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Abstract. A tool for the numerical shape optimization of axi-
symmetric bodies submerged in incompressible flow at zero
incidencehas been developed.Contrary to the usual approach,
the geometry of the body is not optimized in a direct way with
this method. Instead, a source distribution on the body axis
was chosen to model the body contour and the correspond-
ing inviscid flowfield, with the source strengths being used
as design variables for the optimization process. Boundary-
layer calculation is performed by means of a proved inte-
gral method for attached laminar or turbulent boundary lay-
ers. To determine the transition location, a semi-empirical
method based on linear stability theory (en-method) was im-
plemented recently. A commercially available optimizer as
well as an evolution strategy with covariance matrix adaption
of the mutation distribution are applied as optimization algo-
rithms. Shape optimizations of airship hulls were performed
with this new tool for different Reynolds number regimes.
The objective was to minimize the drag for a given volume
of the envelope and a prescribed airspeed range. The results
obtained show a high sensitivity of the optimization result
towards the transition criterion used.

Nomenclature

A amplitude of a Tollmien-Schlichting wave
cd drag coefficient
cdV

volumetric drag coefficient
D drag
f frequency
H12 shape factor
n amplification factor
N total number of source sections
q0i source strength at the beginning of the ith section
q1i source strength at the end of the ith section
r0i distance from start of ith source section to field point
r1i distance from end of ith source section to field point
Re Reynolds number
ReL Reynolds number based on body length
ReV volumetric Reynolds number
Re�1 Reynolds number based on �1
s arc length
t time
U1 undisturbed freestream velocity
V body volume
wx axial velocity component
wr radial velocity component
x,r coordinates of the cylindrical coordinate system
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�r wave number
�i amplification rate
�1 displacement thickness
�xi length of ith source section
' eigenfunction
� kinematic viscosity
� velocity potential
� density of the fluid
! circular frequency

Indices

A field point
crit. critical value
I value at the primary instability point
V quantity based on body volume

1 Introduction

In the process of developing new airships, the central topics
are presently reliable construction and safe operation. If in the
future airships for long endurance missions or for transporta-
tion purposes are realised, the factor of economical operation
will become of greater interest. It will then be most impor-
tant to minimize the weight and the power requirements of the
configuration. The propulsive power required dependsmainly
on the aerodynamic drag of the airship hull, which accounts
for about 2/3 of the total drag. Even a small reduction in hull
drag can result in a significant saving of fuel, which in turn
will lead to a greater payload capacity or an increased range
of the airship. During the aerodynamic design of an airship
it is therefore especially important to find a drag-minimized
envelope for the intended range of missions.

Apart from the shape optimization of the bare hull, addi-
tional aspects should be addressed. For example the moment
gradient of the envelope plays an important role for the total
drag of the configuration, since it determines the size of the
fins required to achieve a desired level of static stability. For an
actual airship project it will furthermore be necessary to find
a drag-minimized shape with the center of buoyancy within a
specified range and a favourable hull surface to volume ratio
in order to minimize the hull mass.

Previous Research on Low-Drag Bodies

First systematical investigations on the drag of axisymmetric
bodies were conducted by Gertler [7]. The objective of his
experimental work was the determination of a low-drag sub-
marine contour. Since no extensive laminar flow regions were
expected for this application, no special laminar bodies have
been investigated in this research study.
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The question concerning drag reduction by extended lam-
inar flow at medium Reynolds numbers was investigated by
Carmichael by means of drop-tests carried out in the Pacific
Ocean [2]. He was able to prove that for ReL=10 to 40 � 10

6

extensive laminar flow is possible. For the body examined
(finenessratio L/D=3.33), a reduction of the volumetric drag
coefficient of up to 60 % could be achieved compared to con-
ventional turbulent body shapes.

Further experimental research on laminar bodies for low
Reynolds number applications was conducted by Hansen &
Hoyt [9]. The low drag coefficients expected from theoreti-
cal calculations could be confirmed experimentally for this
Reynolds number regime. During the experiments a high sen-
sitivity of the transition location to even the smallest surface
roughnesses was observed, which restricts practical applica-
tions of such extensively laminar bodies.

Experimental investigations on the drag of axisymmetric
bodies at large Reynolds numbers (ReV > 10

7
), relevant

for airship applications, are hardly known. Therefore, mainly
theoretical methods have to be relied on. First numerical shape
optimizations were performed by Parsons et al. [16]. The cal-
culation method is based on a panel code which was coupled
with a boundary-layer method. Eight parameters were chosen
as design variables to represent the body geometry.

In contrast Zedan et al. [28] used an inverse method based
on a linearly varying doublet distribution on the body axis
for the design of low-drag aircraft fuselages. The fuselage
designed shows a long region with a favourable pressure gra-
dient in its forward part. It was stated that this should result
in laminar flow up to 70 % of the body length at Reynolds
numbers of ReV=10 to 30 � 10

6. Further numerical shape op-
timizations were carried out for example by Dodbele et al.
[4], Coiro et al. [3] or Pinebrook [17].

