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A B S T R A C T

The work describes an automatically on-line self-tunable fuzzy inference system (STFIS) of a new

configuration of mini-flying called XSF (X4 Stationnary Flyer) drone. A fuzzy controller based on on-line

optimization of a zero order Takagi–Sugeno fuzzy inference system (FIS) by a back propagation-like

algorithm is successfully applied. It is used to minimize a cost function that is made up of a quadratic

error term and a weight decay term that prevents an excessive growth of parameters. Thus, we carried

out control for the continuation of simple trajectories such as the follow-up of straight lines, and complex

(half circle, corner, and helicoidal) by using the STFIS technique. This permits to prove the effectiveness of

the proposed control law. Simulation results and a comparison with a static feedback linearization

controller (SFL) are presented and discussed. We studied the robustness of the two controllers used in the

presence of disturbances. We presented two types of disturbances, the case of a breakdown of an engine

as well as a gust of wind.
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1. Introduction

The past few years have witnessed a rapid growth in the use of
fuzzy logic controllers for the control of processes, which are
complex and ill defined. Most fuzzy controllers developed till now
have been of the rule-based type, where the rules in the controller
attempt to model the operator’s response to particular process
situation.

Recently, the resurgence of interest in the field of artificial
neural networks has injected a new driving force into the fuzzy

literature. The back-propagation learning rule, which drew little
attention till its applications to artificial neural networks was
discovered, is actually an universal learning paradigm for any
smooth parameterized models, including fuzzy inference systems.
As a result, a fuzzy inference system can now not only take
linguistic information from human experts, but also adapt itself
using numerical data (input/output pairs) to achieve better
performance. This gives fuzzy inference systems an edge over
neural networks, which cannot take linguistic information directly.

In autonomous wheeled robot, many developed learning
techniques have arisen in order to generate or to tune fuzzy rules.
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Most of them are based on the so-called ‘‘neuro-fuzzy learning
algorithms’’ as proposed by [22,23,25,26,32,39]. These methods
are well for constructing an optimal fuzzy system model which is
used to identify the corresponding practical system.

Modeling and controlling aerial vehicles (blimps and mini
rotorcraft) are the principal preoccupation of the IBISC-group.
Within this optic, who attracted the contest of the DGA-ONERA1

was the XSF project which consists of a drone with revolving
aerofoils [4](see Fig. 1 left). It is equipped with four rotors where
two are directionals, what we call in the following X4 Stationary
Flyer (XSF).

The XSF is an engine of 68 cm � 68 cm of total size and not
exceed 2 kg in mass. It is designed in a cross form and made of
carbon fiber. Each tip of the cross has a rotor including an electric
brushless motor, a speed controller and a two-blade ducted
propeller. The operating principle of the XSF can be presented thus:
two rotors turn clockwise, and the two other rotors turn
counterclockwise to maintain the total equilibrium in yaw motion.
The equilibrium of angular velocities of all rotors done, the
unmanned aerial vehicle (UAV) is either in stationary position, or
moving vertically. A characteristic of the XSF compared to the
1 This work is supported by the mini-flyer competition program organized by the
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Fig. 1. Conceptual form of the XSF (left) and frames attached to the XSF (right).
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existing quadrotors, is the swiveling of the supports of the motors 1
and 3 around the pitching axis thanks to two small servomotors
controlling the swiveling angles j1 and j3. This swiveling ensures
either the horizontal rectilinear motion or the rotational move-
ment around the yaw axis or a combination of these two
movements which gives the turn (see Fig. 1 right). This permits
a more stabilized horizontal flight and a suitable cornering.

Drone XSF is a flying machine of low dimension able to carry a
small payload, in particular a camera, intended to carry out in an
autonomous way a reconnaissance mission. In addition to the
military applications, this type of machines can also interest the
civil field, in particular the search for anybody in buildings in flame,
the environmental protection, the natural risk management, the
management of the great infrastructures.

