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I2C – Inter-Integrated Circuit 
Communication

Embedded Systems Interfacing

Overview

! Specification
! Hardware
! Peripherals

Typical System

EEPROM

Time-of-Day

Thermometer

SDASDA
SCLSCL

INTINT

0 to 3.4 Mbps
Address
Select

Alarm

Over
Temperature
with ADC

PIC

Specification
! Multiple versions

! Version 1.0 1992
! Up to 400 Kbps
! 10 bit addresses

! Version 2.0 1998
! Up to 3.4 Mbps
! New signal levels for High-speed operation

! Version 2.1 2000
! Some timing conditions relaxed

! SMBus Version 2.0
! Relaxed version of I2C specification for power 

management (10 Kbps to 100 Kbps)

Terminology
! Transmitter – device that sends data to the 

bus
! Receiver – device that accepts data from bus
! Master – device which initiates a transfer, 

generates clock and terminates transfer with 
NAK

! Slave – device addressed by master
! Multi-master – more then one device 

attempts control of bus at one time without 
corrupting message

Terminology

Master Slave

Transmitter Receiver

Receiver Transmitter

Address

Data

Ack
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Terminology

! Arbitration – procedure to ensure that, 
if more than one master simultaneously 
tries to control the bus, only one is 
allowed to do so and the winning 
message is not corrupted

! Synchronization – procedure to 
synchronize the clock signals of two or 
more devices

Signals Levels

! Float High (logic 1)
! Drive Low (logic 0)

+5 V

Float High Drive Low

+5 V

Data Transfer on I2C-bus

Start stoP
Data must be valid on SCL leading edge.

Data Transfer on I2C-bus

10-bit Address

7-bit Address

Signal Conditioning

Typically
4.7 K!

Pull-up Resistance – Standard 
Mode
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Series Resistance – Standard 
Mode Other topics

! General call
! High-speed mode (Hs-mode) – 0 to 3.4 

Mbps
! Signal parameters

! Levels
! Timing

Hardware
! Six hardware registers to 

support I2C
! I2C Control Register 

(I2CxCON)
! I2C Status Register 

(I2CxSTAT)
! I2C Transmit Register 

(I2CxTRN)
! I2C Receive Rgister

(I2CxRSR
! I2C  Address Register 

(I2CxADD)
! I2C Mask Register 

(I2CxMSK)

! Tool Kit
! Start
! stoP
! Data
! Ack

Hardware Modes
! Three mode of I2C 

supported 
! I2C Master Mode in single 

master system
! I2C Slave Mode 
! I2C master/Slave Mode in 

multi-master system

! Baud Rate Generator
! 100 Kbps
! 400 Kbps
! 1 Mbps

I2C Master Mode Initialization

void initI2C1(unsigned char addrMode){
I2C1CONbits.I2CEN=1; //start module and configure 

//SDA and SCK
if(addrMode==10)

I2C1CONbits.A10M=1; //set 10-bit address mode
else

I2C1CONbits.A10M=0; //set 7-bit address mode
I2C1BRG=0x27; //Fosc=8 MHz, SCK=100 KHz
}

Peripherals
! Device Manufactures

! Microchip
! National 

Semiconductor
! XPS (Phillips)
! Seimens
! Xicor
! Zilog

! Devices
! Memory
! Clock / Calendar
! Bus Expanders
! LCD Controllers
! ADC
! Audio / Video 

Devices
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24AA256 / 24LC256 / 24FC256 Characteristics
! 256 Kbit as 32 K by 8
! Self timed 5 ms Erase / Write cycle 
! 64-byte page write mode (5 ms cycle time)
! 100,000 Erase / Write cycles
! > 200 year data retention
! Transfer rates

! 400 Kbps for 24AA256 and 24LC256
! 1 Mbps 24FC256

Slave Address Byte Write
! S " Start
! A " Acknowledge

! P " stoP

S Control In

A

Address

A

Data

A

P

From Master

From Slave

Byte and Page Write

•Slave generates ACK

•Slave accepts data until stoP.

Random and Sequential Read

Give me more.
That is enough.

. . . More More More More Enough

Write to Address Register Read Data
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Send Address on Read
void sendAddress(unsigned char slaveAddr,unsigned int romAddr){

while(I2C1STATbits.P == 0); //wait for previous stop bit
I2C1CONbits.SEN=1; //generate start bus event
while(I2C1CONbits.SEN==1); //wait for end of start
I2C1TRN=slaveAddr<<1; //send address of slave in 

//write mode
while(I2C1STATbits.ACKSTAT==1); //wait for ACK from slave
while(I2C1STATbits.TRSTAT==1); //wait for end of ACK
I2C1TRN=(unsigned char) (romAddr>>8); //send MSB of address
while(I2C1STATbits.ACKSTAT==1); //wait for ACK from slave
while(I2C1STATbits.TRSTAT==1); //wait for end of ACK
I2C1TRN=(unsigned char) romAddr; //send LSB of address
while(I2C1STATbits.ACKSTAT==1); //wait for ACK from slave
while(I2C1STATbits.TRSTAT==1); //wait for end of ACK
}

Hey EEPROM!, MSB Addr, LSB Addr " 24LC256

EEPROM
Get Data on Read

unsigned char getDatum(unsigned char slaveAddr){
I2C1CONbits.RSEN=1; //send restart
while(I2C1CONbits.RSEN==1); //wait for end of restart
I2C1TRN=(slaveAddr<<1)|1; //send address to slave read mode
while(I2C1STATbits.ACKSTAT==1); //wait for ACK from slave
while(I2C1STATbits.TRSTAT==1); //wait for end of ACK
I2C1CONbits.ACKDT=1; //send NAK during acknowledge
I2C1CONbits.RCEN=1; //enable receive mode
while(I2C1STATbits.RBF==0); //wait for received datum
I2C1CONbits.ACKEN=1; //send acknowledge (NAK)
while(I2C1CONbits.ACKEN==1); //wait for end of acknowledge (NAK)
I2C1CONbits.PEN=1; //start stoP
while(I2C1CONbits.PEN==1); //wait for end of stoP
return(I2C1RCV);
}

Hey EEPROM! " 24LC256, PIC24FJ128CA # Datum

EEPROM

Read Data In 24LC256
#define EEPROM 0b1010000
#define ADDRESS_MASK 0x7FFF;
int main(void){

//declarations
unsigned int memoryAddress=0;
unsigned char datum;
//initialization
initI2C1(7);
//endless loop
endless:

Nop();
sendAddress(EEPROM,memoryAddress);
datum=getDatum(EEPROM);
memoryAddress=(memoryAddress+1)&ADDRESS_MASK;
goto endless;

return(0);
}

Homework

! Chapter 7.5 (Handout)
! 1 (ACK and NAK)
! 2 (Scaling)
! 3 (PCF8574)
! 4 (MAX518)


