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Abstract—Blimps are a promising platform for aerial
robotics and have been studied extensively for this purpose
Unlike other aerial vehicles, blimps are relatively safe ad also
possess the ability to loiter for long periods. These advaages,
however, have been difficult to exploit because blimp dynaras
are complex and inherently non-linear. The classical apprach
to system modeling represents the system as an ordinary
differential equation (ODE) based on Newtonian principles A
more recent modeling approach is based on representing st ;
transitions as a Gaussian process (GP). In this paper, we pgent  Fig. 1. The left image shows the blimp used in our test envirent
a general technique for system identification that combines equipped with a motion capture system. It has a customizedda (right
these two modeling approaches into a single formulation. Tisis ~ images) that includes an XScale based computer with sensaysducted
done by training a Gaussian process on the residual betweehe¢  fans that can be rotated by 360 degrees, and a webcam.
non-linear model and ground truth training data. The result is
a GP-enhanced model that provides an estimate of uncertainty . ) o
in addition to giving better state predictions than either ODE ~ Problem of learning dynamic models from training data [4],
or GP alone. We show how the GP-enhanced model can be [6]. GPs have several key properties that make them ideally
used in conjunction with reinforcement learning to generae a  syjted to our problem. They are non-parametric, which lets
blimp controller that is superior to those learned with ODE or them model a wide range of dynamical systems. Further-
GP models alone. . .

more, they can automatically learn the smoothness and noise
|. INTRODUCTION AND MOTIVATION levels of the underlying system. Finally, they provide aiomt

. . of uncertainty about the learned process. This uncertai
Unmanned aerial vehicles (UAVS) have become a helprHe very vaIuthIe when Iearningg controller ay

component for many applications where human operation )
is considered unnecessary or too dangerous. Blimps effec-However, standard GPs assume that the process underlying
tively combine the capabilities of airplanes with those ofh€ data is zero-mean, which is clearly not the case when
hot air balloons into one aircraft. This unique combinatiof€@ning a model of blimp dynamics. In order to overcome
of maneuverability and the ability to float with relatively this problem, we combine dynamical and data-driven model-
low power requirements makes a blimp an ideal researdRd 0 form a singleGP-enhancednodel. The GP-enhanced
platform for sensor and control technology. Blimps havénodel begins with a classical non-linear dynamical model
been studied in various contexts. So far, blimp controller§'®ateéd by a human expert. The parameters of this blimp
are mainly based on PID controllers [14], [15], [16] or non-model are learned using ground _truth data. Then a Gau_ss_lan
linear dynamic models [1], [2], [3], [5]. process is us_ed to model the residual between the prgdlctlon
System identification is the first step towards designing &f the dynamical model and ground truth data. Experiments
controller for an autonomous blimp, and dynamical systemith an indoor blimp show that the GP-enhanced model
in general. A system model describes how the state changd4Performs both the classical non-linear approach and the
from one instant to the next. The quality of a model cafU'® GP-based approach. The GP-enhanced model is then
be measured by how well it predicts the next state given tHé"TEd in reinforcement learning to learn a controller for the
current state and control input. A higher fidelity model fesu blimp.
in improved state estimation and controller performance.  This paper is organized as follows. The blimp hardware
The result of classical dynamic modeling is an ordinaryestbed used in the experiments is described in Section II. |
differential equation which describes the evolution of theection Ill, the non-linear dynamics of the blimp are dedive
state. The model can be formulated without collecting an@ur approach to using Gaussian Processes for learning pre-
training data, however extensive human knowledge is ralictive models is described in Section IV. A blimp controlle
quired. Another disadvantage of this approach is that the built using reinforcement learning in Section V. Finally
system noise is generally difficult to model. Gaussian pseceexperimental results illustrating the advantages of the GP
(GP) regression models have recently been applied to teehanced model are presented in Section VI.