Most publications on shape optimization concern the de-
sign of bodies with extended laminar flow. An exception in
this respect is the research done by Hess, who conducted drag
computations for bodies of revolution where the boundary
layer is fully turbulent [10]. His disillusioning conclusion was
that the drag is very insensitive to changesin body contour and
thus that no significant drag reduction can be obtained from
shaping alone in case of a fully turbulent boundary layer.

In [13] and [14] shape optimizations of axisymmetric bod-
ies were presented by the authors. In order to carry out these in-
vestigations, a calculation method had been developed which
is based on the coupling of an indirect potential method with
an integral boundary-layer method and an evolution strategy
as optimization algorithm (see [24]). At Reynolds numbers
below ReV=10

7 extensive laminar flow regions could be
theoretically achieved, which results in a very low volumetric
drag coefficient, even if compared to known laminar bodies.
In the range of very large, airship-relevant Reynolds numbers
(ReV

>
� 10

7) the laminar flow regions achievable by shaping
alone proved to be short, as expected. The shape optimiza-
tions conductedfor this high Reynolds number regime did not
result in significant drag reduction.

Because of the small amount of computing time required,
an empirical local transition criterion was used with the shape
optimizations presented in [13] and [14]. Analysis of the op-
timized geometries by means of a more sophisticated en-
method for transition prediction resulted partly in consider-
ably different transition locations and confirmed the inadequa-
cies of local criteria [14]. For this reason, a costly en-method
based on linear stability theory has also been implemented re-
cently in the optimization tool. The extensions and improve-

ments in the aerodynamic calculation model and in the op-
timization algorithm will be described hereafter. Up-to-date
optimization results for different Reynolds number regimes
will then be presented and discussed.

2 Flow Calculation about Axisymmetric
Bodies at Zero Incidence

For the present investigations potential-flow methods have
been coupled with a boundary-layer code to calculate the drag
of bodies of revolution at zero incidence. During the shape
optimization process, the inviscid flow field is computed by
means of an efficient inverse method based on a linearly vary-
ing source distribution on the body axis. In contrast, a three-
dimensional panel method is used to analyse the flow about
given body shapes. Drag evaluation is performed by means of
an integral method for attached laminar or turbulent boundary
layers. The same method is used during the design as well as
during the analysis calculation. Special emphasis is laid on
the determination of the transition point, since the length of
the laminar flow region has a substantial impact on the drag
coefficient especially for small to medium Reynolds numbers.
A transition prediction method as reliable and consistent as
possible is of essential importance for successful shape opti-
mization of laminar bodies. The transition criterion employed
will therefore be discussed in more detail.

2.1 Inviscid Formulation

Design Procedure

Based on the assumption of an isentropic and, aside from
possible singular points, irrotational flow field, a velocity po-
tential � can be introduced. Thereby the total potential �
consists of the potential of the undisturbed onset flow and
the perturbation potential caused by the body. The continuity
equation supplies the equation for the determination of the
velocity potential, which assumes the form of the Laplace
equation in case of an incompressible fluid:

��=0 (1)

As this potential equation represents a partial linear dif-
ferential equation, a superposition of elementary solutions is
possible. These basic solutions include for example a parallel
flow or the flow field of a source or a doublet singularity. The
flow about a body of revolution at zero incidence can be mod-
eled by superimposing the flow field of a source distribution
on the body axis with that of a parallel onset flow in axial
direction. In order to generate closed body contours, the clo-
sure condition has to be satisfied. This condition implies that
the integral of the source strength has to be zero at the body
tail. The present approach uses a source distribution varying
linearly by section, as proposed by Pinebrook [17], see Fig. 1.
The total potential in an arbitrary field point A(x,r), resulting
from the parallel onset flow and the influence of all N source
segments, is then given by:

�A=u1x + (2)

�

1

4�

NX
i=1

1

�xi

�
(q1i � q0i) (r1i � r0i ) +

+ [q1i (x� x0i )� q0i (x� x1i)] ln �

�
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Source distribution on the body axis
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Figure 1. Modeling of flow field and geometry of an
axisymmetric body at zero incidence by means of a source

distribution on the body axis

where �=
x� x0i + r0i

x� x1i + r1i

Here, q0i represents the source strength at the beginning,
q1i the source strength at the end and�xi the length of the ith

segment, see Fig. 2. The distance between field point A and
the beginning or end of the source segment is designated by
r0i or r1i respectively.

Source segment

x

r
A(x,r)

x0i
x1i

q0i
q1i

r0i

r1i

∆xi

Figure 2. Source section with linearly varying strength

For a given source distribution the inviscid velocity field
results from the differentiation of the total potential. Thus,
the axial resp. radial velocity component at an arbitrary field
point A(x,r) follows from Eq. (2):

wxA =

@�A

@x
(3)

= u1 �

1

4�

NX
i=1

�
q0i

r0i

�

q1i

r1i

+

q1i � q0i

�xi
ln �

�

wrA =

@�A

@r
(4)
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�

1
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�

+ [q1i (x� x0i )� q0i (x� x1i )]�
1

r0i (x� x0i + r0i )
�

1

r1i (x� x1i + r1i)

