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Abstract This paper presents an adaptive nonlinear control solution to the horizontal motion of an autonomous airship. We
define a novel family of error functions including configuration error and velocity error. Then, we establish the error system. The
adaptive nonlinear controller stabilizing the error system is designed by Lyapunov direct method and Matrosov theorem. Numerical
studies are presented to illustrate the effectiveness of the proposed controller.

Key words Adaptive nonlinear control, Lyapunov method, Matrosov theorem, autonomous airship, neutral buoyancy

In recent years, autonomous airships have become an
intense research area all over the world for their emerg-
ing applications such as communication platform, surveil-
lance, advertising, monitoring, inspection, exploration, and
so on[1]. Many published works on airship control theme
appeared in the last decade. Reference [2] introduced a
robust output tracking controller for airship′s attitude us-
ing Lyapunov method. Reference [3] analyzed the stability
and robustness of airships control system using dynamic
inversion method. Reference [4] designed a time-varying
controller for a nonlinear underactuated autonomous air-
ship using averaging and backstepping approaches. Since
the dynamics of autonomous airships is highly nonlinear
and the aerodynamic coefficients of airships are difficult
to estimate accurately, the controller design is required to
have learning and adapting abilities in order to provide de-
sired performance. However, there are few published works
about applying adaptive control method to autonomous
airships though this method has been known for many
years and applied successfully in many other fields[5−7]. In
this paper, we present an adaptive control method for au-
tonomous airship with neutral buoyancy. We define a fam-
ily of configuration errors and velocity errors, and then,
establish the error system. By applying Lyapunov direct
method, we construct an adaptive control law for the de-
veloped error system, and then, prove that the closed-loop
error system is locally uniformly asymptotically stable us-
ing Matrosov theorem.

The organization of this paper is as follows. A simple
model characterizing the planar motion of an airship is
given in Section 1. By introducing a novel family of config-
uration and velocity errors, the model is transformed into
an error system. Section 2 is devoted to the adaptive con-
troller design for stabilizing the error system. Simulation
results are given in Section 3, and Section 4 is the conclu-
sion.

1 Problem formulation
1.1 System modeling

Consider an airship with neutral buoyancy, i.e., the buoy-
ancy is equal to the gravity. Since the restored torque
caused by the noncoincident centers of gravity and buoy-
ancy can stabilize the pitch and roll motions, a three-
degree-of-freedom simplified dynamics could model the hor-
izontal motion. For detailed development of the mathemat-
ical model of an airship moving with six-degree-of-freedom,
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the reader can refer to [8]. For the purpose of studying the
planar dynamics of airship, we define the inertia frame with
the origin Oi at some point fixed at the earth, and the body
frame with the origin Ob at the center of volume (CV) (i.e.,
the center of buoyancy) as shown in Fig. 1. The ObXb axis
lies along the symmetry axis of airship′s envelope. The
ObYb axis points to the starboard and is perpendicular to
ObXb.

Fig. 1 Inertia frame and body frame

The kinematics of horizontal motion of airship can be
described as

ζ̇ζζ =

⎡
⎣

1 0 0
0 cos ψ − sin ψ
0 sin ψ cos ψ

⎤
⎦ ξξξ (1)

where ζζζ =
[

ψ x y
]T

is the configuration vector,

ξξξ =
[

r u v
]T

is the velocity vector, ψ is the airship′s
yaw angle,

[
x, y

]
is the position in inertia frame, r is

the yaw angular rate, and u and v are the linear velocities
along ObXb and ObYb, respectively. Analyzing the forces
and moments endured by airship and using Newton mo-
tion law, we get the following dynamics equation of airship
(neglecting its longitudinal motion)[9]

MAξ̇ξξ =

G

̂

⎡
⎣

0 v −u
0 0 r
0 −r 0

⎤
⎦ MAξξξ − Ddissξξξ + τττ (2)

where MA = diag{J33, m11, m22}, J33 is the sum of mo-
ment of inertia and added moment of inertia, and m11

and m22 are the sum of airship′s mass and added mass
in the directions of ObXb and ObYb, respectively; Ddiss =
diag{dr, du, dv}, dr, du, and dv are dissipation coefficients,

respectively; τττ =
[

τr τu τv

]T
, τr, τu, and τv are ex-

ternal control forces and moments, respectively.
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1.2 Error definitions

Let ζζζd =
[

ψd xd yd

]T
denote airship′s desired tra-

jectory and ξξξd =
[

rd ud vd

]T
denote desired velocity.

