Embedded Systems Interfacing

* Interrupts

Embedded Systems Interfacing

$~ Overview

= Interrupt mechanism

= Nesting of interrupt

= Traps vs Hardware Interrupts
= Example 1: Timer 1 Interrupt
= Secondary Oscillator

= Example 2: Timer 1 with Secondary
Oscillator

& Interrupt Mechanism

= An interrupt is an internal or external
event that forces a hardware call to a
function called an interrupt service
routine.
= Interrupt enable must be set [initialization]
= Internal or external event forces interrupt
flag to be set [hardware]

= Event forces routine at interrupt vector to
be called, see Table 5-1 [hardware]

& Interrupt Mechanism

= Processor state must be preserved [C-30
compiler]

= Interrupt service routine (ISR) must
process data [user code]

= Interrupt flag must be cleared [user code]

= Processor state must be restored [C-30
compiler]

ic-e,o Rules for ISR

= ISR cannot return anything
= No parameters maybe passed to ISR

= ISR may not be directly called by other
functions

= Ideally, ISR should not call other
function

Copyright James Grover, 2008

$ ISR Templates

= Template 1

void _ _attribute_ _ ((interrupt,no_auto_psv)) _T1Interrupt(void){

/1 interrupt service routine code here ... }
= Template 2
void _ISR _T1lInterrupt(void){
// interrupt service routine code here ... }

* Template 1 preferred because it reduces latency.
* Template 2 inserts save/restore of PSVPAG register.

6

Embedded Systems Interfacing

* Interrupt Sources

= 5 x external pins with level trigger
detection

= 22 x external pins connect to Change
Notification module

= 5 X input capture modules
= 2 X serial port interfaces (UARTS)

= 4 x synchronous serial interfaces (SPI
and 12C)

& Interrupt Sources

= 1 x Parallel Master Port

= 5 X 16-bit timers (2 x 32-bit timers)

= 1 X Analog-to-digital converter

= 1 X Analog comparator module

= 1 x Real-time clock and calendar

= 1 x Cyclic redundancy check generator

& | Traps

= Generated by processor fault conditions
= Non-maskable interrupts
= Sources

= Oscillator failure

= Address error

= Stack error

= Math error

= Reserved (four)

& Real Example with Timerl

/1 32 MHz fosc or Tcyc = 62.5 ns
volatile int dSec = 0; //decisecond
volatile int Sec = 0; //second
volatile int min = 0; //minute

void _ISR_ _T1Interrupt(void)
dSec++
if(dSec > 9) {
dSec = 0;
Sec++;
if(Sec > 59) {
Sec = 0;

10

& Real Example with Timerl

Sec = 0;

Min++;

if(Min > 59){
Min = 0;

}

}
_TIUF=0;

11

& Real Example with Timerl

int main(void) {
_T1IP=4;
TMR1 = 0;
PR1=25000-1;
TRISA = 0xff00; Initialization
T1CON = 0x8020; // 1:64 prescaler
_T1IF=0;
_T1IE=1;
_IPL=0;
Wh"e(l)F:[ORTA = Sec: Endless Loop

}
return(0);

12

Copyright James Grover, 2008

Embedded Systems Interfacing

*ﬁ; Secondary Oscillator

= Timerl has
= External clock input or

= Amplifier with feedback to be used with external
crystal (resonator)

= Inexpensive 32,768 resonator are available

= Configure Timerl for external crystal
(resonator)

= Set PR1 to 32768-1
= Produces interrupt once per second

15

& Modified for Secondary Osc.

//Use similar code to Interrupt.C except
T1CON = 0x8002;
PR1 = (32 x 1024) -1;

16

&»Real—Time Clock Calendar

= Available in 16-Bit = Year on specified day
and 32-Bit PICs of year

= Interrupt once every . Egg:uﬁ‘;rs for 29

: ;?gz:: = All counting done in
 Hour hardware (not

. Day software)

. Week = See next set of

« Month slides for details

17

& Managing Multiple Interrupt

= Most real applications have two or more
interrupt sources

= Keep each ISR as short as possible

= Use priority levels to determine event
that will be serviced first in case of
coincidental interrupt events

= Nested interrupt require much more
care (_NSTDIS = 1 to disable nesting)

18

& Additional Info

= C-30 has two interrupt vector tables
= One for normal program execution
= Second one for debugging
= The _ISRFAST macro will allow register

swapping for critical registers for faster
processor state save and restore

19

Copyright James Grover, 2008

& Additional Info

= No global interrupt disable
= __asm__ volatile(“disi #0x0007");
will disable all interrupts for 7 Ty

= __asm__ volatile(“disi #0x3FFF");
will disable all interrupts for very long
time (16383 T¢yc)

= DISICNT = 0;
will re-enable all interrupts

20

Embedded Systems Interfacing

code)
simulated with MPSIM

set RTCWREN bit (see text for
necessary code)

= To use secondary oscillator you must
set SOSCEN bit (see text for necessary

= Secondary oscillator cannot be

= To set current time and date you must

Copyright James Grover, 2008

$~ Homework #6

= Chapter 5 -- Handout s .
= 1 Bit Bang Serial Port T

st bt

= 2 Bit Bang Slave Synchronous Peripheral
Interface

76543210

pz | [[[][]} nu

datum

23

