic architecture, as required to
fill a table of Denavit–Hartenberg parameters [10.3]
so as to satisfy workspace requirements. Although
these parameters are usually understood to include
the joint variables, these variables do not affect the
robot architecture; they determine instead the robot
posture;

3. determine the structural dimensioning of the various
links and joints, as needed to meet static load require-
ments, where load includes both forces and moments
– wrenches – under either the most demanding or the
most likely operation conditions, depending on the
design philosophy adopted at the outset;

4. determine the structural dimensioning of the various
links and joints, as needed to meet dynamic load
requirements, where loads are inertia effects of links
and manipulated object;

5. determine the elastodynamic dimensioning of the
overall mechanical structure, including the actuator
dynamics, to avoid a specific spectrum of excitation
frequencies under either the most demanding or the
most likely operation conditions;

6. select the actuators and their mechanical transmis-
sions for the operation conditions adopted at the
outset to cope with task uncertainty.

The above stages can be performed sequentially, in
the order given above: (i) first, the topology is deter-
mined based on the family of tasks specified at the
outset and the shape of the workspace, as discussed
in Sect. 10.2.2; (ii) the link geometry is defined based
on the workspace requirements, which include the max-
imum reach, and the topology defined in stage 1; (iii)
with the link geometry thus defined, the structural di-
mensioning of links and joints (unless the robot under
design is parallel, which does not fall within the scope
of this chapter, all joints are actuated) is undertaken, so
as to support the static loads assumed at the outset; (iv)

with the links and joints dimensioned for static-load con-
ditions, the link centers of mass and link inertia matrices
are determined for a preliminary evaluation of the mo-
tor torque requirements (this evaluation is preliminary in
that it does not consider the dynamic load brought about
by the actuators; this load can be significant, even in the
case of parallel robots, which can have all their motors
fixed to the robot base); (v) with the links assumed rigid,
joint stiffness is assumed, based on experience or using
data from a similar robot, which then leads to an elas-
todynamic model whose natural modes and frequencies
can be determined at a selected set of robot postures
(dynamic behavior of the structure is dependent on
robot posture) by means of scientific code such as Mat-
lab or computer-aided engineering (CAE) code such as
Pro/Engineer or ANSYS; and (vi) if the frequency spec-
trum of the robot structure is acceptable, the designer can
continue to motor selection; otherwise, a redimensioning
is required, which means returning to stage 3.

Even though a design cycle can be completed as out-
lined above, the designer must now incorporate into the
elastodynamic model the structural and inertial data pro-
vided by the motor manufacturer. This requires a return
to stage 5 and a new elastodynamic analysis. It is thus
apparent that the robot design process has one element
in common with engineering design in general: both are
iterative and open-ended [10.4]. Remarkably, however,
the various items driving each design stage are, to a large
extent, independent of each other, e.g., topology and ge-
ometry can be determined independently from motor
selection. Obviously, all issues interact in the overall de-
sign process, but, within certain design specifications,
the various items do not contradict each other, as to
warrant a multiobjective design approach. That is, the
optimum design of serial robots can be accomplished
fairly well by means of a sequence of single-objective
optimization jobs. Again, the results of the last stage,
motor selection, must be integrated into an overall math-
ematical model to test the overall performance. One
reference addressing practical optimization issues in the
conceptual design of industrial robots is [10.5].

Only when the physical limits of components have
been exhausted may a radical redesign requiring a return
to stage 1 be warranted. This is the case with SCARA
systems. Current industrial topologies of these robots
are usually of the serial type, with some exceptions, like
the Konig and Hartman RP-AH series robots with paral-
lel architecture [10.6], which feature two serial SCARA
systems sharing one common end-effector. The quest
for shorter cycle times, as for an industry test cycle
(see Sect. 10.2.1), has prompted the industry to look for
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alternatives to serial architectures. This is how ABB
Robotics is currently marketing a parallel robot, the
FlexPicker, built upon Clavel’s Delta robot [10.7], to
which a fourth axis has been added in series with the
first three. The latter are laid out in a symmetric, parallel
architecture that enables Delta to produce pure trans-
lations of its moving platform. The shortest cycle time
reported by Adept Technology is 420 ms for a payload
of 2 kg (with the Adept Cobra s600, a serial robot) but
other manufacturers claim even shorter times.

This chapter is organized according to the various
stages of the robot design process outlined earlier. Not-
ing that topology selection and geometric dimensioning
are tightly coupled in the kinematic design process, we

first begin with an examination of workspace criteria:
we review methods for determining the topology of the
kinematic chain, followed by the geometric dimensions
so as to satisfy workspace requirements. We then review
in detail the various criteria developed for characterizing
a robot’s manipulating capability, focusing on quantita-
tive notions of dexterity based on both kinematic and
dynamic models. We then examine methods for struc-
tural dimensioning of the links and joints so as to meet
both static and dynamic load requirements. Finally, we
discuss elastodynamic dimensioning, and actuator and
gear sizing, taking into account properties such as the
natural frequency of the robot, and force and acceleration
capability requirements.

10.2 Workspace Criteria
The most obvious consideration in designing a robot is
that its workspace has a set of required characteristics.
This is a fundamental problem in classical mechanism
design, and raises the obvious question of how a user
can specify those characteristics.

Issues to consider here pertain, mostly, to what Vi-
jaykumar et al. [10.8] termed the regional structure of
a manipulator. This applies to manipulators with a de-
coupled architecture, whose last three revolutes have
concurrent axes, thereby forming a spherical wrist, the
point of concurrency being the wrist center. The ma-
nipulation task of architectures of this kind thus allows
for a decoupling of the positioning and the orientation
subtasks: the regional structure, consisting of the first
three joints, is first postured so as to locate the center of
its wrist at a specified point C(x, y, z); then, the local
structure, i. e., the wrist, is postured so as to make the
end-effector (EE) attain a specified orientation with re-
spect to a frame fixed to the base, given by a rotation
matrix.

