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Abstract— This paper considers the question of using a non-
linear complementary filter for attitude estimation of fixed-wing
unmanned aerial vehicle (UAV) given only measurements from a
low-cost inertial measurement unit. A nonlinear complementary
filter is proposed that combines accelerometer output for low
frequency attitude estimation with integrated gyrometer output
for high frequency estimation. The raw accelerometer output
includes a component for the airframe acceleration, that occurs
primarily as the aircraft turns, as well as the gravitational
acceleration that is required for the filter. The airframe ac-
celeration is estimated using a simple centripetal force model
(based on additional airspeed measurements), augmented by
a first order dynamic model for angle-of-attack, and used to
obtain estimates of the gravitational direction independent of
the airplane manoeuvres. Experimental results are provided
on a real-world data set and the performance of the filter is
evaluated against the output from a full GPS/INS that was
available for the data set.

I. INTRODUCTION

Attitude determination is an essential task for an Un-
manned Aerial Vehicle (UAV). With the growing range of
applications in UAV’s, and the push to make vehicles cheaper
and more reliable, it is of interest to develop robust and
simple algorithms for attitude estimation [1], [9]. There is
a large literature on attitude filtering techniques, see for
example the recent review article by Crassidiset al. [6].
Most of the advanced filter techniques (particle filtering, etc.)
are computationally demanding and unsuitable for the small
scale embedded processors in UAV avionic systems. The two
methods that are commonly used are extended Kalman filter-
ing (EKF) or some form of constant gain state observer, often
termed a complimentary filter due to its frequency filtering
properties for linear systems [12]. Extended Kalman Filtering
has been studied for a range of aerospace applications [7],
[9], [6], [16]. Such filters, however, have proved difficult to
apply robustly [14], [4], [16]. In practice, many applications
use simple linear single-input single-output complementary
filters [16], [5]. In recent work, a number of authors have
developed nonlinear analogous of single-input single-output
(SISO) filters for attitude estimation [15], [19], [18], [13],
[11], [2]. To implement these schemes on a UAV using
inertial measurement unit (IMU) data the accelerometer
output is used to estimate the gravitational direction. The
recent work by the authors [8], [12] allows the full estimation
of vehicle attitude (up to a constant heading error) as well as
gyro biases based just on the accelerometer and gyrometer
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data. The filter fails, however, when the vehicle dynamics
are sufficiently large that accelerometer output no longer
provides a good estimate of the gravitational direction. This
is particularly the case for a fixed wing UAV manoeuvering
in a limited space and making repeated rapid turns.

In this paper, we develop a nonlinear complementary filter,
augmented by a simple first order model of vehicle dynamics
that provides excellent attitude estimates for a fixed wing
UAV. The key contribution is to develop a model of the
non-inertial acceleration of the airframe that can be used
to compensate the accelerometer output to obtain a zero
bias estimate of the gravitational direction. The model is
based on a simple centripetal force model derived from the
airspeed and the rate of turn of the vehicle. However, the
angle-of-attack of the airplane is significantly higher during
a sharp turn, and this must be modelled to correctly align
the compensation terms for the accelerometer output. We
address this problem by incorporating a simple first order
model of the angle-of-attack dynamics of the airframe driven
by the pitch rate measurement obtained from the gyrometer
output. The combined system is simple to implement and
achieves excellent performance, given the minimal data that
is available. The algorithm is verified on experimental data
from a fixed wing aerial robotic vehicle. The performance of
the algorithm is confirmed by comparison with an attitude
estimate obtained from a full INS/GPS stochastic filter that
has been run on the experimental data.

II. EXPLICIT COMPLEMENTARY FILTER

A complementary filter for attitude estimation performs
low-pass filtering on a low-frequency attitude estimate, ob-
tained from accelerometer data, and high-pass filtering on a
biased high-frequency attitude estimate, obtained by direct
integration of gyrometer output, and fuses these estimates
together to obtain an all-pass estimate of attitude. When
the pitch and roll of a airplane are modelled as decoupled
processes, a SISO filter can designed for each signal that
uses the the angle between the accelerometer output and
the body-fixed-frame as attitude reference and the separate
gyrometer axis output as velocity reference in a classical
linear complementary filter [3]. When a low pass estimate
of the full attitude can be reconstructed from the IMU
measurements, for example if magnetometer data is also
available and the full coupled rotation matrix for attitude
can be computed as an algebraic function of the gravitational
and magnetic fields measured in the body-fixed-frame, then
nonlinear extensions of the complementary filters have been
available for fifteen years [15], [18]. Magnetometers are
rarely useful on small scale UAVs due to the perturbation of