Several recent works were completed for the design and
control in pilotless aerial vehicles domain such that Quadrotor
[1,2,10,29,33,41,42]. Also, related models for controlling the
vertical take-off and landing (VTOL) aircraft are studied by Hauser
et al. [18]. A model for the dynamic and configuration stabilization
of quasi-stationary flight conditions of a four rotors VTOL, based on
Newton formalism, was studied by Hamel et al. [16] where the
dynamic motor effects are incorporated and a bound of perturbing
errors was obtained for the coupled system. Castillo et al. [13]
performed autonomous take-off, hovering and landing control of a
four rotors by synthesizing a controller using the Lagrangian model
based on the Lyapunov analysis.

The stabilization problem of a four rotors rotorcraft is also
studied and tested by Castillo [12] where the nested saturation
algorithm is used, the input/output linearization procedure [18], in
[11] a proportional integral derivative (PID) controller and a linear
quadratic (LQ) controller were implemented and proved capable of
regulating the system and application of the theory of flat systems
by Beji and Abichou [6]. Mistler et al. [31] developed a dynamic
model in non-linear state space representation, and used an exact
linearization and non-interacting control for the global system to
evaluate translational motion and yaw angle outputs. Mokhtari
et al. [30] proposed an attempt to apply linear H1 outer control of
helicopter quadrotor with plant uncertainty combined with a
robust feedback linearization inner controller. Hanford et al. [19],
presented a simple closed loop equipped with MEMS (micro-
electro-mechanical systems) sensors and PIC based processing
unit. Waslander et al. [40] maked an emphasis on the insufficiency
of classical control methods and proposes the integral sliding
mode controller associated with reinforcement learning to achieve
multi agent control. Tayebi and McGilvray [37] proposed a new
quaternion-based feedback control scheme for exponential atti-
tude stabilization of a quadrotor. The proposed controller is based
upon the compensation of the Coriolis and gyroscopic torques and
the use of a PD2 feedback structure, where the proportional action
is in terms of the vector quaternion and the two derivative actions
are in terms of the airframe angular velocity and the vector
quaternion velocity. Hoffman et al. [20,21], achieved the formation
control by sliding mode technique and focused on collision and
obstacle avoidance by extracting the state variables with a Kalman
filter. Mederreg et al. [28] developed a non-linear controller with
observers based on the backstepping. The robustness of this
controller is studied, performances and stability of the suggested
controller are analyzed through simulations carried out on the
model (kinematics and dynamic equations). In Benzemrane et al.
[5], addressed the classical problem of speed estimation of an
Unmanned Aerial Vehicle when the acceleration, the angles and
the angular speeds are available for measurement. A solution has
been provided for a class of systems via the tools of adaptive
observation theory with promissing results. Bestaoui and Slim [8]
addressed the problem of characterizing maneuvers paths on the
group of rigid body motions in 3D for a quadrotor. The role of
the trajectory generator is to generate a feasible time trajectory for
the UAV.

Flight control methods utilizing vision systems are also studied
by [38], which exploits the Moir patterns, and in [3], which utilizes
double cameras. Hamel and Mahony [17] proposed a vision based
controller which performs visual servo control by positioning a
camera onto a fixed target for the hovering of a quadrotor.

All the reviewed techniques require the well knowledge of the
system dynamic model and parameters. In this paper, a STFIS
control strategy is developed based on the systems output
measures is implemented. This technique early used for auton-
omous wheeled robot, is adapted and modified for the used with
the XSF.

The arrangement of this paper is as follows. The dynamic model
of the XSF drone is given in the second section. The developed ideas
of control for the XSF by the self-tunable fuzzy inference system
(STFIS) controller is presented and compared with a static feedback
linearization controller (SFL) to stabilize the XSF by using the point
to point steering stabilization in Section 3. Motion planning and
simulation results are introduced in Section 4. The robustness of
the proposed controller is then evaluated in Section 5. Finally,
conclusion and future works are given in the last section.

2. Configuration description and modeling

Unlike regular helicopters that have variable pitch angles, an
engine has fixed pitch angle rotors and the rotor speeds are
controlled to produce the desired lift forces. Basic motions of the
XSF can described using Fig. 1(right). Vertical motion is controlled
by collectively increasing or decreasing the power for all motors.
Lateral motion, in x direction or in y direction, is not achieved by
differentially controlling the motors generating a pitching/rolling
motion of the airframe that inclines the collective thrust
(producing horizontal forces) and leads to lateral accelerations
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[1,12,16]. But, two engines of direction are used to permute
between the x and y motion.