Most algorithms reported in the literature to de-
termine the workspace of a given robot refer to the
workspace of the regional structure. Here, we should dis-
tinguish between the workspace of the kinematic chain,
regardless of the physical implementation of the chain,
and that of the physical robot. In the former, all revo-
lute joints are capable of unlimited rotations about their
axes; in the latter, joint limits are needed, for example, to
avoid wire entanglement. In the early stages of robot de-
sign, joint limits need not be considered, the workspace
thus exhibiting symmetries that are proper of the type of
joints of the regional structure. If the first joint is a revo-

lute, the workspace has an axis of symmetry, namely, the
axis of this revolute joint; if the first joint is prismatic,
the workspace has an extrusion symmetry, with the di-
rection of extrusion given by the direction of motion of
this joint. As prismatic joints are infinitely extensive,
so is the kinematic workspace of a robot with a pris-
matic joint. The kinematic workspaces of robots with
prismatic joints are usually displayed for a finite portion
of this workspace.

In the case of parallel robots, to be studied in
full detail in Chap. 14, the regional structure is elu-
sive, in general. The usual practice when displaying the
workspace for these robots is to assume a constant orien-
tation of the moving plate, the counterpart of the EE of
serial robots [10.9]. A common architecture of parallel
robots, which arises quite naturally in the design pro-
cess, entails identical legs symmetrically placed both on
the base platform and on the moving platform. Each leg
is, in turn, a serial kinematic chain with one or two ac-
tive joints, all others being passive. The workspace of
this kind of robots also exhibits certain symmetries, but
no axial symmetry. The symmetries are dictated by the
number of legs and the types of actuated joints.

Coming back to serial robots, the workspace can be
defined by an envelope that is essentially of one of two
types, either a manifold or a surface that is smooth almost
everywhere, i. e., smooth everywhere except for a set of
points of measure zero in the Lebesgue sense [10.10].
Broadly speaking, a set of measure zero on a surface is
a curve, e.g., a meridian on a sphere, or a set of isolated
points on a line, e.g., the set of rational numbers on the
real line. A paradigm for this second kind of workspace
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Fig. 10.1 A Puma robot in a fully stretched posture (af-
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Fig. 10.4 The workspace of the orthogonal robot of
Fig. 10.3 (after [10.11])

is that of the Puma robot, whose kinematic chain is
displayed in Fig. 10.1. In this figure, the regional and
the local structures are clearly distinguished, the former
being fully extended. The workspace of this robot is
obtained upon locking all joints but the second, when
the robot is in the posture shown in Fig. 10.1. Then, the
second joint is fully rotated about its axis, the center C
of the wrist then describing a circle of radius R equal to
the distance of C from the line L2, the plane of the circle
being normal to this line and lying a distance b3 from the
axis L1 of the first joint. This distance is known as the
shoulder offset. Now, with all joints locked again, but this
time with the first joint unlocked, the robot is turned as
a rigid body about L1. The result is the toroid of Fig. 10.2.
Notice that the solid enclosed by this surface is the result
of the Boolean operation S −C, where S is the sphere of
radius R centered at point O2 of Fig. 10.1, while C is the
infinite cylinder of radius b3 and axis L1, which appears
as Z1 in Fig. 10.2. It is noteworthy that, although this
workspace can be readily generated by a simple Boolean
operation, it cannot possibly be generated by an implicit
function of the form f (x, y, z) = 0 because the surface
is not a manifold.

Robots with manifold workspaces are not common
in industry. We display in Fig. 10.3 an architecture for
the regional structure of a six-axis decoupled robot,
with its neighboring axes mutually orthogonal and at
the same distance a from each other. The common
normals to the two pairs of axes, X2 and X3, also
lie at the same distance a, as do X4 from X3 and
C from Z3. Point C is the center of the spherical
wrist, the latter not being included in the figure. The
workspace of this robot admits a representation of the
form f (x, y, z) = 0 [10.11], which produces the mani-
fold workspace of Fig. 10.2. The shaded internal region
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of the workspace includes all points admitting four real
inverse-kinematics solutions, all other points admitting
only two.

Given that any point of the workspace boundary
represents a positioning singularity – different from an
orientation singularity – manipulators with workspace
boundaries that are not manifolds exhibit double singu-
larities at the edges of their workspace boundary, which
means that at edge points the rank of the robot Ja-
cobian becomes deficient by two. At any other point
of the workspace boundary the rank deficiency is by
one.

Design rules based on the shape of the workspace
can now be drawn.

1. If the workspace required is axially symmetric and
finite, use a serial robot with a regional structure
composed of revolute joints only.

2. If the workspace required is prismatic and infinite,
use a serial robot with regional structure having one
first joint of the prismatic type. Here, infinite is used
in a restricted sense, meaning much larger in one
direction than the others. Moreover,
– if one direction is required to be much larger

than the others, then practical implementations
of prismatic joints are available in the form
of rails either overhead, thereby giving rise to
gantry robots, or on the floor.

– if two directions are required to be much larger
than the other, then use a wheeled mobile
robot carrying a manipulator on top. A fa-
mous realization of this concept is the National
Aeronautical and Space Agency’s (NASA) So-
journer used in the Pathfinder mission to Mars
in 1997.

3. If axial symmetry is not required, but rather
a workspace with various coplanar axes of sym-
metry, similar to those of regular polygons, use
a parallel robot.

10.2.1 Reaching a Set of Goal Frames

Closely related to the problem of workspace specifica-
tion is that of task specification. In mechanism design
it is customary to specify a set of coordinate frames
in space, and to design a mechanism with an a priori
specified topology that can visit these frames. An order
in which the frames must be reached may be given.
In the event that not all of the frames are reachable,
then one may seek a mechanism that comes closest, in
some suitable sense, to the specified frames. The lit-

erature on this classical mechanism design problem is
vast – see, e.g., [10.1, 12, 13] and the references cited
therein. Some further remarks in connection with this
goal-frame approach to robot dimensioning are note-
worthy.

1. Reaching exactly the desired frames may not always
be desired or possible: in some cases it is better to use
an optimization approach that allows for solutions
that will visit the desired poses within a minimum
error (provided that an error norm can be suitably
engineered, of course).

2. It has been claimed [10.9] that interval analysis al-
lows not only a discrete set of desired poses but also
a full six-dimensional (6-D) workspace to be met
while taking into account manufacturing errors.

