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Abstract A method for the aerodynamic analysis of bodies of revolution with a stern propeller
was developed. The viscous flow about the displacement body is determined by a panel method in
combination with an integral boundary-layer procedure. Special emphasis is laid on the iterative
viscous/inviscid coupling. For this purpose the transpiration technique is applied along with an
under-relaxation scheme. The relaxation factor is determined from a local stability analysis of the
coupled governing equations. A vortex sheet model is used to calculate the time-averaged influence
of the propeller with a fully-relaxed slipstream. Both modules are coupled taking viscous interaction
effects into account. The complete tool was applied to analyse airship hulls with stern-mounted
thrusters and finally to predict the increased efficiency of wake propellers.

Nomenclature

a exponent of the power-law profiles
A amplitude
c chord length
cd drag coefficient
cD dissipation coefficient
cf skin-friction coefficient
cp pressure coefficient
cP power coefficient of the propeller
cT thrust coefficient of the propeller
d distance between body stern and

propeller disc area
D propeller diameter, drag
DPropeller propeller-induced hull drag
H12 = δ1

δ2
boundary-layer shape factor

H32 = δ3
δ2

boundary-layer shape factor
L body length

∗Presented at the 14th AIAA Lighter-Than-Air Sys-
tems Technical Committee Convention and Exhibition,
July 15-19, 2001, Akron, Ohio, USA

n wall normal distance,
amplification factor of the TS-waves,
propeller rotational speed [rps]

P power
r distance
ReL Reynolds number (reference length L)
R body radius, propeller radius
s arc length
S surface area
T propeller thrust
Tu turbulence factor
u local velocity inside the boundary layer
u, σ error functions
Ue velocity at the boundary-layer edge
U∞ axial onset flow velocity
"v velocity vector
vn transpiration velocity
x, y, z cartesian coordinates
x, r, θ cylindrical coordinates
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α angle of attack
β propeller twist angle at r

R = 0.75
δ boundary-layer thickness
δ1 displacement thickness

(axisymmetric definition)
δ2 momentum thickness

(axisymmetric definition)
δ3 energy thickness

(axisymmetric definition)
δ1, δ2, δ3 integral boundary-layer parameters

(plane definition)
η propeller efficiency
ηe propulsive efficiency
Φ velocity potential
λ propeller advance ratio,

wave length
µ relaxation factor, doublet strength
ν wave number
ρ density
σ source singularity strength
Σ dimensionless transpiration velocity

Subscripts

crit. critical value
e boundary-layer edge
max maximum value
opt optimum value
sep separation location
tra transition location
∞ undisturbed freestream condition

Superscripts

(n) iteration step
∼ converged value

1 Introduction

Fundamental Aerodynamic Effects of
Stern-Mounted Propellers

It is well known that an adequately designed stern
propeller is more efficient than a propeller with
conventional installation. The reason is that the
stern-thruster is operating in the viscous wake of
the airship hull, i.e. in a flow domain with reduced
axial velocity. As discussed in Refs. [7], [10] this
lowers the power which is required to obtain a cer-
tain thrust. As a consequence, the resulting pro-
peller efficiency η (based on U∞!) is significantly
increased and may be well above 100%.

On the other hand, the suction effect of the pro-
peller slipstream accelerates the flow in the tail re-
gion of the airship hull which yields an increase
of the pressure drag. For obvious reasons, the
propeller-induced hull drag as well as the efficiency
η of the stern-thruster is higher for hull shapes with
a blunt tail.

Detailed investigations on aerodynamic effects of
airships with stern-propulsion are hardly reported.
An exception represent the wind-tunnel tests per-
formed by McLemore [10]. Because of its impor-
tance, the main results of these studies shall be
summarized. McLemore examined a 1 : 20 scale
model (L ! 6m) of a complete airship configu-
ration with two different stern-mounted propellers
which were designed specifically for the flow con-
ditions occuring in the hull wake.

First of all, McLemore measured the thrust co-
efficient cT , the power coefficient cP and the ef-
ficiency η in dependency of the advance ratio λ.
According to the usual definitions these propeller
characteristics are given as:

cT =
T

ρ
2 U2

∞ πR2
(1)

cP =
P

ρ
2 U3

∞ πR2
(2)

η =
T U∞

P
=

cT

cP
(3)

λ =
U∞
n · D (4)

In his experiments, the larger propeller turned
out to be very efficient and shows a maximum
efficiency of η ≈ 140%. McLemore pointed out
that values of η above 100% only result because
according to Eq. (3) the efficiency is defined by
the thrust-to-power ratio multiplied by the undis-
turbed freestream velocity U∞. Actually, the pro-
peller operates in the viscous hull wake where the
local velocities are well below U∞. If the efficiency
would be defined based on the local onset flow ve-
locity, the resulting value of η would, of course, be
lower than 100% also for a stern thruster.

In a second test the characteristics were mea-
sured when the propeller produced enough thrust
to propel the airship, i.e. for the condition that the
thrust is equal to the total airship drag including
propeller-induced drag. The maximum efficiency
decreased to η ≈ 122% which indicates that the de-
sign point of the propeller does not exactly match
the steady-state flight conditions.
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In a last evaluation the propulsive efficiency ηe

was determined which is defined as:

ηe =
(T − DPropeller) · U∞

P
(5)

This definition accounts for the fact that due to
the propeller-hull interference the thrust required
to propel the airship is increased by the propeller-
induced hull drag DPropeller. This is a more real-
istic measure to rate the total effectiveness of the
propulsive system1. For steady-state flight condi-
tions the measured propulsive efficiency was about
103% compared to a value of only 59% resulting
for a fin-mounted propeller.

Previous Investigations and Overview

In the frame of previous investigations [7] a
vortex-sheet model to determine the time-averaged
velocity-field induced by a propeller with fully-
relaxed slipstream was developed. This propeller
module was coupled to a panel/boundary-layer
method for the analysis of the viscous hull flow.
The coupled method enables the correct prediction
of the hull drag including propeller effects. How-
ever, with the implementation [7], the propeller ef-
ficiency was underpredicted since only the inviscid
onset-flow velocity-field was considered in the eval-
uation of the propeller characteristics.