The XSF is a system consisting of four individual electrical fans
attached to a rigid cross frame. We consider a local reference
airframe RG ¼ fG; Eg

1; E
g
2; E

g
3g at G (mass center) while the inertial

frame is denoted by RO ¼ fO; Ex; Ey; Ezg such that the vertical
direction Ez axis is pointing upwards. Let the vector X ¼ ðx; y; zÞ
denotes the G position with respect to RO. The rotation of the rigid
body is defined by Rf;u;c: RO!RG, where Rf;u;c 2 SOð3Þ is an
orthogonal rotation matrix which is defined by the Euler angles, u
(pitch), f (roll) and c (yaw), regrouped in h ¼ ðf; u;cÞ. An Euler
angle representation given in Eq. (1) has been chosen [43].

R ¼
CcCu CuSc �Su

SfCcSu � ScCf SuScSf þ CcCf CuSf
SuCcCf þ ScSf CfSuSc � CcSf CuCf

0
@

1
A (1)

where for example Cu and Su represent cos u and sin u, respectively.
The main feature of the presented XSF in comparison with the

existing quadrirotors [1,12,16], is the swiveling of the actuators
supports 1 and 3 around the axis of pitching (angles j1 and j3). This
swiveling ensures either the horizontal rectilinear motion or the
rotational movement around the yaw axis or a combination of
these two movements which gives the turn (see Fig. 3(right)), as
well as the direction of rotation of the rotors implies that rotors 1
and 2 turn clockwise and rotors 3 and 4 turn counterclockwise.

2.1. Motion dynamic

We consider the translation motion of RG with respect to RO.
The position of the mass center wrtRO is defined by OG ¼ ðx y zÞT,
its time derivative gives the velocity wrt to RO such that
ðdOGÞ=ðdtÞ ¼ ðẋẏżÞT, while the second time derivative permits to
get the acceleration ðd2OGÞ=ðdt2Þ ¼ ðẍÿz̈ÞT (Fig. 1(right)).

The model is a simplified one’s. The constraints as external
perturbation and the gyroscopic torques are neglected. The aim is
to control the engine vertically z axis and horizontally according to
x and y axis. The vehicle dynamics, represented in Fig. 1(right), is
modeled by the system of following [4,7,45]:

mẍ ¼ ScCuu2 � Suu3

mÿ ¼ ðSuScSf þ CcCfÞu2 þ CuSfu3

mz̈ ¼ ðSuScCf � CcCfÞu2 þ CuCfu3 �mg
(2)

m is the total mass of the vehicle. The vector u2 and u3 combines
the principal non-conservative forces applied to the engine
airframe including forces generated by the motors and drag terms.
Drag forces and gyroscopic due to motors effects will be not
considered in this work. The lift (collective) force u3 and the
direction input u2 are such that

0
u2

u3

0
@

1
A ¼ f 1é1 þ f 2e2 þ f 3é3 þ f 4e4 (3)

with f i ¼ KTv2
i where KT ¼ 10�5 N s2 and vi is the angular speed

resulting of motor i. Let

é1 ¼
0
Sj1

Cj1

0
@

1
A

RG

; é3 ¼
0
Sj3

Cj3

0
@

1
A

RG

; e2 ¼ e4 ¼
0
0
1

0
@

1
A

RG

(4)

Then we deduce:

u2 ¼ f 1Sj1
þ f 3Sj3

u3 ¼ f 1Cj1
þ f 3Cj3

þ f 2 þ f 4
(5)

j1 and j3 are the two internal degree of freedom of rotors 1 and 3,
respectively. These variables are controlled by dc-motors and
bounded�20� � j1; j3 � þ20�. e2 and e4 are the unit vectors along
Eg

3 which imply that rotors 2 and 3 are identical of that of a classical
quadrotor [43,44].

2.2. Rotational motion

The rotational motion of the XSF will be defined wrt to the local
frame but expressed in the inertial frame.

Where the inertia elements Ixx, Iyy and Izz are of the inertia
matrix IG expressed in G, then IG ¼ diagðIxx; Iyy; IzzÞ.