3. The branching problem occurring in single-degree-
of-freedom mechanisms may also occur in robot
design: a design solution based on via points may
indeed visit the prescribed poses, but not all of
these may be reachable within the same assembly
mode. This problem is exacerbated in the de-
sign of serial robots, as a six-degree-of-freedom,
revolute-coupled robot may admit up to 16 dis-
tinct postures – branches – for one given EE
pose [10.14, 15].

4. While a robot designed to visit a set of prescribed
poses via its end-effector will be able to visit that
set, we should not forget that the purpose of using
robots is first and foremost to be able to perform not
one single task, but rather a family of tasks. In this
light, the set of poses for which a robot is designed
might as well be a task that is representative of that
family.

In connection with remark 4 above, we can cite the
design or evaluation of SCARA systems. A SCARA
system is a four-degree-of-freedom serial robot capable
of tasks that lie within the Schönflies subgroup of the
group of rigid-body displacements [10.16, 17], namely
the set of three-dimensional displacements augmented
with a rotation about an axis of fixed direction. In these
systems, the task at hand is given by two vertical seg-
ments joined by one horizontal segment. Moreover, the
length of the vertical segments is 25.0 mm, that of the
horizontal segment being 300.0 mm. While the end-
effector is traversing the horizontal segment, moreover,
it should rotate about a vertical axis through an angle of
180◦. This task specification, which has been adopted
by SCARA manufacturers, does not indicate how to ne-
gotiate the corners, which is left to the imagination of
the robotics engineer.
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10.2.2 Workspace Volume and Topology

Reachable and Dexterous Workspace
Beginning with the early work of Roth [10.18], there
have been many studies on the relationship between ma-
nipulator kinematic geometry and its workspace. Most
studies have focused on a classification of the workspace
into two components, the reachable and the dexterous
workspace [10.19]. Given a reference point P attached
to a manipulator end-effector, such as the center of
the spherical wrist, or a point on the EE, the reach-
able workspace is defined to be the set of points in
physical space that can be reached by P. The dexter-
ous workspace, on the other hand, is the set of points
that can be reached by P with arbitrary EE orienta-
tions.

The early literature on workspace focuses on nu-
merical and algebraic methods to characterize these
workspaces. Reachable and dexterous workspaces have
been analyzed using numerical techniques by Kumar
and Waldron [10.19], Yang and Lee [10.20], and Tsai
and Soni [10.21], among others. The advantage of these
schemes over algebraic approaches is that kinematic
constraints can be readily included. More-general de-
sign principles or insights, however, are more difficult
to come by using these techniques. Among the algebraic
approaches to workspace characterization, a topologi-
cal analysis of robot workspace is given by Gupta and
Roth [10.22] and Gupta [10.23]; here the concept of
workspace holes and voids is defined, and conditions for
their existence are identified. The shape of the reachable
and dexterous workspaces is also analyzed as a function
of P.

Further studies of workspace analysis were re-
ported by Freudenstein and Primrose [10.24] and
by Lin [10.25], where precise relationships between
kinematic and workspace parameters are developed,
and a class of three-joint manipulators is optimized
for workspace volume. A more general analysis
of workspace optimization is given in Vijaykumar
et al. [10.8]. Performance criteria for manipulators are
defined here in terms of the dexterous workspace; given
that a manipulator satisfies certain constraints on its
Denavit–Hartenberg parameters, it is shown that the
optimal 6R design is the elbow manipulator.

A typical design of robot regional architecture is of
the orthogonal type, consisting of one revolute of the
vertical axis and two revolutes of the horizontal axes,
one of which intersects the vertical axis. Moreover,
the most common architecture includes intermediate
and distal links of identical lengths. The workspace

of this architecture is thus a sphere of radius equal to
twice that common link length. The volume of this
workspace is thus determined by the length in ques-
tion. As shown by Yoshikawa [10.26], the workspace of
the two-link planar manipulator defined by the last two
links of the foregoing regional architecture is of max-
imum area for a prescribed reach and equal link lengths.
As a result, the volume of the same regional architec-
ture is similarly of maximum volume for a prescribed
reach.

Differential-Geometric Workspace
Characterization

Workspace can also be approached from a differential-
geometric perspective, by regarding the configuration
space of a robotic end-effector frame as a subset of the
special Euclidean group SE(3). An important physical
consideration in defining the workspace volume of spa-
tial mechanisms is that it should not depend on the choice
of fixed reference frame. Less obvious but just as im-
portant is the requirement that the volume should not
depend on which point of the last link the end-effector
frame is fixed to. This last condition has the following
physical significance: if the EE were enlarged or shrunk,
then the robot would have the same workspace volume.
The workspace volume of a robot therefore depends only
on the joint axes.

The workspace volume of a robot is defined by re-
garding SE(3) as a Riemannian manifold, so that the
workspace volume is simply the volume of the im-
age of the forward kinematic map f with respect to
the volume form on SE(3). It is known that SE(3) has
a bi-invariant volume form, that is, the notion of vol-
ume is invariant with respect to the choice of both the
fixed (base) and moving (end-effector) frames – see,
e.g., Loncaric [10.27]. Paden and Sastry [10.28] pro-
vide the following visualization for this volume form:
Suppose an airplane is restricted to move within a cube
of airspace of length 1 km on a side. At each point
within this cube the airplane can point itself anywhere
in a 4π solid angle and roll 2π about the direction it
is pointing. The orientation volume at such a point is
4π × 2π = 8π2 rad3. Multiplying by the positional vol-
ume one obtains 8π2 rad3km3 for the volume of the free
configuration space of the aircraft.

This depiction is the notion of workspace volume
used for robots; it has the advantage of being able to trade
off orientation freedom for positional freedom smoothly,
unlike the popular notion of dexterous workspace. Note
that the actual numerical value one obtains will depend
on the choice of length scale for physical space; this
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in itself does not pose a serious problem for workspace
volumes, as long as the same length scale is maintained
when comparing different workspaces.

In [10.28] Paden and Sastry show that the op-
timal 6R manipulator that maximizes the workspace
volume subject to a kinematic length constraint is the

elbow manipulator. This result is consistent with the
earlier finding of Vijaykumar et al. [10.8], but the au-
thors employ the geometric framework outlined above.
Moreover, the results are obtained without some of the
a priori assumptions on the kinematic structure made by
Vijaykumar.