ζζζd and ξξξd are related by the following equation named de-
sired trajectory generator

ζ̇ζζd =

⎡
⎣

1 0 0
0 cos ψd − sin ψd

0 sin ψd cos ψd

⎤
⎦ ξξξd (3)

Definition 1. Define configuration error ζζζe and velocity
error ξξξe as

ζζζe =

⎡
⎣

ψe

xe

ye

⎤
⎦ =

⎡
⎣

ψ − ψd

(x − xd) cos ψd + (y − yd) sin ψd

− (x − xd) sin ψd + (y − yd) cos ψd

⎤
⎦ (4)

ξξξe =
[

re ue ve

]T
=

ξξξ−

F

̂

⎡
⎣

1 0 0
xe sin ψe − ye cos ψe cos ψe sin ψe

xe cos ψe + ye sin ψe − sin ψe cos ψe

⎤
⎦ ξξξd (5)

The configuration error ζζζe increases when ‖ζζζ − ζζζd‖ in-
creases and vice versa. The velocity error ξξξe increases with
the increase of ‖ξξξ − ξξξd‖ and vice versa. The errors are ze-
roes when ζζζ = ζζζd and ξξξ = ξξξd hold. So, we can say that the
error definitions (4) and (5) are reasonable.

1.3 Kinematics and dynamics equations of error
system

According to (1)∼ (5), the error kinematics and dynam-
ics equations are developed in this section.

The error kinematics is obtained by differentiating (4):

ζ̇ζζe =

⎡
⎣ ψ̇e

ẋe

ẏe

⎤
⎦=

⎡
⎣

re

�
ℵ

⎤
⎦=

Ae

̂

⎡
⎣

1 0 0
0 cos ψe − sin ψe

0 sin ψe cos ψe

⎤
⎦ ξξξe (6)

where � = u cos ψe − v sin ψe − ud − rd[(x − xd) sin ψd −
(y − yd) cos ψd] and ℵ = u sin ψe + v cos ψe − vd − rd[(x −
xd) cos ψd +(y−yd) sin ψd]. Differentiating (5), we have the
error dynamics

ξ̇ξξe = ξ̇ξξ − Ḟξξξd − Fξ̇ξξd =

ξ̇ξξ +

GT
e

̂

⎡
⎣

0 0 0
ve 0 −re

−ue re 0

⎤
⎦ Fξξξd − Fξ̇ξξd =

M−1
A GMA (ξξξe + Fξξξd) − M−1

A Ddiss(ξξξe + Fξξξd) +

GT
e Fξξξd − Fξ̇ξξd + M−1

A τττ (7)

Equations (6) and (7) describe the error system of
airship′s lateral motion. The objective of control design
is to construct control law stabilizing the error system. If
the desired velocity ξξξd = 0, the airship will be hovering at
some point. If the desired velocity ξξξd �= 0, the airship will
move along the desired trajectory generated by (3). So the
error system brings the positioning control problem and the
trajectory tracking problem into an unified framework.