Il. HARDWARE TESTBED

The blimp used in the experiments (see Fig. 1) is based on .
a commercial 5.5 foot (1.7 meter) blimp envelope [8] with a / —X
custom built gondola. The gondola includes a small XScale Y
PXA271 based computer running Linux with Bluetooth,
miniSD, and several sensors. The computer is connected to
a servo controller, a motor controller, and a webcam. The Z
motor controller board is used to control the speed of the
tail motor in both the forward and reverse directions. Theig. 2. Body fixed frame of reference for the blimp. Forwarssbody X
servo controller steers the two servos that rotate the ganddred), right is body Y (green), and down is body Z (blue).
motors up to 360 degrees. The gondola motors, two ducted
fans (GWS EDF-50), are controlled by two standard ESCs '_I'he gondola motors share a common S.haft gnd thus always
(Electronic Speed Controller) attached to the servo cdietro paint at the same angle. Furt.her, the blimp is set up so
The system is powered by two batteries. A 3.7V/200mAI11hat bOth gondola mptors receive the same motor cqmmand.
lithium ion battery supplies the computer and the contrelle Appropriately, the blimp has a total of three control inputs
A bigger 7.4V/1200mAh lithium polymer battery drives the
ducted fans, the tail motor, and the servos. The total weight
of the blimp is about 350 grams. Neither the sensors nor thghich are the commands sent to each respective motor.
webcam were used in our experiments. A detailed derivation of the rigid body dynamics of blimp-

All experiments are carried out in a room equipped with dike vehicles can be found in [3], [13]. The resulting model
VICON motion capture system. Seven markers were attach@gds the form,
in order to track the blimp in our test environment (see left

u= [utaugauu]Ta (3)

image in Fig. 1). The mean measurement error of markers p Ryv
i i i ._d|¢ H(€)
in the system is aboutcm. The maximum capture rate of §= — = 1 )
the system i 20H z, however, jitter on this system is rather dt | v M (3 Forces—w x Mv)
w J7H (> Torques— w x Jw)

high. The frame rate deviates from the idéabH > with a

standard deviation of2H z. The system outputs positions of Here, R¢ is the rotation matrix from body-fixed to inertial
the markers only. These marker position values are cortvertgaference, and? is the Euler kinematical matrix.

to blimp states by the proper transformations. Velocites f  The sum of forces acting on the blimp system in (4) is
the states are obtained by a smoothed calculation of the slogajuated in the body frame and consists of terms for each
between sample points. motor, gravity, buoyancy, and aerodynamics. The gravity an

1. NONLINEAR BLIMP DYNAMICS buoyancy forces can be computed directly,

The non-linear deterministic model of the blimp derived Force qvity = (RHT(0,0, —mg]” (5)
in this section is based on standard dynamic and aeronautic FOrC8uoyancy = (R§)T[0,0,mVpair] 7, (6)
principles. The objective is to create an autonomous non-
linear plant model of the form, where m and V are the mass and volume of the blimp,
) respectively,p.;- is the density of air, and is the gravi-
s(t) = £y(s(t), u(t)), (1) tational constant. Following typical engineering praetithe

weres(t) is the stateu(t) is the control, andy is a vector remaining force terms are modeled parametrically:
of constants that includes the added mass and inertia, drag

- Forcezero drag — _Cd”VHV (7)
coefficients, center of mass, and volume. The state vector, ) T

. . T Forc%ondola motors — fg (ug)[COS(,u), Oa - sm(,u)] (8)

s=[p".¢" v W], 2 FOrCuit motor = f1(u)[0,~1,0]7. 9)

. g . . T
consists of positiop” = [z, y, 2], orientationé™ = [¢,0,9] A quadratic model was used for the mapping from the motor
parametrized by rolky, pitch #, and yawy, translational  command to the resulting force for the gondola motgfs,
velocity v = [U,V,W], and angular velocityw” = an the tail motory;. '
[P, Q, R]. A forward-right-down body-fixed reference frame  gach of the above forces causes a torque about the center
is attached to the center of buoyancy of the blimp as showg} poyancy, about which the sum of torques is evaluated.
in Fig. 2. The state is measured with respect to a traditiongt, s, each force term creates a corresponding torque term of
North-East-up inertial reference frame, however the Vi§§oc e form Torque= r; x Force. Herer; is a vector from the
components are expressed in the body-fixed frame becaysg ier of buoyancy to the application point of té force.