10.3 Dexterity Indices

10.3.1 Local Dexterity for Open Chains

Dexterity can be defined as the ability to move and apply
forces and torques in arbitrary directions with equal ease,
the concept thus belonging to the realm of kinetostat-
ics, which is the study of the interplay between feasible
twists and constraint wrenches in multibody mechani-
cal systems under static conservative conditions. Here,
twist is the six-dimensional array of velocity variables of
a rigid body, involving three components of a landmark-
point velocity and three of angular velocity; wrench, in
turn, is the six-dimensional array of static variables act-
ing on a rigid body, three accounting for the resultant
force applied at the same landmark point and three for
the concomitant moment acting on the same body.

Salisbury and Craig [10.29] introduced the concept
of dexterity when working on the design of articulated
hands. At issue is the way in which input joint velocity
errors propagate to the output velocities of each fingertip.
To illustrate this concept, let J(θ) denote the Jacobian
of the forward kinematic map, i. e.,

t = J(θ)θ̇ (10.1)

in which θ and θ̇ denote the vectors of joint variables and
joint rates, respectively, while t is the EE twist, defined,
in turn, as,

t =
(

ω

ṗ

)

(10.2)

with ω denoting the angular velocity of the EE and ṗ the
velocity of the operation point P of the EE, at which the
task is specified.

Let n and m be the dimensions of the joint space J
and of the end-effector configuration space G, respec-
tively, where n ≥ m. Now, the image under J(θ) of the
unit hypersphere {θ | ‖θ̇‖ = 1} is an ellipsoid in the space
of twists t. Indeed, if we assume for concreteness that
n = m – the more general case n %= m can also be ac-
commodated, but we refrain from including it here in

order to streamline the discussion that follows – then the
polar decomposition [10.30] of J takes the form

J = RU = VR , (10.3)

where R is an orthogonal matrix, whether proper or
improper – if proper, then R represents a rotation; if im-
proper, then a reflection – while U and V are symmetric
and at least positive-semidefinite matrices. Moreover, if
J is nonsingular, then U and V are both positive-definite
and the decomposition is unique. In any event, these
two matrices are related by a similarity transformation,
namely,

V = RUR& (10.4)

which means that the two matrices have identical real
nonnegative eigenvalues. These eigenvalues are nothing
but the singular values of J. Indeed, if Σ denotes the
diagonal representation of U , with its i-th diagonal entry
σi denoting the i-th eigenvalue of U , or of V for that
matter, then the eigenvalue decomposition of U is

U = EΣE& (10.5)

in which E is the orthogonal matrix whose i-th column
ei represents the i-th eigenvector of U , while Rei denotes
the i-th eigenvector of V. Now, if we substitute the above
decomposition of U into the polar decomposition of
J, (10.3), we obtain

J = REΣE& (10.6)

which is nothing but the singular-value decomposition
of J, the diagonal entries of Σ being the singular values
of J.

Now we can provide a geometric interpretation of
the forward kinematic mapping of (10.1), for we can
rewrite this mapping in the form

t = RU θ̇ . (10.7)

At nonsingular postures, the Jacobian is invertible, and
hence so is U , whence the foregoing expression leads to

θ̇ = U−1 R&t . (10.8)
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Furthermore, if we assume that all the components
of both the twist array t and the joint-rate array θ̇ have
the same physical units, which is the case for purely
positioning or purely orienting manipulators with only
revolute joints, then we can take the Euclidean norm of
both sides of (10.8), thereby obtaining

‖θ̇‖2 = t& RU−2 R&t . (10.9)

Moreover, if we substitute U by its eigenvalue de-
composition, (10.5), in the above equation, we obtain

‖θ̇‖2 = t& REΣ−2 E& R&t

and, if we let

v = E& R&t (10.10)

then the above expression for ‖θ̇‖2 becomes

v&Σ−2v = ‖θ̇‖2 . (10.11)

Now, if the i-th component of v is denoted by vi ,
for i = 1, . . . , n, and we look at the mapping of the unit
ball in J, ‖θ̇‖2 = 1, (10.11) leads to

v1

σ2
1

+ v2

σ2
2

+· · ·+ vn

σ2
n

= 1 (10.12)

which is the canonical equation of an ellipsoid of semi-
axes { σi }n

1 in the G-space, i. e., the space of Cartesian
velocities, or twists of the EE. Notice that the ellipsoid
in question takes its canonical form when represented
in a coordinate frame of axes oriented in the directions
of the eigenvectors of U . The equation of the ellipsoid
along the original axes in G-space is, of course,

t& REΣ−2 E& R&t = 1 . (10.13)

In summary the unit ball in joint space is mapped
by the Jacobian-inverse J−1 into an ellipsoid whose
semiaxes are the singular values of J. That is, J distorts
the unit ball in the joint-rate space into an ellipsoid in
the EE-twist space. Hence, a measure of the quality of
motion and force transmission of the robotic architecture
from the joints to the EE is given by the above distortion;
the smaller the distortion, the higher the quality of the
transmission.

A measure of the Jacobian-induced distortion can
thus be defined as the ratio of the largest σM to the
smallest σm singular values of J, which is nothing
but the condition number κ2 of J based on the matrix
2-norm [10.31], i. e.,

κ2 = σM

σm
. (10.14)

Actually, (10.14) is only one possibility of comput-
ing the condition number of J, or of any m × n matrix
for that matter, and certainly not the most economical.
Notice that this definition requires knowledge of the
singular values of the Jacobian. However, computing
the singular values of a matrix is as computationally in-
tensive as computing eigenvalues, with the added cost
of the polar decomposition; the combined operation is
slightly less expensive than the singular-value decompo-
sition [10.32]. The most general definition of condition
number, for n × n matrices, is [10.31]

κ(A) = ‖A‖‖A−1‖ . (10.15)

As stated above, the expression (10.14) is obtained when
the matrix 2-norm is adopted in (10.15). The matrix
2-norm is defined as

‖A‖2 ≡ max
i

{ σi } . (10.16)

If, on the other hand, the weighted matrix Frobenius
norm is adopted, which is defined as

‖A‖F ≡
√

1
n

tr(AA&) ≡
√

1
n

tr(A& A) (10.17)

then, apparently, the computation of the singular values
can be obviated. When the weight 1/n is omitted in
the above definition, the standard Frobenius norm is
obtained. Notice, however, that the weighted Frobenius
norm is more significant in engineering, for it does not
depend on the number of rows and columns of the matrix
at hand. The weighted Frobenius norm, in fact, yields
the root-mean-square (rms) value of the set of singular
values.