��

Due to the rotational symmetry of the flow field with the
two independent variables x and r a stream function can be
introduced whose definition is such that the continuity equa-
tion is fulfilled identically. The value of the stream function
	A in the field point A(x,r) for the singularity distribution
chosen results in:

	A =

Z
wxA r dr (5)

=

u1
2

r2 �
1

4�

NX
i=1

1

�xi

�
(q1i � q0i) r2 ln �+

+ [q1i (x � x0i )� q0i (x + x0i � 2x1i )] r0i

+ [q0i (x � x1i )� q1i (x + x1i � 2x0i )] r1i

�

The body contour is finally given by the stagnation stream
surface. The defining equation for the body contour is there-
fore obtained by setting Eq. (5) equal to the value of the stream
function in the stagnation points. For a given singularity dis-
tribution, the geometry can be calculated from the defining
equation by means of an iterative procedure.

For a prescribed source distribution the potential method
described above enables a very simple and efficient calcula-
tion of the body contour and the corresponding inviscid flow
field. The approach is, however, restricted to axisymmetric
bodies at zero incidence submerged in incompressible fluid.
Because of its computational efficiency, this indirect method
is used within the shape optimization process. Thereby, the
source strengths at the segment boundaries and the corre-
sponding segment lengths are chosen as design variables (see
Section 3.2).

It should be emphasised that not all imaginable body shapes
can be modeled with this inverse method. For example, bod-
ies with a length-to-diameter ratio smaller than one have to
be excluded. Such blunt, separation-prone bodies will not
be discussed in the scope of this paper due to their inferior
aerodynamic characteristics. Zedan [27] concluded that any
axisymmetric low-drag shape found in current literature can
be modeled by means of a singularity distribution on the body
axis.

Analysis Procedure

To solve the direct problem, i. e. to calculate the inviscid ve-
locity distribution for given body shapes, a three-dimensional
panel method is applied. In this analysis method source sin-
gularities with panelwise constant strength are used, with the
singularity distribution being determined by application of the
external Neumann boundary-condition. This low-order ap-
proach is sufficient when using an adequately fine discretiza-
tion of the body geometry. A modified Bezier spline serves
for the interpolation of geometry and velocity distribution and
provides the input data for the boundary-layer calculation. If
required, the displacement effect of the boundary layer can
be simulated by means of the transpiration technique, which
will necessitate an iterative coupling with the boundary-layer
method.

2.2 Boundary-Layer Method

The boundary-layer calculation is performed based on the
inviscid velocity distribution on the body surface which re-
sults from the design or analysis procedure described above.
For the present investigations, an integral method according
to Eppler [6] has been applied, which enables the efficient
calculation of attached laminar or turbulent two-dimensional
boundary layers. This code was expanded for the calculation
of axisymmetric boundary layers. The method is based on the
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numerical integration of the integral form of momentum and
energy equation. The additionally required closure relations
were derived from the similar solutions of the boundary-layer
equations in the case of laminar boundary layers. For turbulent
boundary layers, empirical relations are used.

Curvature effects are neglected with the first-order method.
This simplification seems permissible, because the boundary-
layer thickness in the Reynolds number range investigated is
much smaller than the curvature radii. An exception to this is
the area right around the body tail.

In the original method the laminar to turbulent transition
is determined by means of an empirical local transition cri-
terion. For the present investigations this local criterion was
replaced by a semi-empirical en-method based on linear sta-
bility theory, which will be described in more detail in the
following section.

If laminar separation occurs upstream of transition, the
method switches to turbulent boundary-layer calculation at the
separation point. The additional drag arising due to laminar
separation bubbles is not accounted for. The drag coefficient
is determined by using the formula of Young [26], which
takes the skin friction and form drag of attached boundary
layers into account. In the implementation considered here
boundary-layer data is evaluated at each coordinate point in
the region of attached turbulent flow in order to determine
a local value of the drag coefficient. The maximum of these
values is then attributed to represent the drag coefficient of
the examined body of revolution.

2.3 Transition Prediction

Various authors refer to the deficiencies of simple local transi-
tion criteria for the evaluation of the transition point of airfoil
sections and axisymmetric bodies (see e. g. [4], [5], [25],
[28]). Especially for slender bodies with a flat pressure dis-
tribution a wide range of transition locations can be found
with different criteria. This results from the fact that local cri-
teria take the boundary-layer development and the involved
transition mechanisms only insufficiently into account. The
scope of these empirical criteria is therefore limited, and they
show relatively large scattering in comparison to wind-tunnel
measurements (see e. g. [25]).

Transition from Laminar to Turbulent
Boundary-Layer Flow

At a low freestream turbulence level, the boundary layer start-
ing at the stagnation point is at first laminar and stable against
perturbations. Downstream of a certain point, the so-called
primary instability point, disturbance waves with small am-
plitude (Tollmien-Schlichting waves) are being amplified, i. e.
their amplitude grows in downstream direction. After this re-
gion of linear instability non-linear interaction of different
disturbance waves occur. This secondary instability initiates
the subsequent stages of the transition process, which lead
to a rapid breakdown to turbulence. The detailed transition
processs will not be discussed any further in this paper.