Fig. 1. Explicit Complementary Filter with acceleration compensation using airspeed data

the magnetic field resulting from electric propulsion systems
and other disturbances. The recent work by the authors
[8], [12] provided a formulation of explicit complementary
filtering (ECF), posed directly on the set of rotation matrices,
that is driven by a single inertial direction measurement,
such as provided by the accelerometer output, along with
the gyrometer output.

The implementation of the explicit complementary filter
is shown in Figure 1. The ECF uses a measurement of an
inertial direction, denoted̄v, along with the measured angular
velocitiesΩ̄. In the case considered in this paper the inertial
directionv̄ is derived from the best estimate of the gravitation
directiong obtained from the system

v̄ =
ĝb

|ĝb| . (1)

The ECF can be expressed as an observer in quaternion form

˙̂q =
1
2
q̂ ⊗ p(Ω̄ + δ), (2a)

δ = kP e + kI

∫
e, (2b)

e = v̄ × v̂, (2c)

whereq̂ is an estimate of the system attitude expressed as a
unit quaternion. Hereδ is an innovation in the filter equation
generated by a proportional-integral block, and the errore is
the relative rotation between the measured inertial direction
v̄ and the predicted direction̂v. The gainskP and kI are
proportional and integral gains respectively, whilep(·) is
the pure quaternion operator,p(Ω) = (0, Ω).

The estimatêv is the ECF’s best estimate of the gravita-
tional direction, that we take as being coincident with the Z-
axis of the inertial frame. Thus, given the quaternion estimate
q̂ one has

v̂ =




2(q̂1q̂3 + q̂0q̂2)
2(q̂2q̂3 + q̂0q̂1)

q̂2
0 − q̂2

1 − q̂2
2 + q̂2

3


 (3)

The ECF is most commonly used with proportional or
proportional-integral (PI) compensation. The proportional
term governs the frequency cross-over between accelerom-
eter based attitude estimates and integrated gyro estimates.

The integral term in the PI compensation corrects for gyro
bias.

III. ATTITUDE MEASUREMENT WITH AN IMU

A six axis IMU provides measurements of angular velocity
and acceleration. Typical units also provide a measurement
of magnetic field, however, this is rarely a useful signal in a
UAV application where the magnetic field is locally disturbed
by the electrical subsystems of the vehicle.

The gyrometer measurements are modelled by

Ω̄ = Ω + b + η (4)

whereΩ is the true value,b is a slowly time-varying bias
and η is a zero mean noise process. The angular rate can
be integrated to maintain an estimate of the UAV’s attitude,
however, the bias and noise are also integrated resulting in
the estimate diverging over time.

The accelerometers measure thespecific accelerationin
the Body-Fixed Frame (BFF),

f b = ab − gb (5)

where ab is the acceleration of the UAV with respect to
the inertial frame expressed in the BFF, andgb is the
gravitational acceleration expressed in the BFF. In level flight
ab ≈ 0, therefore the gravity estimate,ĝb = −f b, can be used
as an input to the complementary filter 1. In this case, raw
estimates of the rollφ and pitchθ [20] can be computed
directly from thev̄

φ̂f = Atan2(−fy,−fz) (6)

θ̂f = Atan2(fx,
√

f2
y + f2

z ). (7)

These estimates are used directly in the implementation of
SISO complementary filters [16], [5]. When the aircraft is
manoeuvringab 6= 0 and the above construction is not valid.

A. Acceleration Compensation Using Airspeed Data

A simple dynamic model is proposed to estimate the
acceleration of the UAV during sustained turns based on
gyrometer and airspeed data. We assume the aircraft turns
with a constant turn radiusρ > 0, which (excluding the
entry and exit of the turn) is approximately the case for an
aircraft performing a level turn with constant airspeed.



In a flat turn with constant radius the non-zero compo-
nent of the acceleration, experienced by the vehicle, is the
centripetal acceleration

â = Ω× (Ω× ρr) (8)

whereΩ is the angular rate andρ is the turn radius andr is
the unit vector from the airplane to the centre of the turn.