It is easy to verify that the following equations hold

GTξξξ = 0 (8)

GT
e ξξξe = 0 (9)

GTξξξe + GT
e ξξξ = 0 (10)

2 Adaptive control law design

Denote M̄A and D̄diss as the estimated values of MA

and Ddiss, respectively. M̃A and D̃diss are the estimation
errors, i.e.,

M̃A = diag{J̃33, m̃11, m̃22} = M̄A − MA (11)

D̃diss = diag{d̃r, d̃u, d̃v} = D̄diss − Ddiss (12)

Denote θ̄θθMA = [J̄33, m̄11, m̄22]
T, θ̃θθMA = [J̃33, m̃11, m̃22]

T,

θ̄θθDdiss = [d̄r, d̄u, d̄v]T, θ̃θθDdiss = [d̃r, d̃u, d̃v]T, θ̄θθ = [θ̄θθMA ,

θ̄θθDdiss ]T, θ̃θθ = [θ̃θθMA , θ̃θθDdiss ]T, θθθMA = [J33, m11, m22]
T,

θθθDdiss = [dr, du, dv]T, and θθθ = [θθθMA , θθθDdiss ]T.

The estimation error of parameters θ̃θθ is defined by

θ̃θθ = θ̄θθ − θθθ (13)

The operator Y (·) is defined by the following equation. For
any xxx = [ x1 x2 x3 ]T,

Y (xxx) = diag{x1, x2, x3} (14)

So, we have

M̃Axxx = diag{J̃33, m̃11, m̃22}[ x1 x2 x3 ]T =

diag{x1, x2, x3}[ J̃33 m̃11 m̃22 ]T =

Y (xxx)θ̃θθMA (15)

D̃dissxxx = diag{d̃r, d̃u, d̃v}[ x1 x2 x3 ]T =

diag{x1, x2, x3}[ d̃r d̃u d̃v ]T =

Y (xxx)θ̃θθDdiss (16)

Consider the adaptive feedback control law

τττ = −AT
e Kcpζζζe − (G − Ge) M̄AFξξξd +

M̄AFξ̇ξξd + D̄dissFξξξd − Kcdξξξe (17)

The parameters are estimated from the following parame-
ters estimator

˙̄θθθ = −ΓY T
e ξξξe (18)

where Kcp, Kcd, and Γ are positive definite matrices, and

Ye = [(Ge − G)Y (Fξξξd) + Y (Fξ̇ξξd), Y (Fξξξd)]3×6 (19)

By substituting adaptive feedback control law (17) into the
dynamic of error system (7), we can get the dynamic equa-
tion of closed-loop error system.

ξ̇ξξe = M−1
A GMA(ξξξe + Fξξξd) − M−1

A Ddiss(ξξξe + Fξξξd) +

GT
e Fξξξd − M−1

A AT
e Kcpζζζe − M−1

A (G − Ge)M̄AFξξξd −
Fξ̇ξξd + M−1

A M̄AFξ̇ξξd + M−1
A D̄dissFξξξd − M−1

A Kcdξξξe =

M−1
A [(GeMA + MAGT

e )Fξξξd + GMAξξξe] +

M−1
A [(Ge − G)M̃AFξξξd + M̃AFξ̇ξξd + D̃dissFξξξd] −

M−1
A AT

e Kcpζζζe − M−1
A (Ddiss + Kcd)ξξξe

According to (15) and (16), there is

(Ge − G)M̃AFξξξd + M̃AFξ̇ξξd + D̃dissFξξξd =

(Ge − G)Y (Fξξξd)θ̃θθMA + Y (Fξ̇ξξd)θ̃θθMA + Y (Fξξξd)θ̃θθDdiss =

[(Ge − G)Y (Fξξξd) + Y (Fξ̇ξξd), Y (Fξξξd)]θ̃θθ = Yeθ̃θθ
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So the dynamic equation of closed-loop error system is

ξ̇ξξe = M−1
A [GMAξξξe + (GeMA + MAGT

e )Fξξξd] −
M−1

A AT
e Kcpζζζe−M−1

A (Ddiss+Kcd)ξξξe+M−1
A Yeθ̃θθ (20)

Theorem 1. If the desired velocity ξξξd �= 0 and bounded,
then, under the control of (17) and (18), the closed-loop er-
ror system (6) and (20) is locally uniformly asymptotically
stable around the origin (ζζζe, ξξξe) = (000,000).