the mass and inertia matrices are constant with respecisto th,o only new term is the rotational drag, which is modeled
frame. Note that these matrices are not necessarily didgong 4 pure moment

due to added mass effects, which account for accelerating
the surrounding air. Torque,,,, ;o = —Crw, (10)



where C, is a drag coefficient. The unknown parameter where

vector, v, includes all coefficients and vectors that cannot # = K (X.. X)[K (X, X) +o71] "y (16)
be measured directly. These parameters were learned byY = K(X,, X,)
minimizing point-wise differences between simulated egat ~ K(X., X)[K(X,X) + onI]’l K(X,X,). (17)

and ground truth data from the motion capture system.  pqqe equations show that the mean function is a linear

IV. LEARNING PREDICTIVE MODELS USING GAUSSIAN combination of the training outpyt, and the weight of each
PROCESSES output is directly related to the correlation betwe&n and
the training input.
The parameters of the kernel function (13§, =
Gaussian processes (GP) are a powerful, non-parametii¥, o, 0,,], are called the hyperparameters of the Gaussian
tool for regression in high dimensional spaces. Key advamprocess. These hyperparameters can be learned by maximiz-
tages of GPs are their ability to provide uncertainty estésa ing the log likelihood of the training outputs given the ittgu
gnd to learn thg noise a}nd smoothness parameters from train- Omae = argmax {log(p(y| X, 0))} . (18)
ing data. More information can be found in [12]. A GP can be . 0
thought of as a “Gaussian over functions”. More precisely! "€ 109 teérm in (18) can be expressed as
a (_BP desc_:ribe_s a stochastic process in which the ran_dom log(p(y|X) = —%yT(K(X,X) +ggj)—1y
variables, in this case the outputs of the modeled function, 1 "
are jointly Gaussian distributed. A Gaussian process iy ful —=log|K(X,X)+o21| — = log 2.
described by its mean and covariance functions. 2 ) ) 2 )
The training setD = {(x1,41), (X2,52), .., (Xn, yn)} iS B. GP Modeling of Discrete Time Dynamic Processes
assumed to be drawn from the noisy process A discrete time dynamic process can be thought of as a
series of states indexed by time and can be written as
yi = f(xi) te, (11)

wherex; is an input vector inR? andy; is a scalar output s(k+1) = s(k) +g(s(k), u(k)), (20)

in R (extension to multiple outputs is possible). The noisa&vherek is the time index ang is a function which describes
term e is drawn from\/(0, o2). For convenience, the inputs the dynamics of the system given the current statand
are aggregated into a matriX = [x;,Xs,...,X,]. The control inputsu. A Gaussian process can be used to model
outputs are likewise aggregatedl,= [y1,%2,...,4,]. The this system by learning the functignbased on training data
joint distribution over the noisy outputg given inputsX  consisting of a sequence of observed states and controls:
is a zero-mean Gaussian, and has the form,

A. Preliminaries

(19)

xp, = [s(k), u(k)] (21)
p(y|X) = N(0,K(X, X) + 0, 1), (12) vie = g(s(k),u(k)) = s(k +1) — s(k). (22)
where K (X, X) is the kernel matrix with element&;; = As a results, the GP learns to predict the delta between two

k(x;,x;). The kernel functionk(x, x’), is a measure of the consecutive states conditioned on the previous state and th
“closeness” between inputs. The temd ! introduces the control input.
Gaussian noise and plays a similar role to that @f (11). , , ) .
The squared exponential is a commonly used kernel fun& Sampling Trajectories from a Gaussian Process
tion and will be used in this paper. It is, Once the parameters of a GP are learned from training
1 data, the GP can be used to simulate the evolution of the
k(x,x') = J;exp((—§(x—x/)W(x—x/)T)), (13) dynamic process. This is done by sequentially sampling
states from the predictive distribution.
where aJ% is the signal variance. The diagonal matiik To see, assume that we have training dafaand y
contains the length scales for each input dimension. Thgenerated according to (21) and (22), and an initial state
value of Wy; is inversely proportional to the importance ofand control input givingk, = [§(0),u(0)]. The state at
thei-th input dimension. Learning the matrix’ can thus be time 1 is then given by§(1) = §(0) + $o, wherey, is the
used for automatic relevance determination (ARD) [9].  GP prediction based on the training data and initial state.

