
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 5, JUNE 2008 1203

Nonlinear Complementary Filters on the
Special Orthogonal Group

Robert Mahony, Senior Member, IEEE, Tarek Hamel, Member, IEEE, and Jean-Michel Pflimlin

Abstract—This paper considers the problem of obtaining good
attitude estimates from measurements obtained from typical low
cost inertial measurement units. The outputs of such systems are
characterized by high noise levels and time varying additive bi-
ases. We formulate the filtering problem as deterministic observer
kinematics posed directly on the special orthogonal group (3)
driven by reconstructed attitude and angular velocity measure-
ments. Lyapunov analysis results for the proposed observers are
derived that ensure almost global stability of the observer error.
The approach taken leads to an observer that we term the direct
complementary filter. By exploiting the geometry of the special or-
thogonal group a related observer, termed the passive complemen-
tary filter, is derived that decouples the gyro measurements from
the reconstructed attitude in the observer inputs. Both the direct
and passive filters can be extended to estimate gyro bias online. The
passive filter is further developed to provide a formulation in terms
of the measurement error that avoids any algebraic reconstruction
of the attitude. This leads to an observer on (3), termed the
explicit complementary filter, that requires only accelerometer and
gyro outputs; is suitable for implementation on embedded hard-
ware; and provides good attitude estimates as well as estimating the
gyro biases online. The performance of the observers are demon-
strated with a set of experiments performed on a robotic test-bed
and a radio controlled unmanned aerial vehicle.

Index Terms—Attitude estimates, complementary filter, non-
linear observer, special orthogonal group.

I. INTRODUCTION

T HE recent proliferation of microelectromechanical sys-
tems (MEMS) components has lead to the development of

a range of low cost and light weight inertial measurement units.
The low power, light weight and potential for low cost manu-
facture of these units opens up a wide range of applications in
areas such as virtual reality and gaming systems, robotic toys,
and low cost mini-aerial-vehicles (MAVs) such as the Hovereye
(Fig. 1). The signal output of low cost IMU systems, however,
is characterized by low-resolution signals subject to high noise
levels as well as general time-varying bias terms. The raw sig-
nals must be processed to reconstruct smoothed attitude esti-
mates and bias-corrected angular velocity measurements. For
many of the low cost applications considered the algorithms
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need to run on embedded processors with low memory and pro-
cessing resources.

There is a considerable body of work on attitude reconstruc-
tion for robotics and control applications (for example [1]–[4]). A
standard approach is to use extended stochastic linear estimation
techniques [5], [6]. An alternative is to use deterministic comple-
mentary filter and nonlinear observer design techniques [7]–[9].
Recent work has focused on some of the issues encountered for
low cost IMU systems [10]–[12] as well as observer design for
partial attitude estimation [13]–[15]. It is also worth mentioning
therelatedproblemoffusingIMUandvisiondata that is receiving
recent attention [16]–[19] and the problem of fusing IMU and
GPS data [20], [9]. Parallel to the work in robotics and control
there is a significant literature on attitude heading reference sys-
tems (AHRS) for aerospace applications [21]. An excellent re-
view of attitude filters is given by Crassidis et al. [22]. The re-
cent interest in small low-cost aerial robotic vehicles has lead to
a renewed interest in lightweight embedded IMU systems [8],
[23][24].Forthelow-costlight-weightsystemsconsidered, linear
filtering techniques have proved extremely difficult to apply ro-
bustly [25] and linear single-input single-output complementary
filters are often used in practice [24], [26]. A key issue is online
identification of gyro bias terms. This problem is also important
in IMU callibration for satellite systems [5], [21], [27]–[30]. An
important development that came from early work on estimation
and control of satellites was the use of the quaternion representa-
tionfortheattitudekinematics[31],[32],[29],[33].Thenonlinear
observer designs that are based on this work have strong robust-
ness properties and deal well with the bias estimation problem
[9], [29]. However, apart from theearlier work of the authors [14],
[34], [35] and some recent work on invariant observers [36], [37]
there appears to be almost no work that considers the formulation
of nonlinear attitude observers directly on the matrix Lie-group
representation of .

In this paper we study the design of nonlinear attitude ob-
servers on in a general setting. We term the proposed
observers complementary filters because of the similarity of
the architecture to that of linear complementary filters (cf.
Appendix A), although, for the nonlinear case we do not have
a frequency domain interpretation. A general formulation of
the error criterion and observer structure is proposed based on
the Lie-group structure of . This formulation leads us to
propose two nonlinear observers on , termed the direct
complementary filter and passive complementary filter. The
direct complementary filter is closely related to recent work
on invariant observers [36], [37] and corresponds (up to some
minor technical differences) to nonlinear observers proposed
using the quaternion representation [9], [29], [31]. We do not
know of a prior reference for the passive complementary filter.
The passive complementary filter has several practical advan-
tages associated with implementation and low-sensitivity to
noise. In particular, we show that the filter can be reformulated
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Fig. 1. VTOL MAV HoverEye of Bertin Technologies.

in terms of vectorial direction measurements such as those ob-
tained directly from an IMU system; a formulation that we term
the explicit complementary filter. The explicit complementary
filter does not require online algebraic reconstruction of atti-
tude, an implicit weakness in prior work on nonlinear attitude
observers [22] due to the computational overhead of the calcula-
tion and poor error characterization of the constructed attitude.
As a result the observer is ideally suited for implementation
on embedded hardware platforms. Furthermore, the relative
contribution of different data can be preferentially weighted
in the observer response, a property that allows the designer
to adjust for application specific noise characteristics. Finally,
the explicit complementary filter remains well defined even if
the data provided is insufficient to algebraically reconstruct the
attitude. This is the case, for example, for an IMU with only
accelerometer and rate gyro sensors. A comprehensive stability
analysis is provided for all three observers that proves local
exponential and almost global stability of the observer error
dynamics, that is, a stable linearization for zero error along
with global convergence of the observer error for all initial con-
ditions and system trajectories other than on a set of measure
zero. Although the principal results of the paper are presented
in the matrix Lie group representation of , the equivalent
quaternion representation of the observers are presented in
an Appendix. The authors recommend that the quaternion
representations are used for hardware implementation.