In order to allow a correct prediction of the re-
quired power and the propeller efficiency the vis-
cous velocity profile in the propeller disc area has
to be considered. To obtain a realistic boundary-
layer profile at the stern of the airship, first of all,
a reliable viscous/inviscid coupling of the integral
boundary-layer procedure and the panel method is
needed. Therefore, the first extention of the model
dealt with the implementation of an improved iter-
ative coupling scheme using the transpiration tech-
nique. To stabilize the iteration process an under-
relaxation technique is necessary. The approach
chosen to determine adequate relaxation factors is
based on a linearized local stability analysis of the
coupled governing equations.

In the subsequent chapter the fundamentals of
the panel method and the propeller module are
summarized, followed by a more detailed discus-
sion of the boundary-layer procedure and espe-
cially of the coupling scheme developed. Sec. 4 is
devoted to the application of the enhanced method.
1Another appropriate approach would be to just consider

the power (coefficient) needed to propel the airship at a
certain speed, regardless of the thrust required.

First, validation examples with respect to the new
viscous/inviscid coupling will be given. Thereafter,
the method is applied to calculate the characteris-
tics of a propeller operating in the viscous wake of
an airship hull. Comparisons to the experiments
of McLemore will be presented.

2 Calculation of the Inviscid
Outer-Flow Field

In general, the viscous flowfield about a config-
uration can be calculated by numerically solv-
ing the (Reynolds-averaged) Navier-Stokes-
equations, which is rather time consuming with
respect to mesh-generation and computational ef-
fort. This is especially true for a configuration
with rotating propeller because this requires an
unsteady analysis. If the Reynolds number is
high, viscous effects are mainly restricted to a thin
boundary layer along the body surface, whereas
viscosity can be neglected in the remaining exter-
nal flowfield. As long as no massive separation
occurs, both flow domains can be calculated sep-
arately by solving simplified governing equations
respectively. Hereby, the inviscid outer-flow solu-
tion yields the boundary conditions to perform the
subsequent boundary-layer analysis.

In this chapter the method to determine the in-
viscid flow about a displacment body with stern
propeller is summarized whereas in Sec. 3 the
boundary-layer procedure and the viscous/inviscid
coupling scheme is discussed in more detail.

2.1 Panel Method

The inviscid flow about the airship hull is calcu-
lated using a 3D low-order panel method. With
this approach an irrotational and isentropic flow-
field is considered which allows to introduce a ve-
locity potential Φ. This potential consists of the
known potential ϕ∞ of the undisturbed onset flow
and the disturbance potential ϕ caused by the sub-
merged body.

The continuity equation represents the govern-
ing equation of the problem. For incompressible
fluid this equation reads in terms of the distur-
bance potential as follows:

∆ϕ =
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0 (6)

Applying Green’s third identity enables to trans-
form this Laplace-equation into the following in-
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tegral equation:

ϕ (x, y, z) = − 1
4π

∫∫

S

σ

r
dS

+
1
4π

∫∫

S

µ"n ·∇
(

1
r

)
dS

(7)

Hereby, σ represents a source and µ a doublet
singularity distribution on the solid body surface.
For non-lifting cases, as considered in the present
investigations, the use of a source distribution is
sufficient. To solve the above integral equation,
the external Neumann boundary-condition is ap-
plied. This condition implies that the velocity nor-
mal to the surface has to vanish. Since the velocity
is given by the derivative of the potential, this con-
dition can be written as:

(
"v · "n

)∣∣
surface

=
(
(∇Φ) · "n

)∣∣∣
surface

= 0 (8)

To enable a numerical solution of Eq. (7) the
body surface is discretized into flat quadrilateral
panels with piecewise constant source strength.
The discretisation finally yields a linear equation
system to solve for the unknown source strengths
"σ:

[
AIC

]
· "σ = −−−→

RHS

−−−→
RHS = −"U∞ · "n

(9)

[
AIC

]
is the matrix of the aerodynamic influ-

ence coefficients which give the induction of one
source panel of unit strength onto the collocation
point of another panel. The components of the
vectors "σ and −−−→

RHS represent the corresponding
values for a particular panel k.

Once the source strengths are known, the invis-
cid velocity vector at an arbitrary field point and
especially on the surface can be determined. Ap-
plying the Bernoulli-equation finally gives the
pressure field.

2.2 Propeller Model

The panel method is coupled to a model which en-
ables to calculate the time-averaged influence of
a propeller located on the body axis [7]. In this
model the propeller disc is represented by a vor-
tex sheet whereas the slipstream is modelled by a
discrete number of vortex tubes of variable vortic-
ity. Due to this representation, actually, a pro-
peller with an infinite number of blades is mod-
elled. However, the resulting induced velocity field
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Figure 1: Calculated slipstream geometry of a pro-
peller located downstream of a displace-
ment body [7]

coincides with the time-averaged velocities caused
by a propeller with finite number of blades.

The vortex tubes in the slipstream are dis-
cretized by truncated concentric cones. Each tube
is terminated by a semi-infinite vortex cylinder.
The contracting slipstream geometry is determined
by an iterative relaxation procedure based on the
condition that the slipstream has to be force-free.
This implies that the vorticity vector is parallel to
the local velocity vector at each collocation point of
the slipstream. With this relaxation procedure the
self-influence of the propeller and its slipstream as
well as the velocity field induced by a displacement
body are considered.

The influence of the propeller on the hull is con-
sidered by a modification of the right-hand-side of
Eq. (9). Hereby, the velocity vector induced by the
propeller and its slipstream onto each panel collo-
cation point on the hull surface is added to the
undisturbed freestream velocity "U∞. Thereafter,
the source distribution is recalculated to satisfy
the updated right-hand-side. This alters the body-
induced velocity field which requires an adaption
of the slipstream geometry. This procedure is re-
peated until convergency is achieved. An example
of a calculated fully-relaxed propeller slipstream
including propeller-hull interference effects is given
in Fig. 1.

