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Abstract— This paper describes a motion planning algorithm
for a quadrotor helicopter flying autonomously without GPS.
Without accurate global positioning, the vehicle’s ability to
localize itself varies across the environment, since different
environmental features provide different degrees of localization.
If the vehicle plans a path without regard to how well it can
localize itself along that path, it runs the risk of becoming lost.

We use the Belief Roadmap (BRM) algorithm [1], an
information-space extension of the Probabilistic Roadmap al-
gorithm, to plan vehicle trajectories that incorporate sensing.
We show that the original BRM can be extended to use the
Unscented Kalman Filter (UKF), and describe a sampling
algorithm that minimizes the number of samples required to
find a good path. Finally, we demonstrate the BRM path-
planning algorithm on the helicopter, navigating in an indoor
environment with a laser range-finder.

I. INTRODUCTION

Unmanned air vehicles (UAVs) rely heavily on accurate
knowledge of their position for decision-making and con-
trol. As a result, considerable investment has been made
towards improving the availability of global positioning
infrastructure, including utilizing satellite-based GPS system
and developing algorithms to leverage existing RF signals
such as WiFi. However, most indoor environments and many
parts of the urban canyon remain without access to external
positioning systems. Autonomous UAVs thus currently have
limited ability to fly through these areas.

Vehicle localization using sonar ranging [2] or laser rang-
ing [3] has been used extremely successfully in a number of
applications and is now essentially a commodity technology,
especially aboard ground robots. Unfortunately, the UAV
community has not been able to leverage the ground vehicle
successes for two reasons. First, some of the most successful
demonstrations of long-term robot autonomy have used pla-
nar laser ranging based on the ubiquitous SICK laser range
finder, which normally provides localization information for
three dimensions without additional specialized hardware.
While this is sufficient for ground vehicle localization, local-
ization in six dimensions during flight requires considerably
more data. Second, UAVs are severely constrained by weight
and, consequently, power limitations. A vehicle small enough
to fly indoors or through populated urban areas safely can
carry very little in terms of sensor payload, leading to
reduced range and field of view.

Nevertheless, most UAVs can carry some sensing capa-
bility for localization; they simply cannot carry sensors that
enable themselves to localize everywhere. If the vehicle can
use its sensor model to incorporate predicted measurements
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Fig. 1. Our quadrotor helicopter.

into its decision making, then the vehicle can plan trajectories
that are robust to sensor limitations.

In this paper, we describe a planning algorithm for the
quadrotor helicopter, shown in Figure 1, and built by As-
cending Technologies [4]. We outfit this vehicle with a laser
range-finder capable of estimating position, yaw angle and
altitude information from environmental features within a 4m
range in a 240◦ field of view. The limited range and field
of view of the sensor lead to position estimates that vary in
accuracy and confidence over the environment.

Our algorithm is based on the Belief Roadmap (BRM)
algorithm [1], which is a generalization of the Probabilistic
Roadmap (PRM) algorithm [5]. The BRM performs searches
in the information space of the vehicle efficiently by using
the sympletic form of the Extended Kalman Filter (EKF)
to find the minimum expected cost path for the vehicle.
We make two contributions in extending the BRM in this
paper. First, we show how to generalize the BRM to use the
Unscented Kalman Filter (UKF) [6] for position tracking,
providing better approximation of the non-linearities of UAV
motion and laser sensing. Second, we use the notion of a
“Sensor Uncertainty Field” [7] and show how a model of
sensor uncertainty can be used to generate a more efficient
representation of the information space. Finally, we conclude
the paper with a demonstration of the quadrotor helicopter
using the BRM algorithm to navigate autonomously indoors.