Given a set of test inputX’,, one would like to find the The predictive distributiom(§o|y, %0, X) is Gaussian with
predictive outputs,. The noisy training outputy and the mean and variance given by (16) and (17), respectively (with
test outputf, are jointly Gaussian: X, replaced byk(). Sampling an instance ¢f, from this

distribution provides the information needed to generhée t
p(f,y| X, X) =N (O, [][{((X*’X*) K(X*’X)2 J) state$(1). A new control inputu(1) along with §(1) can
(X,X,) K(X,X)+02I . N
" then used to generag?2) in a similar way.

This process can be iterated until a complete trajectory is
sampled. However, care has to be taken that the correlation
between consecutive data points is considered. To do so, one
p(Lly, Xs, X) = N(u, X)), (15) needs to condition future points on the points sampled so far

Sincey is known, this Gaussian can be conditionedyoto
obtain the predictive distribution fok



This can be done elegantly by adding already sampled poini
to the training dataX andy, thereby growing the kernel 45
matrices and vectors used in the predictive distributions 30
specified by (16) and (17). As a result, if enough trajectorie
are sampled from a particular state, the distribution of
endpoints of these trajectories will properly representrémal
distribution of endpoints.

—Continuous time
—4—Discrete time

t=0

Yaw Rate (deg/sec)
o

u=0
uu=—1
-135 -90 -45 czd )45 90 135
. . . Yaw (de
So far, the evolution of the dynamlc system Is representqgiqg. 3. Yaw rate vs. yaw is shcgwn for continuous and discrétee t
by the Gaussian process alone. There are some drawbaekgilations of the dynamics (1) using the continuous timinug controller
to this technique. Because there is a zero mean assumpt\(/%ﬁshc&;] zero ft’gdg)f(;o"ir';‘téh; g'iflgshgg‘t?ncasfgbérgme stegt = 0.8s
in the GP, test states that are far away from the training 99 gp '
states will have outputs that tend towards zero. This makegntrol problem is formulated for the second order linear
the choice of training data for the GP very importantapproximation of the yaw dynamics,
However, the deterministic model developed in Section Il
has prediction quality which is independent of the locatén ¢ [ﬂ _ {0 1 } [ﬂ "

the training data. The deterministic model can be combined dt |4 0 —Kdrag| ¥

D. Model Enhancement using the Deterministic Model

(U
with the GP model to give more accurate state predictions. [ 0 }

0S O ne
The dynamic system equation then becomes, KPpos uy” + [ } u™,  (24)

Kmes

s(k+1) = s(k) + £(s(k),u(k)) + g(s(k),u(k)), (23) Where¢ is the yaw error (thg goal.y.aW/;*, is taken to bg

zero without loss of generality) and is the yaw rate. This

wheref describes the change in state given by the determifirodel is a decent approximation for small pitch and roll
istic model. The functiorg, which is modeled with a GP, is angles. All gains are positive and two gains are needed for
now only responsible for describing the residual between tHhe tail motor because it is stronger in one direction than th
ground truth data and the deterministic non-linear model. Tother. If the tail commandy,, is positive thenuj”* = u,
generate training data for the GP, we again use a sequersgi vy’ = 0 (and vice versa). The tail motor command is
of observed states and controls. This sequence is first uségited to u; € [-1,1].

to learn the parameters of the non-linear functibnThe The cost functional in the optimal control formulation,
training data for the GP is then given by, = [s(k), u(k)] T .
andyy = s(k + 1) ~ s(k) — £(s(k). u(k). I = [ wlr ) + wirun)?dr, (@)
0
V. AUTONOMOUSBLIMP CONTROL USING is minimal when the control drives yaw error and yaw rate
REINFORCEMENTL EARNING to zero as fast as possible. The behavior can be adjusted