The propeller thrust and the required power
finally are determined by an integration of the
forces acting on the bound circulation distribution.
These forces are obtained from application of the
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Kutta-Joukowsky-law. As a major improve-
ment to the model described in Ref. [7] the viscous
instead of the inviscid propeller onset flowfield is
considered during the calculation of the propeller
forces. Furthermore, the viscous drag of the pro-
peller blades is estimated based on the drag coeffi-
cient of a flat blade with fully laminar or fully tur-
bulent boundary layer respectively. The flat plate
drag-coefficient depends on the chord Reynolds
number Rec(r) at the particular blade section and
is given by:

cd|laminar =
1.328√

Rec
(10)

cd|turbulent =
2 · 0.455

log10 (Rec)
2.58 (11)

The consideration of the detailed aerodynamic
characteristics of the blade sections will be imple-
mented next.

It is important to mention that with the present
implementation of the propeller model the bound
circulation distribution on the propeller blades is
not calculated but has to be specified by the user.
This distribution might e.g. be taken from a pre-
viously performed propeller design, from experi-
ments or from the known distribution of ‘ideal’ iso-
lated propellers. An extension of the model to the-
oretically predict the circulation distribution dur-
ing the coupled analysis will be investigated in fu-
ture.

3 Calculation of the Viscous
Flow About the Airship Hull

3.1 Boundary-Layer Procedure

Governing Equations and Integral
Boundary-Layer Parameters

For the present investigations a first-order integral
boundary-layer procedure was applied to calculate
the viscous effects along the hull. The method is
based on the numerical integration of the integral
momentum and energy equations. In a surface-
oriented coordinate system (Fig. 2) these equations
read for incompressible axisymmetrical flows as fol-
lows:

dδ2
ds

+ δ2

[(
H12 + 2

Ue

)
dUe

ds
+

1
R

dR

ds

]
=

cf

2
(12)

dδ3
ds

+ δ3

[
3
Ue

dUe

ds
+

1
R

dR

ds

]
= cD (13)

r

U x∞

n, v

s, u
P

R

Figure 2: Surface-oriented coordinate system used
for the calculation of axisymmetric
boundary layers

These governing equations also hold for δ2 )/ R
if the integral parameters according to the follow-
ing axisymmetric definitions are presumed:

δ1 =
δ∫

0

[
1 − u(n)

Ue

](
1 + nκ

)
dn (14)

δ2 =
δ∫

0

u(n)
Ue

[
1 − u(n)

Ue

] (
1 + nκ

)
dn (15)

δ3 =
δ∫

0

u(n)
Ue

[

1 −
(

u(n)
Ue

)2
] (

1 + nκ
)

dn

(16)

with κ =

√
1

R2
−

(
1
R

dR

ds

)2

(17)

In contrast the integral parameters according to
the plane definition are denoted δ1, δ2 and δ3 with:

δ1 =
δ∫

0

[
1 − u(n)

Ue

]
dn (18)

δ2 =
δ∫

0

u(n)
Ue

[
1 − u(n)

Ue

]
dn (19)

δ3 =
δ∫

0

u(n)
Ue

[

1 −
(

u(n)
Ue

)2
]

dn (20)

The system of ordinary differential equations
(12), (13) is closed by three algebraic relations
to solve for the five unknown integral parame-
ters δ1, δ2, δ3, cf and cD. With the present
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method the closure relations proposed by Eppler
[1] are used. These closure conditions were derived
from Falkner-Skan self-similar profiles for laminar
boundary layers whereas empirical relations were
correlated for turbulent flows. The complete sys-
tem of equations is solved for the dependent pa-
rameters δ2 and δ3 based on the velocity distribu-
tion along the boundary-layer edge Ue(s) resulting
from the inviscid outer-flow computation.

Transition Prediction

The location of the laminar to turbulent transition
can be either specified by the user or predicted by
a local empirical criterion [1] or a semi-empirical
en-method. If laminar separation occurs upstream
of transition it is switched to turbulent closure re-
lations at the separation point.

In the present investigations the en-method was
applied to recalculate wind-tunnel experiments fea-
turing natural transition. The en-approach takes
advantage of the fact that the transition process
in subsonic 2D-flows is typically associated with
the growth and breakdown of Tollmien-Schlichting
waves (TS-waves). As long as the disturbance am-
plitude A is small enough, the amplification can
be predicted by means of linear stability theory.
The basic idea of the en-method is that transi-
tion may be assumed when the most amplified fre-
quency reaches a certain critical amplification fac-
tor ncrit. = ln (Acrit./Ainitial). The value of ncrit.

depends on freestream conditions, the receptivity
mechanism and on the definition of the transition
‘point’. With the present en-approach, spatial dis-
turbance growth is considered. To minimize the
computational effort a database method was im-
plemented as an alternative to a direct solution of
the Orr-Somerfeld equation. More details along
with validation examples are given in Refs. [6], [8]
and [9].

Drag Prediction

To determine the viscous drag of the hull the well-
known Squire-Young formula is applied. This ap-
proach is based on the evaluation of the calculated
momentum thickness at the stern and accounts for
the skin-friction as well as for the form drag of the
boundary layer. If the propeller is switched on, the
propeller-induced pressure drag is calculated from
an integration of the pressure distribution along
the hull surface. The sum of both contributions
represents the total hull drag.

3.2 Viscous/Inviscid Coupling

With the theoretical model described so far, the
inviscid velocity distribution Ue(s) along the hull
surface is specified as boundary condition for the
boundary-layer calculation. This gives the correct
result only for the asymptotic condition of infinite
Reynolds number and vanishing boundary-layer
thickness. For practical problems with finite val-
ues of Re the displacement effect of the boundary
layer affects the outer flow and thus the distribu-
tion Ue(s). This, in turn, has an impact on the
boundary-layer development. The displacement ef-
fect is most pronounced in the pressure recovery re-
gion near the tail. Therefore, an iterative coupling
of the boundary layer and the outer-flow computa-
tion is needed if realistic boundary-layer properties
in the stern region of the hull are of interest. The
objective, hereby, is to modify the inviscid flow cal-
culation in such a way that it provides the correct
velocity distribution Ue along the outer edge of the
boundary layer under consideration of its displace-
ment effect. We shall call this equivalent inviscid
flow computation [4].