The body of paper consists of five sections followed by a
conclusion and two Appendices. Section II provides a quick
overview of the sensor model, geometry of and intro-
duces the notation used. Section III details the derivation of the
direct and passive complementary filters. The development here
is deliberately kept simple to be clear. Section IV integrates on-
line bias estimation into the observer design and provides a de-
tailed stability analysis. Section V develops the explicit comple-
mentary filter, a reformulation of the passive complementary
filter directly in terms of error measurements. A suite of ex-
perimental results, obtained during flight tests of the Hovereye
(Fig. 1), are provided in Section VI that demonstrate the perfor-
mance of the proposed observers. In addition to the conclusion
(Section VII) there is a short Appendix on linear complementary
filter design and a second Appendix that provides the equivalent
quaternion formulation of the proposed observers.

II. PROBLEM FORMULATION AND NOTATION

A. Notation and Mathematical Identities

The special orthogonal group is denoted . The associ-
ated Lie-algebra is the set of anti-symmetric matrices

For any two matrices then the Lie-bracket (or
matrix commutator) is . Let then
we define

For any then is the vector cross product.
The operator denotes the inverse of the
operator

For any two matrices the Euclidean matrix
inner product and Frobenius norm are defined

The following identities are used in the paper:
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The following notation for frames of reference is used:
• denotes an inertial (fixed) frame of reference;
• denotes a body-fixed-frame of reference;
• denotes the estimator frame of reference.
Let denote, respectively, the anti-symmetric and sym-

metric projection operators in square matrix space

Let denote the angle axis coordinates of
. One has [38]

For any then . If then
in angle axis coordinates and . If then

has real eigenvalues , and there exists an
orthogonal diagonalizing transformation such that

.
For any two signals are

termed asymptotically dependent if there exists a nondegenerate
function and a time such that for any

By the term nondegenerate we mean that the Hessian of at
any point is full rank. The two signals are termed asymp-
totically independent if they are not asymptotically dependent.

B. Measurements

The measurements available from a typical inertial measure-
ment unit are 3 axis rate gyros, 3 axis accelerometers and 3 axis
magnetometers. The reference frame of the strap down IMU is
termed the body-fixed-frame . The inertial frame is denoted

. The rotation denotes the relative orientation of
with respect to .
Rate Gyros: The rate gyro measures angular velocity of

relative to expressed in the body-fixed-frame of
reference . The error model used in this paper is

where denotes the true value, denotes additive
measurement noise and denotes a constant (or slowly
time-varying) gyro bias.
Accelerometer: Denote the instantaneous linear accelera-
tion of relative to , expressed in , by . An
ideal accelerometer, ‘strapped down’ to the body-fixed-
frame , measures the instantaneous linear accelera-
tion of minus the (conservative) gravitational accel-
eration field (where we consider expressed in the in-
ertial frame ), and provides a measurement expressed
in the body-fixed-frame . In practice, the output from
a MEMS component accelerometer has added bias and
noise,

where is a bias term and denotes additive measure-
ment noise. Normally, the gravitational field
where dominates the value of for sufficiently
low frequency response. Thus, it is common to use

as a low-frequency estimate of the inertial axis expressed
in the body-fixed-frame.
Magnetometer: The magnetometers provide measure-
ments of the magnetic field

where is the Earths magnetic field (expressed in the in-
ertial frame), is a body-fixed-frame expression for the
local magnetic disturbance and denotes measurement
noise. The noise is usually quite low for magnetometer
readings, however, the local magnetic disturbance can be
very significant, especially if the IMU is strapped down
to an MAV with electric motors. Only the direction of the
magnetometer output is relevant for attitude estimation and
we will use a vectorial measurement

in the following development.
The measured vectors and can be used to construct an

instantaneous algebraic measurement, , of the rotation

where is the inertial direction of the magnetic field in the
locality where data is acquired. The weights and are
chosen depending on the relative confidence in the sensor
outputs. Due to the computational complexity of solving an
optimization problem the reconstructed rotation is often ob-
tained in a suboptimal manner where the constraints are applied
in sequence; that is, two degrees of freedom in the rotation
matrix are resolved using the accelerometer readings and the
final degree of freedom is resolved using the magnetometer.
As a consequence, the error properties of the reconstructed
attitude can be difficult to characterize. Moreover, if either
magnetometer or accelerometer readings are unavailable (due
to local magnetic disturbance or high acceleration manoeuvres)
then it is impossible to resolve the vectorial measurements into
a unique instantaneous algebraic measurement of attitude.

C. Error Criteria for Estimation on

Let denote an estimate of the body-fixed rotation matrix
. The rotation can be considered as coordinates for

the estimator frame of reference . It is also associated with
the frame transformation

The goal of attitude estimate is to drive . The estimation
error used is the relative rotation from body-fixed-frame to
the estimator frame

(1)
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The proposed observer design is based on Lyapunov stability
analysis. The Lyapunov functions used are inspired by the cost
function

(2)

One has that

(3)

where is the angle associated with the rotation from to
frame . Thus, driving (2) to zero ensures that .