The amplification of sinusoidal disturbance waves of small
amplitude can be computed by means of the linear stability
theory in very good agreement with experimental results. Be-
cause the region of non-linear perturbation-wave amplifica-
tion is short if compared to the region of linear instability, this
theory can be used to derive predictions about the transition

location by so-called semi-empirical transition criteria, such
as the en-method.

Linear Stability Theory for Two-Dimensional,
Incompressible Boundary Layers

The first basic assumption of the linear stability theory is
to separate the two-dimensional boundary-layer flow into a
steady basic flow U(y) and an unsteady disturbance. Further-
more, local parallelism is assumed. The basic flow represents
a steady solution of the Navier-Stokes equation, whereas for
the disturbance a harmonic wave approach is chosen, which
can be described by means of the following stream function:

	='(y)ei(�x�!t) + complex conjugate (6)

In this equation, y represents the distance normal to the
wall. The perturbation velocity components in streamwise
and normal direction result from differentiation of the stream
function.

Substitution of the disturbance velocities into the com-
plete Navier-Stokes equation, elimination of the pressure vari-
able and linearization result in the Orr-Sommerfeld equation,
which can be expressed in the following form:

�
D2

� �
2
�2

'=i�Re
h�

U�

!

�

��
D2

� �
2
�
�D2U

i
'

(7)

where D=

d
dy

Here we consider spatial growth of the Tollmien-Schlich-
ting waves. In this case,! represents a real quantity and stands
for the circular frequency of the disturbance waves. In con-
trast, � is complex with its real part being the wavenumber�r

and its imaginary part being the amplification rate �i. Neg-
ative values for �i indicate a spatial amplification whereas
positive values mean decay of the perturbation wave ampli-
tude.

Since the boundary conditions for the above equation (no-
slip condition at the wall, vanishing perturbation wave am-
plitude at infinity) are homogeneous, an eigenvalue prob-
lem results. Now the amplitude development of a Tollmien-
Schlichting wave with circular frequency! can be evaluated
for a given boundary-layer profile of the steady basic flow and
specified local Reynolds number.

The linear stability theory, as described above, has been
derived for two-dimensional flow. Since within the present
investigations the boundary-layer thickness is much smaller
than the radius over the entire body, this approach can be
applied for axisymmetric boundary layers as well.

Semi-Empirical en-Method for Transition Prediction

Smith & Gamberoni [21] and independently van Ingen [22]
first developed a semi-empirical transition criterion based on
linear stability theory. With this en-method the transition from
laminar to turbulent flow is assumed, when the amplification
factor n for a certain frequency has reached a critical value
ncrit.:

n=ln

A
AI

=�

Z s

sI

�i(f )ds� ncrit. (8)
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In this equation, A
AI

describes the ratio of the local ampli-
tude A of the Tollmien-Schlichting waves to the amplitude AI
in the primary instability point sI . The critical amplification
factor is assumed to be dependent on the freestream conditions
(turbulence level, sonic disturbances). Based on comparisons
of experimentally found and theoretically obtained transition
locations, Mack [15] and van Ingen [23] presented correla-
tions for ncrit. depending on the freestream turbulence level.
Note that the process of receptivity and the magnitude of the
initial disturbance amplitude is not considered. Furthermore
the method fails if large-amplitude perturbations enter the
boundary layer and the linear stages of the transition process
are bypassed.

In the implementation presented here, the boundary-layer
profiles required for the computation of the amplification rates
are obtained from a polynomial approximation of the Falkner-
Skan profiles. This approach is practical, since the laminar
boundary-layer method used is based on the similar solutions
of the boundary-layer equations. For a specified family of pro-
files, stability analysis can be performed in advance to find
a non-ambiguous relation between the local Reynolds num-
ber Re�1I

and the shape factors H12I or H32I at the primary
instability point. This relation can be used to evaluate the lo-
cation of the primary instability point within actual transition
calculations. Stability analysis then only has to be performed
downstream of this point.
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Figure 3. Amplification curves and envelope for transition
prediction according to the en-method

Based on the shape factor H32I resulting from the laminar
boundary-layer calculation a Falkner-Skan profile is gener-
ated at each coordinate point in the unstable region. Then
the spatial amplification rates are calculated for a multi-
tude of physical frequencies by means of evaluating the Orr-
Sommerfeld differential equation. After that, the amplifica-
tion rate is integrated along the arc length of the body for
each of these frequencies. Subsequently, the envelope is eva-
luated for the resulting amplification curves. Transition is
finally assumed at the position where the envelope exceeds
the specified critical value of ncrit. (see Fig. 3). Since the
boundary-layer method used does not take intermittency into
account, the method switches directly from laminar to turbu-

lent boundary-layer calculation when ncrit. is reached.
Calculating the amplification rate by solving the complete

Orr-Sommerfeld equation is costly as well as problematic
in highly damped regions. Therefore the analysed frequency
spectrum is adjusted dynamically in the method presented
here. This means that stability analysis for a specific fre-
quency is only performed if the amplification rate �i(f ) is
negative or the total amplification factor n(f ) is greater than
zero. This procedure still requires too much computational
effort for the purpose of numerical shape optimization be-
cause of the great number of designs to be analysed. There-
fore a simplified method has been implemented, which can
be used alternatively. With this method, the amplification rate
for many shape factors, Reynolds numbers and frequencies
is calculated by solving the Orr-Sommerfeld equations in ad-
vance. The results were stored in a data base, from which the
required amplification rates can be interpolated during the ac-
tual transition calculations. For the present method a data base
with 27 shape factors at 40 different Reynolds numbers and
40 different frequencies has been generated which constitutes
an adequately fine discretization.