ü ¼ 1

IxxCf
ðtu þ IxxSfḟu̇Þ

f̈ ¼ 1

IyyCuCf
ðtf þ IyySfCuf

2 þ IyySuCfu̇ḟÞ

c̈ ¼
tc

Izz

(6)

With the three inputs in torque

tu ¼ lð f 2 � f 4Þ
tf ¼ lð f 1Cj1

� f 3Cj3
Þ

tc ¼ lð f 1Sj1
� f 3Sj3

Þ þ KM

KT
ð f 1Cj1

� f 3Cj3
þ f 4 � f 2Þ

(7)

where l is the distance from G to the rotor i and
KM ¼ 9� 10�6 N m s2. The equality from Eq. (6) is ensured,
meaning that:

ḧ ¼PGðhÞ�1½t � ṖGðhÞḣ� (8)

With t ¼ ðtu; tf; tcÞT as an auxiliary inputs.
And

PGðhÞ ¼
IxxCf 0 0

0 IyyCfCu 0
0 0 Izz

0
@

1
A (9)

As a first step, the model given above can be input/output
linearized by the following decoupling feedback laws

tu ¼ �IxxSfḟu̇ þ IxxCft̃u

tf ¼ �IyySfCuḟ
2
� IyySuCfu̇ḟþ IyyCuCft̃f

tc ¼ Izzt̃c

(10)

and the decoupled dynamic model of rotation can be written as

ḧ ¼ t̃ (11)

with t̃ ¼ ðt̃ut̃ft̃cÞT

Using the system of equations (2) and (11), the dynamic of the
system is defined by

mẍ ¼ ScCuu2 � Suu3

mÿ ¼ ðSuScSf þ CcCfÞu2 þ CuSfu3

mz̈ ¼ ðSuScCf � CcSfÞu2 þ CuCfu3 �mg

ü ¼ t̃u

f̈ ¼ t̃f

c̈ ¼ t̃c

(12)

The rotational part can be easily linearized with static feedback
control laws. Then, we get

ü ¼ u4

f̈ ¼ u5

c̈ ¼ u6

(13)
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with

u4 ¼
1

IxxCf
ðtu þ IxxSfḟu̇Þ

u5 ¼
1

IyyCuCf
ðtf þ IyySfCuḟ

2
þ IyySuCfu̇ḟÞ

u6 ¼
1

Izz
tc

(14)

Remark. As shown in Eq. (2), the equivalent system of control-
inputs presents five inputs U ¼ ðu2;u3;u4;u5;u6Þ, while the rotor
force-inputs are of six order F ¼ ð f 1; f 2; f 3; f 4; j1; j3Þ. Then the
transformation U! F is not a diffeomorphism.

3. Advanced strategies of control

The aim in this section is to make comparison between
model based approaches and experts analysis involving fuzzy
systems. Classical model based techniques such us the static

feedback linearization and backstepping techniques have been
investigated and used for stabilization with motion planning
[7,45,27].

3.1. Static feedback linearization controller

3.1.1. Control input for z� ymotions

We propose to control the y=z motion through the input u2=u3.
So, we have the following proposition.

Proposition. Consider ðc; uÞ 2 � � p=2;p=2½, with the static feedback

laws.

u2 ¼ mnyCfC�1
c �mðnz þ gÞSfC�1

c

u3 ¼ mnyðSfC�1
u � CftgctguÞ þmðnz þ gÞðCfC�1

u þ SftgctguÞ
(15)

The dynamic of y and z are linearly decoupled and

exponentially asymptotically stable with the appropriate choice
of the gain controller parameters. ny and nz are detailed in the

following.

We can regroup the two dynamics as

ÿ
z̈

� �
¼ 1

m

SuScSf þ CcCf CuSf
SuScCf � CcSf CuCf

� �
u2

u3

� �
� 0

g

� �
(16)

For the given conditions in c and u the ð2� 2Þ matrix
in Eq. (16) is invertible. Then a non-linear decoupling
feedback permits to write the following decoupled linear
dynamics:

ÿ ¼ ny

z̈ ¼ nz
(17)

Then we can deduce from Eq. (17) the linear controller:

ny ¼ ÿr � k1
yðẏ� ẏrÞ � k2

yðy� yrÞ
nz ¼ z̈r � k1

z ðż� żrÞ � k2
z ðz� zrÞ

(18)

with the ki
y, ki

z are the coefficients of a Hurwitz polynomial.
Our second interest is the (x; z) dynamics which can be also

decoupled by a static feedback law.