Transpiration Technique

In principle, two different coupling schemes are
possible. With the solid displacement surface
model the calculated displacement thickness is
added to the solid hull shape to find the rele-
vant contour for the subsequent outer-flow com-
putation. The main disadvantage of this approach
is that the geometry-dependent aerodynamic in-
fluence coefficients

[
AIC

]
have to be recalculated

during every iteration step, which is rather time-
consuming.

For this reason the surface transpiration model
is usually preferred. With this second approach
an additional source-singularity distribution on the
surface of the solid hull shape is introduced to sim-
ulate the boundary-layer displacement effect. For
this purpose the right-hand-side of the linear equa-
tion system (9) is modified by adding a transpira-
tion velocity vn.

At a certain position on the hull the transpira-
tion velocity can be derived from an integration of
the continuity equation across the boundary layer
for both, the real viscous flow and the equivalent
inviscid flow. The value of vn can be determined
from the fact that the mass flow normal to the wall
(caused by vn) in the equivalent inviscid flow has
to be equal to the streamwise rate of change of the
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mass flow deficit in the boundary layer [4]. For
incompressible axisymmetrical flows it follows:

vn =
d(Ue · δ1)

ds
+

Ue · δ1
R

· dR

ds
(21)

During the present investigations it has shown
that in some cases Eq. (21) yields small irreg-
ularities of the vn-distribution in the vicinity of
the stern. An improvement, i.e. a smoother vn-
distribution was achieved by introducing the inte-
gral momentum equation (12) into Eq. (21) which
finally gives:

vn = Ue

(
dδ1
ds

+ H12
cf

2
− H12

dδ2
ds

−H12δ1
Ue

dUe

ds
− δ1

Ue

dUe

ds

)
(22)

If the full transpiration velocity as resulting from
Eq. (21) or (22) is added to the right-hand-side
of Eq. (9) severe stability problems arise: Near
the tail region of an axisymmetric body a strong
flow deceleration results from the first inviscid flow
analysis. Along with the reducing body radius,
an unrealistic strong growth of the displacement
thickness is predicted by the subsequent boundary-
layer calculation. According to Eq. (21) this yields
to very high values for vn in the tail region. As
a consequence, the beginning of the pressure re-
covery is shifted in upstream direction during the
next iteration loop (Fig. 3) which in turn causes
an earlier growth of the boundary layer. Usually
an unstable or a divergent behaviour of the vis-
cous/inviscid coupling process results.

Under-Relaxation Scheme and Determination
of the Relaxation Factor

To obtain a stable behaviour of the coupling pro-
cess, only a part ω of the theoretical update of vn

may be added to the right-hand-side of Eq. (9), i.e.
an under-relaxation scheme has to be introduced.
Usually the relaxation factor ω is chosen empiri-
cally. For the present investigations a more sophis-
ticated approach was applied which is based on a
local linear stability analysis of the coupled pro-
cess as proposed by Le Balleur [3] (see also Lock
[4]). Following the derivation of an ‘optimum’ re-
laxation factor for plane flows as given by Lock [4]
an analogous theory will now be derived for ax-
isymmetrical boundary layers along a body with
locally cylindrical shape.

x/L

c p

0 0.25 0.5 0.75 1

-0.5

0

0.5

1

Inviscid solution
Coupled viscous/inviscid analysis
(1 iteration, no relaxation)

Figure 3: Unstable behaviour of the vis-
cous/inviscid coupling process without
relaxation, ‘Lotte’ hull, ReL = 16 · 106,
xtra/L = 0.05

First of all, the transpiration velocity vn ac-
cording to Eq. (21) is nondimensionalized with the
outer-flow velocity Ue:

Σ =
vn

Ue
(23)

The quantities Σ(n), v(n)
n and U (n)

e shall denote
the flow properties at the n-th iteration whereas
Σ̃, ṽn and Ũe represent the correct final values af-
ter convergency of the iteration process. To define
the discrepancy from the converged solution the
following error functions are introduced:

σ(n) = Σ(n) − Σ̃ (24)

u(n) =
U (n)

e − Ũe

Ũe

(25)

We assume that the rate of change of any flow
property is negligibly small compared to the vari-
ation of the above error-functions. Then, a locally
linearized analysis of the behaviour of u and σ can
be performed. To describe the equivalent inviscid
flow a potential function is introduced which sat-
isfies the Laplace-equation in case of incompress-
ible fluids. In cylindrical coordinates this equation
reads as follows:

Φxx + Φrr +
1
R

Φr = 0 (26)
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If, furthermore, the crude assumption is met
that the analysed body has locally a cylindrical
shape2, the outer-edge velocity is oriented in axial
and the transpiration velocity in radial direction
which allows to determine the error-functions as
follows:

u =
∂Φ
∂x

= Φx (27)

σ =
∂Φ
∂r

= Φr (28)

The error-functions u and σ are coupled by the
Laplace-equation (26) and, on the other hand, by
the boundary-layer equations via Eq. (21).

Eq. (26) is now represented by a superposition
of harmonic waves, i.e. a Fourier-expansion is in-
troduced in order to investigate the amplification
of particular waves of the errors in downstream di-
rection. It can easily be shown that a solution of
Eq. (26) for a wave number ν = 2π

λ is given by:

Φ(x, r) = A · eiνx · e−κ(r−R) = A · f(x) · g(r)

(29)

with: κ =
1
R +

√
1

R2 + 4ν2

2
and i =

√
−1

(30)

For the partial derivatives it follows:

u = A · iν eiνx · g(r) = A · iνf(x) · g(r) (31)

ux =
∂u

∂x
= −A · ν2f(x) · g(r) (32)

σ = A · f(x) · gr(r) (33)

Combining Eqs. (32) and (33) yields:

ux = −ν2σ
g(r)
gr(r)

=
ν2σ

κ
(34)

