
Embedded Systems Interfacing

Copyright James Grover, 2008

1

I2C – Inter-Integrated Circuit
Communication

Embedded Systems Interfacing

Overview

! Specification
! Hardware
! Peripherals

Typical System

EEPROM

Time-of-Day

Thermometer

SDASDA
SCLSCL

INTINT

0 to 3.4 Mbps
Address
Select

Alarm

Over
Temperature
with ADC

PIC

Specification
! Multiple versions

! Version 1.0 1992
! Up to 400 Kbps
! 10 bit addresses

! Version 2.0 1998
! Up to 3.4 Mbps
! New signal levels for High-speed operation

! Version 2.1 2000
! Some timing conditions relaxed

! SMBus Version 2.0
! Relaxed version of I2C specification for power

management (10 Kbps to 100 Kbps)

Terminology
! Transmitter – device that sends data to the

bus
! Receiver – device that accepts data from bus
! Master – device which initiates a transfer,

generates clock and terminates transfer with
NAK

! Slave – device addressed by master
! Multi-master – more then one device

attempts control of bus at one time without
corrupting message

Terminology

Master Slave

Transmitter Receiver

Receiver Transmitter

Address

Data

Ack

Embedded Systems Interfacing

Copyright James Grover, 2008

2

Terminology

! Arbitration – procedure to ensure that,
if more than one master simultaneously
tries to control the bus, only one is
allowed to do so and the winning
message is not corrupted

! Synchronization – procedure to
synchronize the clock signals of two or
more devices

Signals Levels

! Float High (logic 1)
! Drive Low (logic 0)

+5 V

Float High Drive Low

+5 V

Data Transfer on I2C-bus

Start stoP
Data must be valid on SCL leading edge.

Data Transfer on I2C-bus

10-bit Address

7-bit Address

Signal Conditioning

Typically
4.7 K!

Pull-up Resistance – Standard
Mode

Embedded Systems Interfacing

Copyright James Grover, 2008

3

Series Resistance – Standard
Mode Other topics

! General call
! High-speed mode (Hs-mode) – 0 to 3.4

Mbps
! Signal parameters

! Levels
! Timing

Hardware
! Six hardware registers to

support I2C
! I2C Control Register

(I2CxCON)
! I2C Status Register

(I2CxSTAT)
! I2C Transmit Register

(I2CxTRN)
! I2C Receive Rgister

(I2CxRSR
! I2C Address Register

(I2CxADD)
! I2C Mask Register

(I2CxMSK)

! Tool Kit
! Start
! stoP
! Data
! Ack

Hardware Modes
! Three mode of I2C

supported
! I2C Master Mode in single

master system
! I2C Slave Mode
! I2C master/Slave Mode in

multi-master system

! Baud Rate Generator
! 100 Kbps
! 400 Kbps
! 1 Mbps

I2C Master Mode Initialization

void initI2C1(unsigned char addrMode){
I2C1CONbits.I2CEN=1; //start module and configure

//SDA and SCK
if(addrMode==10)

I2C1CONbits.A10M=1; //set 10-bit address mode
else

I2C1CONbits.A10M=0; //set 7-bit address mode
I2C1BRG=0x27; //Fosc=8 MHz, SCK=100 KHz
}

Peripherals
! Device Manufactures

! Microchip
! National

Semiconductor
! XPS (Phillips)
! Seimens
! Xicor
! Zilog

! Devices
! Memory
! Clock / Calendar
! Bus Expanders
! LCD Controllers
! ADC
! Audio / Video

Devices

Embedded Systems Interfacing

Copyright James Grover, 2008

4

24AA256 / 24LC256 / 24FC256 Characteristics
! 256 Kbit as 32 K by 8
! Self timed 5 ms Erase / Write cycle
! 64-byte page write mode (5 ms cycle time)
! 100,000 Erase / Write cycles
! > 200 year data retention
! Transfer rates

! 400 Kbps for 24AA256 and 24LC256
! 1 Mbps 24FC256

Slave Address Byte Write
! S " Start
! A " Acknowledge

! P " stoP

S Control In

A

Address

A

Data

A

P

From Master

From Slave

Byte and Page Write

•Slave generates ACK

•Slave accepts data until stoP.

Random and Sequential Read

Give me more.
That is enough.

. . . More More More More Enough

Write to Address Register Read Data

Embedded Systems Interfacing

Copyright James Grover, 2008

5

Send Address on Read
void sendAddress(unsigned char slaveAddr,unsigned int romAddr){

while(I2C1STATbits.P == 0); //wait for previous stop bit
I2C1CONbits.SEN=1; //generate start bus event
while(I2C1CONbits.SEN==1); //wait for end of start
I2C1TRN=slaveAddr<<1; //send address of slave in

//write mode
while(I2C1STATbits.ACKSTAT==1); //wait for ACK from slave
while(I2C1STATbits.TRSTAT==1); //wait for end of ACK
I2C1TRN=(unsigned char) (romAddr>>8); //send MSB of address
while(I2C1STATbits.ACKSTAT==1); //wait for ACK from slave
while(I2C1STATbits.TRSTAT==1); //wait for end of ACK
I2C1TRN=(unsigned char) romAddr; //send LSB of address
while(I2C1STATbits.ACKSTAT==1); //wait for ACK from slave
while(I2C1STATbits.TRSTAT==1); //wait for end of ACK
}

Hey EEPROM!, MSB Addr, LSB Addr " 24LC256

EEPROM
Get Data on Read

unsigned char getDatum(unsigned char slaveAddr){
I2C1CONbits.RSEN=1; //send restart
while(I2C1CONbits.RSEN==1); //wait for end of restart
I2C1TRN=(slaveAddr<<1)|1; //send address to slave read mode
while(I2C1STATbits.ACKSTAT==1); //wait for ACK from slave
while(I2C1STATbits.TRSTAT==1); //wait for end of ACK
I2C1CONbits.ACKDT=1; //send NAK during acknowledge
I2C1CONbits.RCEN=1; //enable receive mode
while(I2C1STATbits.RBF==0); //wait for received datum
I2C1CONbits.ACKEN=1; //send acknowledge (NAK)
while(I2C1CONbits.ACKEN==1); //wait for end of acknowledge (NAK)
I2C1CONbits.PEN=1; //start stoP
while(I2C1CONbits.PEN==1); //wait for end of stoP
return(I2C1RCV);
}

Hey EEPROM! " 24LC256, PIC24FJ128CA # Datum

EEPROM

Read Data In 24LC256
#define EEPROM 0b1010000
#define ADDRESS_MASK 0x7FFF;
int main(void){

//declarations
unsigned int memoryAddress=0;
unsigned char datum;
//initialization
initI2C1(7);
//endless loop
endless:

Nop();
sendAddress(EEPROM,memoryAddress);
datum=getDatum(EEPROM);
memoryAddress=(memoryAddress+1)&ADDRESS_MASK;
goto endless;

return(0);
}

Homework

! Chapter 7.5 (Handout)
! 1 (ACK and NAK)
! 2 (Scaling)
! 3 (PCF8574)
! 4 (MAX518)