II. TRAJECTORY PLANNING

We first formulate the problem of motion planning for
a UAV. We assume that the vehicle is holonomic and that
we have full control authority, allowing us to ignore vehicle
dynamics and treat the problem as a kinematic motion
planning problem. C denotes the configuration space [8], the
space of all vehicle poses, Cfree is the set of all collision-
free poses (based on the map M of obstacle positions) and
Cobst is the set of poses resulting in collision with obstacles,
so that C ≡ Cfree ∪ Cobst. Given an initial vehicle state s0

and a map of the environment, the planning problem is to
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find a sequence of actions to move the vehicle from state s0

to a goal state sg without collisions. Our UAV has 6 degrees
of freedom (x, y, z, roll, pitch, yaw), so C = R6, which is
of moderately high dimension.

The Probabilistic Roadmap (PRM) is a common algo-
rithm [5] for planning in high-dimensional problems, in
which a discrete graph is used to approximate the connec-
tivity of Cfree. The PRM builds the graph by sampling a
set of states randomly from C (adding the start state s0 and
goal state sg to the sample set), and then evaluating each
state for membership in Cfree; the assumption is that it is
much cheaper to evaluate randomly sampled poses in higher
dimensions than it is to build an explicit representation of
Cfree. Samples that lie within Cfree constitute the nodes of
the PRM graph and edges are placed between nodes where
a straight line path between nodes also lies entirely within
Cfree. Given this graph, a feasible, collision-free path can be
found using a standard graph search algorithm from the start
node to the goal node. The path can be executed by using a
simple controller to follow each edge to the goal.

However, the PRM and its variants are not yet well-suited
to the problem of a GPS-denied UAV, in that executing a
plan requires a controller that follows the straight-line edges
joining graph points. If the UAV executing the plan does
not have a good estimate of its state, it may not be able to
determine when it has arrived at a graph node and should
start to follow a new edge. Even more seriously, vehicle
stability typically depends on accurate state estimation of
higher order terms (such as velocity). Without enviromental
feedback, IMU estimation can quickly drift causing catas-
trophic control failures.

III. VEHICLE POSITION ESTIMATION

If the UAV does not have access to perfect state knowl-
edge, such as through GPS, it can still localize itself by
using sensors to measure environmental features and then
registering those measurements against a pre-existing map.
Bayesian filtering is one of the most robust methods of local-
ization [2], in which a probability distribution p(st|u1:t, z1:t)
is inferred over the (unknown) vehicle state st at time t
following a series of noisy actions u1:t and measurements
z1:t. With some standard assumptions about the actions and
observations, the posterior distribution (or belief) can be
expressed as

p(st|u1:t, z1:t) =
1

Z
p(zt|st)

∫

S

p(st|ut, st−1)p(st−1)dst−1, (1)

where Z is a normalization factor. Equation (1), referred to as
the Bayes’ filter, provides an efficient recursion for updating
the state distribution.

The Kalman filter is a form of Bayes filtering that assumes
that all probability distributions are Gaussian, and that the
transition and observation Gaussians are linearly parameter-
ized by the state and control. The Extended Kalman filter
(EKF) allows the same inference algorithm to operate with
non-linear transition and observation functions by linearizing
these functions around the current mean estimate. More
formally, the next state st and observation zt are given by
the following functions,

st = g(st−1, ut, wt), wt ∼ N(0,Wt), (2)

and zt = h(st, qt), qt ∼ N(0, Qt), (3)

where ut is a control action, and wt and qt are random,
unobservable noise variables. The EKF computes the state
distribution at time t in two steps: a process step based
only on the control input ut leading to an estimate p(st) =
N(µt,Σt), and a measurement step to complete the estimate
of p(st). The process step follows as

µt = g(µt−1, ut), Σt = GtΣt−1G
T
t + VtWtV

T
t , (4)

where Gt is the Jacobian of g with respect to s and Vt is the
Jacobian of g with respect to w. For convenience, we denote

Rt , VtWtV
T
t . Similarly, the measurement step follows as:

µt = µt + Kt(Htµt − zt), Σt = (I − KtHt)Σt, (5)

where Ht is the Jacobian of h with respect to s and Kt is
known as the Kalman gain, given by

Kt = ΣtH
T
t

(

HtΣtH
T
t + Qt

)