Now, the dependency of the nondimensionalized
transpiration velocity Σ = vn

Ue
on the velocity gra-

dient dUe
ds resulting from the viscous analysis shall

be derived. For this purpose the gradient dδ1
ds is

eliminated in Eq. (21) by inserting the integral

2An analogous theory was develeoped for a locally coni-
cal body shape. Both approaches yield almost identical
results with respect to the calculated relaxation factor,
see Fig. 6. For simplicity only the cylindrical approach
is reported in the present paper.

boundary-layer equations (12) and (13). Rearrang-
ing the resulting expression finally yields:

Σ =
vn

Ue
=

dUe

ds

δ2
Ue

B + C (35)

with B =
[

H12 − 3H32
dH12

dH32
(36)

− (H12 + 2)
(

H12 − H32
dH12

dH32

)]

and C =
(

H12 − H32
dH12

dH32

) (
cf

2
− δ2

R

dR

ds

)

+
dH12

dH32

(
cD − δ3

R

dR

ds

)
+

δ1
R

dR

ds
(37)

The derivative of the shape factor dH12
dH32

can be
determined from the closure relations used [1] in
analytical form.

Introducing the error-functions (24) and (25)
into Eq. (35), taking into account that the deriva-
tives of the flow properties are assumed to be small
and that dUe

ds = dUe
dx for the flow direction consid-

ered, it follows:

σ =
du

dx
· δ2 B = B δ2 · ux (38)

During the viscous/inviscid coupling the tran-
spiration velocity for the next iteration (n + 1) is
calculated based on the velocity gradient of the n-
th iteration. Thus:

σ(n+1) = B δ2 · u(n)
x (39)

Inserting Eq. (34) as resulting from the evalua-
tion of the Laplace-equation into (39) shows how
the error σ behaves from one iteration of the vis-
cous/inviscid coupling to the next:

σ(n+1) = µ σ(n) (40)

with µ =
Bδ2ν2

κ
(41)

with µ representing an amplification factor. Note
that the error in the transpiration velocity is am-
plified for |µ| > 1. In this case it can be expected
that the viscous/inviscid coupling will show an un-
stable behaviour and that an under-relaxation has
to be introduced to stabilize the process.

Now a relation to determine a suitable relaxation
factor ω shall be derived. Rewriting the error-
function σ for iteration step (n) and (n + 1) and
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solving for the converged solution Σ̃ allows to elim-
inate σ if Eq. (40) is inserted:

Σ̃ = Σ(n) − σ(n)

and Σ̃ = Σ(n+1) − σ(n+1) = Σ(n+1) − µσ(n)

⇒ Σ̃ =
µ

µ − 1
Σ(n) − 1

µ − 1
Σ(n+1) (42)

This equation states that the converged value
of the transpiration velocity can, in principle, be
determined from the values Σ(n) and Σ(n+1) of
two subsequent iterations. Because of the simplify-
ing assumptions introduced during the derivation,
Eq. (42) can only be expected to give an estimate.
Nevertheless, it might be used to obtain an ‘opti-
mum’ relaxation factor ω. Rearranging Eq. (42)
yields:

Σ̃ = Σ(n) + ω
(
Σ(n+1) − Σ(n)

)
(43)

with ω =
1

1 − µ
=

1
1 − Bδ2ν2

κ

(44)

In the above equation no statement about the
wave number ν was made so far. To specify the
value of ν it should be mentioned that with a nu-
merical method at least two nodes within one wave-
length are needed to resolve a harmonic wave. For
the panel method this means that the highest wave
number νmax which can result for the error u is
determined by the distance ∆s between the neigh-
bouring panel collocation points. With

νmax ≈ π

∆s
(45)

a reasonable minimum for the ‘optimum’ relax-
ation factor is given by:

ωopt =
1

1 − Bδ2
κ

(
π

∆s

)2 (46)

This equation can be applied locally at each
panel collocation point along the hull surface to ob-
tain a distribution for the relaxation factor ωopt(s).
It was used in the present investigations to stabilize
the viscous/inviscid coupling process and yields
most often good convergence characteristics. Nev-
ertheless, in some particular cases, the coupling
process tends to become unstable after conver-
gency seemed to have been achieved. In those cases
the relaxation factor was attenuated.

Discussion of the Parameters Affecting the
Relaxation Factor

Since B (Eq. (36)) is always negative, at least for
the closure relations used in the present boundary-
layer method, Eq. (46) shows that smaller relax-
ation factors are needed (compare discussion of
Lock [4]):

. . . for higher δ2-values, i.e. for lower Reynolds-
numbers

. . . for smaller values of ∆s, i.e. for finer panel
meshes

. . . for higher absolute values of B

The evaluation of the shape factor relations used
shows that the module of B becomes larger as H32

decreases, see Fig. 4. Therefore, small values of ω
are required in the vicinity of separation.

H32

H
12 B

1.4 1.5 1.6 1.7 1.8 1.9 21

1.5

2

2.5

3

3.5

4

-100

-80

-60

-40

-20

0

H12
B

Figure 4: Shape factor relation for turbulent
2D boundary-layers according to Ep-
pler [1] and resulting behaviour of the
parameter B

Application Example of the Coupling Scheme

As an example the analysis of the ‘Lotte’ hull given
in Fig. 3 was repeated using the present relax-
ation scheme. The pressure distribution obtained
after 20 iterations along with the inviscid result
is depicted in Fig. 5. No tendency to an unsta-
ble behaviour could be observed and the solution
was practically converged after 20 iteration cycles.
Fig. 6 shows the distribution of the ‘optimum’ re-
laxation factor after the first iteration step. It can
be seen that in the nose region almost no under-
relaxation is needed whereas very small values of ω
result near the tail for the reasons discussed above.
For comparison, the ω-distribution which would re-
sult if a locally conical body shape is assumed dur-
ing the derivation of ωopt, is also depicted in Fig. 5.
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Figure 5: Viscous/inviscid coupling with relax-
ation, Lotte hull, ReL = 16 · 106,
xtra/L = 0.05
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Figure 6: Distribution of the ‘optimum’ relaxation
factor ωopt according to Eq. (46), Lotte
hull, ReL = 16 · 106, fully turbulent
boundary layer, first iteration

Since the curves practically coincide the ap-
proach described in the present paper is regarded
to be sufficient and was therefore used for all sub-
sequent calculations.