3.1.2. Input u2 for the motion along x

The aim here is to stabilize the dynamics of x with the control
input u2. While we keep the input u3 for the altitude z

stabilization.
Proposition. With the new inputs

u2 ¼ ðScCf � SuCcSfÞ�1ðmnxCfCu þmðnz þ gÞSuÞ
u3 ¼ ðScCf � SuCcSfÞ�1ð�mnxðScSuCf � CcSfÞ þmðnz þ gÞScCuÞ

(19)

The dynamic of x and z are decoupled and exponentially stable.
nx and nz can be deduced as in [7]:

ẍ ¼ nx

z̈ ¼ nz
(20)

Remark. To switch between the two controllers Eqs. (15) and (19)
continuity is recommended allowing the avoidance of the peak
phenomenon. This can be asserted if we impose some constraints
to the reference trajectories. In order to ensure this, we take u2ðc ¼
0Þ ¼ u2ðc ¼ p=2Þ ¼ 0 with f ¼ u ¼ 0. For c ¼ 0 one uses (Eq. (15))
and for c ¼ p=2 expression Eq. (19) is considered. As soon as we
get u3ðc ¼ 0Þ ¼ u3ðc ¼ p=2Þ ¼ mg taking f ¼ u ¼ 0.

3.2. Self-tunable fuzzy inference system

The formal analogy between a fuzzy inference system and a
multilayer neural network associated with optimization algo-
rithms is used from the retro-propagation gradient algorithm have
winded up in what is called a STFIS Network.

3.2.1. Presentation of STFIS

The main idea is to implement the various parts of a fuzzy logic
system in a multilayered neural network. These operations can be
traduced by the layer structure shown in Fig. 2. Each layer,
connected with others by adjustable parameters, having a specific
function [15,36]. Only output parameters of the FIS are optimized
in this work.

The input layer receives the input signal. The first hidden layer
calculates the membership grades ma i j of the inputs to their
associated fuzzy subsets so the weights ai j allow to tune
respectively the position and the width of the fuzzy subsets, the
form of which is chosen through Gi j. The second one calculates the
truth value ai of each fuzzy rule using the Min operator. The output
layer gives the crisp output value u by:

u ¼
Pr

i¼1aiwiPr
i¼1ai

where wi are the synaptic weights between the second hidden
layer and the output. So, basically, this kind of STFIS network
implements a Sugeno’s type fuzzy inference system where the
weights wi are the crisp conclusions of the rules. The optimization
of the parameters of the network can be done by various methods.
In this work, we use the backpropagation of the gradient to
minimize the cost function.

3.2.2. Architecture and learning algorithm architecture

In this work, we propose to generate the fuzzy control rules by
an optimization method, which is done entirely on-line. Jordan
[24] proposes the distal control method, which is used by [34]
under the name of JEAN (Jordan method Extended for Adaptive
Neuro-control).

This architecture (Fig. 3, left) needs two STFIS networks:
(1) a
 first networks to identify the drone (Model);

(2) a
 second networks to control the drone (Controller).



Fig. 2. Self-tunable fuzzy inference system.
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The tuning of the synaptic weights is done by back-propagation
of the quantity du� through the network controller. The value of
du� itself is obtained by back-propagation of the cost function
based on the output error e (e ¼ y� y1, where y1 is the effective
output value and y is the desired output) through the network
model. But, to have a suitable control, it is not often necessary to
know accurately the plant model (i.e. the Jacobian). In fact, an
imprecise model of the plant does not alter the minimization of the
cost function. Nevertheless, it modifies the itinerary taken by the
learning algorithm in the action space: it will not follow the higher
slope but it will stay on a downward path [24]. The technique using
only the approximation of the Jacobian by its sign (easier to know
then the Jacobian itself) is a viable approach to control simple
(SISO) plants [35]. Then, we choose an architecture ‘‘mini-JEAN’’ as
illustrated in Fig. 3(right) for the control of the XSF.