Proof. Construct Lyapunov function as

V (ζζζe, ξξξe) =
1

2
ζζζT

e Kcpζζζe +
1

2
ξξξT

e MAξξξe +
1

2
θ̃θθ

T
Γ−1θ̃θθ (21)

Differentiating V (ζζζe, ξξξe) with respect to the time along the
trajectory of closed-loop error system (6) and (20), we have

V̇ (ζζζe, ξξξe) = ζζζT
e Kcpζ̇ζζe + ξξξT

e MAξ̇ξξe + θ̃θθ
T
Γ−1 ˙̃

θθθ (22)

Assume θθθ is a constant. Since θ̃θθ = θ̄θθ − θθθ,
˙̃
θθθ = ˙̄θθθ =

−ΓY T
e ξξξe, and according to (20), we have

V̇ (ζζζe, ξξξe) = ξξξT
e {[GMAξξξe + (GeMA + MAGT

e )Fξξξd] −
AT

e Kcpζζζe − (Ddiss + Kcd)ξξξe + Yeθ̃θθ} −
θ̃θθ

T
Y T

e ξξξe + ζζζT
e Kcpζ̇ζζe =

ξξξT
e [GMAξξξe + (GeMA + MAGT

e )Fξξξd] −
ξξξT

e (Ddiss + Kcd)ξξξe

According (8)∼ (10), we have

GMAξξξe +
(
GeMA + MAGT

e

)
Fξξξd =

GMAξξξe +
(
GeMA + MAGT

e

)
(ξξξ − ξξξe) =

GMAξξξe + GeMAξξξ − GeMAξξξe − MAGTξξξe =
⎡
⎣

0 −m22v m11u
m22v 0 0
−m11u 0 0

⎤
⎦ ξξξe +

(MAGT
e − GeMA)ξξξe + (GMA − MAGT)ξξξe

Since the term in bracket is skew-symmetric, we have

V̇ (ζζζe, ξξξe) = −ξξξT
e (Ddiss + Kcd)ξξξe ≤ 0 (23)

Applying Lyapunov uniform stability theorem[10], uniform
stability is proved.

Now we prove the asymptotical stability. Consider the
following assistant function

W (ζζζe, ξξξe) = −ζζζT
e KcpAT

e MAξξξe + θ̃θθ
T
Y T

e MAξξξe (24)

Differentiate both sides of (24), then, we get

Ẇ (ζζζe, ξξξe) = −ζ̇ζζT
e KcpAT

e MAξξξe − ζζζT
e KcpȦT

e MAξξξe+

˙̃
θθθTY T

e MAξξξe + θ̃θθTẎ T
e MAξξξe + (−ζζζT

e KcpAT
e + θ̃θθTY T

e )MAξ̇ξξe

Substituting (20) into the above equation and letting ξξξe =
0, i.e., re = 0, ue = 0, and ve = 0, which results in Ge = 0,

and we have MAξ̇ξξe = −AT
e Kcpζζζe + Yeθ̃θθ, and then,

Ẇ (ζζζe, ξξξe)|ξξξe=0 =

(−ζζζT
e KcpAe + θ̃θθ

T
Y T

e )(−AT
e Kcpζζζe + Yeθ̃θθ) =

(Yeθ̃θθ − AT
e Kcpζζζe)

TAT
e Ae(Yeθ̃θθ − AT

e Kcpζζζe) =

(AeYeθ̃θθ − Kcpζζζe)
T(AeYeθ̃θθ − Kcpζζζe) ≥ 0 (25)

According to (18), θ̃θθ is constant if ξξξe = 0, and it denotes

θ̃θθ0.
If θ̃θθ0 = 0, then, according to (25), Ẇ (ζζζe, ξξξe)|ξξξe=0 =

ζζζT
e KT

cpKcpζζζe. Then, we know that Ẇ (ζζζe, ξξξe)|ξξξe=0 = 0
if and only if ζζζe = 0. So, we can conclude that

Ẇ (ζζζe, ξξξe)|ξξξe=0 > 0 if 0 < ‖ζζζe, ξξξe‖ < δ ( any δ > 0).