In stationary air, the linear velocity of the vehicle during
a flat turn is given byΩ×ρr. Almost always, there will be a
non-zero wind disturbance, however, this can usually be well
approximated as a constant velocity wind with additional
gust disturbances. The gust disturbances are ignored dealt
with as noise, while we choose the inertial frame to move
with constant velocity with the wind. Thus, with respect
to the (moving) inertial frame the wind has zero velocity.
Since we are only interested in attitude estimation in this
paper, and none of the measurement devices depend on
position of the vehicle, this assumption does not affect any
of the mathematics. (Note that there would be issues if GPS
measurements were directly used in the filter). Thus, we
approximateΩ × ρr by the vehicle airspeedVair to cancel
dependence on the unknown turn geometry

â = Ω× Vair (9)

The magnitude|Vair| of the airspeed can be measured from
calibrated dynamic pressure measurements. It remains to
determine the vector direction ofVair.

The angle-of-attack of an aircraft is the angle between
the chord line of an airfoil and the vector representing the
relative motion between the airfoil and the air. As the angle-
of-attack increases, for constant airspeed, the relative lift of
the airfoil increases. When an airplane turns, the additional
centripetal acceleration is provided by increased angle-of-
attack. To ensure that additional acceleration is correctly
aligned for the turn, the airplane banks or rolls into the
turn. In a balanced turn, the increased lift from the airfoil
is inclined with respect to the vertical and decomposes
into a vertical and horizontal component. In order for the
airplane to maintain altitude the vertical component of the
lift must continue to cancel gravity and this determines the
required increase in angle-of-attack. The resulting horizontal
acceleration is the centripetal acceleration and determines
the rate of turn, depending on the vehicle airspeed. During
a turn, the acceleration remains constant with respect to the
body-fixed-frame. The trajectory is termed a trim trajectory
and, apart from short transients, is the normal flight regime
for aircraft not engaged in acrobatics.

Based on the above discussion, a reasonable model of an
aircraft in a turn is to assume zero sideslip but changing
angle-of-attack. That is we model

Vair = |Vair|



cos(α)
0

sin(α)


 (10)

whereα is the changing angle of attack.
The final component of modelling the turn dynamics is

to incorporate a dynamic model for the angle-of-attackα.

Since only the angle-of-attack of the vehicle is of interest
then we use equations of motion for the longitudinal motion
of an aircraft [17, pg. 115]. From these equations it is
only necessary to consider the dynamics of the angle-of-
attack, and furthermore since no extreme manoeuvres will
be undertaken, a linearised version of these dynamics will
suffice

α̇ = − c0

|Vair|α + θ̇ + α0 (11)

where c0 and α0 are constants. The constantc0 is a time
constant depending on the thrust force of the vehicle andα0

is a constant set-point that encodes the static angle-of-attack
required to sustain level flight. The pitch rateθ̇ = 〈e2, Ω〉
is the rate of rotation around thee2 BFF axis. During a
balanced turn, the pitch rate will be a constant value as the
plane continually pitches up, since it is banked over, to rotate
around the radius of the turn. Thus, the angle-of-attack during
a turn will be offset from the set-pointα0. The moment that
the turn is ended, the angle-of-attack will settle back to the
set-point with time-constantc0/|Vair|.
Remark: In the proposed design, the constantsc0 and α0

must be knowna-priori. This is discussed further in the
experimental results.

Once the angle-of-attack is computed using (11) the vec-
torial airspeed can be computed using (10). These values
in turn lead to an estimate of̂a using (9). This estimate is
naturally expressed in the body-fixed-frameâb. Given the
actual output from the accelerometersf b the estimate of the
gravitational direction is given by

ĝb = −(f b − âb). (12)

The estimated gravitational direction is then used in (1) to
determine the vectorial measurement used in the comple-
mentary filter implementation. The full block diagram of the
resulting filter is shown in Figure 1 excluding the additional
dynamics for the angle-of-attack.