III. COMPLEMENTARY FILTERS ON

In this section, a general framework for nonlinear comple-
mentary filtering on the special orthogonal group is introduced.
The theory is first developed for the idealized case where
and are assumed to be known and used to drive the filter
dynamics. Filter design for real world signals is considered in
later sections.

The goal of attitude estimation is to provide a set of dynamics
for an estimate to drive the error rotation (1)

. The kinematics of the true system are

(4)

where . The proposed observer equation is posed
directly as a kinematic system for an attitude estimate on

. The observer kinematics include a prediction term
based on the measurement and an innovation or correction
term derived from the error . The general form
proposed for the observer is

(5)

where is a positive gain. The term
is expressed in the inertial frame. The body-fixed-frame angular
velocity is mapped back into the inertial frame . If no
correction term is used then the error rotation is
constant

(6)

The correction term is considered to be in the
estimator frame of reference. It can be thought of as a nonlinear
approximation of the error between and as measured from
the frame of reference associated with . In practice, it will be
implemented as an error between a measured estimate of
and the estimate .

The goal of the observer design is to find a simple expression
for that leads to robust convergence of . In prior work
[34], [35] the authors introduced the following correction term

(7)

Fig. 2. Block diagram of the general form of a complementary filter onSO(3).

This choice leads to an elegant Lyapunov analysis of the filter
stability. Differentiating the storage function (2) along trajecto-
ries of (5) yields

(8)

In Mahony et al. [34] a local stability analysis of the filter dy-
namics (5) is provided based on this derivation. In Section IV a
global stability analysis for these dynamics is provided.

We term the filter (5) a complementary filter on since
it recaptures the block diagram structure of a classical comple-
mentary filter (cf. Appendix A). In Fig. 2: The “ ” operation
is an inverse operation on and is equivalent to a “-” op-
eration for a linear complementary filter. The “ ” oper-
ation is equivalent to generating the error term “ ”. The
two operations and are maps from error space
and velocity space into the tangent space of ; operations
that are unnecessary on Euclidean space due to the identification

. The kinematic model is the Lie-group equivalent
of a first order integrator.

To implement the complementary filter it is necessary to map
the body-fixed-frame velocity into the inertial frame. In prac-
tice, the “true” rotation is not available and an estimate of the
rotation must be used. Two possibilities are considered.

Direct Complementary Filter: The constructed attitude
is used to map the velocity into the inertial frame

A block diagram of this filter design is shown in Fig. 3. This
approach can be linked to observers documented in earlier work
[31], [29] (cf. Appendix B). The approach has the advantage that
it does not introduce an additional feedback loop in the filter
dynamics, however, high frequency noise in the reconstructed
attitude will enter into the feed-forward term of the filter.

Passive Complementary Filter: The filtered attitude is
used in the predictive velocity term

(9)

A block diagram of this architecture is shown in Fig. 4. The
advantage lies in avoiding corrupting the predictive angular ve-
locity term with the noise in the reconstructed pose. However,
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Fig. 3. Block diagram of the direct complementary filter on SO(3).

Fig. 4. Block diagram of the passive complementary filter on SO(3).

the approach introduces a secondary feedback loop in the filter
and stability needs to be proved.

A key observation is that the Lyapunov stability analysis in
(8) is still valid for (9), since

using the fact that the trace of a commutator is zero,
. The filter is termed a passive compli-

mentary filter since the cross coupling between and does
not contribute to the derivative of the Lyapunov function. A
global stability analysis is provided in Section IV.

There is no particular theoretical advantage to either the direct
or the passive filter architecture in the case where exact measure-
ments are assumed. However, it is straightforward to see that the
passive filter (9) can be written

(10)

This formulation suppresses entirely the requirement to repre-
sent and in the inertial frame and leads to
the architecture shown in Fig. 5. The passive complementary
filter avoids coupling the reconstructed attitude noise into the
predictive velocity term of the observer, has a strong Lyapunov
stability analysis, and provides a simple and elegant realization
that will lead to the results in Section V.

IV. STABILITY ANALYSIS

In this section, the direct and passive complementary filters
on are extended to provide online estimation of time-
varying bias terms in the gyroscope measurements and global
stability results are derived. Preliminary results were published
in [34] and [35].

Fig. 5. Block diagram of the simplified form of the passive complementary
filter.

For the following work it is assumed that a reconstructed ro-
tation and a biased measure of angular velocity are avail-
able

valid for low frequencies (11a)

for constant bias (11b)

The approach taken is to add an integrator to the compensator
term in the feedback equation of the complementary filter.

Let be positive gains and define
Direct Complementary Filter With Bias Correction:

(12a)

(12b)

(12c)

Passive Complementary Filter With Bias Correction:

(13a)

(13b)

(13c)

The nonlinear stability analysis is based on the idea of an adap-
tive estimate for the unknown bias value.

Theorem 4.1 [Direct Complementary Filter With Bias
Correction]: Consider the rotation kinematics (4) for a
time-varying and with measurements given by
(11). Let denote the solution of (12). Define error
variables and . Define by

(14)

Then:
1) The set is forward invariant and unstable with respect to

the dynamic system (12).
2) The error is locally exponentially stable to

.
3) For almost all initial conditions the trajectory

converges to the trajectory .
Proof: Substituting for the error model (11), (12a) becomes

Differentiating it is straightforward to verify that

(15)
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Define a candidate Lyapunov function by

(16)

Differentiating one obtains

Substituting for and [(12b) and (12c)] one obtains

(17)

Lyapunov’s direct method ensures that converges asymptoti-
cally to zero [39]. Recalling that , where

denotes the angle axis coordinates of . It follows that
implies either , or for . In

the second case one has the condition . Note that
is also equivalent to requiring to be symmetric.