−1

. (6)

An alternate form of the EKF represents the covariance by its
inverse, the information matrix [9]. The information matrix
updates can be written as

Ωt = Σ
−1

t = (GtΣt−1G
T
t + Rt)

−1

(7)

Ωt = Ωt + HT
t Q−1

t Ht. (8)

For convenience, we denote Mt , HT
t Q−1

t Ht such that
Ωt = Ωt + Mt. The distribution p(st|u1:t, z1:t) can be
represented by the information vector ξt and the information
matrix Ωt = Σ−1

t and may be more efficient to compute in
domains where the information matrix is sparse.

IV. BELIEF SPACE PLANNING

Recall from section II that the PRM planning algorithm
constructs a graph in the state space Cfree of the vehicle.
However, the vehicle does not know its actual state but only
has access to the EKF state estimate b = (µ,Σ); by planning
in the belief space (or information space), the vehicle can
distinguish between state estimates where the norm of the
covariance is small (i.e., the vehicle has high confidence
in its mean state estimate) and state estimates where the
norm of the covariance is large (i.e., the mean state estimate
is uncertain). Ideally, beliefs with high uncertainty are to
be avoided, and if encountered, conservative sensing action
would be a reasonable response.

Conventional motion planners generally search for a
collision-free path that minimizes the distance to the goal
location. In belief space, every belief typically has some
probability that the robot is at the goal state. A more
appropriate objective function is therefore to maximize the
probability of the goal state.

A naive approach to planning in belief space would there-
fore involve sampling beliefs directly from (µ,Σ), adding
the initial belief b0 to construct the graph nodes, placing
edges between pairs of beliefs (bi, bj) for which a controller
exists that can take the vehicle from belief bi to bj , and then
carrying out graph search as before. Unfortunately, it has
been shown [1] that the likelihood is zero of sampling any
beliefs that are actually reachable from the initial belief b0.

However, the EKF representation of the belief space
carries an extremely useful property. Each belief bt is a
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Fig. 2. The Belief Roadmap with one-step transfer functions calculated
using the UKF. In step 1, the graph of mean poses is constructed, and
mutually visible nodes are connected with edges. In step 2, the posterior
covariance is calculated through a series of process and measurement
updates. In step 3, the one-step covariance transfer function is calculated
from the individual multi-step updates.

combination of µ and Σ. Under some mild assumptions of
unbiased motion and sensor models, the reachability of any µ
is a function of the vehicle kinematics and the environmental
structure as in the PRM. For some µ that is reachable along
a path from µ0, the corresponding reachable covariance
can be predicted by propagating the initial covariance Σ0

along the path using equations (4) and (5) and the motion
and sensing models. Therefore, to construct a graph of the
reachable belief space, the planner first samples a set of mean
poses {µi} from Cfree using the standard pose sampling of
the PRM algorithm, and places an edge eij between pairs
(µi, µj) if the straight line between poses is collision-free.
Forward search is used to search for a path through the graph,
but each step of the search computes the posterior covariance
at each node instead of the standard cost-to-go.

A. Belief Updating as a One-Step Operation

The most computationally demanding aspect of the graph-
search algorithm described above is in propagating the initial
covariance Σ0 to each graph node. Covariance propagation
requires multiple EKF updates along each edge eij , and
while this operation is a constant multiplier of the asymptotic
search complexity, it can still dominate the overall search
time. Furthermore, these EKF updates are not a one-time
cost; the search process will find multiple paths to node
i. Each of these paths will lead to a different posterior
covariance at node i, and each such covariance must then
be propagated outwards from i along edge eij to reach node
j, incurring the computational cost of propagating along the
edge (a series of EKF updates) for each covariance. The
BRM algorithm avoids this complexity by using an alternate
representation of the covariance that allows multiple EKF
updates to be compiled into single linear transfer function.
By pre-computing the transfer function for each edge, the
search complexity for belief space planning becomes com-
parable to configuration space planning.