The Frobenius condition number κF of the Jacobian
J, based on the matrix Frobenius norm, is then

κF(J) = 1
n

√
tr(JJ&)

√
tr[(JJ&)−1]

= 1
n

√
tr(J& J)

√
tr[(J& J)−1] . (10.18)

One more important difference between the two
forms of computing the matrix condition number is
worth pointing out: κ2( · ) is not an analytic function of
its matrix argument, while κF( · ) is. Hence, the condition
number based on the Frobenius norm can be applied to
great advantage in robot architecture design, as κF( · ) is
differentiable and lends itself to gradient-dependent op-
timization methods, which are much faster than direct
methods based only on function evaluations. In robot
control, which requires real-time computations, κF( · )
also offers practical advantages, for its computation
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obviates the knowledge of the singular values, only re-
quiring a matrix inversion, which is a rather simple task.

The significance of the condition number in robot de-
sign and control can be best understood if we recall that
the concept stems from numerical analysis in connection
with the solution of the linear system of equations (10.1)
for θ̇. Given that J is a function of both the architec-
ture parameters and the posture variables θ, J is known
only to within the error with which those quantities are
known. Further, let the architecture parameters, namely,
the constant values in the Denavit–Hartenberg param-
eter list, be stored in an array p. Both p and θ are known
up to measurement errors δp and δθ, respectively. More-
over, the twist t is input into the control software of the
robot with an unavoidable error δt.

In solving (10.1) for θ̇ with floating-point arithmetic,
the computed value is contaminated with a roundoff
error δθ̇. The relative error in the computed θ̇ is related
to the relative errors in the architecture parameters and
posture variables by the relation [10.31]

‖δθ̇‖
‖θ̇‖ ≤ κ(J)

(‖δp‖
‖p‖ + ‖δθ‖

‖θ‖ + ‖δt‖
‖t‖

)
, (10.19)

where p and θ represent the (unknown) actual values of
these vectors and t the nominal value of the twist.

Nevertheless, the foregoing discussion applies to
tasks involving either positioning or orientation, but not
both. Most frequently, robotic tasks involve both posi-
tioning and orientation, which leads to Jacobian matrices
with entries bearing disparate physical units, the con-
sequence being that the Jacobian singular values have
disparate units as well. Indeed, singular values associ-
ated with positioning bear units of length, whereas those
associated with orientation are dimensionless. As a con-
sequence, it is impossible to either order all singular
values from smallest to largest or to add them all.

To cope with the issue of disparate units in the Ja-
cobian entries, and to allow for the computation of the
Jacobian condition number, the concept of characteris-
tic length has been proposed [10.11]. The characteristic
length L has been defined as the length by which the en-
tries of the Jacobian with units of length are to be divided
to render the Jacobian condition number a minimum at
an optimum posture. This definition, while sound, lacks
an immediate geometric interpretation, which has made
its adoption in the robotics community difficult. In order
to provide for a geometric interpretation, the concept
of homogeneous space was recently introduced [10.33].
Using this concept, the robot architecture is designed
in a dimensionless space, with points whose coordi-
nates are dimensionless real numbers. In this way, the

six Plücker coordinates [10.34] of lines are all dimen-
sionless, and hence the columns of the robot Jacobian
matrix, comprising the Plücker coordinates of the revo-
lute axes, are dimensionless as well. As a consequence,
the Jacobian singular values are all dimensionless, and
the Jacobian condition number can be defined. Once
the robotic architecture has been designed for minimum
condition number, under geometric constraints on link-
length ratios and angles between neighboring revolute
axes, for example, the maximum reach of the robot can
be calculated. The maximum reach r will thus be a di-
mensionless quantity. When this quantity is compared
with the prescribed maximum reach R, with units of
length, the characteristic length is computed as the ratio
L = R/r.

10.3.2 Dynamics-Based Local Performance
Evaluation

Since motions are caused by forces and torques act-
ing on rigid bodies, it seems reasonable to formulate
performance indices that take into account the iner-
tial properties of the mechanism. Asada [10.35] defines
the generalized-inertia ellipsoid (GIE) as the ellip-
soid defined by the product G = J−&MJ−1, where
M denotes the inertia matrix of the manipulator. This
ellipsoid is that with semiaxes given by the singular
values of the foregoing product. Yoshikawa [10.36],
in turn, defines a corresponding dynamic manipu-
lability measure as det[JM−1(JM−1)&]. Physically
these concepts represent two distinct phenomena. Sup-
pose the robot is viewed as an input–output device
which, given a joint torque, produces an acceleration
at the end-effector. Yoshikawa’s index measures the
uniformity of this torque–acceleration gain, whereas
Asada’s GIE characterizes the inverse of this gain. If
a human operator were holding the end-effector and
attempting to move it about, the GIE would measure
the resistance of the robot to this end-effector mo-
tion.

Other measures that attempt to capture robot
performance as a function of the dynamics can be cited:
Voglewede and Ebert–Uphoff [10.37] propose perform-
ance indices based on joint stiffness and link inertia,
with the aim of establishing a distance to singularity for
any robot posture, while Bowling and Khatib [10.38]
propose a general framework for capturing the dynamic
capability of a general robot manipulator that includes
the velocity and acceleration characteristics of the end-
effector, taking into account factors such as torque and
the velocity limits of the actuators.
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10.3.3 Global Dexterity Measures

The above measures are local in the sense that they
characterize the dexterity of a robot at a given pos-
ture. Local measures are useful for applications ranging
from redundancy resolution to workpiece positioning,
but for design applications a global measure may be
more desirable. One straightforward way of extending
local measures to global ones is to integrate them over
the allowable joint space. In [10.39] Gosselin and An-
geles integrate the Jacobian condition number over the
workspace to define a global measure, thereby produ-
cing a global conditioning index. For the simpler cases
of planar positioning and spherical manipulators, the
global conditioning index was found to coincide with its
local counterpart.