It is easily verified that is an isolated equilibrium of the
error dynamics (18).

From the definition of one has that on . We will
prove that is forward invariant under the filter dynamics (12).
Setting in (15) and (12b) yields

(18)

For initial conditions the solution of
(18) is given by

(19)

We verify that (19) is also a general solution of (15) and (12b).
Differentiating yields

where the second line follows since commutes with
and the final equality is due to the fact that , a
consequence of the choice of initial conditions .
It follows that on solution of (19) and hence

. Classical uniqueness results verify that (19) is a solution
of (15) and (12b). It remains to show that such solutions remain
in for all time. The condition on is proved above. To see
that we compute

as . This proves that is forward invariant.

Applying LaSalle’s principle to the solutions of (12) it fol-
lows that either asymptotically or

where is a solution of (18).
To determine the local stability properties of the invariant

sets we compute the linearization of the error dynamics. We
will prove exponential stability of the isolated equilibrium point

first and then return to prove instability of the set . De-
fine as the first order approximations of and
around

(20a)

(20b)

The sign change in (20b) simplifies the analysis of the lineariza-
tion. Substituting into (15), computing and discarding all terms
of quadratic or higher order in yields

(21)

For positive gains the linearized error system is
strictly stable. This proves part ii) of the theorem statement.

To prove that is unstable, we use the quaternion formula-
tion (see Appendix B). Using (49), the error dynamics of the
quaternion associated to the rotation is given by

(22a)

(22b)

(22c)

It is straightforward to verify that the invariant set associated to
the error dynamics is characterized by

Define , then an equivalent characterization of is
given by . We study the stability properties of the
equilibrium of evolving under the filter dynamics
(12). Combining (22a) and (22c), one obtains the following dy-
namics for :

Linearizing around small values of one obtains

Since and are positive gains it follows that the lineariza-
tion is unstable around the point and this completes the
proof of part i).

The linearization of the dynamics around the unstable set is
either strongly unstable (for large values of ) or hyperbolic
(both positive and negative eigenvalues). Since depends on
the initial condition then there will be trajectories that converge
to along the stable center manifold [39] associated with the
stable direction of the linearization. From classical center mani-
fold theory it is known that such trajectories are measure zero in
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the overall space. Observing in addition that is measure zero
in proves part iii) and the full proof is complete.

The direct complimentary filter is closely related to quater-
nion based attitude filters published over the last fifteen years
[31], [9], [29]. Details of the similarities and differences is given
in Appendix B where we present quaternion versions of the
filters we propose in this paper. Apart from the formulation
directly on , the present paper extends earlier work by
proposing globally defined observer dynamics and a full global
analysis. To the authors best understanding, all prior published
algorithms depend on a term that is discontinuous on
(14). Given that the observers are not well defined on the set
the analysis for prior work is necessarily nonglobal. However,
having noted this, the recent work of Thienel et al. [29] pro-
vides an elegant powerful analysis that transforms the observer
error dynamics into a linear time-varying system (the transfor-
mation is only valid on a domain on ) for which
global asymptotic stability is proved. This analysis provides a
global exponential stability under the assumption that the ob-
server error trajectory does not intersect . In all practical situ-
ations the two approaches are equivalent.

The remainder of the section is devoted to proving an
analogous result to Theorem 4.1 for the passive complemen-
tary filter dynamics. In this case, it is necessary to deal with
nonautonomous terms in the error dynamics due to passive
coupling of the driving term into the filter error dynamics.
Interestingly, the nonautonomous term acts in our favour to
disturb the forward invariance properties of the set (14) and
reduce the size of the unstable invariant set.

Theorem 4.2 [Passive complementary filter with bias
correction]: Consider the rotation kinematics (4) for a
time-varying and with measurements given
by (11). Let denote the solution of (13). Define
error variables and . Assume that

is a bounded, absolutely continuous signal and that the
pair of signals are asymptotically independent (see
Section II-A). Define by

(23)

Then:
1) The set is forward invariant and unstable with respect

to the dynamic system 13.
2) The error is locally exponentially stable to

.
3) For almost all initial conditions the trajec-

tory converges to the trajectory .
Proof: Substituting for the error model (11) in (13) and

differentiating , it is straightforward to verify that

(24a)

(24b)

The proof proceeds by differentiating the Lyapunov-like func-
tion (16) for solutions of (13). Following an analogous deriva-
tion to that in Theorem 4.1, but additionally exploiting the can-
cellation , it may be verified that

where is given by (24). This bounds , and it fol-
lows is bounded. LaSalle’s principle cannot be applied directly
since the dynamics (24a) are not autonomous. The function
is uniformly continuous since the derivative

is uniformly bounded. Applying Barbalat’s lemma proves
asymptotic convergence of to zero.

Direct substitution shows that is an equilib-
rium point of (24). Note that (14) and hence on

(Th. 4.1). For the error dynamics (24) become

The solution of this ordinary differential equation is given by

Since is anti-symmetric for all time then is
orthogonal and since it follows

is symmetric for all time. It follows that is forward in-
variant under the filter dynamics (13). We prove by contradic-
tion that is the largest forward invariant set of the
closed-loop dynamics (13) such that . Assume that there
exits such that remains in for
all time. One has that on this trajectory. Conse-
quently,

(25)

where we have used

(26)

several times in simplifying expressions. Since are
asymptotically independent then the relationship (25) must be
degenerate. This implies that there exists a time such that for
all then and contradicts the assumption.