2.4 Validation of the Calculation Method

Body of Revolution with Fixed Transition

The analysis method described in the previous sections has
been verified with regard to drag computation for a great
number of bodies of revolution. As an example, Fig. 4 shows
the calculated drag curve for Gertler body 4154 [7] which
represents a shape similar to an airship hull. The theoretical
drag curve is compared to results from water-tunnel tests
performed by Gertler. Both, in the experimental investigation
and in the theoretical computation the transition point has
been fixed at 5 % of the body length. Good agreement for the
whole Reynolds number range examined has been achieved.

106 107
0.000

0.010

0.020

0.030

0.040

0.050

ReV

v

Experiment, turbulator at 5%

Froude - effect
uncorrected

cd

Present method, transition at 5%

Figure 4. Inviscid pressure distribution and drag curve for Gertler
body 4154 (see [7])

Body of Revolution with Natural Transition

The validation of the calculation method and especially of
the transition criterion for axisymmetric bodies is difficult
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since only very few experimental investigations for airship-
like bodies at larger Reynolds numbers are known. In Fig. 5
experimental results of Jones resp. Schirmer [20] for the R101
airship body are depicted. These very old measurements have
to be examined with caution since the then available wind tun-
nels featured a relatively high level of freestream turbulence.
In case of the LZ wind tunnel, in which Schirmer conducted
his experiments, a turbulence factor of 1.35 is refered, from
which a turbulence level of approximately 0.45% can be esti-
mated. For this turbulence level a criticial amplification factor
of ncrit. = 5.7 results from the correlation according to van
Ingen. The theoretically obtained drag curve for that value
of ncrit. shows satisfactory agreement with the experimental
results (see Fig. 5). To complement this, measurements for
low Reynolds numbers are also depicted, which were deter-
mined by Jones in the wind tunnel in Teddington (see [20]).
A better possibility of validating the transition criterion and

105 106 107
0.000

0.010

0.020

0.030

0.040

0.050

V

ReV

cd

Present theory, en-method for transition prediction  (n=5.7)
Present theory, forced transition at x/L=0.01
Experiment Jones  (Teddington windtunnel)
Experiment Schirmer  (LZ windtunnel)

Figure 5. Inviscid pressure distribution and drag curve
for R101 airship body

the boundary-layer calculation is offered by the comparison
with experimental results for airfoil sections carried out in
modern, low-turbulence wind tunnels. Pertinent experiments
for laminar airfoil sections are available in great numbers. As
an example, Fig. 6 depicts the experimentally obtained and
the theoretically calculated drag polars for the sailplane air-
foil section SM 701 (see [1]). When using a local transition
criterion, the laminar drag bucket is determined consider-
ably too optimistically. In contrast, a very good agreement
results if the en-method for transition prediction as presented
in this paper is utilized. Small differences at a lift coefficient
of about cl=0.3 probably result from laminar separation bub-
bles, which are not considered within the calculation.

3 Numerical Shape Optimization Procedure

3.1 Optimization Algorithm

The aerodynamical optimization problem presented is first
characterized by the fact, that the gradient of the objective
function (drag coefficient) can not be determined analytically.
Furthermore, the objective function is expected to be multi-
modal, i. e. it shows more than one minimum within the
design space. The optimization algorithm must therefore be
efficiently applicable to such multi-dimensional, multi-modal

0.000 0.005 0.010 0.015
0.0

0.5

1.0
en-method  (n=9)

cd

Experiment IAG,
University of Stuttgart

Local transition criterion

cl

Figure 6. Drag Curve of the SM 701 airfoil section,
Re=2.5� 10

6

and non-linear objective functions. In addition, the algorithm
should be robust, i. e. processing of optimization problems
with complex topology of the objective function should be
possible. Experience shows that especially the subject last
mentioned is important for shape optimizations of laminar
bodies. In the vicinity of the optimum, even smallest vari-
ations of the design variables can trigger an upstream jump
of the theoretical transition location. This increases the drag
coefficient drastically, which is equivalent to a jump of the
objective function value. When dealing with shape optimiza-
tion of bodies with almost fully turbulent boundary layer, the
contrary is true. In this case, large variations of the design
variables only result in small changes of the drag coefficient.
Such complex topologies with gorges and large plains make
high demands on the step-size adaption of the optimization
tool.