IV. EXPERIMENTAL RESULTS

The filter was tested on flight data obtained from a fixed
wing UAV from the Australian Centre for Field Robotics,
University of Sydney. The UAV flew the circuit shown in
Figure 2 at approximately36m.s−1 with relatively constant
altitude. The UAV flies anti-clockwise several times and does
one figure-of-eight. A GPS/INS Kalman Filter has previously
been tested on this data set [10], that was used as our best
estimate of the true attitude (Figure 3).

To implement the proposed filter it is necessary to derive
a model of the longitudinal dynamics of the vehicle. In
particular, the values of constantsc0 and α0 in (11) must
be known. System identification for the experimental data
was undertaken using the interactive systems identification
toolbox in MATLAB. The values used in the following
experiments were

c0 = 72m.rad.s−1, α0 = 0.2rad.

In the model identification we assume that the vehicle
velocity is constant atVair = 36m.s−1 to enable us to use
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Fig. 2. Flight Path for experimental data set
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Fig. 3. Attitude estimates for experimental data obtained using GPS/INS
Kalman filter [10]

linear systems identification tool. The longitudinal dynamics
of the angle-of-attack were modelled by

d

dt
α = −2α + θ̇ + 0.2.

Note that the airspeed is not assumed constant in the calcu-
lation of centripetal acceleration (9).

A. Acceleration Compensation

To evaluate the performance of the acceleration compen-
sation, we compare the unfiltered attitude obtained from the
gravity estimate to the attitude estimate of the GPS/INS
filter (Figure 3). The roll and pitch for the unfiltered gravity
estimate are computed by substituting the estimateĝ into the
equations for pitch (7) and roll (6)

φ̂f = Atan2(−(fy − ây),−(fz − âz)) (13)

θ̂f = Atan2(fx − âx,
√

(fy − ây)2 + (fz − âz)2)(14)

whereâ = Ω× V̂air. The actual raw data is heavily corrupted
by high frequency noise from engine vibration and the plots
shown have been low pass filtered (with roll off at25rad/s)
to show the low-frequency structure that is relevant to the fil-
ter response. Figure 4 shows the error between the GPS/INS

0 50 100 150 200 250 300 350 400 450
−80

−60

−40

−20

0

20

40

60

E
rr

o
r 

(d
e

g
re

e
s
)

Time (seconds)

Fig. 4. Roll error from raw roll estimates obtained from the accelerometer
readings without compensation. The large deviations of the error correspond
to the raw roll estimates failing to detect the banking manoeuvres of the
airplane.
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Fig. 5. Histogram of unfiltered and uncompensated roll errors showing
the effect of centripetal force on accelerometers during banked turns as two
side modes on the main distribution

solution and the raw estimate of the airplane roll derived
from the accelerometer measurements, i.e. usingf b directly
in (6). It is clear that the raw accelerometer output fails to
detect the banking turns of the vehicle. Figure 5 shows the
histogram of the error. The the multi-modal nature of the
error shows clearly, with the main mode in the distribution
corresponding to normal flight and the secondary modes on
either side corresponding to banking turns, primarily to the
left, but also a smaller mode to the right from when the air-
plane undertook a figure-of-eight manoeuvre. Figure 6 shows
the error between the GPS/INS solution and the compensated
estimate of the airplane roll derived from the accelerometer
measurements adjusted for centripetal acceleration with the
angle-of-attack model incorporated (13). Adjusting for the
centripetal acceleration clearly overcomes the major error
in the low-frequency attitude data. It is clear, however, that
the accelerometer data remains highly corrupted by engine
vibration.

To provide a quantifiable measure of improvement we
have computed the average and the standard deviation of
the roll and pitch error. The average error should ideally be
zero — non-zero average error indicates a low frequency
error which will degrade filter performance. In practice, the
GPS/INS data is itself noisy, and subject to disturbances from
external data sources (GPS) that are not available to the ECF.
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Fig. 6. Roll error from compensated roll estimates obtained from the
accelerometer readings adjusted for centripetal acceleration.

TABLE I

PITCH ERROR STATISTICS FOR DIRECT ATTITUDE RECONSTRUCTION

(LOW-PASS FILTERED)

Average Std. Dev.
â = 0 -2.2336 4.7455
â = Ω× V̂air 0.583 6.7533

Consequently, it is expected that there will be a residual error.
Tables I and II indicate that incorporating the angle-of-attack
dynamic model reduces the pitch and roll errors by 70% and
60% respectively.