It follows that either asymptotically or
.

Analogously to Theorem 4.1 the linearization of the error dy-
namics (24) at is computed. Let and
for . The linearized dynamics are the time-varying
linear system

Let denote the magnitude bound on and choose
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Set to be matrices

(27)

It is straightforward to verify that and are positive def-
inite matrices given the constraints on . Consider
the cost function , with . Differ-
entiating yields

(28)

It is straightforward to verify that

This proves exponential stability of the linearized system at
.

The linearization of the error dynamics on a trajectory in
are also time varying and it is not possible to use the argu-
ment from Theorem 4.1 to prove instability. However, note that

for all . Moreover, any neigh-
borhood of a point within the set
contains points such the . Trajectories with
these initial conditions cannot converge to due to the de-
crease condition derived earlier, and it follows that is un-
stable. Analogous to Theorem 4.1 it is still possible that a set of
measure zero initial conditions, along with very specific trajec-
tories , such that the resulting trajectories converge to .
This proves part iii) and completes the proof.

Apart from the expected conditions inherited from Theorem
4.1 the key assumption in Theorem 4.2 is the independence of

from the error signal . The perturbation of the passive
dynamics by the independent driving term provides a distur-
bance that ensures that the adaptive bias estimate converges to
the true gyroscopes’ bias, a particularly useful property in prac-
tical applications.

V. EXPLICIT ERROR FORMULATION OF THE PASSIVE

COMPLEMENTARY FILTER

A weakness of the formulation of both the direct and pas-
sive and complementary filters is the requirement to reconstruct
an estimate of the attitude, , to use as the driving term for
the error dynamics. The reconstruction cannot be avoided in the
direct filter implementation because the reconstructed attitude
is also used to map the velocity into the inertial frame. In this
section, we show how the passive complementary filter may be
reformulated in terms of direct measurements from the inertial
unit.

Let , denote a set of known inertial
directions. The measurements considered are body-fixed-frame
observations of the fixed inertial directions

(29)

where is a noise process. Since only the direction of the mea-
surement is relevant to the observer we assume that
and normalize all measurements to ensure .

Let be an estimate of . Define

to be the associated estimate of . For a single direction , the
error considered is

which yields

For multiple measures the following cost function is consid-
ered

(30)

where

(31)

Assume linearly independent inertial direction then the
matrix is positive definite if . For
then is positive semi-definite with one eigenvalue zero. The
weights are chosen depending on the relative confidence
in the measurements . For technical reasons in the proof of
Theorem 5.1 we assume additionally that the weights are
chosen such that has three distinct eigenvalues

.
Theorem 5.1 [Explicit complementary filter with bias

correction]: Consider the rotation kinematics (4) for a
time-varying and with measurements given by
(29) and (11b). Assume that there are two or more,
vectorial measurements available. Choose such that

(defined by (31)) has three distinct eigenvalues. Consider
the filter kinematics given by

(32a)

(32b)

(32c)

and let denote the solution of (32). Assume that
is a bounded, absolutely continuous signal and that the

pair of signals are asymptotically independent (see
Section II-A). Then:

1) There are three unstable equilibria of the filter character-
ized by

where and
are diagonal matrices with entries
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as shown and such that where
is a diagonal matrix.

2) The error is locally exponentially stable to
.

3) For almost all initial conditions
, the trajectory converges to the trajec-

tory .
Proof: Define a candidate Lyapunov-like function by

The derivative of is given by

Recalling that the trace of a commutator is zero, the derivative
of the candidate Lyapunov function can be simplified to obtain

(33)

Recalling the identities in Section II-A, one may write
as

(34)

Introducing the expressions of into the time derivative
of the Lyapunov-like function , (33), one obtains

The Lyapunov-like function derivative is negative semi-definite
ensuring that is bounded. Analogous to the proof of The-
orem 4.2, Barbalat’s lemma is invoked to show that
tends to zero asymptotically. Thus, for one has

(35)

We prove next (35) implies either or .
Since is a real matrix, the eigenvalues and eigenvectors of
verify

and (36)

where (for ) represents the complex conjugate of
the eigenvalue and represents the Hermitian transpose of
the eigenvector associated to . Combining (35) and (36),
one obtains

Note that for is positive definite and
. One has for all . In the case

when , it is simple to verify that two of the three eigen-
values are real. It follows that all three eigenvalues of are

real since complex eigenvalues must come in complex conju-
gate pairs. The eigenvalues of an orthogonal matrix are of the
form

where is the angle from the angle axis representation. Given
that all the eigenvalues are real it follows that or .
The first possibility is the desired case . The
second possibility is the case where .

When then (32) and (13) lead to identical error dy-
namics. Thus, we use the same argument as in Theorem 4.2 to
prove that on the invariant set. To see that the only forward
invariant subsets are the unstable equilibria as characterized in
part i) of the theorem statement we introduce . Ob-
serve that

Analogous to (35), this implies or on the
set and . Set . Then

As has three distinct eigenvalues, it follows that
for all and thus is diagonal. Therefore, there are
four isolated equilibrium points
(where are specified in part i) of the theorem statement)
and that satisfy the condition . The case

(where ) corresponds to the equi-
librium while we will show that the other three
equilibria are unstable.

We proceed by computing the dynamics of the filter in the
new variable and using these dynamics to prove the stability
properties of the equilibria. The dynamics associated to are

Setting , one obtains

(37)

The dynamics of the new estimation error on the bias are

(38)

The dynamics of (37) and (38) are an alternative formu-
lation of the error dynamics to .