It has been shown previously [1] that the covariance of
a Kalman filter-based state estimator can be factored as
Σ = BC−1, where the combined process and measurement
update for an EKF gives Bt and Ct as linear functions of
Bt−1 and Ct−1.

Given: Σt−1 = Bt−1C
−1

t−1
(9)

⇒ Σt = GtBt−1C
−1

t−1
GT

t + Rt (10)

Algorithm 1 The Belief Roadmap (BRM) algorithm.

Require: Start belief (µ0, Σ0), goal µgoal and map C
1: Sample poses {µi} from Cfree to build belief graph node set
{ni} such that ni = {µ = µi, Σ = ∅}

2: Create edge set {eij} between nodes (ni, nj) if the straight-
line path between (ni[µ], nj [µ]) is collision-free

3: Build one-step transfer functions {ζij} ∀ eij ∈ {eij}
4: Augment node structure with best path p=∅, such that ni =
{µ, Σ, p}

5: Create search queue with initial position and covariance Q←
n0 ={µ0, Σ0, ∅}

6: while Q is not empty do
7: Pop n← Q
8: if n = ngoal then
9: Continue

10: end if
11: for all n′ such that ∃en,n′ and not n′ ∋ n[p] do
12: Compute one-step update Ψ′ = ζn,n′ · Ψ, where Ψ =

ˆ

n[Σ]
I

˜

13: Σ′ ← Ψ′

11 ·Ψ
′

21
−1

14: if tr(Σ′) < tr(n′[Σ]) then
15: n′ ← {n′[µ], Σ′, n[p] ∪ {n′}}
16: Push n′ → Q
17: end if
18: end for
19: end while
20: return ngoal[p]

= (GtBt−1)(G
−T
t Ct−1)

−1 + Rt (11)

=
(

DtE
−1

t

)

−1

(12)

where Dt = G−T
t Ct−1 and Et = GtBt−1 + Rt(G

−T
t Ct−1)

and equation (12) follows from a matrix inversion lemma.
The covariance update in the information form can similarly
be factored as

Σt = (Σ
−1

t + HT
t Q−1

t HT
t )−1 (13)

= (DtE
−1

t + Mt)
−1 (14)

Using the same matrix inversion lemma,

= Et(Dt + MtEt)
−1 (15)

⇒ Σt = BtC
−1

t , (16)

where Bt = Et = GtBt−1 + Rt(G
−T
t Ct−1) and Ct =

(Dt + MtEt) = G−T
t Ct−1 + MtGtBt−1 + Rt(G

−T
t Ct−1).

In both cases, Bt and Ct are linear functions of Bt−1 and
Ct−1. Collecting terms, we can write the complete update
step linearly, such that

Ψt =

[

B
C

]

t

=

[

0 I
I M

]

t

[

0 G−T

G RG−T

]

t

[

B
C

]

t−1

, (17)

where Ψt is the stacked block matrix
[

B
C

]

t
consisting of the

covariance factors and ζt =
[

W X
Y Z

]

t
is the one-step transfer

function for the covariance factors for Gt, Ht, Rt and Mt.
Notice that all of the elements in ζ are directly control-

lable, except for Mt, which is related to the measurement zt

but is not a function of the measurement itself. Mt represents
the total amount of information that the measurement pro-
vides at time t and depends on the measurement noise model
Q (which is usually constant) and the measurement Jacobian
Ht. The accuracy of the EKF approximation assumes that
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the measurement function is locally linear, which is exactly
the approximation that the Jacobian is locally constant. As a
result, whenever the EKF assumptions hold, then we can as-
sume that Mt is constant and known a priori. This allows us
to determine ζt for any point along a trajectory; furthermore,
the linearity of the update allows us to combine multiple ζt

matrices into a single, one-step update for the covariance
along the entire length of a trajectory. Therefore, for each
edge eij in the BRM graph, we can pre-compute each ζt

along the edge from the relevant Jacobians and then multiply
the set of ζt’s into a single transfer function ζij that will
propagate an initial (factored) covariance along the length
of the edge in a single matrix multiply. Figure 2 shows this
process of constructing the transfer function for each edge.
Table 1 describes the complete Belief Roadmap algorithm.
Step 2 of the algorithm contains the pre-processing phase
where each edge is labeled with the transfer function ζij that
allows each covariance to be propagated in a single step.