10.3.4 Closed-Chain Dexterity Indices

The formulation of dexterity for closed chains presents
a number of subtleties. The first obvious difference is
that the joint configuration space of a closed chain
will no longer be a flat space; in the general case it
will be a curved multidimensional surface embedded in
a higher-dimensional (typically flat) space. Also, dual to
the open chain case, the forward kinematics for closed
chains is generally more difficult to solve than the inverse
kinematics, with the possibility of multiple solutions.
Another important difference is that only a subset of the
joints may be actuated, and that the number of actu-
ated joints may even exceed the mechanism’s kinematic
degrees of freedom.

Several coordinate-based formulations for closed-
chain dexterity have been proposed for specific
mechanisms [10.40] and for cooperating robot systems
whose joints are all assumed to be actuated [10.41, 42],
at least some of which have led to apparently paradoxical
results [10.43, 44]. Because of the nonlinear charac-
teristics unique to closed-chain mechanisms discussed
above, particular care must be exercised in formulating
coordinate-based dexterity measures.

Another recent line of work has attempted a co-
ordinate-invariant differential-geometric formulation of

dexterity for closed chains. In this framework the joint
and end-effector configuration spaces are regarded as
Riemannian manifolds with an appropriate choice of
Riemannian metric, with the choice of joint space metric
reflecting the characteristics of the joint actuators. The
previous notions of ellipsoid developed for serial chains
can be extended to general closed chains, containing
both passive and active joints, and possibly redundantly
actuated [10.45, 46].

10.3.5 Alternative Dexterity-Like Measures

The various definitions of dexterity discussed above all
refer to the same qualitative feature of the ability of
a robot to move and apply forces in arbitrary direc-
tions. A different viewpoint is taken in the work of
Liégeois [10.47] and Klein and Huang [10.48], where
dexterity is quantified in terms of joint-range availabil-
ity. The driving motivation here lies in that most robots
have joint limits; therefore, one should minimize the
possibility of a joint reaching a stop.

Hollerbach [10.49] takes an alternative approach to
designing a redundant 7R manipulator, by considering:
(a) elimination of internal singularities, (b) ability to
avoid obstacles in the workspace; (c) the solvability
of the kinematic equations, and (d) mechanical con-
structability. Based on these four criteria, he derived
a particular 7R design with the morphology of the hu-
man arm, i. e., composed of two spherical joints defining
the shoulder and the wrist plus an intermediate revolute
playing the role of the elbow. Now, while a redundant
architecture should remain fully capable of performing
six-DOF tasks upon locking one joint, the architecture
reported in this reference may end up by losing this
capability if the elbow joint is locked.

From a control perspective, Spong [10.50] shows
that, if the inertia matrix of a manipulator has a vanishing
Riemannian curvature, there exists a set of coordinates in
which the equations of motion assume a particularly sim-
ple form. The curvature of the inertia matrix also reflects
the sensitivity of the dynamics to certain robot param-
eters. Minimizing the curvature, therefore, is another
possible criterion for robot design.

10.4 Other Performance Indices

10.4.1 Acceleration Radius

Another measure that attempts to capture the dynamic
capabilities of a robotic manipulator is the acceler-

ation radius. Initially proposed by Graettinger and
Krogh in [10.51], the acceleration radius measures the
minimum acceleration capability of the end-effector, in
arbitrary directions, for the given torque bounds on the
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actuators. Specifically, given the dynamics equations for
a serial chain in the form

τ = M(θ)θ̈ +C(θ, θ̇)θ̇ (10.20)

in which M is the robot mass matrix – also known as the
inertia matrix – in joint space, and C(θ, θ̇) is the matrix
mapping the joint-rate vector to the vector of Coriolis
and centrifugal forces in the same space. Moreover, the
actuators are assumed to have joint torque limits of the
form

τmin ≤ τ ≤ τmax , (10.21)

where the lower and upper limits τmin, τmax ∈ Rn are
constant or functions of the manipulator posture θ. The
end-effector twist rate, denoted by ṫ, can be expressed
as

ṫ = J(θ)θ̈ + J̇(θ, θ̇)θ̇ , (10.22)

where J̇(θ, θ̇) is the Jacobian time-derivative. The Jaco-
bian J was introduced in (10.1).

Under the assumption that J(θ) is nonsingular, one
can write

θ̈ = J(θ)−1 ṫ − J(θ)−1 J̇(θ, t) . (10.23)

Substituting the above expression into the dynamic
equations (10.20) leads to

τ(θ, t, ṫ) = M′(θ)ṫ +C′(θ, t) , (10.24)

where

M′(θ) = M(θ)J(θ)−1

C′(θ, t) = [C(θ, t)− M(θ)J(θ)−1 J̇JJ(θ, t)]J−1(θ) .

For a given state (θ, θ̇), the linear torque bounds (10.21)
now define a polytope in the twist-rate space. Graet-
tinger and Krogh [10.51] define the acceleration radius
to be the largest sphere centered at the origin that is
contained in this polytope; the radius reflects the min-
imal guaranteed EE acceleration in arbitrary directions.
This concept is applied to measure the EE acceleration
capability of a manipulator, as well as to determine the
actuator sizes for achieving a desired acceleration radius.
Bowling and Khatib [10.38] generalize this concept to
capture both force and acceleration capabilities of the
end-effector, with a view to quantifying the worst-case
dynamic performance capability of a manipulator.

10.4.2 Elastostatic Performance

Elastostatic performance refers to the robotic system’s
response to the applied load – force and moment, i. e.,

wrench – under static equilibrium. This response may
be measured in terms of the stiffness of the manipulator,
which determines the translation and angular deflections
when the EE is subjected to an applied wrench.

Robot deflections have two sources: link and joint
deflection. In the presence of long links, as in the space
robot Canadarm2, link compliance is a major source
of deflection. However, in the majority of today’s serial
robots, the main source of deflection occurs at the joints.