Consider a first order approximation of (37) and (38)
around an equilibrium point
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The linearization of (37) is given by

and thus

and finally

for and where is specified in part i) of the theorem
statement. Define

Setting and one may write the lineariza-
tion (37) as

We continue by computing the linearization of . Equation
(37) may be approximated to a first order by

and thus

Finally, for

Rewriting in terms of the variables and setting
one obtains

for

The combined error dynamic linearization in the primed coor-
dinates is

(39)

To complete the proof of part i) of the theorem statement we
will prove that the three equilibria associated with
for are unstable. The demonstration is analogous
to the proof of the Chetaev’s Theorem (see [39, pp. 111–112]).
Consider the following cost function:

It is straightforward to verify that its time derivative is always
positive

Note that for then has at least one element of
the diagonal positive. For each and , define

and note that is non-null for all . Let such
that . A trajectory initialized at will
diverge from the compact set since on . How-
ever, the trajectory cannot exit through the surface
since along the trajectory. Restricting such
that the linearization is valid, then the trajectory must exit
through the sphere . Consequently, trajectories initially
arbitrarily close to will diverge. This proves that the point

is locally unstable.
To prove local exponential stability of we

consider the linearization (39) for . Note that and
. Set and . Then

are positive definite and (39) may be written as

Consider a cost function with given by (27).
Analogous to (28), the time derivative of is given by

Once again, it is straightforward to verify that

where is defined in (27) and this proves local exponential
stability of .

The final statement of the theorem follows directly from the
above results along with classical dynamical systems theory and
the proof is complete.

Remark: If , the weights , and the measured
directions are orthogonal then .
The cost function becomes

In this case, the explicit complementary filter (32) and the pas-
sive complementary filter (13) are identical.

Remark: It is possible to weaken the assumptions in Theorem
5.1 to allow any choice of gains and any structure of the ma-
trix and obtain analogous results. The case where all three
eigenvalues of are equal is equivalent to the passive comple-
mentary filter scaled by a constant. The only other case, where

, has

for . (Note that the situation where is
considered in Corollary 5.2.) It can be shown that any sym-
metry with satisfies
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and it is relatively straightforward to verify that this
set is forward invariant under the closed-loop filter dynamics.
This invalidates part i) of Theorem 5.1 as stated, however, it
can be shown that the new forward invariant points are unstable
as expected. To see this, note that any in this set cor-
responds to the minimal cost of on . Consequently,
any neighborhood of contains points such that

and the Lyapunov decrease condition en-
sures instability. There is still a separate isolated unstable equi-
librium in , and the stable equilibrium, that must be treated
in the same manner as undertaken in the formal proof of The-
orem 5.1. Following through the proof yields analogous results
to Theorem 5.1 for arbitrary choice of gains .

The two typical measurements obtained from an IMU unit are
estimates of the gravitational, , and magnetic, , vector fields

In this case, the cost function becomes

The weights and are introduced to weight the confidence
in each measure. In situations where the IMU is subject to high
magnitude accelerations (such as during takeoff or landing ma-
noeuvres) it may be wise to reduce the relative weighting of the
accelerometer data compared to the magnetometer
data. Conversely, in many applications the IMU is mounted in
the proximity to powerful electric motors and their power supply
busses leading to low confidence in the magnetometer readings
(choose ). This is a very common situation in the case
of mini aerial vehicles with electric motors. In extreme cases
the magnetometer data is unusable and provides motivation for
a filter based solely on accelerometer data.

A. Estimation From the Measurements of a Single Direction

Let be a measured body fixed frame direction associated
with a single inertial direction . Let be an
estimate . The error considered is

Corollary 5.2: Consider the rotation kinematics (4) for a
time-varying and with measurements given
by (29) (for a single measurement ) and (11b). Let

denote the solution of (32). Assume that is
a bounded, absolutely continuous signal and are
asymptotically independent (see Section II-A). Define

Then:
1) The set is forward invariant and unstable under the

closed-loop filter dynamics.
2) The estimate is locally exponentially stable to

.
3) For almost all initial conditions then

converges to the trajectory .
Proof: The dynamics of are given by

(40)

Define the following storage function:

The derivative of is given by

The Lyapunov-like function derivative is negative semi-def-
inite ensuring that is bounded and . The set

is characterized by and thus

Consider a trajectory that satisfies the filter dy-
namics and for which for all time. One has

Differentiating this expression again one obtains

Since the signals and are asymptotically independent it
follows that the functional expression on the left-hand side is
degenerate. This can only hold if . For , this
set of trajectories is characterized by the definition of . It is
straightforward to adapt the arguments in Theorems 4.1 and 4.2
to see that this set is forward invariant. Note that for then

. It is direct to see that lies on a local
maximum of and that any neighborhood contains points
such that the full Lyapunov function is strictly less than its
value on the set . This proves instability of and completes
part i) of the corollary.

The proof of part ii) and part iii) is analogous to the proof of
Theorem 5.1 (see also [15]).

An important aspect of Corollary 5.2 is the convergence of
the bias terms in all degrees of freedom. This ensures that, for
a real world system, the drift in the attitude estimate around the
unmeasured axis will be driven asymptotically by a zero
mean noise process rather than a constant bias term. This makes
the proposed filter a practical algorithm for a wide range of MAV
applications.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results to demon-
strate the performance of the proposed observers.

Experiments were undertaken on two real platforms to
demonstrate the convergence of the attitude and gyro bias
estimates.

1) The first experiment was undertaken on a robotic ma-
nipulator with an IMU mounted on the end effector and
supplied with synthetic estimates of the magnetic field
measurement. The robotic manipulator was programmed
to simulate the movement of a flying vehicle in hov-
ering flight regime. The filter estimates are compared to
orientation measurements computed from the forward
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Fig. 6. Euler angles from direct and passive complementary filters.

kinematics of the manipulator. Only the passive and direct
complimentary filters were run on this test bed.