3.3 Derivation of the Boundary-Layer
Profiles from Integral Parameters

With an integral boundary-layer procedure no in-
formation about the detailed velocity distribu-
tion across the boundary layer is provided. To
obtain the viscous onset-flow velocity field for
the stern propeller, the boundary-layer profile
u
Ue

(r, L), therefore, has to be determined from the
calculated axisymmetric integral parameters like
δ1(L), δ2(L) or δ3(L).

Representation of Turbulent Boundary-Layer
Profiles

For plane flows several families of velocity pro-
files are well established like the Falkner-Skan
self-similar profiles for laminar boundary layers.
For turbulent flows some analytical expressions are
known. A rather simple representation is given by
the power-law profiles:

u

Ue
=

(n

δ

)a
(47)

Swafford and Whitfield [12] proposed an analyt-
ical expression to describe incompressible attached
or separated turbulent boundary layers. This ap-
proach is more physically motivated and takes the
zonal character of turbulent boundary layers into
consideration:

u

Ue
=

uτ
Ue

sign(cf )
arctan (0.09y+)

0.09
(48)

+
(

1 − uτ
Ue

πsign(cf )
0.18

)
tanh

1
2

(

a

(
n

δ2

)b
)

with uτ = Ue ·
√∣∣∣

cf

2

∣∣∣

(49)

and y+ =
uτn

ν
= Reδ2 ·

uτ
Ue

· n

δ2

(50)

Notice that the momentum thickness δ2 accord-
ing to the plane defintion (19) has to be used when
evaluating Eq. (48). The parameters a, b are con-
stant across the boundary-layer profile but are de-
pendent on its shape and thus have to be deter-
mined for each profile considered. For this pur-
pose, ansatz (48) is introduced into the definitions
(14), (15) and (16) to solve for δ1, δ2, δ3 by nu-
merical integration. The corresponding shape fac-
tors H12 and H32 have to be equal to the specified
values. These compatibility equations enable the
determination of the parameters a, b by solving
a nonlinear equation system, e.g. using a damped
Newton-Raphson method.

The profile families discussed might also be used
to represent the velocity distribution across ax-
isymmetric boundary layers as long as its thickness
is moderate.

Now it shall be described how to obtain the ex-
ponent a of the power-law profiles and the rele-
vant boundary-layer thickness δ from given val-
ues δ1 and δ2 as resulting from the axisymmet-
ric boundary-layer calculation. First of all, ansatz
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(47) is introduced into Eqs. (14) and (15) which
yields:

δ1
δ

= 1 − 1
a + 1

+
κ δ

2
− κ δ

a + 2
(51)

δ2
δ

=
1

a + 1
− 1

2a + 1
+ κ δ

(
1

a + 2
− 1

2a + 2

)

(52)

Since δ1/δ
δ2/δ = δ1

δ2
= H12 which is known from the

boundary-layer calculation and κ from the geomet-
ric properties of the analyzed body, Eqs. (51) and
(52) yield a first equation to determine a and δ:

H12 + 1
a + 1

+
κ δ (H12 + 1)

a + 2

− H12

2a + 1
− H12 κ δ

2a + 2
− 2 + κ δ

2
= 0

(53)

Rearranging Eq. (51) gives the second equation re-
quired:

δ =

√
(a + 2)2

κ2(a + 1)2
+

2(a + 2)
κ a

· δ1 − a + 2
κ(a + 1)

(54)

The coupled equations (53) and (54) can be solved
iteratively using a Newton method.

With the known values of a and δ the velocity
distribution u

Ue
(n) across the boundary layer can

finally be obtained from ansatz (47).
To give an example, Fig. 7 shows the approx-

imation of measured boundary-layer profiles [11]
by the profile families discussed. The power-law
profiles were determined from measured values of
δ1 and δ2 whereas Reδ2 and cf are required addi-
tionally to derive the Swafford profiles. Both ap-
proaches are in good agreement to the actual veloc-
ity distributions even though very thick boundary
layers near the stern of an axisymmetric body were
considered. It is, therefore, expected that with
the present post-processing approach the propeller
onset-flow velocity field is determined to sufficient
accuracy as long as the coupled viscous/inviscid
calculation yields reliable results for the integral
boundary-layer parameters. For the present inves-
tigations the power-law approach is used to obtain
the boundary-layer profile at the stern of the hull.
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Figure 7: Approximation of boundary-layer pro-
files based on measured integral param-
eters, experiment by Patel et al. [11]

Convertion of Integral Boundary-Layer
Parameters from Axisymmetric to Plane
Definition

Besides the approximation of turbulent boundary-
layer properties, the power-law ansatz enables a
simple convertion of the axisymmetric integral pa-
rameters δ1, δ2, δ3 into the properties δ1, δ2, δ3 ac-
cording to the plane definition. Inserting Eq. (47)
into definitions (18) to (20) yields:

δ1 =
(

1 − 1
a + 1

)
· δ (55)

δ2 =
(

1
a + 1

− 1
2a + 1

)
· δ (56)

δ3 =
(

1
a + 1

− 1
3a + 1

)
· δ (57)
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Figure 8: Convertion of displacement thickness δ1,
momentum thickness δ2 and shape factor
H12 from axisymmetric to plane defini-
tion using the power-law approach

Fig. 8 is to demonstrate the capability of the
power-law approach to be used for convertion of
the integral boundary-layer parameters. Based on
measured values [11] of δ1 and δ2 Eqs. (53) to (56)
were applied to theoretically determine the corre-
sponding values δ1, δ2 and H12. The obtained dis-
tributions almost coincide with the experimental
results.