Compared to JEAN architecture, some similar performances are
obtained in terms of generalization mean error. On the other hand,
the computing time favors clearly mini-JEAN. Optimization of
adjustable parameters is accomplished with a retro-propagation
Fig. 3. JEAN learning architecture (left) and
gradient algorithm which is adapted to the net structure
(Fig. 3(right)). This architecture does not require an emulator
network. It uses only one network as a controller, where the
learning is done directly by the back-propagation of the output
error. The simultaneity of the two phases can lead to serious
problems of instability for JEAN architecture.

The aim is to minimize cost function E:

E ¼ 1
2e2 (21)

where e is the difference between set point and process output. The
basic equations of the algorithm are:

wn
i jðt þ 1Þ ¼ wn

i jðtÞ þDwn
i jðtÞ (22)

With

Dwn
i jðtÞ ¼ bDwn

i jðt � 1Þ � hdn
i a

n�1
j �

ban�1
j wn

i jðt � 1ÞP
j a

n�1
j

(23)
control architecture mini-JEAN (right).



Table 1
Weight for z displacement

de ne NB NS Z PS PB

NB 29.62 29.71 7.59 2.55 2.99

NS 29.52 31.34 10.63 3.02 1.69

Z 34.22 29.73 19.54 4.84 2.79

PS 39.72 41.37 22.32 1.74 9.61

PB 39.92 39.82 28.27 7.96 9.62
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where wn
i jðtÞ is the ith parameter between i of layer n and jth unit of

layer n� 1, h is the learning gain, t is the training iteration, b is the
moment parameter, dn

i is the error term (ith neurone of layer n),
an�1

j is the output of jth unit of layer n� 1 and b is the regression
coefficient. The quality of solution obtained using this algorithm
depends on input learning signals, algorithm control parameters
and learning duration (number of iterations).

3.2.3. Algorithm modification weight regression

The procedure is entirely done on-line on the engine. The table
of rules (weights wi) can be initially empty or filled with an a priori
knowledge. The engine acquires by its systems output measures,
calculates the error to the back-propagated, updates the triggered
rules on-line. The weights of the table of decision are then adjusted
locally and progressively.

The cost function is given by

J ¼ Eþ l
X

w2
i (24)

where E is the classic quadratic error, w are the parameters
(weights) to optimize parameters and l is a constant that controls
the growth of parameters. The second term in J is known as weight

decay and used usually in the context of classification problems.
This technique early used for autonomous wheeled robot [26] but,
the authors have noticed, if the learning is prolonged, the weights
increase continuously with time and progressively, the quality of
the control deteriorates. To overcome this difficulty, we use here a
well known technique in the field of neural classification methods
[14] and having a strong relationship with ridge regression and
regularization theory [9].

Thanks to the classic back-propagation algorithm, the para-
meters are modify as

wðt þ 1Þ ¼ wðtÞ þ bDwðtÞ þ h
�@J

@w

� �
(25)

This algorithm easily includes the effect of the second term of
the cost function J and by taking b ¼ 2lh (regression coefficient)
we obtain:

wðt þ 1Þ ¼ wðtÞ þ bDwðtÞ þ h
�@E

@w

� �
� bawðtÞP

a
(26)

Since a fuzzy inference system is concerned, we adapt this
formula by multiplying b by the firing term of the rule, namely
a j=

P
a j. a j is the truth value of the premise part of the triggered

rule.
By applying this method to our system, a saturation of weights

growth is obtained without any degradation of the residual
Fig. 4. Evolution of the weights for z displacement (left) and representation of the lingu

colour in the artwork, the reader is referred to the web version of the article.)
quadratic error and the quality of the control is maintained even
under prolonged learning.