V. THE UNSCENTED KALMAN FILTER

The critical step of the BRM algorithm is the construction
of the transfer function, which depends on terms Rt and
Mt, the projections of the process and measurement noise
terms into the state space. Rt and Mt also represent the
information lost due to motion, and the information gained
due to measurements. When using the Extended Kalman
filter to perform state estimation, these terms are trivial to
compute. However, the EKF is not always a feasible form
of Bayesian filtering, especially when linearizing the control
or measurement functions leads to a poor approximation. A
particularly relevant application where EKF state estimation
fares poorly is localization in discrete or grid-based maps.
Grid map representations contain a strong independence
assumption between the grid cells, which causes measure-
ments of neighboring grid cells to appear uncorrelated. When
computing the Jacobian of a measurement with respect to
a grid cell, however, the gradient of the measurement is
strongly correlated with the neighboring cells. As a result,
EKF localization requires high-level features such as walls
and corners to be extracted for use in both computing the in-
novation of the measurements and computing the Jacobians.
This example is one of a number of problems that can occur
with a standard EKF implementation.

In order to address the limitations of linearization, alter-
nate forms of the Bayes filter have been developed. One
recent extension is the Unscented Kalman filter (UKF) [6],
which uses a set of 2n + 1 deterministic samples, known
as “sigma points” from an assumed Gaussian density to
represent the probability density of a space of dimensionality
n. These samples are generated according to:

X 0

t =µt−1, (18)

X i
t =µt−1 +

(

√

(n + λ)Σt

)i

, i=1, . . . , n (19)

X i
t =µt−1 −

(

√

(n + λ)Σt

)i

, i=n+1, . . . , 2n (20)

where
(

√

(n + λ)Σt

)i

is the ith column of the root of the

matrix. Each sigma point X i has an associated weight wi
m

used when computing the mean, and wi
c is the weight used

when computing the covariance, such that
∑

2n

i=0
wi

c = 1,
∑

2n

i=0
wi

m = 1. The weights and the λ parameters model the
width of the covariance; the mechanism for choosing these
parameters can be found in [6]. The samples are propagated
according to the non-linear process model such that

X
i

t = g(X i
t , u, 0), (21)

generating the process mean and covariance

µt =
2n
∑

i=0

wi
mX

i

t (22)

Σt =

2n
∑

i=0

wi
c(X

i

t − µt)(X
i

t − µt) + Rt. (23)

The sigma points are used to create sigma points in the
measurement space, which are then transformed to generate
the posterior mean and covariance (µt,Σt), such that

Z
i

t = h(X
i

t, 0) µz
t =

2n
∑

i=0

wi
mZ

i

t (24)

St =

(

2n
∑

i=0

wi
m(Z

i

t − µz
t )(Z

i

t − µz
t )

)

+ Qt (25)

Kt =

(

2n
∑

i=0

wi
c(X

i

t − µt)(Z
i

t − µz
t )

)

S−1

t (26)

µt = µt + Kt(zt − µz
t ) (27)

Σt = Σt − KtStKt. (28)

The advantage to the UKF formulation is that the process
and measurement functions are not projected into the state
space by a linearization; instead, the Unscented Transform
computes the moments of the process and measurement
distributions directly in the state space itself. As a result,
the UKF eliminates the need for linearization and captures
the distribution accurately up to the second order, rather than
just the first order fidelity of the EKF.