2) The second experiment was undertaken on the VTOL MAV
HoverEye developed by Bertin Technologies (Fig. 1). The
VTOL belongs to the class of “sit on tail” ducted fan
VTOL MAV, like the iSTAR9 and Kestrel developed
respectively by Allied Aerospace [40] and Honeywell
[41]. It was equipped with a low-cost IMU that consists
of three axis accelerometers and three axis gyroscopes.
Magnetometers were not integrated in the MAV due to
perturbations caused by electrical motors. The explicit
complementary filter was used in this experiment.

For both experiments the gains of the proposed filters were
chosen to be: and . The iner-
tial data was acquired at rates of 25 Hz for the first experiment
and 50 Hz for the second experiment. The quaternion version of
the filters (Appendix B) were implemented with first order Euler
numerical integration followed by rescaling to preserve the unit
norm condition.

Experimental results for the direct and passive versions of the
filter are shown in Figs. 6 and 7. In Fig. 6, the only significant
difference between the two responses lies in the initial transient
responses. This is to be expected, since both filters will have the
same theoretical asymptotic performance. In practice, however,
the increased sensitivity of the direct filter to noise introduced
in the computation of the measured rotation is expected to
contribute to slightly higher noise in this filter compared to the
passive.

The response of the bias estimates is shown in Fig. 7. Once
again the asymptotic performance of the filters is similar after
an initial transient. From this figure it is clear that the passive

Fig. 7. Bias estimation from direct and passive complementary filters.

Fig. 8. Estimation results of the Pitch and roll angles.

filter displays slightly less noise in the bias estimates than for
the direct filter (note the different scales in the -axis).

Figs. 8 and 9 relate to the second experiment. The experi-
mental flight of the MAV was undertaken under remote control
by an operator. The experimental flight plan used was: First,
the vehicle was located on the ground, initially headed toward

. After take off, the vehicle was stabilized in hovering
condition, around a fixed heading which remains close the initial
heading of the vehicle on the ground. Then, the operator engages
a 90 -left turn manoeuvre, returns to the initial heading, and
follows with a 90 -right turn manoeuvre, before returning to
the initial heading and landing the vehicle. After landing, the
vehicle is placed by hand at its initial pose such that final and
initial attitudes are the identical.

Fig. 8 plots the pitch and roll angles estimated di-
rectly from the accelerometer measurements against the esti-
mated values from the explicit complementary filter. Note the
large amounts of high frequency noise in the raw attitude esti-
mates. The plots demonstrate that the filter is highly successful
in reconstructing the pitch and roll estimates.

Fig. 9 presents the gyros bias estimation verses the pre-
dicted yaw angle based on open loop integration of the
gyroscopes. Note that the explicit complementary filter here is
based solely on estimation of the gravitational direction. Con-
sequently, the yaw angle is the indeterminate angle that is not
directly stabilized in Corollary 5.2. Fig. 9 demonstrates that the
proposed filter has successfully identified the bias of the yaw
axis gyro. The final error in yaw orientation of the microdrone
after landing is less than 5 over a two minute flight. Much of
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Fig. 9. Gyros bias estimation and influence of the observer on yaw angle.

this error would be due to the initial transient when the bias
estimate was converging. Note that the second part of the figure
indicates that the bias estimates are not constant. Although
some of this effect may be numerical, it is also to be expected
that the gyro bias on low cost IMU systems are highly suscep-
tible to vibration effects and changes in temperature. Under
flight conditions changing engine speeds and aerodynamic
conditions can cause quite fast changes in gyro bias.

VII. CONCLUSION

This paper presents a general analysis of attitude observer de-
sign posed directly on the special orthogonal group. Three non-
linear observers, ensuring almost global stability of the observer
error, are proposed:

Direct Complementary Filter: A nonlinear observer posed
on that is related to previously published nonlinear ob-
servers derived using the quaternion representation of .

Passive Complementary Filter: A nonlinear filter equation
that takes advantage of the symmetry of to avoid trans-
formation of the predictive angular velocity term into the esti-
mator frame of reference. The resulting observer kinematics are
considerably simplified and avoid coupling of constructed atti-
tude error into the predictive velocity update.

Explicit Complementary Filter: A reformulation of the pas-
sive complementary filter in terms of direct vectorial measure-
ments, such as gravitational or magnetic field directions ob-
tained for an IMU. This observer does not require online al-
gebraic reconstruction of attitude and is ideally suited for im-
plementation on embedded hardware platforms. Moreover, the
filter remains well conditioned in the case where only a single
vector direction is measured.

The performance of the observers was demonstrated in a suite
of experiments. The explicit complementary filter is now im-
plemented as the primary attitude estimation system on several
MAV vehicles world wide.