by the scaling parametap. The final time,T’, is chosen

Reinforcement learning based on policy search is freo ensure the integrand can go to zero befBréor realistic
quently used in conjunction with a simulator to circumventinitial conditions. Linear optimal control theory suggettat
collecting large amounts of empirical data [10]. Simulator  with limited control authority, the tail motor should be run
curacy and speed as well as clever controller paramewizati at full strength in a direction that depends on which side of
are the main factors in successful reinforcement learning. switching curve the state lies. An analytical express@n f
The controller must be flexible enough to learn complicatethe switching curve can be found by solving the ODE (24)
behavior, yet be simple enough to learn in a reasonablmckwards in time from the origin with either full left or tig
amount of time. In this section, we propose a parametrizagsbntrol. The resulting controller is shown in the shading of
yaw controller for the blimp. The objective of this conteall  Fig. 3.
is to steer the blimp from any yaw and yaw rate to a goal This “optimal” controller works well on a continuous time
yaw, ¢*, with zero yaw rate. While more complicated taskssystem, however, it does a poor job of controlling yaw on
could have been considered, this task was chosen to highlighe real blimp. One primary reason for this is that the blimp
the improvement offered by the GP-enhanced model. controller runs in1/4sec discrete time. The blimp state

Artificial Neural Networks (ANNSs) are often chosen as atends to drift far across the switching curve before acyuall
basis for controller design [11]. In this setting, the paedens switching the control, resulting in overshooting. This can
of the controller are the weights of the neural network. B th be seen in the comparison of continuous and discrete time
desired controller behavior is well understood, howeveent simulations overlaid on Fig. 3. A second reason for poor
a more specific controller model can be easier to learn thgerformance is that the linear model does not account for
a very general ANN model. With this in mind, the approachmon-linearity or noise.
to controller parametrization taken here is based on linear The parametrized controller inspired by the continuous
time-optimal control theory and common sense. The optimaiime optimal controller has a total of four parameters.



TABLE |
PREDICTION QUALITY (RMSERROR N

-&--RKGP
-9--RK

0.6
Propagation| p(mm) ¢(deg) v(mm/s) w(deg/s) Time(s)

method g 30 -G--Ground Truth
RK 76 0.55 25.1 2.18 0.025 §:

ODE 7.6 0.55 25.3 2.11 0.289 T 20

RKGP 1.0 0.10 4.2 0.38 0.036 g

ODEGP 1.0 0.10 4.2 0.36 0.338 c 10

GPonly 13 015 5.3 081  0.012 E

The first three parameters are the gains in (24). The final 90 45
parameter determines the smoothness of the controller near Yaw (deg)
the switching curve. A smooth transition can alleviate thé&ig. 4. RKGP trajectory prediction is much closer to grounudt trajectory.

overshooting problem, see Fig. 3, caused by discrete timgumerical integration methods. RK is an extremely fast
Smoothing is achieved via a hyperbolic tangent functiogpproximation, andde45 is less efficient but offers high
whose slope is determined by the fourth parameter. accuracy using variable step sizes with tolerance checking
Reinforcement learning based on policy search is used &GP and ODEGP are mean predictions using the GP-
find a locally stationary parameter set. Learning is ingedl  enhanced approach to propagate the state of the blimp.
with hand selected parameters. Each set of parameters,:iﬁla“y, a Gaussian process (GPonly) is used to predict the
evaluated by summing the integrand of the cost function@tire dynamics of the system - the non-linear model is not
(25) along simulated trajectories. Note that multipledtaj ysed at all. The training output learned by the GP in this case
tories are often needed because the initial conditions @ire ng the difference between successive ground truth states.
fixed and because the simulation may include noise. WhenTnhe results are summarized in Table |I. The different
the model does include noise, the seed of the random numkgjiumns present the root mean squared error of different
generator is fixed in accordance with PEGASUS [10]. components of the state, averaged oveR50 one second

VI. RESULTS predictions. The first two rows show the accuracy using the

. Lo numeric integration methods. The results using ODE are very
To test various aspects of our approach, the blimp is flowp " . : .
. . ) . : Similar to the results using RK only. The ODE predictor
in the motion capture lab described in Section II. To learp .