In this chapter, we assume that the manipulator links
are rigid, and model the joints as linearly elastic torsional
springs. The more complex problem of link flexibility
is studied in detail in Chap. 13. That is, for the elas-
tostatic model we base our analysis on the assumption
that, under a positioning task, the joints are locked at
a certain posture θ0, while the EE is subject to a pertur-
bation wrench ∆w that is balanced by an elastic joint
torque ∆τ. Under these conditions, ∆θ and ∆τ obey the
well-known linear relation

K∆θ = ∆τ (10.25)

in which K is the stiffness matrix in joint space at the
given posture. Moreover, the matrix K is diagonal, with
its entries equal to the torsional stiffnesses of the corres-
ponding joints, K is therefore posture independent, i. e.,
constant throughout the whole robot workspace. More-
over, since all joints exhibit a finite, nonzero stiffness,
K is invertible, its inverse C being termed the compli-
ance matrix. We can thus express the inverse relation
of (10.25) as

∆θ = C∆τ . (10.26)

It should be apparent that ∆θ and ∆τ have an incremen-
tal nature, for both are measured from the equilibrium
posture, at which ∆τ and ∆θ vanish.

On the issue of stiffness matrix, Griffis and
Duffy [10.52] proposed a mapping from an incremen-
tal rigid-body displacement ∆x into an incremental
wrench ∆w that turned out to be nonsymmetric. The
concept behind this mapping was formalized by Howard
et al. [10.53] by means of Lie algebra. However, in the
foregoing papers, ∆x and ∆w turn out to be incompat-
ible in the sense that their reciprocal product does not
yield incremental work – the point at which ∆x is de-
fined is distinct from that at which ∆w is applied. For
this reason, the array representation of the same map-
ping cannot be, properly speaking, termed a stiffness
matrix.

For a constant magnitude of ∆τ, the deflection
attains its maximum value in the direction of the eigen-
vector associated with the maximum eigenvalue of C
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or, equivalently, with the minimum eigenvalue of K ,
denoted by κmin. In terms of elastostatic performance,
we aim to (a) make the maximum deflection a minimum,
i. e., we want to maximize κmin, and (b) make the magni-
tude of the deflection ||∆θ|| as insensitive as possible to
changes in the direction of the applied load ∆τ. This can
be done by rendering κmin as close as possible to κmax.
The first aim is associated with the stiffness constants,
i. e., the higher the constants the lower the deflections.
The later, however, is associated with the concept of
isotropy, the ideal case being when all the eigenvalues
of K are identical, which means that K is isotropic.
Due to the pyramidal effect of serial robots, in which
downstream motors carry their upstream counterparts,
the joint stiffness is bound to be largest for the proximal
joints. Hence an isotropic stiffness matrix is impossible
for serial robots.

Notice that (10.25) and (10.26) may also be formu-
lated in the task space, i. e.,

KC∆x = ∆w , (10.27)

where ∆x ≡ t∆t, with ∆t denoting a small time interval
producing a correspondingly small change ∆x in the
pose of the EE. That is,

∆x = Jθ̇∆t = JJJ∆θ (10.28)

which is a linear transformation of the joint-vector in-
crement into the pose-increment vector. We show next
that the stiffness matrix is not frame invariant. This
means that, under the linear transformation from joint to
Cartesian coordinates, the stiffness matrix does not obey
a similarity transformation. For quick reference, we re-
call below the definition of similarity transformation: if
y = Lx is a linear transformation of Rn into itself, and
we introduce a change of vector basis, x′ = Ax, y′ = Ay,
then L changes to L′, which is given by

L′ = A LA−1 . (10.29)

The above transformation of any vector of Rn into an-
other one of the same space, and of a matrix L into L′,
as given by (10.29), is termed a similarity transforma-
tion. Notice that A is guaranteed to be invertible, as it
represents a change of coordinate frame.

Now, under the change of coordinates given
by (10.28), (10.27) leads to

KC J∆θ = J−T∆τ , (10.30)

where we have used the kinetostatic relation [10.11]

J&∆w = ∆τ .

The exponent −& denotes the transpose of the inverse
or, equivalently, the inverse of the transpose. Upon mul-
tiplication of both sides of (10.30) by J& from the left,
we end up with

J&KC J∆θ = ∆τ . (10.31)

If we now compare (10.25) with (10.31), we can
readily derive the relations between the stiffness matrix
K in joint space and the stiffness matrix KC in Cartesian
space:

K = J&KC J and KC = J−&K J−1 (10.32)

which apparently is not a similarity transformation
between K and KC. What this means is that the two ma-
trices do not share the same set of eigenvalues and their
eigenvectors are not related by the linear relation (10.28).
As a matter of fact, if the robot is revolute-coupled,
the entries of its stiffness matrix K all have units of
Nm, i. e., of torsional stiffness, while the entries of KC
have disparate units. To show this, the Jacobian matrix,
the inverse Jacobian and the two stiffness matrices are
partitioned correspondingly into four 3 × 3 blocks, i. e.,
as

J =
(

J11 J12

J21 J22

)

, J−1 =
(

J′
11 J′

12
J′

21 J′
22

)

,

K =
(

K11 K12

K&
12 K22

)

, KC =
(

KC11 KC12

K&
C12 KC22

)

.

Furthermore, in light of the definition of the
twist, (10.2), the two upper blocks of J are dimen-
sionless, while its two lower blocks have units of
length [10.11]. As a consequence, the two left blocks
of J−1 are dimensionless, while its two right blocks
have units of inverse length. Now, the blocks of KC are
computed from the corresponding relation in (10.32),
thereby obtaining

KC11 = J′T
11(K11 J′

11 + K12 J′
21)

+ J′T
21(K&

12 J′
11 + K22 J′

21)

KC12 = J′T
11(K11 J′

12 + K12 J′
22)

+ J′T
21(K&

12 J′
12 + K22 J′

22)

KC21 = K&
C12

KC22 = J′T
12(K11 J′

12 + K12 J′
22)

+ J′T
22(K&

12 J′
12 + K22 J′

22) .
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It is now apparent that: KC11 has entries with units
of Nm, i. e., of torsional stiffness; KC12 and KC21 have
entries with units of N; and KC22 has entries with units
of N/m, i. e., of translational stiffness.