If we limit the optimization only on the conclusions parameters
w4

1 j. Then, we get

Dw4
1 jðtÞ ¼ bDw4

1 jðt � 1Þ � hd4
1a

3
j �

ba3
j w

4
1 jðt � 1ÞP
j a

3
j

(27)

with

d4
1 ¼

eP
j a

3
j

(28)

4. Motion planning and simulation results

The XSF is tested in simulation in order to validate some motion
planning algorithm considering the proposed STFIS control laws.
We have considered a total mass equal to m ¼ 2 kg. The technical
characteristics of this flying vehicle were presented in [4]. We solve
the tracking control problem using the point to point steering
stabilization see [7,43] for more details.

A fuzzy controller based on an on-line optimization of a zero
order Takagi–Sugeno fuzzy inference system is successfully
applied. It is used to minimize a cost function that is made up
of a quadratic error term and a weight decay term that prevents an
excessive growth of parameters of the consequent part. The main
idea is to generate the conclusion parts (so-called weight) of the
rules automatically thanks to an optimization technique. The used
method is based on a back-propagation algorithm where the
parameters values are free to vary during the optimization process.

Starting with a preinitialized rules table, when XSF begins to fly,
it performs the acquisition of the distances (observations),
calculates the cost function to back-propagation, updates the
triggered rules in real time, begins to move and so on. The weights
wi are then adjusted locally and progressively. The shape of the
used membership functions is triangular and fixed in order to
extract and represent the knowledge from the final results easily.
istic translation of the controller u3 (right). (For interpretation of the references to



Table 2
Learning linguistic table

de ne NB NS Z PS PB

NB B B W VW VW

NS B B W VW VW

Z VB B M VW* VW

PS VB VB M* VW* W

PB VB VB B W W

Table 3
Expertise linguistic table

de ne NB NS Z PS PB

NB B B W VW VW

NS B B W VW VW

Z VB B M W VW

PS VB VB B W W

PB VB VB B W W
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The deduce the truth value, we use the MIN operator for the
composition of the input variables. For the control of the XSF, we
use the architecture known as ‘‘mini-JEAN’’. The universes of
discourse are normalized and shared in five fuzzy subsets for all
displacement.

The linguistic labels are defined as follows: NB: Negative Big, NS:
Negative Small, Z: approximately Zero, PS: Positive Small and PB:
Positive Big.
Fig. 5. Realization of a straight corners (left) and inputs u3 and u2 for the realization of a s

the reader is referred to the web version of the article.)

Fig. 6. Realization of a round corners (left) and inputs u3 and u2 for the realization of a rou

reader is referred to the web version of the article.)
The results of the simulation are reported in the Table 1 for z

displacement.
The optimization phase tends to stable weights (Fig. 4 left). In

these circumstances the outputs linguistic labels could be
interpreteted as follows (Fig. 4 right):

VW: [1, 5] Very Weak, W: [7, 11] Weak, M: [19, 23] Medium, B:
[28, 32] Big and VB: [34, 42] Very Big.

Table 2 illustrates the linguistic translation of the table obtained
by on-line optimization for the z displacement (Table 1).

By comparing the table proposed by learning and by human
expertise (see Tables 2 and 3), we can observe that the two sets
of linguistic rules are quite close. Three cases (noted with *) are
different and they differ from only one linguistic concept (M
instead B and VW instead W). So, we can claim that the
extracted rules are quite logical and coherent. On the other
hand, the main advantage of the described technique is the
optimization of the controller with respect to the actual
characteristics of the engine. The use of a function cost gathering
a quadratic error and a term of regression of the weights enabled
us to achieve our goal. For this behavior, the building of the
navigation controller is done entirely on-line by the optimiza-
tion of a zero order Takagi–Sugeno fuzzy inference system (FIS)
by a back-propagation-like algorithm.

Figs. 5 and 6 (right) illustrates the controlled positions zxy using
STFIS controller where u3 and u2, denote the command signals for
z, x or y directions respectively. Note that the input u3 ¼ mg at the
equilibrium state is always verified. The inputs u2 tend to zero after
having carried out the desired orientation of the vehicle. It is also
traight corners (right). (For interpretation of the references to colour in the artwork,

nd corners (right). (For interpretation of the references to colour in the artwork, the



Fig. 7. Displacement errors of straight corners (left) and round corners (right).

Fig. 8. Realization of a helical trajectory (left) and inputs u3 and u2 for the realization of a helical (right). (For interpretation of the references to colour in the artwork, the

reader is referred to the web version of the article.)
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shown in this figure that we can stabilize the system to make a
following movement by the swivelling of the engine actuators 1
and 3.