Unfortunately, although the UKF provides a mechanism of
efficiently tracking the posterior distribution as a Gaussian
while avoiding linearization of the measurement model, the
UKF no longer calculates the Mt matrix which is a critical
piece of the individual transfer functions ζt. However, we can
still recover Mt from the UKF update directly by working in
the information form and noticing that Mt is the information
gain due to measurement zt. We can therefore combine
equation (8) and equation (28),

Ωt = Ωt + Mt (29)

⇒ Mt = Ωt − Ωt (30)

= Σ−1

t − Σ
−1

t (31)

= (Σt − KtStKt)
−1 − Σ

−1

t (32)

In order to calculate the M matrix for a series of points along
a trajectory, we can generate a prior covariance and compute
the posterior covariance as in equation (28). Happily, the
UKF covariance update does not depend on the actual mea-
surement received, exactly like the EKF covariance update.
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Fig. 3. (a) Comparison of trace of covariance from full UKF filtering and
trace of covariance from one-step transfer function using UKF M matrix.
(b) Distribution of ratio of error induced by computing the M matrix for
the one-step transfer function using a constant prior.

The UKF is still a projection of the measurement noise
into the state space, but is a more accurate projection
than an explicit linearization of the measurement model.
By representing the belief update process with the one-step
transfer function, we are approximating the non-linear UKF
update. Figure 3(a) depicts the difference between covari-
ances computed using the full UKF update and covariances
computed using the one-step transfer function for a range of
motions and randomized initial conditions. As expected, the
one-step transfer function using the M matrix calculated in
equation (32) is an approximation to the UKF model but the
induced error is low; the traces of the covariances are closely
matched.

The UKF calculation of the information gain Mt does,
however, depend on the specific prior matrix Σt. As a result,
different choices of prior for equation (32) may result in
different one-step transfer functions. Figure 3(b) shows a
distribution of the ratio of the error of the one-step covariance
to the full UKF covariance, where 7000 trials were performed
using 100 different priors and a range of initial conditions
and trajectories were used to calculate the M matrix. The
error induced in the one-step transfer function for using a
constant M is less than 2% with a significance of p = 0.955,
indicating low sensitivity to the choice of prior over a range
of operating conditions.

VI. SAMPLING IN BELIEF SPACE

As the number of samples and the density of the graph
grows, the BRM planning process will find increasingly low-
covariances paths. However, as the density of the graph
grows, the cost of searching the graph will also grow;
searching the graph will have complexity O(bd) for b edges
per node and path of length d edges. We can reduce this
complexity by minimizing the size of the graph, sampling
nodes that reflect the useful part of the information space.

The optimal sampling strategy would generate samples
that lie only on the optimal path to the goal; this would
of course require knowing the optimal path beforehand.
However, some samples are more likely to be useful than
others: vehicle poses that generate measurements with high
information value are much more likely to lie on the optimal
path than vehicle poses that generate measurements with
little information. If poses are initially sampled from C
uniformly, but are retained according to the expected infor-
mation gain from sensing at each point, the graph will still

converge to one that maintains the connectivity of the free
space but the graph nodes will be placed to generate sensor
measurements that maximize the localization accuracy of the
vehicle. We call this sampling strategy sensor uncertainty

sampling, after the “Sensor Uncertainty Field” (SUF) defined
by Takeda and Latombe [7]. The sensor uncertainty field is
a mapping from location x to expected information gain,
x → I(x), where locations with high information gain
correspond to locations that generate sensor measurements
that we expect to maximize the localization accuracy of
the vehicle. Explicitly building this field is computationally
expensive in practice; by sampling from this field in building
the BRM graph, we gain the benefits of focusing the search
on the states that lead to high information gain without the
cost of explicitly building the sensor uncertainty field.