APPENDIX A
A REVIEW OF COMPLEMENTARY FILTERING

Complementary filters provide a means to fuse multiple inde-
pendent noisy measurements of the same signal that have com-
plementary spectral characteristics [11]. For example, consider
two measurements and of a signal

where is predominantly high frequency noise and is a pre-
dominantly low frequency disturbance. Choosing a pair of com-
plementary transfer functions with
low pass and high pass, the filtered estimate is given by

The signal is all pass in the filter output while noise com-
ponents are high and low pass filtered as desired. This type of
filter is also known as distorsionless filtering since the signal

is not distorted by the filter [42]. Complementary filters
are particularly well suited to fusing low bandwidth position
measurements with high band width rate measurements for first
order kinematic systems. Consider the linear kinematics

(41)

with typical measurement characteristics

(42)

where is low pass filter associated with sensor character-
istics, represents noise in both measurements and is a
deterministic perturbation that is dominated by low-frequency
content. Normally the low pass filter over the fre-
quency range on which the measurement is of interest. The
rate measurement is integrated to obtain an estimate of
the state and the noise and bias characteristics of the integrated
signal are dominantly low frequency effects. Choosing

with all pass such that over the bandwidth
of . Then

Note that even though is high pass the noise
is low pass filtered. In practice, the filter structure is imple-
mented by exploiting the complementary sensitivity structure of
a linear feedback system subject to load disturbance. Consider
the block diagram in Fig. 10. The output can be written

where is the sensitivity function of the closed-loop system
and is the complementary sensitivity. This architecture is
easy to implement efficiently and allows one to use classical
control design techniques for in the filter design. The sim-
plest choice is a proportional feedback . In this case
the closed-loop dynamics of the filter are given by

(43)

The frequency domain complementary filters associ-
ated with this choice are and

. Note that the crossover frequency for
the filter is at . The gain is typically chosen
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Fig. 10. Block diagram of a classical complementary filter.

based on the low pass characteristics of and the low fre-
quency noise characteristics of to choose the best crossover
frequency to tradeoff between the two measurements. If the rate
measurement bias, , is a constant then it is natural to
add an integrator to the compensator to make the system type I

(44)

A type I system will reject the constant load disturbance
from the output. Gain design for and is typically based
on classical frequency design methods. The nonlinear develop-
ment in the body of the paper requires a Lyapunov analysis of
closed-loop system (43). Applying the PI compensator, (44),
one obtains state space filter with dynamics

The negative sign in the integrator state is introduced to indicate
that the state will cancel the bias in . Consider the Lyapunov
function

Abusing notation for the noise processes, and using ,
and , one has

In the absence of noise one may apply Lyapunov’s direct
method to prove convergence of the state estimate. LaSalle’s
principal of invariance may be used to show that . When
the underlying system is linear, then the linear form of the
feedback and adaptation law ensure that the closed-loop system
is linear and stability implies exponential stability.

APPENDIX B
QUATERNION REPRESENTATIONS OF OBSERVERS

The unit quaternion representation of rotations is commonly
used for the realization of algorithms on since it of-
fers considerable efficiency in code implementation. The set of
quaternions is denoted .
The set is a group under the operation

with identity element . The group of quaternions
are homomorphic to via the map

This map is a two to one mapping of onto with kernel
, thus, is locally isomorphic to

via . Given such that
then Let de-
note a body-fixed frame velocity, then the pure quaternion

is associated with a quaternion velocity. Con-
sider the rotation kinematics on Equation (4), then the
associated quaternion kinematics are given by

(45)

Let be a low frequency measure of , and (for
constant bias ) be the angular velocity measure. Let denote
the observer estimate and quaternion error

Note that

where is the angle axis representation of .
The quaternion representations of the observers proposed in this
paper are as follows.

Direct Complementary Filter (12):

(46a)

(46b)

Passive Complementary Filter (13):

(47a)

(47b)

Explicit Complementary Filter (32):

(48a)

(48b)

(48c)

The error dynamics associated with the direct filter expressed in
the quaternion formulation are

(49)

The error dynamics associated with the passive filter are

(50)

There is a 15-year history of using the quaternion representation
and Lyapunov design methodology for filtering on (for
example, cf. [9], [29], and [31]). To the authors’ knowledge the
Lyapunov analysis in all cases has been based around the cost
function
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Due to the unit norm condition it is straightforward to show that

The cost function proposed in this paper is
(3). It is straightforward to see that the quadratic approximation
of both cost functions around the point is the quadratic

. The quaternion cost function , however, is nondiffer-
entiable at the point while the cost has a
smooth local maxima at this point. To the authors understanding,
all quaternion filters in the published literature have a similar
flavour that dates back to the seminal work of Salcudean [31].
The closest published work to that undertaken in the present
paper was published by Thienel in her doctoral dissertation [43]
and transactions paper [29]. The filter considered by Thienel et
al. is given by

(51a)

(51b)

The term enters naturally in the filter design from the
differential, , of the absolute value term in
the cost function , during the Lyapunov design process. Con-
sider the observer obtained by replacing in (51) by .
Note that with this substitution, (51b) is transformed into (46b).
To show that (51a) transforms to (46a) it is sufficient to show
that . This is straightforward from

This demonstrates that the quaternion filter (51) is obtained from
the standard form of the complimentary filter proposed (12) with
the correction term (12c) replaced by

Note that the correction term defined in (12c) can be written
. It follows that

The correction term for the two filters varies only by the posi-
tive scaling factor . The quaternion correction term

is not well defined for (where ) and these
points are not well defined in the filter dynamics (51). It should
be noted, however, that is bounded at and, apart from
possible switching behavior, the filter can still be implemented
on the remainder of . An argument for the use of the
correction term is that the resulting error dynamics strongly
force the estimate away from the unstable set [cf. (14)]. An
argument against its use is that, in practice, such situations will
only occur due to extreme transients that would overwhelm the
bounded correction term in any case, and cause the numer-
ical implementation of the filter to deal with a discontinuous
argument. In practice, it is an issue of little significance since
the filter will general work sufficiently well to avoid any issues
with the unstable set . For , corresponding to ,

the correction term scales to a factor of the correction
term . A simple scaling factor like this is compensated for the
in choice of filter gains and and makes no difference to
the performance of the filter.
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