4 Results and Discussion

4.1 Viscous Flow about the Hull
without Propeller Influence

Detailed experiments on axisymmetric bodies with
stern propellers are hardly available in literature
open to the public. Therefore, the present the-
oretical model is at first validated for the bare
hull with respect to the boundary-layer calcula-
tion and the viscous/inviscid coupling scheme de-
scribed. For this purpose low Reynolds-number
experiments were selected because for these condi-
tions the boundary layer in the tail region is rather
thick and viscous/inviscid interaction effects are
most pronounced. Thus, limitations of the first-
order boundary-layer procedure and the coupling
scheme become more obvious than for the high
Reynolds-numbers of real airships.

As very first example, Fig. 9 shows the calcu-
lated and the measured pressure distribution for
a 1 : 20 scale model of the remote-controlled air-
ship ‘Lotte’ built at the University of Stuttgart.
The experiments were performed in the ‘Medium
Wind-Tunnel’ of the IAG with a turbulence lat-
tice being mounted in some distance upstream of
the model. The lattice increases the turbulence
factor to Tu ≈ 0.06 which yields an almost fully
turbulent flow about the entire hull like it is true
for full-scale airships. The wind-tunnel model was
supported by a tailboom which was also considered
in the calculation.

It is obvious that in the tail region the invis-
cid pressure distribution strongly deviates from the
measured distribution due to the neglection of the
boundary-layer displacement effect. The present
coupled viscous/inviscid analysis is in good agree-
ment with the experiments even though the theo-
retical result shows a slightly stronger pressure re-
covery. However, it should be noticed that the cal-
culation yields the surface pressure for the equiva-
lent inviscid flow. This pressure differs from that
of the real viscous flow if, due to curvature effects,
the pressure is not constant across the boundary
layer [4]. This is expected to be true in the tail
region of the analyzed body at least for the low
Reynolds numbers considered.

The boundary-layer experiments performed by
Patel et al. [11] were chosen as second example.
The examined shape is a 1:6 ellipsoid with a conical
tail piece (Fig. 10) which yields a strong thickening
of the boundary layer in this area. This test case
represent a tough challenge for the viscous/inviscid
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Figure 9: Surface pressure distribution about a
model of the ‘Lotte’-hull with tail-
boom, experiment by Lowag & Funk [5],
ReL = 1.3 · 106, α = 0◦, fully turbulent
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Figure 10: Surface pressure distribution along
a body of revolution, experiment
by Patel et al. [11], ReL = 1.26 · 106,
forced transition at xtra/L = 0.05

coupling since it was especially designed to inves-
tigate strong interaction effects between boundary
layer and external flow.

The strong interaction causes a significant re-
duction of the measured pressure recovery in com-
parison to the inviscid solution, see Fig. 10. The
coupled viscous/inviscid analysis yields a correct
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Figure 11: Distributions of the displacement thick-
ness δ1, the shape factor H12 and
the skin-friction coefficient cf along
the body of revolution examined by
Patel [11], ReL = 1.26 · 106, α = 0◦,
forced transition at xtra/L = 0.05

tendency but again, the recompression is overpre-
dicted.

Fig. 11 gives the results of calculated and mea-
sured boundary-layer parameters. The coupled
analysis shows a rather good agreement with the
experiments even in the vicinity of the pointed tail.
Notice, that the calculation without coupling gives
significant different results for the shape factor dis-
tribution. If the displacement effect is neglected a
steep increase of H12 in the tail region along with
turbulent separation at xsep/L ≈ 0.98 can be ob-
served. On the other hand, the coupled analysis as
well as the experiment give substantial lower H12-
values and no separation occurs.
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Figure 12: Predicted and measured boundary-
layer profiles for the body of rev-
olution examined by Patel [11],
ReL = 1.26 · 106, α = 0◦, forced transi-
tion at xtra/L = 0.05

Fig. 12 finally shows the comparison of mea-
sured boundary-layer profiles and power-law pro-
files determined from the calculated integral pa-
rameters (compare Sec. 3.3). The velocity pro-
files as resulting from a coupled analysis yield a
pretty good match to the real profiles except for the
most downstream measuring location x/L = 0.99.
At the stern the inner region of the boundary
layer could not satisfactory represented by the one-
parameter power-law approach and, furthermore,
the boundary-layer thickness is slightly overpre-
dicted. Nevertheless, it becomes obvious that a
viscous/inviscid coupling is indispensable to pre-
dict reasonable boundary-layer properties in the
tail region.

Because for real airships the Reynolds-number
is much higher than for the test cases considered,
the displacement effect is less pronounced and it
can be expected that the present model enables
the calculation of the viscous flowfield to sufficient
accuracy for the intended investigations on stern
propellers.

4.2 Efficiency of Stern-Mounted
Propellers

Because it is instructive for the study of the
propeller-hull interference effects, calculation re-
sults for the ‘Lotte’ airship with stern propeller
as reported in Ref. [7] are depicted once more and
compared to results obtained with the present en-
hanced theory (Fig. 13). The full-scale airship of
length L = 16m was examined for a flight speed of
U∞ = 15m/s which corresponds to a Reynolds-
number of ReL = 16 · 106. The hull boundary-
layer was assumed to be fully turbulent. To enable
a comparison to previous results, the bound cir-
culation distribution derived from the experiments
of Hucho [2] was specified even though the actual
Lotte propeller shows a different design. During
the calculation the propeller rotational speed was
iterated until the obtained thrust was equal to the
viscous plus the propeller-induced hull drag.

In Ref. [7] the influence of the distance between
propeller and stern on thrust coefficient cT , power
coefficient cP and efficiency η was investigated.
With these earlier calculations only the inviscid
flow field was considered during the analysis of
the propeller characteristics. Due to the propeller-
induced hull drag the thrust required for steady
flight increases when the propeller approaches the
stern, see Fig. 13. As discussed in Ref. [7] the pro-
peller efficiency increases accordingly because the
onset-flow velocity of the propeller decreases in the
vicinity of the displacement body. Altogether, the
required power which is the relevant quantity to
rate the propulsive efficiency remains almost con-
stant if the viscous hull wake is not considered.