Information gain is calculated from the difference in
entropy of the prior and posterior distributions,

I(x) = H(p(x)) − H(p(x|z)) (33)

where entropy is H(p(x)) = −
∫

p(x) log p(x). Since our
analysis (figure 3b) suggested that the measure of informa-
tion gain was statistically insensitive to the choice of prior,
we used a constant prior p(x) = Σ0 such that H(p(x)) =
C while evaluating sensor uncertainty, and Bayes’ rule to
compute p(x|z) = p(z|x) · p(x), such that

I(x) = C − H(p(x|z)) (34)

where z = argmaxz p(z|x) and p(x|z) is calculated accord-
ing to the UKF. For each sample, we simulate the sensor
measurement and find the probability of observing the sensor
measurement at each of the sigma points. The lower the
probability of observation at the neighboring sigma points,
the smaller the entropy of the posterior distribution, and
therefore the greater the information gain. We normalize
the posterior entropies so that I(x) lies in the range [0, 1],
allowing us to treat the information gain of x as a probability
that the sample is accepted or rejected.

Figure 4(a) shows a bird’s-eye view of an example en-
vironment with limited structure and no GPS. The brick
structures in figures 4(a) and (c) are the parking garage pillars
and stairwell (top right). In figure 4(a), sample poses are
drawn uniformly. Figure 4(b) shows the sensor uncertainty
field [7] where equation (33) is evaluated at each location
(x, y) for fixed height and attitude. (The lack of smoothness
between obstacles is an artifact of the rendering process
and angular discretization.) The pixel intensity corresponds
to the information gain, where darker pixels have more
information. This field is shown only to illustrate the concept;
computing the field for realistic domains is impractical.
Finally, figure 4(c) shows samples drawn according to the
sensor uncertainty. Note that the sample density is lowest
far from the environmental structure where sensing provides
the least amount of information.

Figure 5 shows the advantage of sampling according to the
sensor uncertainty. The graph constructed using sensor un-
certainty sampling consistently found a trajectory resulting in
a covariance with trace 1.48 using 100 samples, whereas the
uniform sampling method required 1000 samples to achieve a
covariance of size 3.43. By sampling uniformly, the standard
BRM requires a large and dense graph to achieve good

1818

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 7, 2008 at 10:40 from IEEE Xplore.  Restrictions apply.



(a) Samples drawn uniformly (b) Sample map of sensor uncertainty field (c) Samples from sensor uncertainty field

Fig. 4. Bird’s-eye view of unstructured, GPS-denied environment. The brick structures are pillars in the underground garage. (a) Distribution of samples
drawn uniformly. (b) The sample map with the sensor uncertainty field. The intensity (darkness) of each pixel corresponds to the information gain available
by sensing there. (c) Distribution of samples drawn according to the sensor uncertainty field.
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Fig. 5. Comparison of uniform vs. sensor uncertainty sampling strategies.
The sensor uncertainty sampler finds accurate trajectories with considerably
fewer samples than the uniform sampler.

localization accuracy. Table I shows a comparison of graph
construction and planning times. The conventional PRM is
clearly the fastest algorithm in both graph construction speed
and path search, but as expected the localization performance
is poor. The BRM with sensor uncertainty sampling requires
additional time during the graph creation phase, but this
time can be amortized across multiple queries, and results
in measurably better paths.

Trace Goal
Covariance

Graph Build
Time (s)

Path Search
Time (s)

PRM 16.046 0.036 0.001
BRM, Uniform Sampling 4.223 18.920 0.039
BRM, Sensor Uncertainty
Sampling

1.094 25.589 0.032

TABLE I

PERFORMANCE AND TIME COSTS OF DIFFERENT PLANNERS.

VII. INDOOR NAVIGATION RESULTS

The BRM algorithm and sensor-maximizing sampling
strategy were tested using the quadrotor helicopter, shown
in Figure 1. Equipped with auto-stabilization rate gyros and
accelerometers, the helicopter has on-board attitude control
and thus acts as a stable sensor platform. The on-board
environmental sensor is a Hokuyo URG laser sensor – a
planar laser rangefinder that provides a 240◦ field-of-view at
10 Hz, up to an effective range of 3m. The laser is mounted in
the X-Y plane of the helicopter, and we modified the laser to
optically redirect 20◦ of its field-of-view to provide a small
set of range measurements in the (downward) z direction.
In a single scan, the vehicle is therefore able to estimate
its position, yaw orientation and altitude with respect to

environmental features. Figure 6(c) shows an example scan.
In practice, the measurement of the ground plane is relatively
noisy, although sufficient for closed-loop altitude control.

