
Embedded Systems Interfacing

Copyright James Grover, 2008 1

1

Interrupts

Embedded Systems Interfacing

2

Overview
Interrupt mechanism
Nesting of interrupt
Traps vs Hardware Interrupts
Example 1: Timer 1 Interrupt
Secondary Oscillator
Example 2: Timer 1 with Secondary
Oscillator

3

Interrupt Mechanism
An interrupt is an internal or external
event that forces a hardware call to a
function called an interrupt service
routine.

Interrupt enable must be set [initialization]
Internal or external event forces interrupt
flag to be set [hardware]
Event forces routine at interrupt vector to
be called, see Table 5-1 [hardware]

4

Interrupt Mechanism
Processor state must be preserved [C-30
compiler]
Interrupt service routine (ISR) must
process data [user code]
Interrupt flag must be cleared [user code]
Processor state must be restored [C-30
compiler]

5

C-30 Rules for ISR
ISR cannot return anything
No parameters maybe passed to ISR
ISR may not be directly called by other
functions
Ideally, ISR should not call other
function

6

ISR Templates
Template 1

void _ _attribute_ _ ((interrupt,no_auto_psv)) _T1Interrupt(void){
// interrupt service routine code here … }

Template 2
void _ISR _T1Interrupt(void){

// interrupt service routine code here … }

• Template 1 preferred because it reduces latency.
• Template 2 inserts save/restore of PSVPAG register.

Embedded Systems Interfacing

Copyright James Grover, 2008 2

7

Interrupt Sources
5 x external pins with level trigger
detection
22 x external pins connect to Change
Notification module
5 x input capture modules
2 x serial port interfaces (UARTs)
4 x synchronous serial interfaces (SPI
and I2C)

8

Interrupt Sources
1 x Parallel Master Port
5 x 16-bit timers (2 x 32-bit timers)
1 x Analog-to-digital converter
1 x Analog comparator module
1 x Real-time clock and calendar
1 x Cyclic redundancy check generator

9

Traps
Generated by processor fault conditions
Non-maskable interrupts
Sources

Oscillator failure
Address error
Stack error
Math error
Reserved (four)

10

Real Example with Timer1

// 32 MHz fosc or Tcyc = 62.5 ns
volatile int dSec = 0; //decisecond
volatile int Sec = 0; //second
volatile int min = 0; //minute

void _ISR_ _T1Interrupt(void)
dSec++
if(dSec > 9) {

dSec = 0;
Sec++;
if(Sec > 59) {

Sec = 0;

11

Real Example with Timer1

Sec = 0;
Min++;
if(Min > 59){

Min = 0;
}

}
}

_T1IF = 0;
}

12

Real Example with Timer1
int main(void) {

_T1IP = 4;
TMR1 = 0;
PR1=25000-1;
TRISA = 0xff00;
T1CON = 0x8020; // 1:64 prescaler
_T1IF=0;
_T1IE=1;
_IPL = 0;
while(1) {

PORTA = Sec;
}
return(0);

}

Initialization

Endless Loop

Embedded Systems Interfacing

Copyright James Grover, 2008 3

15

Secondary Oscillator
Timer1 has

External clock input or
Amplifier with feedback to be used with external
crystal (resonator)

Inexpensive 32,768 resonator are available
Configure Timer1 for external crystal
(resonator)
Set PR1 to 32768-1
Produces interrupt once per second

16

Modified for Secondary Osc.

//Use similar code to Interrupt.C except
T1CON = 0x8002;
PR1 = (32 x 1024) –1;

17

Real-Time Clock Calendar
Available in 16-Bit
and 32-Bit PICs
Interrupt once every

Second
Minute
Hour
Day
Week
Month

Year on specified day
of year
Four years for 29
February

All counting done in
hardware (not
software)
See next set of
slides for details

18

Managing Multiple Interrupt
Most real applications have two or more
interrupt sources
Keep each ISR as short as possible
Use priority levels to determine event
that will be serviced first in case of
coincidental interrupt events
Nested interrupt require much more
care (_NSTDIS = 1 to disable nesting)

19

Additional Info
C-30 has two interrupt vector tables

One for normal program execution
Second one for debugging

The _ISRFAST macro will allow register
swapping for critical registers for faster
processor state save and restore

20

Additional Info
No global interrupt disable

__asm__ volatile(“disi #0x0007”);
will disable all interrupts for 7 TCYC

__asm__ volatile(“disi #0x3FFF”);
will disable all interrupts for very long

time (16383 TCYC)
DISICNT = 0;
will re-enable all interrupts

Embedded Systems Interfacing

Copyright James Grover, 2008 4

21

Additional Info
To use secondary oscillator you must
set SOSCEN bit (see text for necessary
code)
Secondary oscillator cannot be
simulated with MPSIM
To set current time and date you must
set RTCWREN bit (see text for
necessary code)

23

Homework #6
Chapter 5 -- Handout

1 Bit Bang Serial Port

2 Bit Bang Slave Synchronous Peripheral
Interface

RA1RA2

7 6 5 4 3 2 1 0

datum