With the extended calculation method described
in Chapter 3 the influence of the viscous hull wake
on the characteristics of a stern-mounted propeller
can be quantified. The obtained results are given
in Fig. 13 by symbols. It is obvious that the
required power is significantly reduced compared
to the previous results whilst the thrust is al-
most unaffected. The propeller efficiency (based on
U∞) increases accordingly and is well above 100%
(η ≈ 1.1 assuming a fully laminar and η ≈ 1.3 for
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Figure 13: Influence of viscous effects on thrust
resp. power coefficient and efficiency of
a stern propeller (viscous results ac-
cording to present theory, inviscid re-
sults as given in Ref. [7]), Lotte hull,
ReL = 16 · 106, α = 0◦, forced transi-
tion at xtra/L = 0.05

a fully turbulent blade boundary-layer). It should
be mentioned that these values strongly depend
on the specified bound circulation distribution and
are, therefore, only valid for the particular con-
sidered distribution. Nevertheless it becomes obvi-
ous that the gain in efficiency overcompensates the
propeller-induced drag and that an adequately de-
signed stern propeller is a very favourable propul-
sion device for airships.

As another example, an attempt was made to re-
calculate the experiments on an airship model with
stern-propeller performed by McLemore [10]. For
this purpose the shape of the airship hull depicted
in report [10] was at first digitized and slightly
smoothed. This contour along with the inviscid
pressure distribution is given in Fig. 14. With the
present calculations the bare hull at zero incidence
was analyzed whereas the experiments were per-
formed for the complete configuration with fins and
gondola.

Since the actual bound circulation distribution
of the stern propeller is not reported in Ref. [10],
again, the qualitative distribution resulting from
experiments of Hucho [2] was specified. The ab-
solute level of the circulation strength was scaled
such that a thrust coefficient of cT = 0.04 was
obtained for the same advance ratio λ ≈ 1.14 as
in the experiments of McLemore for a blade twist
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Figure 14: Inviscid pressure distribution along
an airship hull investigated by
McLemore [10], α = 0◦

of β
(

r
R = 0.75

)
= 20◦. The resulting circulation

distribution was specified for the whole range of
the propeller rotational speed examined. This is
of course a crude simplification. The experiments
[10] were performed in the Langley full-scale wind-
tunnel at U∞ = 94 ft/s corresponding to a hull
Reynolds-number of ReL = 11.9 · 106. For this
facility, a turbulence factor of Tu ≈ 0.003 is re-
ported. According to a correlation proposed by van
Ingen [13] the effect of such a level of freestream
turbulence on transition can be simulated by spec-
ifying a critical amplification factor of ncrit. ≈ 6.8
for the en criterion. This value of ncrit. was used
in the analysis of the viscous hull flow.

Fig. 15 shows the calculated propeller efficiency
vs. the advance ratio in comparison to measured
characteristics obtained for two different blade
twist angles β. In the calculations the viscous in-
teraction between hull and propeller and a fully-
relaxing propeller slipstream was considered. Two
curves are given, one as resulting for fully lami-
nar and one for fully turbulent flow about the pro-
peller blades. A direct comparison to the experi-
ments is first of all admissible only for the advance
ratio which serves to scale the bound circulation
distribution (λ = 1.14). For this value of λ the
measured propeller efficiency lies right in between
the predicted curves. But also for other rotational
speeds the behaviour is determined quite reason-
able even though a constant circulation distribu-
tion is assumed.
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Figure 15: Calculated and measured efficiency
of a stern propeller, experiment by
McLemore [10], ReL(hull) = 11.9 · 106,
natural transition (ncrit.(hull) = 6.8),
α = 0◦
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Figure 16: Calculated efficiency of a propeller
located at the stern of the McLemore
hull compared to an isolated propeller,
upper picture: fully laminar blades,
lower picture: fully turbulent blades

With decreasing λ (increasing rotational speed
at constant freestream velocity U∞) the viscous
drag of the propeller blades becomes more domi-
nant. This causes a reduction of the efficiency η. If
the advance ratio is increased the effective angle of
attack of the real propeller blades is decreased until
the zero-lift incidence is reached and the propeller
will not produce thrust anymore. A steep decrease
of the efficiency can be observed in this λ-range.
Because in the analysis the same finite circulation
distribution is specified for every λ regardless of the
actual blade incidence this sharp drop does not re-
sult from the present calculation. The theoretical
curves represent the result that would be achieved
for a particular advance ratio if the twist distribu-
tion is adopted such that the intended circulation
distribution is realized. As expected the efficiency
increases continously with the advance ratio in this
case.

Finally, in Fig. 16 the characteristics obtained
for the stern propeller are compared to calculated
efficiency curves which result for the isolated pro-
peller in the absence of the hull. Identical circula-
tion distributions are assumed in both cases. The
results clearly show that the efficiency (based on
U∞) is significantly increased if the propeller is lo-
cated in the viscous wake of an upstream displace-
ment body.

5 Summary

A tool for the calculation of the time-averaged
flowfield about a displacement body with a stern-
mounted propeller was developed. The method
takes viscous interaction effects into account and
enables, e.g., to determine the propeller-induced
drag and to predict the characteristics of the wake
propeller. The method was, at first, validated
with respect to viscous flow calculation about
the bare hull. It has shown that the coupled
panel/boundary-layer procedure yields reasonable
results even in the vicinity of the stern where a
strong growth of the boundary layer can be ob-
served.

Thereafter, the complete tool has been used to
analyse different airship hulls propelled by a stern
thruster. It has proven that the efficiency can be
significantly increased if the propeller is located in-
side the viscous hull wake. Efficiencies well above
100% (based on U∞) found in experiments were
also predicted by the present model. Taking the
propeller-induced hull drag into account it was



Calculation of the Propulsive Efficiency for Airships with Stern Thruster 17

demonstrated that the power required to propel
the airship is decreasing for this favourable pro-
peller installation. This, however, requires that
the propeller is designed specifically for the real
flow conditions in the propeller disc area since the
blade incidence is significantly affected by the hull
wake.

The present calculation method lacks from the
fact that the bound circulation of the propeller
blades is not determined during the analysis but
has to be specified by the user. Furthermore, the
detailed aerodynamic characteristics of the blade
sections are not considered yet. Ongoing work
deals with the extension of the model both re-
spects.
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