The helicopter is required to plan a path from the starting
position to the end goal, shown in Figures 6(a-b), and must
localize itself using the laser while executing the trajectory.
We first plan a path for the helicopter using each method. We
then attempt to fly the the helicopter autonomously through
the environment using the planned trajectories, and determine
if the helicopter is able to successfully reach the end goal
by maintaining accurate localization. We compare the laser-
localized state estimate against ground truth measured by a
motion capture system.

Figure 6(a) shows an example trajectory generated by the
traditional PRM planner, which finds a direct path from start
to goal. Because this plan ignores the helicopter’s need for
sensor information to localize itself, the helicopter gets lost
while in flight incurring a position estimation error of at
least 3.6m, falsely believing that it is still in the center of
the environment when it has already flown to the left.

On the other hand, an example BRM trajectory using
sensor uncertainty sampling enables the helicopter to stay
well-localized incurring a position estimation error of .17m,
as shown in Figure 6(b). The helicopter achieves this by
detouring from the shortest path toward areas of high sensor
information, successfully reaching its desired goal with high
certainty. This demonstrates that the BRM trajectory leads
to measurably more accurate performance.

VIII. RELATED WORK

Modern approaches to planning with incomplete state
information are typically based on the partially observable
Markov decision process (POMDP) model or as a graph
search through belief space [10]. While the POMDP provides
a general framework for belief space planning, the complex-
ity of the solution grows exponentially in the length of the
policy and the number of potential observations. Numerous
approximation algorithms exist to mitigate the problem of
scalability [11], [12], but these techniques still face com-
putational issues in addressing large problems. Alternatively,
the Augmented MDP uses the concept of information gain by
the sensor at each possible pose in freespace [13] to compute
a dense policy. The Augmented MDP approach is strongly
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Fig. 6. (a) and (b) show an example indoor environment for comparing the performance of the BRM algorithm. The green line shows the helicopter’s
position estimate from the laser sensor measurements, which it uses for localization and control. The red line shows the true path of the helicopter. (a)
Localization performance of helicopter executing PRM trajectory. (b) Localization performance of helicopter executing trajectory planned by the BRM
using sensor uncertainty sampling. (c) The perception model of the onboard laser range-finder, including the field of view of the X-Y plane and the field
of view of the ground plane.

related to the ideas in this paper, but does not scale well to
more than two dimensions.

The extended Kalman filter and unscented Kalman filter
have been used extensively. Ko et al. [14] use the iMote2
technology and the UKF for state estimation in aerial vehi-
cles, and Valenti et al. [15] were the first to demonstrate
reliable navigation and position estimation on quadrotor
helicopters. The sympletic form (and related Hamiltonian
form) of the covariance update has been reported before,
most recently by Mourikis et al. [16]. Finally, laser range
finding on-board helicopters is not a novel technology [17],
[18], although we believe we are the first to demonstrate
reliable autonomous localization and motion planning on an
indoor helicopter using laser range finding.

IX. CONCLUSION

In this paper, we have addressed the problem of a he-
licopter localizing and navigating in GPS-denied environ-
ments. The helicopter uses laser range data and an existing
map to localize, but the laser has a limited field of view,
causing the helicopter to lose track of its own position in
certain configurations and in some parts of the environment.
We showed how the Belief Roadmap algorithm [1] can
be used to plan trajectories through the environment that
incorporate a predictive model of sensing, allowing the
planner to minimize the positional error of the helicopter
at the goal using efficient graph search. The original BRM
algorithm assumed an extended Kalman filter model for po-
sition estimation, and we showed how this algorithm can be
extended to use the unscented Kalman filter. Furthermore, we
showed that by choosing an appropriate sampling algorithm,
the BRM can find better trajectories with fewer samples than
using uniform sampling strategies.
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