The outcome of the foregoing discussion is that
a norm for K is possible, but not one for KC, unless
of course a characteristic length is introduced to ren-
der all the entries of KC dimensionally homogeneous.
A norm of a matrix is useful as it indicates how large the
entries of the matrix are. We would like to characterize
how stiff a robot is in both joint and Cartesian spaces. In
joint space we could adopt any norm, but notice that the
2-norm, introduced in (10.3), would be misleading, as
this norm would assign the value of the strongest joint to
the overall robot stiffness. A more suitable norm would
be the weighted Frobenius norm, introduced in (10.17),
which would assign the rms value of the joint stiffnesses
to the overall robot stiffness.

To design a robot optimally, we would therefore aim
to maximize the Frobenius norm of its stiffness matrix
in joint space, while observing constraints on the robot
weight, as stiffer joints lead to heavier joints if the same
material is used for all joints.

10.4.3 Elastodynamic Performance

For a general design problem, not only the kinetostatic
and elastostatic performances, but also the elastody-
namic performance have to be considered. In this regard,
we introduce the assumptions of Sect. 10.4.2, with the
added condition that inertia forces due to the link masses
and moments of inertia are now taken into consideration.

The linearized model of a serial robot at the posture
given by θ0, if we neglect damping, is

M∆θ̈ + K∆θ = ∆τ (10.33)

in which M is the n × n positive-definite mass ma-
trix introduced in Sect. 10.4.1, while K was defined
in Sect. 10.4.2 as the n × n positive-definite stiffness
matrix in joint space. Both K and M were defined in
joint-space coordinates, ∆θ, representing the vector of
joint-variable elastic displacements, as in Sect. 10.4.2.
These displacements are produced when, as the joints
are all locked at a value θ0 and thereby become ideal lin-
ear springs, the robot is subject to a perturbation ∆τ, to
nonzero initial conditions, or to a combination of both.

Under free vibration, i. e., under a motion of the sys-
tem (10.33) caused by nonzero initial conditions and
a zero excitation ∆τ, the foregoing equation can be

solved for ∆θ̈:

∆θ̈ = −D∆θ , D ≡ M−1 K (10.34)

in which the matrix D is known as the dynamic ma-
trix. This matrix determines the behavior of the system
under consideration, as its eigenvalues are the natu-
ral frequencies of the system and its eigenvectors the
modal vectors. Let { ωi }n

1 and { fi }n
1 denote the sets of

eigenvalues and the corresponding eigenvectors of D, re-
spectively. Under the initial conditions [∆θ(0), ∆θ̇(0)]&,
in which ∆θ(0) is proportional to the i-th eigenvector
of D and ∆θ̇(0) = 0, the ensuing motion is of the form
∆θ(t) = ∆θ(0) cos ωi t [10.54].

Furthermore, under the change of variables given
by (10.28), the model (10.33) changes to

MJ−1∆ẍ+ K J−1∆x = J&∆w .

If we now multiply both sides of the above equation
by J−&, we obtain the elastodynamic model (10.33) in
Cartesian coordinates, namely

J−&MJ−1∆ẍ+ J−&K J−1∆x = ∆w

in which the first matrix coefficient is the mass matrix
MC in Cartesian coordinates, and the second is identified
as KC, which was introduced in (10.32), i. e.,

MC ≡ J−&MJ−1 . (10.35)

The elastodynamic model in Cartesian coordinates
thus takes the form

MC∆ẍ+ KC∆x = ∆w . (10.36)

Again, by virtue of the transformation (10.35), it is ap-
parent that the mass matrix, like its stiffness counterpart,
is not invariant under a change of coordinates. More-
over, in a revolute-coupled robot, all the entries of M
have units of kg m2; however, the entries of MC have
disparate units. An analysis similar to that conducted
in Sect. 10.4.2 for the stiffness matrix in Cartesian space
reveals that, if MC is partitioned into four 3 × 3 blocks,
then its upper-left block has units of moment of iner-
tia, its lower-right block has units of mass, while its
off-diagonal blocks have units of kg m.

Correspondingly, the dynamic matrix in Cartesian
coordinates becomes

DC = M−1
C KC . (10.37)

It is now a simple matter to prove that the dynamic ma-
trix is invariant under a change of coordinates. Indeed,
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if we substitute transformations (10.32) and (10.35)
into (10.37), we obtain

DC = JM−1 J& J−&K J−1 = JM−1 K J−1 ,

in which the dynamic matrix D in joint coordinates can
be readily identified in the final expression, and hence,

DC = JDJ−1 , (10.38)

which shows that DC is indeed a similarity transfor-
mation of D. As a consequence, the dynamic matrix is
indeed invariant under a change of coordinates, the two
matrices thus sharing the same sets of eigenvalues, their
eigenvectors being related by the same similarity trans-
formation. That is, if the modal vectors in joint space –
the eigenvectors of D – are denoted by { fi }n

1 and the
modal vectors in Cartesian space are denoted by { gi }n

1,
then these two sets are related by

gi = J fi , i = 1, . . . , n . (10.39)

Therefore, the natural frequencies of the elastody-
namic model are the same, regardless of the space in
which they are calculated, while their natural modes of
vibration change under a similarity transformation.

Under an excitation of the form ∆τ = θ0 cos ωt and
zero initial conditions, the system is known to respond

with a harmonic motion of frequency ω and magni-
tude that depends on both ω and the system frequency
spectrum { ωi }n

1 [10.54]. When ω equals one of the nat-
ural frequencies of the system, the response magnitude
grows unbounded, a phenomenon known as resonance.
For this reason, when designing a robot, it is imperative
that its frequency spectrum does not involve any of the
expected operation frequencies, which can be achieved
by designing the robot with stiffness and mass matrices
that yield a frequency spectrum outside of the frequency
range of the operation conditions.

This design task is not straightforward. Indeed, while
the stiffness matrix in joint space is constant, the mass
matrix is posture dependent, i. e., M = M(θ). Because
of this feature, the elastodynamic design of a robot is
bound to be iterative: the design can be conducted for
a straw-man task, i. e., a typical task in the target ap-
plications, thus defining a set of postures that lead in
turn to a set of mass-matrix values. Then, the frequency
spectrum for all these postures can be designed to lie
above the frequency range of the straw-man task. Since
the robot will eventually be commanded to execute other
tasks than the straw-man task, simulation of alternative
tasks is required to ensure that the design is safe from
a resonance viewpoint.
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