If θ̃θθ0 �= 0, then, according to (25), Ẇ (ζζζe, ξξξe)|ξξξe=0 = 0 if
and only if

ζζζe = K−1
cp AeYeθ̃θθ0 (26)

We can get ζζζe = ζζζ0
e by solving nonlinear algebra equation

(26), and we denote ‖ζζζ0
e‖ = γ. Then, Ẇ (ζζζe, ξξξe)|ξξξe=0 > 0

if 0 < ‖ζζζe, ξξξe‖ < γ. We can also find out a strictly in-

creasing function δ(‖ζζζe, ξξξe‖)|ξξξe=0, so that Ẇ (ζζζe, ξξξe)|ξξξe=0 ≥
δ(‖ζζζe, ξξξe‖)|ξξξe=0 at the region 0 < ‖ζζζe, ξξξe‖ < γ. This sat-

isfies the condition (5) of the Matrosv theorem[11]. From
above description, conditions (1)∼ (4) of Matrosov theo-
rem are satisfied by (6), (20)∼ (24) when we select V ∗(xxx) =

−ξξξT
e Ddissξξξe. Hence, the all conditions of Matrosov theo-

rem are satisfied at the region 0 < ‖ζζζe, ξξξe‖ < γ. Then, the
local asymptotic stability of error system is guaranteed. �

From the control law, we can find that if ξξξd = 0, i.e.,
keeping the airship hovering at the desired point (this is an
important task for airship used as a communication plat-
form), the parameter estimator (18) is trivial, and the adap-
tive control law (17) reduces to the nonadaptive version.

3 Simulation

The effectiveness of the control law is illustrated by
the following simulation. The parameters are selected as
J33 = 12 167.3 Kg · m2, m11 = 301.9 Kg, m22 = 455.1 Kg,
dr = 73 Kg/s, du = 50 Kg/s, and dv = 50 Kg/s. In the
period from 20 s to 30 s, there are disturbances with 15m/s
in u direction, and white noise |ω| ≤ 3 in v and r directions.
The desired velocity is ξξξd = [ 0.1 sin(0.1 × t) 10 0 ]T.
The control parameters are taken as Kcp =
diag{100 000, 1 000, 1 000}, Kcd = diag{60 000, 300, 300},
and Γ = diag{6, 0.3, 0.3, 0.3, 0.3, 0.3}. The initial value of
parameter estimator is 80% of real parameter value. The
results are shown in Figs. 2∼ 6.

The desired trajectory is a dashed sine wave as shown
in Fig. 5. At the beginning, the real trajectory of the air-
ship fast verges to the desired one. It deviates from the de-
sired trajectory at about 20 s since wind disturbance occurs
but the deviation is in some range with the effect of con-
troller. From Fig. 4, we can see that the control inputs vary
slowly when disturbance occurs at t = 0 and varying fast
when disturbance vanishes. That is because the controller
consists of system error feedback but without disturbance
feed-forward. The controller outputs vary with the system
errors, which vary slowly from zero at the beginning of the
disturbance. When disturbance vanishes at t = 30 s, the
system errors are still great so that the control action will
be strong, which makes the system errors converge to zero
with some oscillation as shown in Figs. 2 and 3. Fig. 6 shows

that the norm of parameter error θ̃θθ. The results verify the
performance of the proposed controller.
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Fig. 2 Configuration errors

Fig. 3 Velocity errors

Fig. 4 Control inputs

Fig. 5 Real and desired trajectories

Fig. 6 Norm of parameter estimator error

4 Conclusion

In this paper, we presented a new approach to design a
robust adaptive controller using Lyapunov stability method
and Matrosov theorem for an airship with neutral buoy-
ancy. By introducing a new definition of airship′s config-
uration and velocity errors, we established the error kine-
matics and dynamics systems. Hence, the configuration
stabilization problem and the trajectory tracking problem
could be transformed into an unified framework, i.e., the
stabilization problem of error system. Especially, the con-
troller needs no knowledge of the parameter uncertainty in
the case of set-point control. The simulation results verified
the performance of the controller.
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