B. Filter Performance

The data was passed through an explicit complementary
filter. Results were obtained both for the augmented filter,
with dynamic angle-of-attack model, and for the case where
the uncompensated gravity estimate was used. Note that the
compensated data was passed directly into the ECF and was
not low-pass pre-filtered.

The filter blockC(s) in the complementary filter contains
two gainsKP andKI

C(s) = KP +
KI

s
.

The complementary filter fuses estimates with low fre-
quency validity of the attitude (expressed as the gravitational
direction estimate), and provides a low pass filtering of
these estimates that rolls off atKP rad.s−1, with an attitude
estimate provided by integrated gyrometer output that has
high frequency validity, and provides a high pass filtering of
these estimates that rolls on at frequencyKP rad.−1. For the
data considered a gain ofkP = 0.04rad.s−1 was chosen as
the cross-over frequency. The low value of the proportional

TABLE II

ROLL ERROR STATISTICS FOR DIRECT ATTITUDE RECONSTRUCTION

(LOW-PASS FILTERED)

Average Std. Dev.
â = 0 -11.4464 24.8136

â = Ω× V̂air -2.8277 13.8126
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Fig. 7. Error between the ECF and ECF-â filters and the full GPS/INS
solution.
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Fig. 8. The output of the ECF-â filter. This plot can be compared with
Figure 3.

gain is associated with the high level of engine vibration
noise in the accelerometer data and the necessity to filter
this vibration from the output. The gainKI is associated
with the bias estimation process of the complementary filter.
Typically, this gain is chosen a factor of 10 to 100 times
slower than the proportional gain in order to help decouple
the interaction of the main filter and bias dynamics. In
this case the associated rise time of the bias estimate is
in the order of 5-10 minutes. This is a reasonable estimate
for bias estimation in a fixed wing UAV application where
mission lengths are often hours long and bias variation is
depends on slowly changing mission conditions. The data
set considered is only 400s long. For such a short data set
the slow dynamics associated with the bias estimate are not
active. Consequently, in the experimental studies undertaken
on this data set the bias gainKI = 0 is set to zero. On a
longer data set a value of0.002rad.s−1 would be a suitable
choice.

TABLE III

ECF AND ECF-̂a PITCH ERROR STATISTICS

Average Std. Dev.
â = 0 -8.4887 3.725

â = Ω× V̂air -1.3531 1.645



TABLE IV

ECF AND ECF-̂a ROLL ERROR STATISTICS

Average Std. Dev.
â = 0 -1.0318 3.4989

â = Ω× V̂air -0.0136 2.7099

For the explicit complementary filter, the filtered estimate
of the gyrometer output should be used in the computation
of the centripetal acceleration

â = Ω̂× V̂air

where Ω̂ = Ω̄ + δ is the driving term in (2a) in the
complementary filter (2). The innovation termδ acts to
remove low frequency noise, and in particular removes bias
terms from the direct measurementΩ̄ of the angular velocity.

Figure 7 shows the relative performance of the roll es-
timate for the explicit complimentary filter based both on
raw accelerometer attitude computations (ECF) and on the
explicit complementary filter with adjustment for centripetal
acceleration incorporating the angle-of-attack model (ECF-
â). It is interesting that there is less difference between these
two traces as may be expected based on Figures 4 and 6. This
is due to the low value ofKP chosen, itself a consequence
of the very large amounts of engine noise present in the
accelerometer data. The statistical performance of the filters
is compared in Tables III and IV. Here, the advantages of the
ECF-̂a filter is clear with pitch error decreased by 85% and
roll error decreased by 99% with inclusion of the angle-of-
attack model. Figure 8 shows the actual output of the ECF-
â filter in the same format as Figure 3. Given the limited
data resources of the ECF-â (IMU, dynamic pressure) and its
simple structure, the filter performance is highly satisfactory.

V. CONCLUSION AND FURTHER WORK

The Explicit Complementary Filter (ECF) was extended
to incorporate a model of the longitudinal angle-of-attack
dynamics of a fixed-wing aircraft. With this model, the ECF-
â, using only IMU and dynamics pressure measurements
achieved attitude filtering performance of the same quality
as a full extended Kalman filter that exploited full GPS/INS
data. The ECF shows significant potential as a simple and
robust attitude filter for small scale UAV vehicles.
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