.- . . however takes on average 10 times longer than RK. We thus
predictive models of the blimp that are independent of the

. ) . omit the ODE predictor from the other experiments. Results
blimp’s location and yaw in the lab, we removed all absolut P P

coordinates from the blimp states and learn prediction r‘rsx;ode‘?or predlcpon mc_orporatmg the GP (r_ow_s_3 and _4) show
. - . that learning residuals with the GP significantly improves
solely based on pitch, roll, and velocities representedhan t

blimp’s coordinate frame prediction quality. The GPonly result shows that the zero

) . . mean Gaussian process does not fully extract all relevant
Gaussian process calculations were done using Lawer- . .
aspects of the dynamical system from the training data. A

ences FGPLYM package for Matlab_ [7.]' The h_yperparamter@(ely source of error is also that the predictions of GPonly
of the Gaussian process were optimized using a conjugate

gradient optimization. We use the full Gaussian proceslk wit® to zero for samplgs.drawn fgrth_er from the trgmlng data.
Longer term prediction quality is illustrated in Fig. 4,

no approximations. Outputs from the Gaussian process areﬁ. . )
R . ; . : which shows several sample turns of the blimp running the
multivariate in that a single Gaussian process is used for . . .
Same series of motor commands. The trajectory predicted by
RK deviates far from the real/ground truth trajectory wleesre

calculating all output dimensions of the predictive model
All experiments use a discretization period ofisec. the RKGP trajectory matches the ground truth very well.

0

A. Comparing Prediction Quality

This experiment is designed to test the prediction quali
of the various models. The blimp is first flown to collect By incorporating noise into the GP predictions, trajeceri
training data. This data is used to learn optimal parametecan be sampled that have the same characteristics as real
for the non-linear model. Additionally, the GP was usedrajectories. To evaluate this capability, the blimp is run
to learn residuals between the predictions of the non-tinefrom extremely similar initial starting conditions (withi
model and the ground truth. A total ef 1000 training points human error) with the same motor commands for twenty
are used here. trials. Using the starting condition and motor commands,

Prediction quality is assessed on additional test trajectthe same trajectories are simulated either with RKGP using
ries. From these trajectories we randomly choose states aonly the mean prediction, or with RKGP using both the
predict the state one second into the future using differembean prediction and its accompanying correlated noise (see
methods. The predicted state is then compared to the tr@ection 1V-C). The distribution of the endpoints is then
state provided by the motion capture system. To performompared to the ground truth, as summarized in Table Il. As
prediction based on the non-linear model, we use Rungexpected, using the noise from the GP significantly increase
Kutta (RK) and Matlab’®de45 (ODE), which are different the similarity between real and predicted data. Ignoring@&o

tg' Trajectory Sampling with Noise



TABLE I o RKGP
ENDPOINTS OF TRAJECTORIES 30t &??Q -4 RK
2R
Mean Yaw Mean Yaw o Yaw o Yaw i ‘\2{‘ Q
Simulator (deg) Vel (deg/s) (deg) Vel (deg/s) 2 1 2>\ R
RKGP with noise 5.6 25 7.37 2.95 & 20 i 988
RKGP no noise 5.1 2.5 3.81 1.83 2 o “Q ‘Q
Ground Truth 5.8 82 8.18 273 Py iy K ge
g0 By O ©
10 [NuNnD)
TABLE Il 3 [T
> RN
OPEN LOOP TURN ERROR ON REAL BLIMP f"i‘anll‘ﬁ
OF@B ':" “““““““““““““
Mean Yaw Mean Yaw o Yaw o Yaw EF‘ EE'
Simulator (deg) Vel (deg/s) (deg) Vel (degl/s) -90 a5 0 25
RKGP ‘ 721 2.78 531 1.54 Yaw (deg)
RK 311 13.2 5.58 1.44 Fig. 5. Real runs with a policy learned using RKGP shows mtighet

accuracy than the policy with RK alone The goal is at (0,0).

results in underestimating the spread of the endpoints.  ,sed to determine which type of control is needed to min-
C. Reinforcement Learning for Blimp Control imize the uncertainty in the predictive model. Furthermore

Using the reinforcement learning techniques described ne will incorporate the GP model into a Kalman filter to

Section V, policies are learned for a 90eft turn, using track the blimp in a large-scale indoor environment.
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