Various optimization strategies have been applied for the
shapeoptimizations presentedin Section 4. First, the commer-
cially available tool POINTER was used, which enables non-
linear multidimensional constrained optimization. This hybrid
optimizer is made up of a combination of genetic algorithm,
downhill simplex and gradient method. A search procedure
suitable for the optimization task at hand is chosen by means
of automated training sessions with the desired optimization
time being specified. The algorithm combination chosen, the
number of iterations and restarts as well as the step-sizes are
not known to the user. By using stochastical methods and a
great number of restarts it is possible to cover a large region
of the design space if this is required. Within the present in-
vestigations, the results obtained with this tool are used as
initial values for further optimization runs with an alternative
strategy.

This second optimization tool is an evolution strategy
with derandomized covariance matrix adaption (see [8]) im-
plemented for a generalized individual mutation step-size
control. The classical evolution strategy is an optimization
method which takes reference to the biological evolution pro-
cess (see [18]). Mechanisms such as recombination, random
mutation and selection are adopted to generate new design
vectors from a given pool of inital designs. A simple (1, 30)-
selection strategy was used for the shape optimizations pre-
sented.
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Of crucial importance for the success of an optimization is
the self-adaption of the step-size which is used for mutation
of the design variables. In the method applied the mutation
step-size is adjusted according to the selection information ac-
quired along a whole evolution path. Aside from laying down
the global step-size, this principle is also used to determine
the mutation distribution, or, in other words, to determine a
linear transformation of the coordinate system. This means
that during the evolution process the optimization tool learns
of which order of magnitude mutation step-size and direction
for the individual design variables should be. The method is
characterized by a high convergence rate even for complex
objective functions after successfuladaption of the covariance
matrix.

3.2 Selection of Design Variables and
Definition of the Optimization Target

Representation of the Body Shape

Contrary to the usual approach, the geometry of the body is
not optimized in a direct way in the method presented here.
Rather, the source distribution on the body axis is varied
by the optimizer. The indirect method described in Section
2.1 is applied to calculate the corresponding body geometry
and velocity distribution for each design. This procedure is
essentially similar to the method of Pinebrook who performed
shape optimizations of axisymmetric bodies to minimize the
drag coefficient based on frontal area (see [17]).

In the investigations presented in Section 4, the lengths
of the respective segments �xi are optimized along with the
source strength q0i at the beginning of each segment and
the strength at the end of the last segment q1N (compare
Section 2.1). In order to prevent negative values for �xi, a
logarithmic scale is introduced, so that the following set of
design variables results:

q0i ; log (�xi) with i=[1,2, : : : , N]

and
q1N (9)

To ensure a continuous singularity distribution, the source
strengths at the end of the segment boundaries q1i are not
used as design variables but are set as follows:

q1i=q0i+1 with i=[1,2, : : : , N� 1] (10)

The shape optimizations presented in Section 4 have been
carried out with N=20 source segments, which relates to a to-
tal of 41 design variables. It should be noted that no geometric
constraints are introduced within the present shape optimiza-
tions at all. This means that an arbitrary body geometry can
result, with the optimization process being driven solely by
the aerodynamic objective to minimize drag.

With the indirect method chosen, the closure condition has
to be fulfilled in order to create closed body contours. To this
end, the source distributions generated by the optimizer are
superimposed by a parabolic correction distribution. Even if
the closure condition is satisfied, it is possible that negative
values for the source-strength integral within the singularity
distribution will result. This would lead to inadmissible so-
lutions. Such designs are therefore eliminated or avoided by
introducing proper constraints.

Optimization Target and Objective Function

The optimization target relevant for the aerodynamic design
of airship hulls is to achieve minimum drag at specified hull
volume and airspeed (compare [11], [19]). During the investi-
gation of this question the following dimensionless quantities
are relevant when comparing different configurations:

Volumetric drag coefficient:

cdV
=

D
�

2
U2
1V2/3

(11)

Volumetric Reynolds number:

ReV=
U1V1/3

�
(12)

With airships, the span of the volumetric Reynolds number
extends from ReV � 5 � 10

6 for the unmanned solar airship
’Lotte’ up to ReV � 150 � 10

6 for the Zeppelin LZ 129 (in
each case at maximum speed). An inconsistent choice of the
reference length, e. g. airship length for the Reynolds number
and V1/3 for the drag coefficient, leads to wrong results if
drag coefficients for different configurations are compared.

In order to realize the above mentioned optimization tar-
get, the volumetric drag coefficient at a specified volumetric
Reynolds number was chosen as the objective function to
be minimized in the optimization runs presented. To enable
shape optimizations for a broader airspeed region, the present
optimization tool also allows to specify a weighted mean
value of cdV

for a whole Reynolds number region as objective
function.

The total drag coefficient defining the fitness comprises
friction and form drag of the attached boundary layer as well
as a penalty function representing the pressure drag if tur-
bulent separation occurs. Because the last mentioned drag
portion cannot be calculated to a high degree of accuracy and
reliability, a pessimistic penalty function was chosen. During
the optimization process this yields body shapes with negli-
gible separated flow region.

4 Results and Discussion

When plotting the drag coefficient of an axisymmetric body
versus Reynolds number, three different regions can be distin-
guished. At low Reynolds numbers (ReV

<
� 5�10

6), extensive
laminar flow is possible which results in low skin friction.
With increasing Reynolds number the transition point moves
more or less rapidly towards the body nose, thereby increasing
the drag coefficient (see Fig. 5). The large Reynolds number
regime (ReV

>
� 10

7) can be characterized by the fact that the
boundary layer is almost fully turbulent.