The 3D displacement is depicted with straight, arc and round
corners like connection (see Figs. 5 and 6(left)). These figures show
the effectiveness of the used controller.

Fig. 7 shows displacement errors according to all the directions
for the X4 Stationnary Flyer. It is noticed that the error thus tends to
zero towards the desired positions.

According to Fig. 8 which represents the realization of a helical
trajectory (left) and its input (right) that our controller ensures the
trajectory continuation.
Fig. 9. XSF forces in the case of motor 4 failure at t ¼ 0:5 s (left) and t ¼ 4 s (right). (For in

web version of the article.)
5. Controllers robustness

The robustness of the developed controllers are evaluated
regarding external disturbances and performance degradations in
the case of actuator/sensor failures and wind influence. In the case of
the XSF, a resistance or a drag force is opposed to its movement
in flight. The work produced by this force involves an additional
energy consumption at the actuators levels which limits its man-
euvering capacities in flight. This force can be expressed as follows:

Fi ¼ 1
2CxrAV2

i (29)
terpretation of the references to colour in the artwork, the reader is referred to the



Fig. 10. Wind influence with a drag force of 1.4 N (left) and 2.1 N (right) for the x direction. (For interpretation of the references to colour in the artwork, the reader is referred

to the web version of the article.)
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where Fi [N] is the drag force following the i axis, Vi [m/s] is the
drone velocity, A [m2] is the coss-sectional area perpendicular to
the force flow and r [kg/m3] is the body density. The Eq. (29)
induced a drag coefficient Cx which is a dimensionless quantity
that describes a characteristic amount of aerodynamic drag
depending on the XSF structure and which is experimently
determined by windtunnel tests. This coefficient is equal to 0.5
for the x and y directions and 0.08 for the z displacement. The
surface characteristic A of the XSF drone is equal to A ¼ 0:031 m2

and it density is considered equal to r ¼ 1:22 kg/m3.
Fig. 9 illustrate the simulation results in the case of actuator 4

failure after take-off at the instant t1 ¼ 0:5 s and t2 ¼ 4 s in the z

direction. To maintain its equilibrium, the three remain actuators
share the drone load compensation and which practically results in
an equitable distribution of the developed forces (F1 þ F2 þ F3 ¼ mg

at steady state). The STFIS and the SFL controllers behaves in the
same way.

Fig. 10 present the simulation results in the case of a drag force
of Fdg ¼ 1:4 N and of Fdg ¼ 2:1 N according to the x displacement.
The STFIS controller exhibits chattering signal problems in the
transition phase while the SFL controller presents static errors that
varies proportionally with the drag force amplitude Fdg. The same
observations are found according to the two directions y and z.

6. Conclusion

In this paper, we studied a new configuration of flyer engine
called XSF. We have considered in this work the stabilizing/
tracking control problem for the three decoupled displacements of
a XSF. The objectives are to test the capability of the engine to fly
with straight, arc, rounded intersections and complex trajectories
(helical).

We have presented and implemented an optimization techni-
que allowing an on-line adjustment of the fuzzy controller
parameters. The descent gradient algorithm, with its capacities
to adapt to unknown situations by the means of its faculties of
optimization, and the fuzzy logic, with its capacities of empirical
knowledge modelling, are combined to control a new configura-
tion of flyer engine. Indeed, we have obtained an on-line optimized
Takagi–Sugeno type FIS of zero order. This method is simple,
economical and safe since it is done on a mini-flying robots. It leads
to very quick and efficient optimization technique. A comparison
between the STFIS set rules and that deduced by human expertise,
shows the validity of the proposed technique.

An analysis of the STFIS (which not require the good knowledge
of the model) and the SFL (requires the well knowledge of the
system model and parameters) controllers and their robustness
regarding disturbances, shows the advantages and the disadvan-
tages of these two techniques.

Future works will essentially investigate the real time
implementation of the STFIS and the based-model control
techniques. Obstacles avoidance and flying multi-drone are also
envisaged thanks to the FIS faculties and its optimization
capabilities.
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