An important task of aerodynamics is to determine how
to shape the body geometry to delay transition and to real-
ize extensive laminar flow. This question has been examined
for different Reynolds number regimes by application of the
optimization tool described in the previous section. The cal-
culations were performed assuming natural boundary-layer
transition. However, it is not known to what extent the the-
oretically evaluated laminar flow can be realised with actual
airship applications with a certain degree of surface waviness.

For the shape optimzations presented in [14], it became
obvious that one-point optimizations for a single Reynolds
number lead to bodies which are inconvenient or even unus-
able outside of their design point. This is especially true for
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laminar bodies at low Reynolds numbers. For this reason, the
shape optimizations presented hereafter were performed for a
whole Reynolds number regime. Because the practical value
of optimized laminar bodies is to a large extent dependent
on the quality and reliability of the transition criterion, the
costly en-method was applied for transition prediction. Four
design regimes were chosen, which cover the whole Reynolds
number regime relevant for airship applications:

Design regime I: ReVI=1 � 10
6
: : : 3.16 � 10

6

(6 � log ReVI � 6.5)

Design regime II: ReVII=3.16 � 10
6
: : : 1 � 10

7

(6.5 � log ReVII � 7)

Design regime III: ReVIII=1 � 10
7
: : : 3.16 � 10

7

(7 � log ReVIII � 7.5)

Design regime IV: ReVIV=3.16 � 10
7
: : : 1 � 10

8

(7.5 � log ReVIV � 8)

The initial source distribution chosen for design regime I
corresponded to an ellipsoid-like starting geometry with a
small length-to-diameter ratio of L/D=2.3. At first, an opti-
mization run with the commercially available tool POINTER
was carried out. Positive values for the source-strength inte-
gral at the segment boundaries were prescribed as constraints.
Within the transition calculation, a critical amplification fac-
tor of ncrit. = 9 was chosen, which corresponds to a moderate
level of turbulence in the freestream.

The optimization result obtained with POINTER was used
as initial vector for a further optimization run with the evolu-
tion strategy with derandomized covariance matrix adaption.
In this process, designs in the order of 200,000 were generated
and analysed during each optimization run. Fig. 7 shows the
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Figure 7. Inviscid pressure distribution of the body optimized for
design regime I (ReVI

=1 � 10
6

: : : 3.16 � 10
6)

contour and the inviscid pressure distribution of the superior
result from both optimization runs for design regime I. This
relatively slender body is characterized by its far aft position
of the maximum thickness point and by moderate, almost
constant acceleration upstream of this point. This slightly fa-
vorable pressure gradient is sufficient to keep the boundary

layer laminar up to 75% of the body length at Reynolds num-
bers below ReV=3.16 � 10

6 . Downsteam of transition the
body shows a steep pressure rise. This corresponds to a re-
duction in diameter and a reduction of the wetted surface area
in the region of high turbulent skin friction values. The re-
sulting drag curve for the optimized body is shown in Fig. 8.
Very low drag coefficients for the whole design regime can be
observed. However, if the Reynolds number is only slightly
increased above the design region, transition will jump up-
stream causing an abrupt drag increase. Below ReV=1� 10

6

laminar separation without reattachement is indicated. The
drag curve is not plotted for this regime.
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Figure 8. Drag curve of the optimized body shapes

An interesting phenomena can be observed for the opti-
mized body: When comparing body contour and pressure dis-
tribution in Fig. 7, it becomesobvious that the minimum pres-
sure coefficient occurs downstream of the maximum thickness
point. Therefore within the design Reynolds number regime,
body contraction has started upstream of transition. In con-
sequence, the high turbulent skin friction acts on a smaller
wetted surface area thus reducing the viscous drag of the
body.

With an increase in Reynolds number the amount of fa-
vorable pressure gradient in the forebody region has to be
enlarged in order to maintain laminar flow. This can be re-
alized either by increasing the body diameter or by moving
the maximum thickness point upstream. Enlarging the body
diameter is limited by the maximum pressure recovery possi-
ble without boundary-layer separation arising in the rear part
of the body. On the whole, one has to expect smaller lami-
nar flow regions and bodies with a smaller length-to-diameter
ratio when increasing the design Reynolds number. The com-
promise found with the optimization tool for design regime II
can be seen in Fig. 9. The resulting body again shows a very
low drag coefficient and extensive laminar flow regions for
the whole design region (see Fig. 8).

With the body optimized for design regime III a further up-
stream movement of the transition point and a further reduc-
tion of the fineness ratio can be observed. A steep favorable
pressure gradient during the first 50 % of the body length is
required to achieve extensive laminar flow by shaping alone.

A somewhat unusual body shape finally results for design
regime IV, see Fig. 11. The gradient of the pressure coefficient
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Figure 9. Inviscid pressure distribution of the body optimized for
design regime II (ReVII

=3.16 � 10
6

: : : 1 � 10
7)
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Figure 10. Inviscid pressure distribution of the body optimized for
design regime III (ReVIII

=1 � 10
7

: : : 3.16 � 10
7)
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Figure 11. Inviscid pressure distribution of the body optimized for
design regime IV (ReVIV

=3.16 � 10
7

: : : 1 � 10
8)

in the nose region is increased once more and the maximum
thickness position is moved further upstream. At the upper
end of the design regime (ReV=10

8) the calculated transi-
tion point already moves noticeably upstream. The value of
the objective function (arithmetic mean value of the drag co-
efficients for six different Reynolds numbers) is obviously
minimized, if a movement of the transition point at ReV=10

8

is accepted in exchange for longer laminar flow regions at
lower Reynolds numbers.

In contrast, a body optimized for a single Reynolds num-
ber of ReV=10

8 while employing a local transition criterion
has an entirely different shape, see [14]. The volumetric drag
coefficient at a specified volumetric Reynolds number is very
insensitive to changes in shape if the boundary layer is tur-
bulent over almost the entire length of the body [10]. The
drag coefficient at these high Reynolds numbers can only be
significantly reduced if the nose region is shaped such that a
certain level of laminar flow is achieved. This is the reason
why the transition criterion used has a great influence on the
shape of the forebody region.

Finally, an optimization run for huge Reynolds numbers
was performed at reduced optimization time:

Design regime V: ReVV=1 � 10
8
: : : 3.16 � 10

8

(8 � log ReVV � 8.5)

The contour and the inviscid pressure distribution of the re-
sulting, not completely optimized body are shown in Fig. 12.
An extremely steep favorable pressure gradient at the nose
region theoretically allows for laminar flow up to 17% body
length even at the upper end of the design regime. The result-
ing shape shows an almost pointed nose similar to the body
presented in [14]. However, it is to be noted that for small
angles of attack or sideslip the transition point is expected
to move upstream more rapidly than in case of blunt nose
shapes.
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Figure 12. Inviscid pressure distribution of the body optimized for
design regime V (ReVV

=1 � 10
8

: : : 3.16 � 10
8)

Drag curves for all optimized bodies are summarized in
Fig. 8. It can be seen that the bodies only show favorable
behaviour inside their respective design regimes. Exact infor-
mation about the design Reynolds number regime is therefore
of crucial importance especially for the selection of laminar
body shapes. It is still not known in how far the theoretically
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calculated laminar flow regions can be realized in practical
airship applications if the existence of surface roughness and
waviness is considered. Relevant investigations are still to be
done.

5 Summary and Outlook

A method for numerical shape optimization of axisymmetric
bodies at zero incidence submerged in incompressible flow
was developed and has been presented here. This tool allows
specific aerodynamic optimization of bodies of revolution
for prescribed Reynolds number regimes. Using this method,
several bodies, which show minimized drag at maximized
volume were designed for the Reynolds number regime rel-
evant for airship application. Although it is not known in
how far laminar flow can be realized if the surface waviness
of real airships is considered, the optimizations were carried
out assuming natural transition. A semi-empirical en-method
has been used for transition prediction within the optimiza-
tion process for the first time. This costly method was used
because earlier investigations had shown that simpler local
criteria are too unreliable for optimization purposes.

The results show that up to large, airship-relevant Reynolds
numbers a certain amount of laminar flow is theoretically pos-
sible by adequate shapingof the body contour. The calculation
results still have to be validated experimentally. Especially it
has to be investigated how surface irregularities of real airship
hulls affect the transition location. Corresponding in-flight in-
vestigations are planned to be performed at the University of
Stuttgart with an unmanned airship.

The optimization tool presented will be used in the future
for the shape optimization of airship hulls which will take the
drag of the required tail surfaces into account. It will also be
possible to consider other constraints important for a specific
airship design, such as hull mass minimization or prescription
of a desired center of bouyancy. Finally, implementation of the
propeller model presented in [12] should enable aerodynamic
optimization of complete airship configurations.
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Luftschiffrümpfen. DGLR Fachausschusstagung S 2.3, Dres-
den, 25.9.1996.

[14] Th. Lutz, H. Schweyher, S. Wagner, and R. Bannasch. Shape
Optimization of Axisymmetric Bodies in Incompressible Flow:
Results for the High Reynolds Number Regime. 2nd Interna-
tional Airship Conference, Stuttgart/Friedrichshafen, 3–4 July
1996.

[15] L. M. Mack. A numerical method for the prediction of high-
speed boundary-layer transition using linear theory. NASA
SP-347, 1975.

[16] Jerome S. Parsons and Raymond E. Goodson. Shaping of Axi-
symmetric Bodies for Minimum Drag in Incompressible Flow.
J. Hydronautics, Vol. 8, No. 3 (1974).

[17] William Edward Pinebrook. Drag Minimization on a Body of
Revolution. Dissertation at the Faculty of the Department of
Mechanical Engineering of the University of Houston (1982).

[18] Ingo Rechenberg. Evolutionsstrategie ’94 - Werkstatt Bionik
und Evolutionstechnik, Band 1. Frommann-Holzboog Verlag,
Stuttgart (1994).
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